
Part 2: Cardano’s Ars Magna

1 Introduction

Histories of mathematics often assert that Girolamo Cardano’s Ars Magna
(The Great Art, 1545) gives algebraic solutions for all equations of degree less
than or equal to four. As we shall see, from a sixteenth or even seventeenth
century standpoint this is not precisely true. But the work, in the context
of what was then known, is a monumental achievement, and influenced the
development of algebra for a couple of centuries.

Cardano was not a modest man—he got into trouble with the Church
for casting the horoscope of Christ. On the title page he describes himself
as “Outstanding Mathematician, Philosopher and Physician” and the book
as “. . . Tenth in Order of the Whole Work on Arithmetic Which is called the
Perfect Work.” The first paragraph of the Introduction reads, in part:

In this book, learned reader, you have the rules of algebra (in
Italian, the rules of the cosa). It is so replete with new discoveries
and demonstrations by the author—more than seventy of them—
that its forerunners . . . are washed out. It unties the knot not
only where one term is equal to another or two to one but also
where two are equal to two or three to one.

The book ends with “Written in five years, may it last as many thou-
sands.” This hubris is characteristic of the Renaissance. A new world of
possibilities had opened up, and a new aggressive individualism to go with it.
Mathematicians and scientists, hitherto in awe of the work of the Ancients,
began to think they could surpass it.

2 Predecessors of Cardano

2.1 Islamic Algebraists

In the twelfth century, Umar al-Khayyām tried to solve cubic equations al-
gebraically. He didn’t succeed, but produced a detailed geometric analysis.
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A century later, Sharaf al-D̄ın al-T. ūs̄ı made a sophisticated study of equa-
tions of type x3 + b = ax (a and b positive), and showed there is a (positive)
root if and only if

a3

27
− b2

4
≥ 0.

This is the first appearance in history of the discriminant of a cubic. The
discriminant would become crucial in the work of Cardano and his succes-
sors. Unfortunately, the results of al-Khayyām and al-T. ūs̄ı only reached
Europe hundreds of years after Cardano.

2.2 The Italian School

There are occasional stabs at the cubic from Leonardo of Pisa on. Around
1350, Maestro Dardi looked at some special cases that reduce to (x−a)3 = b.
Maestro Gerardi published incorrect formulas; the errors were pointed out
by Maestro Benedetto. These three men were maestri d’abbacò, teachers of
basic commercial arithmetic and algebra. In his Summa of 1494, Fra Luca
Pacioli mentions that a solution of the general cubic hasn’t been found. The
sixteenth century discoveries don’t come out of thin air: solving the cubic is
part of the research program of the time.

2.3 The Discoverers

Scipione del Ferro (University of Bologna, 1515?) found an algebraic so-
lution for equations of type x3 + bx = c where b and c are positive. He
communicated it to Antonio Maria Fiore, Annibale della Nave, and maybe
others. But the method was known only to an in-group. A notebook of
del Ferro that describes the procedure survived until at least 1570. It has
disappeared.

In 1535, while preparing for a problem-solving contest against Fiore,
Tartaglia also found a way to solve del Ferro’s equation, and maybe x3 +
ax2 = d. After pleas from Cardano, Tartaglia gave him the rule in cryptic
form. Over the next few years Cardano, with the help of Lodovico Ferrrari,
worked out the details for “most” cubics, and Ferrari found a method for
the quartic, which however depends on the not quite digested cubic. It turns
out that to understand the real solutions of some cubics requires knowledge
of complex numbers. The first satisfactory treatment is by Euler around
1740; someone more fussy might say Lagrange, in 1770.
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3 The Look and Feel of Ars Magna

3.1 Structure of Ars Magna

Ars Magna is structured somewhat like the theoretical part of al-Khwārizmı̄’s
al-jabr wa al-muqābala. Cardano acknowledges the debt: Chapter I of Ars
Magna begins with “This art originated with Mahomet the son of Moses
the Arab.” More precisely, the book borrows its form from the eminent
algebraist Leonardo of Pisa (1202) and from Pacioli’s Summa.

The first ten chapters deal with linear and quadratic equations, basic
algebraic techniques, and transformation methods. There follow thirteen
short chapters on cubic equations, one for each of the thirteen non-trivial
cases. The last seventeen chapters deal with: miscellaneous equation-solving
methods; problems (many!) that lead after a while to solvable equations;
proportions and the ever-popular Rule of Three; and some tentative explo-
rations including seventeen pages on biquadratic (degree four) equations.

There are thirteen types of cubic for the same reason that al-Khwārizmı̄
has three non-trivial cases of the quadratic. Only positive numbers are
allowed as coefficients, so the equations x3 + cx = d, x3 = cx+ d, . . . , x3 +
ax2 + d = cx all get separate and often quite different treatment. Negative
numbers are allowed as roots, albeit with some reluctance: they are called
“fictitious” or “false.” But Cardano is the first European mathematician to
handle negative numbers with some degree of comfort. Like his predecessors,
Cardano doesn’t use parameters, so a, b, c and d are always particular
numbers.1

Cardano gives lengthy geometric justification of his rules. Thus algebra
is not yet an autonomous discipline: validation requires geometric proof.
Euclid is often quoted.

3.2 Cardano’s Notation

Leonardo of Pisa, like al-Khwārizmı̄, wrote everything out in words. The
next three hundred years brought many abbreviations. Cardano’s are a
variant of the ones used by Pacioli.

The three editions of Ars Magna use mildly different notations. In-
deed there are inconsistencies within the same page of the same edition.
Most “symbols” are abbreviations of terms such as piú (plus), meno (mi-
nus) quadratum (square), cubum (cube), and so on, and abbreviations may

1Cardano uses parameters once. He writes that
√
a/b =

√
a/
√
b for any numbers a

and b.
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be short or shorter. Here are a couple of samples:

1q̄dq̄d. p: 6 q̄d. p:36 æqualia 60 pos. means x4 + 6x2 + 36 = 60x.

The q̄d stands for quadratum, square, so q̄dq̄d is “square-square,” namely
fourth power. The pos. stands for positio, the “thing” which is sought. Most
Italian mathematicians called it res or cosa.2 In some formulas, æqualia
(equals) becomes æqual., æq̄lia, æq̄, or even just a long blank space.

The letter R (more precisely, the pharmacy prescription sign) stands for
radix (root). The expression

R v: cu. R 108 m: 10 means
3
√√

108 − 10.

The R 108 m: 10 is just
√

108 − 10. R cu. means radix cubica, cube root.
The v in between is the first letter of universalis. It means that you take
the cube root of all that follows. The parentheses we now use for grouping
are very rare until the eighteenth century.

We note here that Italy was quite conservative in notation, maybe be-
cause it had a long mathematical tradition. Forms of our “+,” “−,” “√,”
and “=” were already being used by some German, Dutch, and English
writers.

3.3 Cardano Translated

Cardano’s book, like a majority of scholarly works up to the nineteenth
century, was written in Latin. An English translation was published in
1968. This short excerpt from Chapter XXXVII is unrepresentative, since
it deals with a quadratic equation, but historically important. It is the first
time that a complex number is used in mathematics.

If someone says to you, divide 10 into two parts, one of which
multiplied into the other shall produce 30 or 40, it is evident that
this case or question is impossible. Nevertheless, we shall solve
it in this fashion. Let us divide 10 into equal parts and 5 will
be its half. Multiplied by itself, this yields 25. From 25 subtract
the product itself, that is 40, which as I taught you . . . leaves a
remainder m: 15. The root of this added and then subtracted
from 5 gives the parts which multiplied together will produce 40.
These, therefore, are 5 p: R m: 15 and 5 m: R m: 15.

2In English, algebra was called the art of the coss, and practitioners were called cossists.
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Cardano makes a doomed stab at a geometric justification, and ends up
formally computing (5 +

√
−15)(5 +

√
−15). He calls the quantity he has

introduced sophistica (sophistic, unreal), and the arithmetic he has done “as
subtle as it is useless.” It took another 200 years for complex numbers to
be fully integrated into mathematics.

4 Solving Cubic Equations

Our presentation in modern notation will be far shorter than the 59 pages
Cardano devotes to the thirteen cases, and the many pages of preliminaries.
There are a number of reasons for this.

Cardano’s presentation is very detailed, with many numerical examples.
He is, by our standards, quite wordy: current fashion favours a more tele-
graphic style. And of course modern notation is very concise. The con-
ceptual base has changed. Since we take the “rules of algebra” for granted,
there are no geometric justifications. Since we allow 0 and negative numbers
as coefficients, there is only one case. We don’t care whether a root is posi-
tive, and Cardano always does. But our mechanical manipulations don’t do
justice to the subtle intelligence and complexity of Cardano’s work.

4.1 Preliminary Reduction

We use modern notation. But we need to be aware that for Cardano “x”
represents a particular but unknown number: he does not have the concept
of polynomial.

Let P (x) = x3 + ax2 + bx + c where a, b, and c are real. We want to
solve the equation P (x) = 0. (The first person to allow letters a, b, . . . to
represent a number that could be positive or negative seems to be Hudde,
around 1659.)

Let x = y − a/3. We are studying the equation

(y − a/3)3 + a(y − a/3)2 + b(y − a/3) + c = 0. (1)

Simplify. It is easy to see that the coefficient of y2 in (1) is 0, so the equation
has shape

y3 + py + q = 0 (2)

where p and q aren’t hard to find. The roots of P (x) = 0 are the roots of (2)
shifted by a/3.

The substitution x = y − a/3 seems to be due to Cardano. Actually,
he uses x = y − a/3 if the x3 and x2 terms are on the same side of the
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equation, and x = y+a/3 if they are not. How could del Ferro and Tartaglia
have missed it? Centuries before, al-Khayyām and al-T. ūs̄ı used related
transformations in their study of cubics.

4.2 The Substitution y = u+ v

The following identity is easy to verify:

(u+ v)3 − 3uv(u+ v)− (u3 + v3) = 0 (3)

In essence Cardano uses the same identity. He justifies it by a volume
calculation, dissecting actual cubes. Cardano was undoubtedly guided by
the standard “completing the square” arguments for the quadratic. Cardano
needs u and v to be sides of a cube. In some cases that forces him to use the
substitution y = u− v—that’s how he solves his first serious cubic equation,
x3 + 6x = 20.

Identity (3) shows that if

3uv = −p and u3 + v3 = −q (4)

then u+ v is a solution of y3 + py + q = 0.
Can we find u and v that satisfy the equations of (4)? Assume there is a

solution, and on that assumption, use algebraic manipulations to find one.
Finally—important—either verify that the solution works, or that the steps
in the argument are reversible. For though all humans are bipeds, not all
bipeds are human—some bipeds are pheasants.

Write v = −p/3u and substitute. After some manipulation we arrive at

(u3)2 + qu3 −
(
p

3

)3

= 0, (5)

So u3 is a solution of the quadratic equation z2 + qz − (p/3)3 = 0. The
solutions are A and B where

A = −q
2

+
√

(q/2)2 + (p/3)3 and B = −q
2
−
√

(q/2)2 + (p/3)3.

It is easy to check by using the “rules of algebra” that AB = −(p/3)3 and
A+B = −q. But we may need to enter the world of complex numbers—the
stuff under the square root sign could be negative. Let ∆ = 4p3 +27q2. The
number ∆ would later be called the discriminant of the equation.

Cardano is quite aware of the role of the discriminant. In Chapter XII
(On the Cube Equal to the First Power and Number, x3 = px+q) he quickly
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shows how to deal with the problem when “the cube of one-third the co-
efficient of x is not greater than the square of one-half the constant of the
equation,” that is, when ∆ ≥ 0. For the case ∆ < 0, he writes “. . . you may,
for the most part, be satisfied by Chapter XXV” (Imperfect and Particular
Rules). But Chapter XXV is not at all satisfactory. There he finds solu-
tions only in some very special cases, and makes vague proposals that hint
at methods but in fact don’t work.

4.3 Cardano’s Formula

Assume that ∆ ≥ 0. Let u = 3
√
A and v = 3

√
B. Then (u, v) is a solution of

the system (4). So one solution of y3 + py + q = 0 is

y =
3

√√√√−q
2

+

√
∆
108

+
3

√√√√−q
2
−
√

∆
108

. (6)

Formula (6) is now called Cardano’s Formula. All of the above, in very
different form3 of course, can be found in Ars Magna. Cardano can’t handle
negative discriminants and he knows it: his thirteen rules work, in his sense,
only for equations that reduce to an equation with ∆ ≥ 0.

Whenever ∆ > 0, the remaining two roots of the cubic are not real, so
Cardano’s Formula gives the “only” (real) solution. When ∆ < 0, Cardano’s
Formula is (for us) a correct expression for one of the roots. To Cardano,
his method is simply inapplicable in this case, which came to be known as
the casus irreducibilis and remained for many years a source of puzzlement.

In dealing with some of the types, Cardano doesn’t use the method
described above: instead, he reduces the problem to a type solved earlier.
For example, he gives (and proves) the following rule for the type x3+q = px.

Find a solution y of the equation y3 = py + q. Then

x = y/2 +
√
p− (y/2)2

is a solution of x3 + q = px.

4.4 The Discriminant and the Nature of the Roots

When ∆ = 0 we can easily find all of the roots. Let 3
√
q/2 = r. Then q = 2r3

and p = −3r2. But

y3 − 3r2y + 2r3 = (y − r)(y − r)(y + 2r),
3Cardano would have some trouble recognizing the formula named after him. The

same is true for de Moivre, Taylor, and many others.
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so the roots are real, with r a “double” root. (The concept of multiple
root first comes up in the work of Girard (1629), in connection with the
Fundamental Theorem of Algebra.)

Cardano knew that if ∆ > 0 there is only one (real) root. He was also
more or less aware that when ∆ < 0 there are three (real) roots, though
he does not prove it. These facts can be proved using techniques already
present in the work of al-T. ūs̄ı, some 300 years before Cardano. We give a
quick exposition using first-year calculus. That’s not as anachronistic as it
looks: al-T. ūs̄ı had an embryonic algebraic version of the derivative!

Let f(x) = x3 + px + q. Suppose first that p > 0. Then f(x) is an
increasing function, so it is 0 exactly once. Note that ∆ > 0.

Suppose next that p = 0. Then f(x) is 0 only once. We have ∆ > 0
unless q = 0. In that case 0 is a triple root.

Finally, let p < 0. Then ∆ could be negative. Temporarily, let p = −3k2,
where k > 0. Then f(x) = x3 − 3k2x + q and f ′(x) = 3x2 − 3k2. Thus
f ′(x) = 0 when x = ±k, and f(x) is increasing on the interval (−∞,−k),
decreasing on (−k, k), and increasing on (k,∞). There is a local maximum
at x = −k and a local minimum at x = k. A little playing with pictures
shows that there are three distinct real roots iff f(−k) > 0 but f(k) < 0.
These two inequalities are equivalent to f(−k)f(k) < 0. But

f(−k) = 2k3 + q and f(k) = −2k3 + q

and therefore

f(−k)f(k) < 0 iff − 4k6 + q2 < 0.

Since k6 = −p3/27, equivalently we have 4p3 + 27q2 < 0, that is, ∆ < 0.
We have shown that the discriminant is negative, meaning that in Car-

dano’s Formula square roots of negative numbers are unavoidable, precisely
when all the roots of the cubic are distinct and real! It is this fact that
first forced later mathematicians to take square roots of negative numbers
seriously. With quadratic equations, the situation is different: there, square
roots of negative numbers are simple to avoid—just conclude that the equa-
tion has no solution.

5 Ferrari’s Method for the Quartic

5.1 The Original Method

The material in this section can be found in Ars Magna. The details are
less fully fleshed out than for the cubic. Cardano credits the idea to Ferrari,
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a gifted young man who came to work with him. Though uncomfortable
with the considerable distortion this entails, we describe Ferrari’s method
in modern notation.

Given the equation x4 + ax3 + bx2 + cx + d = 0, put x = z − a/4 and
simplify. We obtain a quartic equation in z with the z3 term missing. Since
it’s nice to have x as the name of the unknown, assume that we started with
x4 + px2 + qx+ r = 0.

Ferrari’s idea is to produce the “complete” square(
x2 +

p

2
+ y

)2

on the left-hand side. So he rewrites the equation as(
x2 +

p

2
+ y

)2

= 2yx2 − qx+
(
p

2
+ y

)2

− r. (7)

(It would have been a bit simpler to have (x2 + y)2 on the left, with appro-
priate changes on the right.)

Ferrari chooses y so that the polynomial on the right-hand side is a
perfect square (sx + t)2 where s and t are numbers. This is equivalent to
asking that the polynomial not have distinct roots. And that is the case iff
the discriminant (in the usual school sense) is 0, that is,

q2 − (4)(2y)

[(
p

2
+ y

)2

− r
]

= 0. (8)

Equation (8) is called the resolvent equation; it is cubic in y. Find a real
root y. Now that y is determined, we can find s and t such that(

x2 +
p

2
+ y

)2

= (sx+ t)2. (9)

The rest is easy. Equation (9) holds iff

x2 +
p

2
+ y = sx+ t or x2 +

p

2
+ y = −(sx+ t).

The two quadratic equations are straightforward to solve.

5.2 A Variant of Ferrari’s Method

It was natural for Ferrari to recycle Cardano’s idea and first knock out the
x3 term. But we can work directly with x4 +ax3 +bx2 +cx+d = 0. Rewrite
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this as (
x2 +

ax

2
+ y

)2

= 2yx2 +
a2

4
x2 + ayx+ y2 − (bx2 + cx+ d).

The right-hand side is a perfect square iff the discriminant is 0, so as with
Ferrari’s method we need to solve a cubic equation in y. This version is
given in a 1740 book by Simpson. There is nothing of substance new in it.
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