The paper by John Landen (A New method of computing the sum of certain series Phil. Trans. 1759-60 (51) p. 553-565) is being discussed in class. Here we give an outline of the proofs.

1. The notation hyp.log is equivalent to just the natural \log in modern notation. Let $\mathbf{i}=$ $\sqrt{-1}$. The paper declares values of its \log. In modern notation, we may write $\log (\mathbf{i})=\pi \mathbf{i} / 2$ and $\log (-\mathbf{i})=\log (1 / \mathbf{i})=-\log (\mathbf{i})=-\pi \mathbf{i} / 2$.
It follows that $\log (-1)=\log \left(\mathbf{i}^{2}\right)=\pi \mathbf{i}$. However, $\log (-1)$, can be also viewed as $-\pi \mathbf{i}$ since $-1=(-\mathbf{i})^{2}$.
The paper names $a=\pi / 2$ and hence determines $\log (1 / \mathbf{i})=-\log (\mathbf{i})=-a \mathbf{i}=a / \mathbf{i}$.
We shall simply use $\log (\mathbf{i})=\pi \mathbf{i} / 2$ and $\log (-1)= \pm \pi \mathbf{i}$.
2. The main formula of interest is the series expansion

$$
\log \left(\frac{1}{1-x}\right)=x+x^{2} / 2+\cdots=\sum x^{n} / n
$$

We shall denote it as $L_{1}(x)$. (It is not named in the paper.)
In fact, we define: $L_{r}(x)=\sum x^{n} /\left(n^{r}\right)$.
3. The main aim of the paper is to determine the values of $L_{2}(1), L_{4}(1), \cdots$ for various even subscripts, by using a novel idea (in 1759).
4. We start with $L_{1}(1 / x)$ and transform it thus:
$L_{1}(1 / x)=\log \left(\frac{1}{1-1 / x}\right)=\log \left(\frac{x}{x-1}\right)=\log (x)-\log (x-1)$.
Noticing that $\log (x-1)=\log (-1)+\log (1-x)$ we get:

$$
\begin{aligned}
L_{1}(1 / x) & =\log (x)-\log (-1)-\log (1-x) \\
& =\log (x)-\log (-1)+\log \left(\frac{1}{1-x}\right) \\
& =\log (x)-\log (-1)+L_{1}(x)
\end{aligned}
$$

5. The main tool used in the paper is to calculate a certain transform for any desired function $f(x)$. We shall use the notation $\mathcal{L A}(f(x))=\int f(x) / x d x$.
Here are some properties of this transformation:

- $\mathcal{L A}\left(L_{1}(x)\right)=L_{2}(x)$. More generally, $\mathcal{L A}\left(L_{d}(x)\right)=L_{d+1}(x)$.
- $\mathcal{L A}\left(L_{d}(1 / x)\right)=-L_{d}(1 / x)$.
- $\mathcal{L A}(c)=c \log (x)$ if c is a constant.
- $\mathcal{L A}\left(\log (x)^{m}\right)=\frac{\log (x)^{m+1}}{m+1}$.

We shall use these as needed.
6. We rearrange the formula in (4) above and transform it thus:
$\mathcal{L A}\left(L_{1}(x)\right)-\mathcal{L A}\left(L_{1}(1 / x)\right)=\mathcal{L A}(\log (-1)-\log (x))$.
This gives us: $L_{2}(x)+L_{2}(1 / x)=\log (-1) \log (x)-\log (x)^{2} / 2+C$
where C is a constant to be determined. If we use $x=1$, then we see that the LHS is $2 L_{2}(1)$ while the RHS is $0-0+C$. Hence $C=2 L_{2}(1)$.
Thus, we get
$L_{2}(x)+L_{2}(1 / x)=2 L_{2}(1)+\log (-1) \log (x)-\log (x)^{2} / 2$.
7. We deduce two equations from this, using $x=-1$ and $x=\mathbf{i}$. Then we deduce the value of $L_{2}(1)$.

- For $x=-1$, we see that the LHS is
$\sum \frac{(-1)^{n}+(-1)^{-n}}{n^{2}}=2 \sum(-1)^{n} / n^{2}$
And this simplifies to: $2\left(-1 / 1^{2}+1 / 2^{2}-1 / 3^{2}+\cdots\right)$.
The RHS, on the other hand, simplifies to $2 L_{2}(1)+\log (-1)^{2}-\log (-1)^{2} / 2=2 L_{2}(1)-$ $\pi^{2} / 2$.
Dividing by 2 , we get:
Equation 1: $-1 / 1^{2}+1 / 2^{2}-1 / 3^{2}+\cdots=L_{2}(1)-\pi^{2} / 4$.
- For $x=\mathbf{i}$, the LHS becomes $\sum \frac{\mathbf{i}^{n}+\mathbf{i}^{n}(-1)^{n}}{n^{2}}$. Clearly only even n terms survive and we get:

$$
-2 / 2^{2}+2 / 4^{2}-2 / 6^{2}+\cdots
$$

It is seen that all denominators have a factor of 4 and numerators have a factor of 2. So we get

$$
(1 / 2)\left(-1 / 1^{2}+1 / 2^{2}-1 / 3^{2}+\cdots\right)
$$

The RHS evaluates to

$$
2 L_{2}(1)-3 \pi^{2} / 8
$$

Multiplying both sides by 2 , we get:

$$
\text { Equation } 2:-1 / 1^{2}+1 / 2^{2}-1 / 3^{2}+\cdots=4 L_{2}(1)-3 \pi^{2} / 4
$$

8. The above two equations give:

$$
L_{2}(1)-\pi^{2} / 4=4 L_{2}(1)-3 \pi^{2} / 4
$$

which gives $3 L_{2}(1)=\pi^{2} / 2$ or $L_{2}(1)=\pi^{2} / 6$.

