
Part 5: The Theory of Equations

from Cardano to Galois

1 Cyclotomy

1.1 Geometric Interpretation of Complex Numbers

We are now accustomed to identifying the complex number a + ib with
the point (a, b) of the coordinate plane. Under this identification, (a +
ib)(cos θ + i sin θ) is the complex number c+ id, where (c, d) is obtained by
rotating (a, b) counterclockwise about the origin through an angle θ. This
geometric interpretation is very useful, indeed indispensable, and does much
to demystify complex numbers.

It took an astonishingly long time to get there. There were too many
years of blind manipulation. For instance, Leibniz early in his career was

naively proud about having shown that
√

1 +
√
−3+

√
1−
√
−3 =

√
6. But

the computation is trivial and the result false for all but one of the 4 possible
interpretations of the objects on the left side.1

Euler and others sometimes think of a complex number as a point in
the plane. What’s missing is the interpretation of multiplication. Wessel
published a clear exposition of the full geometric interpretation in 1799, but
it was written in Danish, he wasn’t a professional mathematician, his tone
was too modest, and nobody paid attention.

The idea comes up again in an anonymous 1806 pamphlet by Argand,
whose idea is then borrowed by Français. Argand gets back into the game,
and there are arguments over whether it is proper to mix algebraic and
geometric ideas! (The right answer is that it’s stupid not to.) Mainstream
mathematics still pays no attention. Gauss probably thought of complex
numbers in geometric terms by 1800. His first paper that explicitly uses
the idea is in 1831. Why wait 31 years? One can speculate that complex
numbers were still not quite respectable in 1800, and Gauss didn’t like to

1Puzzle: by the rules of algebra
√
−4
√
−4 = −4; but by the rules of algebra

√
−4
√
−4 =√

16 = 4. Even the great Euler, in his Algebra, used contradictory “rules of algebra.”
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stick his neck out.2

In 1835, Hamilton gives a purely arithmetical definition3 of complex
number that is really the same as the geometric interpretation, but has a
more modern feel. He defines a complex number as an ordered pair (a, b)
where a and b are real. Addition is done in the obvious way, while the
product (a, b)(c, d) is defined to be (ac − bd, ad + bc). The complex num-
ber (a, 0) is to be informally identified with the real number a. Note that
(0, 1)(0, 1) = (−1, 0): finally, −1 has a square root. With the geometric in-
terpretation or its arithmetical version, complex numbers have become real.
It only took 250 years to get there.

1.2 Roots of Unity and Regular Polygons

Even without interpreting multiplication, once we have a formula for the
n-th roots of unity we can think of them as the vertices of a regular n-gon
inscribed in the circle x2 + y2 = 1, with one vertex at (1, 0). With the
geometric interpretation of multiplication, the formula for the roots of unity
becomes obvious. For it is clear that if the point (1, 0) is rotated n times
through an angle of 2πk/n, we are back where we started. The study of the
n-th roots of unity is called cyclotomy (circle division).

Cyclotomy dates back to the Greek interest in regular polygons. When
abū Kāmil used quadratic equations to calculate lengths connected with
the regular pentagon and decagon, he was doing cyclotomy. So was Thābit
ibn Qurra when he studied the regular heptagon. Cyclotomy was an active
research subject in the eighteenth century. But up to the time of Euler
the focus of attention was on either cos(2πk/n) or sin(2πk/n), and not
on the algebraically (and geometrically) much more natural cos(2πk/n) +
i sin(2πk/n), that is, the n-th roots of unity.

1.3 The Pentagon and the Heptagon

1.3.1 The Pentagon

We can handle the pentagon without mentioning roots of unity—Euclid
did it geometrically, and abū Kāmil gave an algebraic treatment. But the
approach through complex numbers is instructive.

The polynomial x5− 1 factors as (x− 1)(x4 +x3 +x2 +x+ 1). We could
solve x4+x3+x2+x+1 = 0 by using say Ferrari’s procedure. Instead we use

2If we are to believe Gauss, he explored Non-Euclidean Geometry well before Bolyai
and Lobachevsky, but didn’t publish.

3Gauss had found it earlier; Hamilton was first to publish.
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a trick of de Moivre. Our equation is a reciprocal equation: its coefficients
read the same from left to right as they do from right to left.4

Divide both sides of the equation by x2. After rearranging we get

x2 +
1
x2

+ x+
1
x

+ 1 = 0.

Note that x2 + 1/x2 = (x + 1/x)2 − 2, and let y = x + 1/x. Our equation
becomes y2 + y − 1 = 0, which has the roots (−1 ±

√
5)/2. Now solve the

disguised quadratics x+ 1/x = (−1±
√

5)/2.
There is no need to write down the solutions. For the roots of x5−1 = 0

are given by x = cos(2πk/n) + i sin(2πk/n) as k ranges from 0 to 4. Let
φ = 2πk/5. Then

1
x

=
1

cos φ+ i sinφ
= cosφ− i sin φ,

and therefore x+1/x = 2 cosφ. Thus 2 cos φ is a solution of y2+y−1 = 0: the
de Moivre trick has given us 2 cos φ. We conclude that 2 cos(2π/5) = (−1 +√

5)/2. Now it is easy to produce a straightedge and compass construction
of the regular pentagon. (But constructions were produced by Euclid, and
undoubtedly by earlier Greek mathematicians, without the aid of algebra.)

1.3.2 The Heptagon

We begin the analysis much as for the pentagon. The seventh roots of unity
are the roots of x7 = 1. We have the factorization

x7 − 1 = (x− 1)(x6 + x5 + x4 + x3 + x2 + x+ 1).

To find the roots of x6 + x5 + · · · + x + 1 = 0, observe this is a reciprocal
equation, divide through by x3, and make the substitution y = x + 1/x.
We arrive at y3 + y2 − 2y − 1 = 0. By using the same argument as in the
pentagon section, we can show that 2 cos(2π/7) is a root of this equation. To
find the roots of y3 +y2−2y−1 = 0, eliminate the y2 term as usual and use
Cardano’s Formula. It turns out that we are dealing with an irreducible case
cubic, but we can get expressions for the roots using cube roots of complex
numbers.

4A word or sentence that has the same property is called a palindrome. For example,
“Able was I ere I saw Elba” is attributed to Napoleon. Clever, particularly for someone
who didn’t speak English.

3



It is not difficult to show that our cubic in y has no rational solutions,
so by Wantzel’s Theorem 2 cos(2π/7) is not straightedge and compass con-
structible, and therefore the regular heptagon also isn’t.5 This is a special
case of the Gauss-Wantzel Theorem discussed in the trigonometric solution
chapter.

1.4 Solving xn = 1 by Radicals

The problem is: can we write down the solutions of xn = 1 by using only
operations of arithmetic and k-th roots for various k? As we have carelessly
phrased it, the question seems to have a trivial answer: use the “formula”
n
√

1. So let’s specify that in any such formula, we have no control over which
k-th root we get. In particular, the expression n

√
1 might give us the useless

number 1.
The problem can be reduced to the case when n is prime, so look at

xp − 1 = 0. In the sections on the pentagon and heptagon, we saw that the
solutions of xp − 1 = 0 can be expressed by radicals when p = 5 and p = 7.
The technique we used seems to break down for p = 11, because putting
y = x+ 1/x yields a quintic, and we don’t know how to handle quintics. A
breakthrough came in 1771, when Vandermonde, using a new idea, surprised
people6 by showing that x11 − 1 = 0 can be solved by radicals.

The next step came thirty years later, when Gauss showed how to solve
xp − 1 = 0 by using only the usual arithmetic operations and q-th roots,
where q ranges over the prime divisors of p − 1. In particular, let p be a
prime of the form 2m + 1. It follows from the analysis of Gauss that the
p-th roots of unity can be expressed using the arithmetical operations and
square root. Since these can be carried out with straightedge and compass,
it follows that if p has shape 2m + 1 then the regular p-gon is constructible.

The analysis of Gauss depended on subtle number-theoretic ideas, and
most of cyclotomy belongs more to number theory than to algebra. Some
200 years after Gauss, cyclotomy is still an active research subject.

2 Beyond the Quartic

Many mathematicians tried to find “formulas” for the roots of equations of
degree greater than 4. Among mathematicians making a serious attempt, we

5By allowing other construction tools, we can construct the regular heptagon. For
example we can do it with compass and marked straightedge, that is, a ruler with two
marks on its edge. We can also do it with compass and a couple of carpenter’s squares.

6Lagrange had reduced the problem to solving a quintic, but then given up.
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have Gregory, Leibniz, and Tschirnhaus in the late seventeenth century, and
Bezout and Euler in the eighteenth. After many failures, opinion began to
shift, and workers began to suspect that such a “formula” cannot be found.
Already by 1771 Lagrange expresses doubt. Some thirty years later, Gauss
is also doubtful. By then, Ruffini had given a flawed but fundamentally
correct (this is controversial) argument that the general quintic cannot be
solved “by radicals.” When they were very young, both Abel and Galois,
who would settle the problem once and for all, produced what they thought
was a general solution. They soon changed their minds.

2.1 Symmetric Functions of the Roots

Cardano was aware, at least in the cases where he knew all the roots of the
cubic x3 + ax2 + bx + c = 0, that their sum is −a. Some 50 years later,
Viète knew that if the roots are r1, r2, and r3 then r1r2 + r2r3 + r3r1 = b
and r1r2r3 = −c. A generalization to the degree n polynomial is stated by
Girard in 1629, by Descartes 8 years later. None of them has a clear idea of
what kind of objects these “roots” might be: their calculations are purely
formal.

Definition 1. A polynomial P (x1, x2, . . . , xn) is called symmetric if it is
left unchanged by any permutation of the variables x1, x2, . . . , xn.

Let σ1 be the sum of all products of the xi taken one at a time (that is,
x1 + x2 + · · ·+ xn, or

∑
1≤i≤n xi). Let σ2 be the sum of the products of the

xi taken two at a time, that is,
∑

1≤i<j≤n xixj and so on up to σn, the sum
of the products of the xi taken n at a time, that is, x1x2 · · · xn. The σi are
called the elementary symmetric polynomials in n variables.

Newton studied symmetric polynomials in the mid 1660s, showing that
any symmetric polynomial Q(x1, . . . , xn) can be expressed as R(σ1, . . . , σn)
where R is a polynomial, and that moreover if Q has integer coefficients
then so does R. So in particular if r1, r2, . . . , rn are the roots of P (x) = 0
then Q(r1, . . . , rn) can be expressed simply in terms of the coefficients of
P . From the time of Lagrange and Vandermonde (1770) onward, the study
of symmetric functions of the roots became the main tool in the theory of
equations.

2.2 Lagrange and Vandermonde

The first major new developments came in 1770–1771, with the publica-
tion of Lagrange’s Réflexions sur la résolution algébrique des équations and
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Vandermonde’s much less famous Mémoire sur la résolution des équations.7

Also appearing in 1770 was Waring’s Meditationes Algebraicae, which is less
deep, but has themes in common with the work of Lagrange and Vander-
monde. And in 1770 there was also an interesting paper on the quintic by
Malfatti.8

It is not possible to make a quick summary of Lagrange’s Réflexions—for
one thing it is 217 pages long. Lagrange begins with a study of the quadratic,
cubic, and quartic. Of course he knows all of the “tricks” that can be used to
solve these equations. But Lagrange wants to know whether the tricks can be
generated from deeper structural considerations. He succeds by exploiting
systematically certain symmetries.

We describe Lagrange’s analysis of the cubic in order to indicate the
flavour of the work. Let the roots of the cubic (in some order) be x, y, and
z (assume these are distinct, it makes no difference). Let t1 = x+ωy+ω2z,
where ω is (−1 +

√
−3)/2. Imagine permuting x, y, and z in all possible

ways. Then t1 is taken by the 6 possible permutations to t1, t2, . . . , t6. It
is convenient to let t2 = z + ωx + ω2y = ωt1, t3 = y + ωz + ω2x = ω2t1,
t4 = x+ ωz + ω2y, t5 = ωt4 and t6 = ω2t4.

Let f(X) = (X − t1)(X − t2) . . . (X − t6). The coefficients of f(X) are
symmetric in x, y, and z. After some possibly painful calculation, they can
therefore be expressed in terms of the elementary symmetric functions in x,
y, and z, and therefore in terms of the coefficients of the cubic. So we can
think of the coefficients as “known.”

It turns out that f(X) is a quadratic in the variable X3. We could show
this by computing, but it is better to imagine computing.

The polynomial (X − t1)(X −ωt1)(X −ω2t1) is just X3− t31, for t1, ωt1,
and ω2t1 are the three cube roots of t31. Similarly, (X−t4)(X−t5)(X−t6) =
X3 − t34. We conclude that

f(X) = (X3 − t31)(X3 − t34),

meaning that f(X) is a quadratic in X3. (A simpler way of putting the
result is that (u + ωv + ω2w)3 only takes on two values as (u, v,w) ranges
over the six permutations of the roots.)

7Lagrange’s name is French, but he wasn’t. Vandermonde’s name is not French, but
he was. Vandermonde is chiefly (but wrongly) remembered for the so-called Vandermonde
determinant.

8The four men worked independently. “Coincidences” of this type are fairly frequent
in mathematics, maybe more so than simple probability models would suggest. It seems
that sometimes a generation has to pass before the next jump forward. That would come
around 1800.
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Let t be a solution of this quadratic. The roots of the original cubic can
be renamed if necessary so that t = x+ ωy + ω2z. It is easy to verify that

(x+ ωy + ω2z)(x+ ω2y + ωz)

is symmetric in x, y, and z, so it can be simply expressed in terms of the
coefficients of the original cubic, and can be considered known. Call the
result w. Recall that x+ y+ z can easily be read off from the cubic, so it is
also known.

Thus x+ y+ z, x+ωy+ω2z (that is, t) and x+ω2y+ωz (that is, w/t)
are known, and now to find x, y, and z only requires solving a system of
three linear equations.

A similar symmetry argument works for the quartic, and trivially for the
quadratic. Lagrange explores the idea for polynomials of degree bigger than
4, gets many results, but begins to think there may be insuperable difficulties
even at the quintic. In the process draws attention to the importance of what
would later be called groups of symmetries.

2.3 Ruffini

In 1799, Ruffini’s privately published two-volume Teoria Generale delle
Equazioni appears. It claims to prove that the “general” quintic can’t be
solved by radicals, that is, by any mixture of basic operations of arithmetic
and n-th roots. The work is based on foundations laid by Lagrange.

Mathematicians were almost uniformly skeptical about the validity of
the argument, perhaps because of obscurities and gaps, perhaps because of
the length of the work, perhaps because Ruffini was an outsider. There is
no evidence anyone read the book.

Ruffini returned to the problem time and again over the next dozen years,
adding detail, including interesting results on permutation groups. Some of
these caught the attention of Cauchy, who went on to do significant work on
permutation groups and was the only mathematician of stature to say that
Ruffini’s proof was basically right. For many years the concensus among
historians was that Ruffini’s proof was fatally flawed, that Abel was the first
to show that the general quintic can’t be solved by radicals. But opinion
has shifted recently to the view that Ruffini’s argument was fundamentally
correct.
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2.4 Abel (1802–1829)

In 1824, Abel9 published privately a proof that the general quintic is not solv-
able by radicals. A version of the paper appeared in the prestigious Crelle’s
Journal in 1826. The proof was generally accepted as correct, though in
fact there is a serious, albeit fixable, gap. Just as with Ruffini, the proof
rested on the pioneering work of Lagrange.

2.5 Galois (1811–1832)

Galois was killed before turning 21, but his work forever changed the di-
rection of algebra. The work is unfortunately much too deep to describe
here.

Ruffini and Abel had shown that the “general” quintic is not solvable by
radicals. That means that if we think of the coefficients as parameters, there
is no formula in terms of these parameters, using arithmetical operations and
n-th root, for the roots of the quintic.10 But some quintics obviously have
roots expressible using these operations. Which ones?

Galois associated with any polynomial equation a new kind of structure,
now called the Galois group11 of the equation, and proved a theorem that
links solvability of an equation by radicals with structural properties of its
Galois group. The tools that Galois forged would turn out to be immensely
powerful.

There were, inevitably, gaps and obscurities in Galois’ work. Its radical
newness also slowed acceptance. For 14 years after his death, the work lay
more or less unread. In 1846 Liouville published most of Galois’ manuscripts
in his influential Journal de Mathématiques. By the 1860s, the ideas had
been generally absorbed by the algebraic community. They continued to
be developed in the twentieth century, in ever greater abstraction and gen-
erality. Classical algebra—that is, algebra as theory of equations—began

9Despite his all too short life, Abel is one of the great mathematicians of the nineteenth
century.

10In the early 1960s, the Ontario government introduced a “truth in lending” law in-
tended to force banks to disclose the true rate of interest they were charging. Banks were
naturally averse to telling the truth, and waged a campaign against the legislation. To
find the true rate of interest sometimes requires solving a high degree equation. The banks
had an ad claiming that Galois had proved this is impossible! That’s a lie. There are, and
there were at the time, easy algorithms for computing the true interest rate to absurdly
high accuracy.

11Groups are essential in describing symmetries; they have found uses in nearly every
branch of mathematics. And one cannot do crystallography, or properly describe the
elementary particles, without group theory.
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with al-Khwārizmı̄. In the work of Galois, modern structure-based algebra
is born.

3 The Fundamental Theorem of Algebra

We sketch the history of this theorem, stripped of all technical detail. Gauss
gave the theorem its impressive name. But the result is not all that funda-
mental. It is also not really a theorem of algebra if algebra is taken in its
modern sense.

3.1 Statement of the Theorem

We give three versions of the Fundamental Theorem. It is not hard to get
from any of the versions to any other.

Theorem 1. Let P (x) be a non-zero polynomial with real coefficients. Then
the number of complex roots of P (x) = 0 (if we count roots according to
their multiplicity) is equal to the degree of P .

The hard thing in proving the result is to show that there is always at
least one root—once that’s done, the rest is an easy induction. We have
focused on the number of roots, since it was roots that the early workers
cared about. An equivalent and structurally more interesting way of stating
the result and at the same time avoiding complex numbers, as many people
preferred to, including Gauss, goes as follows:

Theorem 2. Let P (x) be a polynomial with real coefficients, of degree
greater than 0. Then P (x) can be decomposed into a product of real polyno-
mials each of which has degree 1 or 2.

A seemingly stronger result goes as follows:

Theorem 3. Let P (x) be a polynomial with complex coefficients, of de-
gree greater than 0. Then P (x) can be decomposed into a product of linear
polynomials with complex coefficients.

3.2 Early Developments

3.2.1 Bombelli

Look at the equation x3 = 2 +
√
−121, which in a sense was considered

by Bombelli, though he didn’t think in those terms. Bombelli noticed that
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2 +
√
−1 is a root of this equation. He had faith that similar equations that

arise from an analysis of the casus irreducibilis can also be solved by using
some sort of “impossible” numbers. But he didn’t seem to expect that the
“impossible numbers” that solve equations of shape x3 = a+ b

√
−1, where

a and b are real, will always be complex numbers.

3.2.2 Girard

Alfred Girard (1595?–1632) is often credited with giving the first statement
of the Fundamental Theorem (the otherwise unknown Roth had stated it in
1608). Girard’s statement looks somewhat like Theorem 1, but he doesn’t
mention complex numbers. Basically he asserts that a polynomial equation
should have “enough” roots, but where these roots might lie is left unclear.

By the middle of the seventeenth century, various people are fooling
around with the “roots” of a polynomial equation, and finding results that
link various coefficients of the polynomial with expressions involving these
supposed roots. Only very gradually does it dawn on them that these roots
might all be complex numbers, that we do not need to add more types of
“impossible numbers” to the mathematical zoo.

3.2.3 Leibniz

At the beginning of the eighteenth century, the calculus is being energeti-
cally developed. In particular, various mathematicians are playing with the
integration of P (x)/Q(x), where P and Q are polynomials.

Recall the method of partial fractions. To use it, we need to express
the denominator Q(x) as a product of polynomials with real coefficients,
with each factor either linear or quadratic with no real roots. After going
through the partial fractions process and integrating, we end up with a
rational function plus natural logarithms plus arctan’s (some of these may
be missing). The question “Can every Q(x) be factored?” has therefore
clear importance.12

After these preliminaries, we get to Leibniz. In a 1702 paper, he asks
whether Theorem 2 is true—then gives a counterexample! He is interested
in integrating 1/(x4 + a4), and offers the factorization

x4 + a4 = (x+ a

√√
−1)(x− a

√√
−1)(x+ a

√
−
√
−1)(x− a

√
−
√
−1)

12In the analysis of complex electrical circuits, it is necessary to integrate messy rational
functions, and factoring procedures were often needed. These have mostly been replaced
by numerical methods. Also, programs such as Maple do a good job of factoring.
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(whatever that may mean). Leibniz doesn’t realize that in fact the fourth
power of (1 +

√
−1)/

√
2, if computed mechanically, yields −1. So he thinks

that
√√
−1 is a new kind of “impossible” number, and concludes that x4+a4

can’t be expressed as a product of two real quadratics and that integrating
1/(x4 + a4) is a new kind of problem that he can’t solve.

Maybe Leibniz was just having a bad day. If he had applied Descartes’
Method for solving the quartic, he should have been quickly led to a fac-
torization. Anyway, factoring is easy by just fooling around—here’s a quick
way of doing it:

x4 + a4 = (x2 + a2)2 − 2a2x2 = (x2 + a2 −
√

2ax)(x2 + a2 −
√

2ax).

Leibniz should have noticed all this—Newton had, some 25 years earlier.
The point about the mistake is that it shows very clearly that in 1702 it
is reasonable for arguably the greatest mathematician of the time (Newton
is by then out of action) to believe that “impossible numbers” beyond the
complex numbers are needed for factorization. Though complex numbers
had been around in the literature for more than a century, they remained
meaningless counters to be manipulated.

3.3 Towards a Proof of the Fundamental Theorem

By 1730, both Cotes and de Moivre had found representations of xn±an as
a product of linear and/or quadratic polynomials. De Moivre had even given
a proof. So complex numbers were adequate for factoring an important class
of polynomials. Sometime around 1730, the feeling began to develop that
what we now call the Fundamental Theorem might be true.

3.3.1 D’ Alembert, Euler, Lagrange

The first “proof” of the Fundamental Theorem was published in 1746 by
d’Alembert. The strategy of the proof was a good one, but the tools then
available weren’t sharp enough. Many years later, d’Alembert’s idea would
be used to give a nice proof of the Fundamental Theorem.

A few years later, Euler made a serious attempt. His strategy was to
show that if all polynomials of degree 2n can be factored over the reals as a
product of linear and/or quadratic polynomials, then so can all polynomials
of degree 2n+1. Polynomials of degree 4 are easy to handle by Ferrari’s or
Descartes’ method. Euler spent a fair bit of space discussing polynomials of
degree 8, but his conclusion is insufficiently justified, and his work on larger
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degrees is not much more than an expression of hope. He has a separate
adequate argument for degree 6.

Lagrange gave a substantially fuller argument, but his proof was in-
complete in two ways. He assumed without proof, indeed without explicit
mention, that polynomials can be expressed as a product of linear polyno-
mials by adding suitable “imaginary” elements. This is routine if one uses
standard techniques of modern algebra, but they were not available to La-
grange. Then he sketched in insufficient detail an argument that such a
factorization can be transformed into a factorization over the complex num-
bers. Lagrange’s idea was turned into a rigorous proof almost two centuries
later.

3.3.2 Gauss

The first proof of the Fundamental Theorem to be fairly widely acknowl-
edged as satisfactory13 is in Gauss’ 1799 dissertation. Gauss later gave three
more proofs, the second and third of which are convincing by the standards
of the time.14 There are later proofs which are purely algebraic apart from
the use of the Intermediate Value Theorem. There are also proofs in which
the Fundamental Theorem is a trivial consequence of a deeper result in
complex analysis such as Liouville’s Theorem.

Comment. Several times in this chapter we have noted the presence of seri-
ous gaps in published proofs. In the past, it was possible to publish informal
sketchy arguments that would never pass muster today. The mathematicians
of the first rank seldom made serious mistakes, though their work was of-
ten incomplete. But mathematicians of lesser rank sometimes published
absurdly wrong results. The refereeing system has more or less taken care
of that problem. Now, what lesser rank mathematicians publish is rarely
wrong—it is merely uninteresting.

13It really isn’t satisfactory, depending as it does on a topological fact about polynomials
in two variables that is taken as obvious by Gauss but is difficult to prove.

14At the time of Gauss, the reals hadn’t yet been formally defined, and basic properties
of continuous functions hadn’t been demonstated rigorously, but that’s the only thing the
second and third proofs lack. The fourth proof is a streamlined version of the first and
has the same gap as the first.
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