
Part 4: The Cubic and Quartic

from Bombelli to Euler

Section 1 describes various algebraic methods used to tackle the cubic
and quartic (the Trigonometric Method is elsewhere). Section 2 contains a
detailed description, essentially due to Euler, of how to obtain all the roots
of a cubic, in all cases. At one point in Section 2 we need to find the cube
roots of an arbitrary complex number. A solution of this problem can be
obtained by looking back on the Trigonometric Method, but by now we
are a little tired of cubic equations. So in Section 3 we prove De Moivre’s
Formula, use it to find a trigonometric expression for the n-th roots of a
complex number, and sketch the history of the formula.

1 Miscellaneous Algebraic Approaches

to the Cubic and Quartic

For about 100 years after Cardano, “everybody” wanted to say something
about the cubic and quartic, even the great Newton. There were many
contributions, mostly of little value. After a while most workers turned
away from algebra and went to the calculus, where the action was.

1.1 Bombelli on the Cubic and Quartic

Bombelli’s L’Algebra first appeared (in Italian) in 1572. Parts were written
in the 1550s, not long after Cardano’s Ars Magna. Bombelli was an engineer,
a busy man, and a perfectionist, hence the long delay. L’Algebra, in Latin
translation, became the book from which many seventeenth century figures,
even up to Leibniz, learned their algebra.

With Bombelli the slow improvement in notation continues. He redoes,
more efficiently, Cardano’s work on the cubic, and does the quartic(s) in
detail. And there is a great deal else, with some beautiful ideas. Bombelli
devised a continued fraction procedure for approximating square roots. He
was also one of the first European mathematicians to look at the work of
Diophantus. He fell in love with it and rewrote L’Algebra, adding many
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Diophantine problems, thus contributing to the seventeenth century revival
of number theory. But Bombelli is now mainly remembered for beginning
to play with complex numbers in a serious way.

Recall that in the irreducible case Cardano’s Formula asks us to find
the cube root of a complex number. Cardano can’t handle this case, and
(almost) admits that he can’t. Bombelli doesn’t give up. He describes the
basic rules for adding and multiplying complex numbers and verifies that,
at least in some cases, the desired cube root is a complex number. Here is
an example from Bombelli’s work.

The equation x3 = 15x+4 has the obvious solution x = 4. But Cardano’s
Formula gives

x = 3
√

2 +
√
−121 + 3

√
2−
√
−121.

Bombelli looks for a cube root of 2 +
√
−121 by hoping it will look like

a +
√
−b, where a and b are real and b is positive. It is easy to verify that

if this is the case, then (a−
√
−b)3 = 2 −

√
−121. “Multiply” together the

equations

(a+
√
−b)3 = 2 +

√
−121 and (a−

√
−b)3 = 2−

√
−121.

We get (a2 + b)3 = 125, so a2 + b = 5.
Now expand (a +

√
−b)3 and match its real part with the real part of

2 +
√
−121. We get a3− 3ab = 2. Substitute 5− a2 for b and simplify. This

yields the equation 4a3− 15a− 2 = 0, which has the obvious solution a = 2.
We conclude that 2 +

√
−1 is a cube root of 2 +

√
121.1 There are

two other cube roots, but Bombelli doesn’t notice, and concludes that
3

√
2−
√
−121 = 2 −

√
−121. So he adds and obtains the obvious root 4

for the original equation.
The point here isn’t finding a root of x3 = 15x+ 4; that can be done by

inspection. What the calculation does is to show that Cardano’s Formula
makes formal sense for at least some instances of the casus irreducibilis.
Mathematicians thus had clear reason to take complex numbers seriously.

Note that the calculation only goes through because 4a3−15a−2 = 0 has
an obvious solution. In fact 4a3 − 15a− 2 = 0, if we make the substitution
2a = x, becomes the original equation! So the only point of the whole
exercise is as an ad for complex numbers. And since Bombelli’s procedure
only works when the original equation has an obvious root, the ad is not
entirely convincing.

1Bombelli may of course have cheated, like most textbook writers, by starting with
2 +
√
−1 and cubing it, then “discovering” the cube root.
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Bombelli’s idea took a long time to be carried out in the “general” case,
largely because for many years acceptance of complex numbers was at best
grudging. The understanding of complex numbers remained primitive. I
can’t resist jumping forward 100 years to Wallis, a very good mathemati-
cian.2 Here is Wallis’ hilarious 1673 attempt at an informal explanation of
imaginary numbers. A landowner has a low-lying field by the sea, which is
a square of area 1600 (square) perches. This field disappears under the sea,
so his property has changed in area by −1600 perches. But this disappeared
property is a square, so it has side

√
−1600 !

1.2 A Suggestion of Viète

In 1591, Viète used a substitution equivalent to

x = y − p

3y

to solve x3 + px+ q = 0. Go through the substitution process and simplify.
When the smoke clears, we end up with a quadratic equation in y3. Viète’s
method is essentially the same as Cardano’s, stripped of motivation and
geometric justification. But it points to the future. Viète uses parameters
(these are positive, Cardano’s types remain). And the work is done by
formal manipulation of expressions: Viète has created the first system of
algebraic notation that is recognizably modern. After an initial struggle, it
would feel familiar to a current high school student.

1.3 Descartes’ Solution of the Quartic (1637)

Descartes reduces the problem to x4 + px2 + qx+ r = 0 by eliminating the
x3 term as usual. Then he tries to find t, u and v such that

x4 + px2 + qx+ r = 0 = (x2 − tx+ u)(x2 + tx+ v) (1)

identically in x. By comparing coefficients, he gets

u+ v − t2 = p, t(u− v) = q, and uv = r. (2)

Rewrite the first equation as u+v = t2+p and the second as u−v = q/t. Add
and subtract. We get expressions for 2u and 2v. But by the last equation

2Wallis also wrote on the history of mathematics. He was mainly interested in “proving”
that English Protestant mathematicians had been the pioneers in algebra, and that foreign
Catholics had stolen their work.
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of (2), 4uv = 4r and we arrive at(
t2 + p+

q

t

)(
t2 + p− q

t

)
= 4r.

Simplify. We get a cubic equation in the variable t2. Take any solution
of the cubic–Descartes can handle the irreducible case by a variant of the
Trigonometric Method—determine a value of t, then find u and v. We are
down to two quadratic equations and the rest is routine.

If we look back on Ferrari’s Method, we may think that Cardano/Ferrari
also has expressed the quartic as a product of two quadratics. For once
Ferrari has found his “y” (sse the Cardano chapter) he can express the
original quartic polynomial as a difference of squares, then factor in the
obvious way.

This is a natural but incorrect modern misreading. The concept of poly-
nomial occurs nowhere in Cardano: he always works with equations, and x is
a particular unknown number, not a variable or “indeterminate.” Descartes
is closer to the concept of polynomial, though he has the disconcerting habit
of saying that he is multiplying equations. To the modern ear, that makes
no sense, for an equation is an assertion, and one cannot multiply asser-
tions. And Descartes writes that the equation x2 − 5x + 6 = 0 is one in
which x has the value 2 and “at the same time” the value 3. Descartes is
a careful writer, so the remark reflects some remaining confusion. Many of
the concepts we take for granted went through a long evolutionary phase.
The major advances in mathematics are conceptual, not technical.3

1.4 Tschirnhaus Transformations

By the last quarter of the seventeenth century, mathematical activity was
focused on the calculus, but there was sporadic work on the theory of equa-
tions. Tschirnhaus4 (1683) for a while thought that he could find a formula

3In 1770, Waring wrote that Sir John Wilson had observed that if p is prime, then p
divides (p− 1)! + 1. This is true, and is now known as Wilson’s Theorem, though Wilson
didn’t prove it and Leibniz had (almost) proved the result some 70 years earlier. Waring
wrote that he could not prove the result because he had no “notatio,” meaning formula,
for primes. In Disquisitiones Arithmeticae, Gauss gave a simple proof (Lagrange had given
a complicated one) and acerbically wrote that what Waring needed was notio (an idea),
not notatio.

4Tschirnhaus is sometimes called “the father of porcelain.” This cheerfully ignores the
fact that porcelain was being made in China some 400 years earlier. Well before 1700,
Chinese porcelain was being exported to Europe. But he was instrumental in developing
the famous Dresden china.
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for the roots of P (x) = 0, where P (x) is a polynomial of degree n, by using
appropriate substitutions of the shape y = Q(x), where Q(x) has degree
n − 1. To find the appropriate Q(x), Tschirnhaus devised a clever way of
eliminating x from the system P (x) = 0, Q(x) − y = 0, thus starting a
subject that would become known as Elimination Theory.

The procedure worked well for n = 3 and n = 4. But as Leibniz pointed
out to Tschirnhaus, to find the appropriate Q(x) for polynomials of degree 5
seems to require solving equations of degree bigger than 5.5

1.5 Euler’s Solution of the Quartic

We sketch a variant due to Lagrange. To solve x4 + px2 + qx + r = 0, let
x = u+ v + w. Squaring, he obtains

x2 = u2 + v2 +w2 + 2(uv + uw + vw).

Squaring again, after some fooling with identities he gets

x4 = (u2 + v2 + w2)2 + 4(u2 + v2 + w2)(uv + uw + vw)

+ 4(u2v2 + u2w2 + v2w2) + 8uvw(u + v + w).

Then he substitutes into the original equation and brings together the terms
which have a factor of u + v + w, also the terms which have a factor of
uv+uw+ vw. The “coefficient” of u+ v+w is 8uvw+ q and the coefficient
of uv + uw + vw is 4(u2 + v2 + w2) + 2p. He wants these to vanish, so he
needs

8uvw + q = 0 and 4(u2 + v2 + w2) + 2p = 0. (3)

If these equations are satisfied, the original equation becomes

(u2 + v2 + w2)2 + p(u2 + v2 + w2) + 4(u2v2 + u2w2 + v2w2) + r = 0. (4)

From (3) we get
u2 + v2 + w2 = −p/2. (5)

Substituting into (4) we obtain

u2v2 + u2w2 + v2w2 = p2/16− r/4, (6)

and again from (3)
u2v2w2 = q2/64. (7)

5The substitutions Tschirnhaus used fell out of fashion, but have been revived by
workers in computational algebra.
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The last three equations say that u2, v2, and w2 are the roots of

y3 + (p/2)y2 + (p2/16 − r/4)y − q2/64 = 0.

Finally, find these three roots, and calculate u+ v + w.
It is clear that this method is horrendously more complicated than Fer-

rari’s. What Euler and Lagrange were looking for is a uniform method for
dealing with the cubic and the quartic, in the hope that it would generalize
to higher degrees. And indeed another way of looking at the solutions of
the cubic and quartic, pioneered by Vandermonde and (mainly) Lagrange
was to be the key to the nineteenth century proofs that the quintic is not
“solvable by radicals.”6

2 Complex Numbers and Finding

all Roots of the Cubic

In this section, we find all solutions of x3 + px + q = 0, where p and q are
arbitrary complex numbers.

2.1 The Equation x3 = z

We first find all solutions of x3 = 1. Note that

x3 − 1 = (x− 1)(x2 + x+ 1)

so the solutions of x3 = 1 are 1, together with the roots of x2 + x+ 1 = 0,
which are (−1 +

√
−3)/2 and (−1 −

√
−3)/2. The first of these is usually

called ω. Note that the second is ω, the complex conjugate of ω. A short
calculation shows that ω = ω2. The numbers 1, ω, and ω are called the cube
roots of unity.

Let z be a complex number other than 0, and let r be a solution of
x3 = z. If z is real, there is a real solution r, by the Intermediate Value
Theorem. If z is not real it is not yet clear that there is an r such that
r3 = z (there is).

Let x = ry. Then x3 = z iff r3y3 = z iff y3 = 1. Thus ωr and ωr are the
other solutions: after we have found one cube root, we can calculate them
all.

6But the main contributor to the new understanding was Galois, a political radical.
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2.2 The Cardano Formula Revisited

In the Cardano chapter, we used the identity

(u+ v)3 − 3uv(u+ v)− (u3 + v3) = 0. (8)

Note that (8) holds for all complex numbers u and v. Assume for now
that every complex number has a cube root (that will be proved later).
Let u be a cube root of −q/2 +

√
(q/2)2 + (p/3)37 and v a cube root of

−q/2−
√

(q/2)2 + (p/3)3, with the additional proviso that 3uv = −p.

Theorem 1. The number u+ v is a solution of x3 + px+ q = 0. Moreover,
all solutions can be obtained in this way.

Proof. It is easy to see that if u and v are as described, then 3uv = −p and
u3 + v3 = −q. The desired follows immediately from (8).

Conversely, let x be a root of our cubic. We may suppose that x has
shape u+ v for some u and v such that 3uv = −p. For look at the equation
y2−xy−p/3. This has two solutions (say u and v). The sum of the solutions
is x and their product is −p/3.

Because x is a root of the cubic and x = u+ v, we have (u+ v)3 + p(u+
v) + q = 0. Use identity (8) to rewrite this as

u3 + v3 + (3uv + p)(u+ v) + q = 0.

Since 3uv = −p, it follows that u3 + v3 = −q. From 3uv = −p we obtain
u3v3 = −p3/27. So u3 and v3 are the roots of z2 + qz − p3/27 = 0. These
roots are

−q/2±
√

(q/2)2 + (p/3)3,

and therefore x has the desired shape.

Here is a more concrete description of the roots. Let u be a cube root of
−q/2+

√
(q/2)2 + (p/3)3, and v∗ any cube root of −q/2−

√
(q/2)2 + (p/3)3.

Then u3v3
∗ = −p3/27, and therefore uv∗ is a cube root of −p3/27. It follows

that uv∗ is ”almost” equal to −p/3. More precisely, uv∗ = ε(−p/3), where
7The meaning of

√
(q/2)2 + (p/3)3 is not entirely clear. If (q/2)2 + (p/3)3 is real and

non-negative, its square root has by mathematical convention a definite meaning. But
which of the two square roots of −5 should be called

√
−5? And if z is a non-zero complex

number, which of the two numbers whose square is z should be called
√
z? There are

reasonable ways to answer the question, but it is probably best not to worry—seventeenth
century mathematicians certainly didn’t. They didn’t worry about the analogous question
for cube roots, but definitely should have.
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ε is a cube root of unity (see Section 2.1). Let v = epsilonv∗. Then u3 =
−q/2 +

√
(q/2)2 + (p/3)3, v3 = −q/2−

√
(q/2)2 + (p/3)3, and 3uv = −p.

Thus by Theorem 1 u+ v is a solution of our cubic. The other solutions
have shape s+ t, where s runs through the other two cube roots of u3, and
t through the other two cube roots of v3, with the condition 3st = −p. We
have proved

Theorem 2. Let p and q be complex numbers. If we have expressed one
root of x3 + px + q = 0 in standard form u + v where 3uv = −p, then the
other roots are ωu+ ωv and ωu+ ωv.

We now have a Cardano Formula for all the roots of the cubic! Note how
beautifully symmetric it is. The above method is in general outline due to
Euler, in the second quarter of the eighteenth century, though Euler had p
and q real.

Bombelli had drawn a connection between complex numbers and the
cubic many years before. But the above calculations, though technically
simple, require a high degree of comfort with complex numbers, and in
particular with the notion that “cube root” is 3-valued.8

There is another less symmetric way of finding all the roots once we
know one. Suppose we know a root c of x3 + px + q = 0. The polynomial
x − c divides x3 + px+ q. Imagine doing the division. We get a quadratic
in x, which we set equal to 0. Or else note that c3 + pc + q = 0. So our
equation can be rewritten as

(x3 − c3) + p(x− c) = 0, that is, (x− c)[x2 + cx+ c2 + p] = 0,

and again we are down to solving a quadratic.
The above procedure is called depressing the degree. The quadratic equa-

tion may indeed be depressingly ugly. But once we have it—the calculation
is mechanical—the rest is easy.9

3 De Moivre’s Formula

3.1 Introduction

Let n be a positive integer. Nowadays “De Moivre’s Formula” means the
identity

(cos θ + i sin θ)n = cosnθ + i sinnθ. (9)
8Notation conspires against understanding: when we write 3

√
z, we are tacitly building

in the assumption that it refers to only one object.
9Depressing the degree is part of the algorithm some computer programs use to find

the roots of polynomials. It is the sort of thing best left to machines.
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This formulation is due to Euler. We prove that the formula is correct,
use it to take care of some unfinished business about cube roots of complex
numbers, and sketch some of the history.

3.2 Proof of De Moivre’s Formula

The proof is by induction. Suppose we know that the result holds when
n = k. We show that the result holds when n = k + 1. Note that

(cos θ + i sin θ)k+1 = (cos θ + i sin θ)(cos θ + i sin θ)k.

But by the induction hypothesis

(cos θ + i sin θ)k = cos kθ + i sin kθ,

and therefore

(cos θ + i sin θ)k+1 = (cos θ + i sin θ)(cos kθ + i sin kθ).

Multiply out the right-hand side. We get

cos θ cos kθ − sin θ sin kθ + i(sin θ cos kθ + cos θ sin kθ). (10)

By using the trigonometric identities cos(x + y) = cosx cos y − sinx sin y
and sin(x + y) = sinx cos y + cos x sin y we find that the expression in (10)
is identically equal to cos(k + 1)θ + i sin(k + 1)θ.

3.3 Finding an n-th Root of a Complex Number

Let z be the non-zero complex number a+ bi, where a and b are real. For
simplicity, write |z| for

√
a2 + b2. The real number |z| is called the norm of

z. We have
z = |z|

(
a

|z| + i
b

|z|

)
.

Note that (a/|z|)2 + (b/|z|)2 = 1. It follows that

a

|z| = cosφ and
b

|z| = sinφ

for some number φ, and therefore z = |z|(cos φ+ i sin φ).
Denote by |z|1/n the ordinary n-th root of |z|. By De Moivre’s Formula[

|z|1/n
(

cos
φ

n
+ i sin

φ

n

)]n
= |z|(cos φ+ i sinφ) = z, (11)

so we have found an n-th root of z.
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3.4 Back to the Casus Irreducibilis

Let n = 3 in formula (11. We conclude that every complex number has
a cube root. This completes the proof of the correctness of the Cardano
Formula for the irreducible case.

Note that the fact that every complex number has a cube root was well
known before Euler. It is enough to show that cosφ+i sinφ has a cube root.
Let x = cos(φ/3). Then 4x3 − 3x = cosφ. This equation has a real root r,
and it is easy to verify that r+ i

√
1− r2 is a cube root of cosφ+ i sinφ. But

the De Moivre’s Formula argument is much neater.
We now have a more sophisticated but more informative way of deriving

the trigonometric solution for the irreducible case. The Cardano Formula
yields an expression of the form

3
√
a+ ib+ 3

√
a− ib,

where a and b are real and b 6= 0. Express a ± ib in the form |z|(cos φ ±
i sin φ). By De Moivre’s Formula, |z|1/3(cos(φ/3)±i sin(φ/3)) are cube roots
of a + ib and a − ib. Their product is −p/3, as desired. Add: we get that
2|z|1/3 cos(φ/3) is a root of the cubic.

By playing around with complex numbers, we can show that if the dis-
criminant of the cubic is positive, two of the roots are non-real and one root
is real, while if the discriminant is negative then all roots are real. Since the
Cardano chapter already has a proof of these facts, there is little reason to
prove them again (anyway, they make nice exercises).

3.5 Finding all the n-th Roots of a Complex Number

Suppose that we know one n-th root r of z. By imitating the argument
of Section 2.1, we can see that all of the n-th roots of z can be obtained
by multiplying r by an n-th root of 1. So we concentrate on the equation
xn = 1. If k is a positive integer, then by De Moivre’s Formula(

cos
2kπ
n

+ i sin
2kπ
n

)n
= cos(2kπ) + i sin(2kπ) = 1.

As k ranges from 0 to n − 1, the numbers cos(2kπ/n) + i sin(2kπ/n) are
all different, so they give all the solutions of xn = 1. These n numbers are
called the n-th roots of unity.
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3.6 The History of De Moivre’s Formula

3.6.1 The Beginnings

The formula arises from consideration of two apparently quite different prob-
lems, one coming from algebra/trigonometry and the other from calculus.
The first problem is to find a formula for cos(φ/n) given that cosφ = c. The
second problem is to find a decomposition of an ± xn as a product of linear
and/or quadratic polynomials with real coefficients. This decomposition is
needed in order to integrate 1/(an ± xn) by the method of partial fractions.

By 1676, Newton had obtained formulas for cos(nθ) and sin(nθ) in terms
of cos θ and sin θ. With hindsight, one can splice together these formulas to
obtain De Moivre’s Formula. The thing that stood in the way, for Newton
and others is that attention was focused on cos(nθ) (usually) or sin(nθ). It
so happens that the object cos(nθ)+ i sin(nθ) behaves far more simply than
its components, but of course it was natural to concentrate on the familiar
trigonometric functions. On the calculus side, there is a significant false step
in 1702. Leibniz argues incorrectly that x4 + a4 cannot be expressed as a
product of two quadratics with real coefficients. The error is pointed out by
one of the Bernoullis.

3.6.2 Cotes

In 172210 a paper of Cotes appears giving complete factorizations over the
reals of a2m ± x2m and a2m+1 ± x2m+1 for all positive integers m.

For example, Cotes asserts the equivalent of

a2m − x2m = (a− x)(a+ x)
m−1∏
k=0

(
a2 − 2ax cos(2kπ/2m) + x2

)
. (12)

Cotes doesn’t use radians—the modern version of the trigonometric func-
tions was introduced by Euler. And unfortunately Cotes gives a clever geo-
metric version of the above result, not the algebraic version. Cotes doesn’t
supply a proof.

To connect Cotes with De Moivre’s Formula, multiply both sides of (12)
by −1 and let a = 1. The roots of x2 − 2x cos(2kπ/2m) + 1 = 0 are
cos(2kπ/2m) ± i sin(2kπ/2m). We get a similar result by starting from
a2m+1 − x2m+1. So, though not in modern form, Cotes has, or could have
had, expressions for the n-th roots of unity.

10The paper was presumably written at some earlier time: Cotes died in 1716.
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3.6.3 De Moivre

What de Moivre knew and when he knew it is complicated by the fact that
he looked at the problem repeatedly from 1707 to 1739.

Let Tn(y) be the polynomial such that 2 cos(nφ) = Tn(2 cos φ) (the 2’s
are there because 2 cosφ behaves a bit more nicely than cosφ.) In 1707,
de Moivre asserts that the equation Tn(y) = 2a has the solution

y =
n
√
a+

√
a2 − 1 +

n
√
a−

√
a2 − 1

if n is odd. He gives several variants of the assertion and explicitly remarks
that his expression looks like Cardano’s Formula. But he doesn’t give a proof
until 1722, when he uses a complicated argument based on the recurrence
Tn+1(y) = yTn(y) − Tn−1(y). If in 1707 he had put a = cos(nφ) (but he
didn’t) he would have obtained

cos φ = n

√
cos(nφ) + i sin(nφ) + n

√
cos(nφ)− i sin(nφ) (13)

which leads to a method for finding n-th roots and is fairly close to the
formula named after him. He finally writes down (13) explicitly in a book
published in 1730. In 1739, he turns to the problem of finding all n-th roots,
and gives a (slightly flawed) formulation from which Cotes’ factorizations
follow easily.

3.6.4 Euler

In 1748, Euler’s two volume Introductio in analysin infinitorum appears.
Volume 1 is arguably the best mathematics book ever written, with an
incredible treasury of results derived by bold manipulation of infinite quan-
tities.

De Moivre’s Formula appears here in modern form. Since the conceptual
base is the right one, the proof is very easy. Euler plays around formally
with infinite series obtained from the binomial expansion of (1 + z/n)n for
“infinite” n and obtains the beautiful relationship

cos φ+ i sinφ = eiφ. (14)

De Moivre’s Formula then just says that einφ = (eiφ)n ! The complicated
formulas for cos(nφ) have disappeared, to be replaced by a natural property
of the exponential function.
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Substitute −φ for φ in (14). We get cosφ − i sinφ = e−iφ. Then by
adding and subtracting we obtain

cos φ =
eiφ + e−iφ

2
and sinφ =

eiφ − e−iφ
2i

.

Thus cos and sin are “exponential-like.” The slightly messy classical addition
laws for the cosine and sine now come easily, via (14), from the fact that
ei(x+y) = eixeiy.

Why did all of this take so long? We should remember that (versions of)
the cosine and sine functions were comfortably familiar, while the exponen-
tial, particularly the complex exponential, was not. We still see a residue of
this in some formulas of classical applied mathematics, where cosines hang
grimly on. Discomfort with complex numbers hasn’t entirely vanished.

Early workers in algebra were overly fixated on equation solving. They
showed great virtuosity and technical skill, sometimes at the expense of
structural insight. So for example they went after n-th roots rather than
n-th powers, missing the simple version of de Moivre’s Formula due to Euler.

Students probably consider the exponential function familiar and the
logarithm less so. But when Napier introduced his notion of logarithm in
1614, he had no concept of exponential function. Versions of the logarithm
were repeatedly discovered later in the seventeenth century, with the discov-
erer sometimes not realizing there was any connection with the logarithm
tables he routinely used to multiply! These logarithms were all devised to
solve problems that we now think of as finding the area under a hyperbola,
that is, integrating 1/x.

Even after mathematicians were using the “natural logarithm” to inte-
grate, they didn’t work with the exponential function. It wasn’t until Euler
that the central role of the exponential function, even as a function of a real
variable, was understood.
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