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Prologue | Historiography and history of
mathematical proof: a research programme

KARINE CHEMLA

Pour Oriane, ces raisonnements sur les raisonnements

I Introduction: a standard view

The standard history of mathematical proof in ancient traditions at the
present day is disturbingly simple.

This perspective can be represented by the following assertions.
(1) Mathematical proof emerged in ancient Greece and achieved a mature
form in the geometrical works of Euclid, Archimedes and Apollonius.
(2) The full-fledged theory underpinning mathematical proof was formu-
lated in Aristotle’s Posterior Analytics, which describes the model of dem-
onstration from which any piece of knowledge adequately known should
derive. (3) Before these developments took place in classical Greece, there
was no evidence of proof worth mentioning, a fact which has contributed
to the promotion of the concept of ‘Greek miracle’ This account also implies
that mathematical proof is distinctive of Europe, for it would appear that
no other mathematical tradition has ever shown interest in establishing the
truth of statements.! Finally, it is assumed that mathematical proof, as it is
practised today, is inherited exclusively from these Greek ancestors.

Are things so simple? This book argues that they are not. But we shall
see that some preliminary analysis is required to avoid falling into the
old, familiar pitfalls. Powerful rhetorical devices have been constructed
which perpetuate this simple view, and they need to be identified before
any meaningful discussion can take place. This should not surprise us. As
Geoftrey Lloyd has repeatedly stressed, some of these devices were shaped
in the context of fierce debates among competing ‘masters of truth’ in
ancient Greece, and these devices continue to have effective force.?

! See, for example, M. Kline’s crude evaluation of what a procedure was in Mesopotamia and how
it was derived, quoted in J. Hoyrup’s chapter, p. 363. The first lay sinologist to work on ancient
Chinese texts related to mathematics, Edouard Biot, does not formulate a higher assessment -
see the statement quoted in A. Volkov’s chapter, p. 512. On Biot’s special emphasis on the lack
of proofs in Chinese mathematical texts, compare Martija-Ochoa 2001-2: 61.

See chapter 3 in Lloyd 1990: 73-97, Lloyd 1996a. Lloyd has also regularly emphasized how
“The concentration on the model of demonstration in the Organon and in Euclid, the one that

)
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Studies of mathematical proof as an aspect of the intellectual history of
the ancient world have echoed the beliefs summarized above - in part, by
concentrating mainly on Euclid’s Elements and Archimedes” writings, the
subtleties of which seem to be infinite. The practice of proof to which these
writings bear witness has impressed many minds, well beyond the strict
domain of mathematics. Since antiquity, versions of Euclid’s Elements, in
Greek, in Arabic, in Latin, in Hebrew and later in the various vernacular
languages of Europe, have regularly constituted a central piece of math-
ematical education, even though they were by no means the only element of
mathematical education. The proofs in these editions were widely emulated
by those interested in the value of incontrovertibility attached to them and
they inspired the discussions of many philosophers. However, some ver-
sions of Euclid’s Elements have also been used since early modern times -
in Europe and elsewhere - in ways that show how mathematical proof has
been enrolled for unexpected purposes.

One stunning example will suffice to illustrate this point. At the end of
the sixteenth century, European missionaries arrived at the southern door
of China. As a result of the difficulties encountered in entering China and
capturing the interest of Chinese literati, the Jesuit Matteo Ricci devised
a strategy of evangelism in which the science and technology available
in Europe would play a key part. One of the first steps taken in this pro-
gramme was the publication of a Chinese version of Euclid’s Elements in
1607. Prepared by Ricci himself in collaboration with the Chinese convert
and high official Xu Guanggqji, this translation was based on Clavius’ edition
of the Elements, which Ricci had studied in Rome, while he was a student
at the Collegio Romano. The purpose of the translation was manifold.
Two aspects are important for us here. First, the purportedly superior
value of the type of geometrical knowledge introduced, when compared
to the mathematical knowledge available to Chinese literati at that time,
was expected to plead in favour of those who possessed that knowledge,
namely, European missionaries. Additionally, the kind of certainty such a
type of proof was prized for securing in mathematics could also be claimed
for the theological teachings which the missionaries introduced simultane-
ously and which made use of reasoning similar to the proof of Euclidean
geometry.” Thus, in the first large-scale intellectual contact between Europe

proceeds via valid deductive argument from premises that are themselves indemonstrable but
necessary and self-evident, that concentration is liable to distort the Greek materials already -
let alone the interpretation of Chinese texts. (Lloyd 1992: 196.)

> On Ricci’s background and evangelization strategy, see Martzloff 1984. Martzloff 1995 is
devoted more generally to the translations of Clavius’s textbooks on the mathematical sciences
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and China mediated by the missionaries, mathematical proof played a role
having little to do with mathematics stricto sensu. It is difficult to imagine
that such a use and such a context had no impact on its reception in China.*
This topic will be revisited later.

The example outlined is far from unique in showing the role of math-
ematical proof outside mathematics. In an article significantly titled “What
mathematics has done to some and only some philosophers; Ian Hacking
(2000) stresses the strange uses that mathematical proof inspired in phi-
losophy as well as in theological arguments. In it, he diagnoses how math-
ematics, that is, in fact, the experience of mathematical proof, has ‘infected’

into Chinese at the time. Engelfriet 1993 discusses the relationship between Euclid’s Elements
and teachings on Christianity in Ricci’s European context. More generally, this article outlines
the role which Clavius allotted to mathematical sciences in Jesuit schools and in the wider
Jesuit strategy for Europe. For a general and excellent introduction to the circumstances of
the translation of Euclid’s Elements into Chinese, an analysis and a complete bibliography,

see Engelfriet 1998. Xu Guangqi’s biography and main scholarly works were the object of

a collective endeavour: Jami, Engelfriet and Blue 2001. Martzloff 1981, Martzloft 1993 are
devoted to the reception of this type of geometry in China, showing the variety of reactions
that the translation of the Elements aroused among Chinese literati. On the other hand, the
process of introduction of Clavius’ textbook for arithmetic was strikingly different. See Chemla
1996, Chemla 1997a.

Leibniz appears to have been the first scholar in Europe who, one century after the Jesuits

had arrived in China, became interested in the question of knowing whether ‘the Chinese’
ever developed mathematical proofs in their past. In his letter to Joachim Bouvet sent from
Braunschweig on 15 February 1701, Leibniz asked whether the Jesuit, who was in evangelistic
mission in China, could give him any information about geometrical proofs in China: Tay
souhaité aussi de sgavoir si ce que les Chinois ont eu anciennement de Geometrie, a esté
accompagné de quelques demonstrations, et particulierement sils ont s¢ti il y a long temps
Iégalité du quarré de ’hypotenuse aux deux quarrés des costés, ou quelque autre telle
proposition de la Geometrie non populaire. (Widmaier 2006: 320; my emphasis.) In fact,
Leibniz had already expressed this interest few years earlier, in a letter written in Hanover on
2 December 1697, to the same correspondent: ‘Outre I'Histoire des dynasties chinoises . . ., il
faudroit avoir soin de I'Histoire des inventions [,] des arts, des loix, des religions, et dautres
établissements|.] Je voudrois bien s¢avoir par exemple s'il[s] nont eu il y a long temps quelque
chose d'approchant de nostre Geometrie, et si legalité du quarré de 'Hypotenuse a ceux des
costés du triangle rectangle leur a esté connue, et s’ils ont eu cette proposition par tradition ou
commerce des autres peuples, ou par lexperience, ou enfin par demonstration, soit trouvée chez
eux ou apportée dailleurs] (Widmaier 2006: 142-4, my emphasis.) To this, Bouvet replied on
28 February 1698: ‘Le point au quel on pretend sappliquer davantage comme le plus important
est leur chronologie . . . Apres quoy on travaillera sur leur histoire naturelle et civile[,] sur
leur physique, leur morale, leurs loix, leur politique, leurs Arts, leurs mathematiques et leur
medecine, qui est une des matieres sur quoy je suis persuadé que la Chine peut nous fournir
de[s] plus belles connaissances. (Widmaier 2006: 168.) In his letter from 1697 (Widmaier 2006:
144-6), Leibniz expressed the conviction that, even though ‘their speculative mathematics’
could not hold the comparison with what he called ‘our mathematics, one could still learn
from them. To this, in a sequel to the preceding letter, Bouvet expressed a strong agreement
(Widmaier 2006: 232). Mathematics, especially proof, was already a ‘measure’ used for
comparative purposes.

IS
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‘some central parts of [the] philosophy [of some philosophers], parts that
have nothing intrinsically to do with mathematics’ (p. 98).

What is important for us to note for the moment is that through such
non-mathematical uses of mathematical proof the actors’ perception of
proof has been colored by implications that were foreign to mathematics
itself. This observation may help to account for the astonishing emotion that
often permeates debates on mathematical proof — ordinary ones as well as
more academic ones — while other mathematical issues meet with indiffer-
ence.” On the other hand, these historical uses of proof in non-mathematical
domains, as well as uses still often found in contemporary societies, led to
overvaluation of some values attached to proof (most importantly the incon-
trovertibility of its conclusion and hence the rigour of its conduct) and the
undervaluing and overshadowing of other values that persist to the present.
In this sense, these uses contributed to biases in the historical and philo-
sophical discussion about mathematical proof, in that the values on which
the discussion mainly focused were brought to the fore by agendas most
meaningful outside the field of mathematics. The resulting distortion is, in
my view and as I shall argue in greater detail below, one of the main reasons
why the historical analysis of mathematical proof has become mired down
and has failed to accommodate new evidence discovered in the last decades.®
Moreover, it also imposed restrictions on the philosophical inquiry into
proof. Accordingly, the challenge confronting us is to reinstate some
autonomy in our thinking about mathematical proof. To meet this challenge
effectively, a critical awareness derived from a historical outlook is essential.

II Remarks on the historiography of mathematical proof

The historical episode just invoked illustrates how the type of mathemati-
cal proof epitomized by Euclid’s Elements (notwithstanding the differences
between the various forms the book has taken) has been used by some
(European) practitioners to claim superiority of their learning over that of
other practitioners. In the practice of mathematics as such, proof became
a means of distinction among practices and consequently among social
groups. In the nineteenth century, the same divide was projected back into
history. In parallel with the professionalization of science and the shaping of

°> The same argument holds with respect to ‘science’ For example, the social and political uses of
the discourses on ‘methodology’ within the milieus of practitioners, as well as vis-a-vis wider
circles, were at the focus of Schuster and Yeo 1986. However, previous attempts paid little
attention to the uses of these discourses outside Europe.

© I was led to the same diagnosis through a different approach in Chemla 1997b.
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a scientific community, history and philosophy of science emerged during
that century as domains of inquiry in their own right.” Euclid’s Elements
thus became an object of the past, to be studied as such, along with other
Greek, Arabic, Indian, Chinese and soon Babylonian and Egyptian sources
that were progressively discovered.® By the end of the nineteenth century,
as Francois Charette shows in his contribution, mathematical proof had
again become the weapon with which some Greek sources were evaluated
and found superior to all the others: a pattern similar to the one outlined
above was in place, but had now been projected back in history. The stand-
ard history of mathematical proof, the outline of which was recalled at the
beginning of this introduction, had taken shape. In this respect, the dis-
missive assertion formulated in 1841 by Jean-Baptiste Biot - Edouard Biot’s
father — was characteristic and premonitory, when he exposed

this peculiar habit of mind, following which the Arabs, as the Chinese and Hindus,
limited their scientific writings to the statement of a series of rules, which, once
given, ought only to be verified by their applications, without requiring any logical
demonstration or connections between them: this gives those Oriental nations a
remarkable character of dissimilarity, I would even add of intellectual inferiority,
comparatively to the Greeks, with whom any proposition is established by reason-
ing, and generates logically deduced consequences.’

This book challenges the historical validity of this thesis. The issue at
hand is not merely to determine whether this representation of a worldwide
history of mathematical proof holds true or not. We shall also question
whether the idea that this quotation conveys is relevant with respect to

7 See for example Laudan 1968, Yeo 1981, Yeo 1993, especially chapter 6.

§ Between 1814 and 1818, Peyrard, who had been librarian at the Ecole Polytechnique,
translated Euclid’s Elements as well as his other writings on the basis of a manuscript in

Greek that Napoleon had brought back from the Vatican. He had also published a translation
of Archimedes’ books (Langins 1989.) Many of those active in developing history and
philosophy of science in France (Carnot, Brianchon, Poncelet, Comte, Chasles), especially
mathematics, had connections to the Ecole Polytechnique. More generally, on the history of
the historiography of mathematics, including the account of Greek texts, compare Dauben and
Scriba 2002.

This is a quotation with which F. Charette begins his chapter (p. 274). See the original
formulation on p. 274. At roughly the same time, we find under William Whewell’s

pen the following assessment: “The Arabs are in the habit of giving conclusions without
demonstrations, precepts without the investigations by which they are obtained; as if their
main object were practical rather than speculative, - the calculation of results rather than the
exposition of theory. Delambre [here, Whewell adds a footnote with the reference] has been
obliged to exercise great ingenuity, in order to discover the method in which Ibn Iounis proved
his solution of certain difficult problems. (Whewell 1837: 249.) Compare Yeo 1993: 157. The
distinction which ‘science’ enables Whewell to draw between Europe and the rest of the world
in his History of the Inductive Sciences would be worth analysing further but falls outside the
scope of this book.

©
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proof. As we shall see, comparable debates on the practice of proof have
developed within the field of mathematics at the present day too.

First lessons from historiography, or: how sources have disappeared
from the historical account of proof

Several reasons suggest that we should be wary regarding the standard
narrative.

To begin with, some historiographical reflection is helpful here. As some
of the contributions in this volume indicate, the end of the eighteenth
century and the first three-quarters of the nineteenth century by no means
witnessed a consensus in the historical discourse about proof comparable
to the one that was to become so pervasive later. In the chapter devoted
to the development of British interest in the Indian mathematical tradi-
tion, Dhruv Raina shows how in the first half of the nineteenth century,
Colebrooke, the first translator of Sanskrit mathematical writings into a
European language, interpreted these texts as containing a kind of algebraic
analysis forming a well arranged science with a method aided by devices,
among which symbols and literal signs are conspicuous. Two facts are
worth stressing here.

On the one hand, Colebrooke compared what he translated to D’Alembert’s
conception of analysis. This comparison indicates that he positioned the
Indian algebra he discovered with respect to the mathematics developed
slightly before him and, let me emphasize, specifically with respect to ‘analy-
sis. When Colebrooke wrote, analysis was a field in which rigour had not yet
become a central concern. Half a century later in his biography of his father,
Colebrooke’s son would assess the same facts in an entirely different way,
stressing the practical character of the mathematics written in Sanskrit and
its lack of rigour. As Raina emphasizes, a general evolution can be perceived
here. We shall come back to this evolution shortly.

On the other hand, Colebrooke read in the Sanskrit texts the use of ‘alge-
braic methods, the rules of which were proved in turn by geometric means.
In fact, Colebrooke discussed ‘geometrical and algebraic demonstrations’
of algebraic rules, using these expressions to translate Sanskrit terms. He
showed how the geometrical demonstrations ‘illustrated’ the rules with
diagrams having particular dimensions. We shall also come back later to
this detail. Later in the century, as Charette indicates, the visual character of
these demonstrations was opposed to Greek proofs and assessed positively
or negatively according to the historian. As for ‘algebraic proofs, Colebrooke
compared some of the proofs developed by Indian authors to those of Wallis,
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for example, thereby leaving little doubt as to Colebrooke’s estimation of
these sources: namely, that Indian scholars had carried out genuine algebraic
proofs. If we recapitulate the previous argument, we see that Colebrooke
read in the Sanskrit texts a rather elaborate system of proof in which the
algebraic rules used in the application of algebra were themselves proved.
Moreover, he pointed resolutely to the use in these writings of ‘algebraic
proofs. It is striking that these remarks were not taken up in later histori-
ography. Why did this evidence disappear from subsequent accounts?'’
This first observation raises doubts about the completeness of the record on
which the standard narrative examined is based. But there is more.

Reading Colebrooke’s account leads us to a much more general observa-
tion: algebraic proof as a kind of proof essential to mathematical practice
today is, in fact, absent from the standard account of the early history of
mathematical proof. The early processes by which algebraic proof was
constituted are still terra incognita today. In fact, there appears to be a corre-
lation between the evidence that vanished from the standard historical nar-
rative and segments missing in the early history of proof. We can interpret
this state of the historiography as a symptom of the bias in the historical
approach to proof that I described above. Various chapters in this book will
have a contribution to make to this page in the early history of mathemati-
cal proof.

Let us for now return to our critical examination of the standard view
from a historiographical perspective. Charette’s chapter, which sketches
the evolution of the appreciation of Indian, Chinese, Egyptian and Arabic
source material during the nineteenth century with respect to mathemati-
cal proof, also provides ample evidence that many historians of that time
discussed what they considered proofs in writings which they qualified as
‘Oriental’ For some, these proofs were inferior to those found in Euclid’s
Elements. For others, these proofs represented alternatives to Greek ones,
the rigour characteristic of the latter being regularly assessed as a burden or
even verging on rigidity. The deficit in rigour of Indian proofs was thus not
systematically deemed an impediment to their consideration as proofs, even
interesting ones. It is true that historians had not yet lost their awareness
that this distinctive feature made them comparable to early modern proofs.

One characteristic of these early historical works is even more telling
when we contrast it with attitudes towards ‘non-Western’ texts today:
when confronted with Indian writings in which assertions were not

!0 The same question is raised in Srinivas 2005: 213-14. The author also emphasizes that
Colebrooke and his contemporary C. M. Whish both noted that there were proofs in ancient
mathematical writings in Sanskrit.
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accompanied by proofs, we find more than one historian in the nineteenth
century expressing his conviction that the assertion had once been derived
on the basis of a proof. As late as the 1870s, this characteristic held true
of, for instance, G.E W. Thibaut in his approach to the geometry of the
Sulbasutras, described below by Agathe Keller. It is true that Thibaut criti-
cized the dogmatic attitude he attributed to Sanskrit writings dealing with
science, in which he saw opinions different from those expounded by the
author treated with contempt - a fact that he related to how proofs were
presented. It is also true that the practical religious motivations driving
the Indian developments in geometry he studied diminished their value
to him. In his view, these motivations betrayed the lack of free inquiry that
should characterize scientific endeavour. Note here how these judgements
projected the values attached to science in Thibaut’s scholarly circles back
into history." Yet he never doubted that proofs were at the basis of the state-
ments contained in the ancient texts. For example, for the general case of
‘Pythagorean theorem,, he was convinced that the authors used some means
to ‘satisfy themselves of the general truth’ of the proposition. And he judged
it a necessary task for the historian to restore these reasonings. This is how,
for the specific case when the two sides of the right-angled triangle have
equal length, Thibaut unhesitatingly attributed the reasoning recorded in
Plato’s Meno to the authors of the Sulbasutras. As the reader will find out
in the historiographical chapters of this book, he was not the only one to
hold such views. On the other hand, it is revealing that while he was looking
for geometrical proofs from which the statements of the Sulbasutras were
derived, Thibaut discarded evidence of arithmetical reasoning contained
in ancient commentaries on these texts. He preferred to attribute to the
authors from antiquity a geometrical proof that he would freely restore. In
other words, he did not consider commentators of the past worth attending
to and, in particular, did not describe how they proceeded in their proofs.
To sum up the preceding remarks, even if, in the nineteenth century, ‘the
Greeks' were thought to have carried out proofs that were quite specific,
there were historians who recognized that other types of proofs could be
found in other kinds of sources. Even when proofs were not recorded,
historians might grant that the achievements recorded in the writings
had been obtained by proofs that they thus strove to restore. However, as
Charette concludes with respect to the once-known ‘non-Western' source
material, ‘much of the twentieth-century historiography simply disre-

' The moral, political and religious dimensions of the discourse on methodology have begun to
be explored. See, for example, the introduction and various chapters in Schuster and Yeo 1986.
More remains to be done.
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garded the evidence already available’ One could add that the assumption
that outside the few Greek geometrical texts listed above, there were no
proofs at all in ancient mathematical sources has become predominant
today. It is clearly a central issue for our project to understand the processes
which marginalized some of the known sources to such an extent that they
were eventually erased from the early history of mathematical proof. In
any event, the elements just recalled again suggest caution regarding the
standard narrative.

Other lessons from historiography, or: nineteenth-century
ideas on computing

Raina and Charette highlight another process that gained momentum
in the nineteenth century and that will prove quite meaningful for our
purpose. They show how mathematics provided a venue for progressive
development of an opposition between styles soon understood to charac-
terize distinct ‘civilizations. In fact, as a result of this development, by the
end of the century ‘the Greeks” were more generally contrasted with all the
other ‘Orientals, because they privileged geometry over any other branch
of mathematics, while ‘the others” were thought of as having stressed com-
putations and rules, that is, algorithms, arithmetic and algebra, instead.'?
Charette discusses the various means by which historians accommodated
the somewhat abundant evidence that challenged this division.

This remark simultaneously reveals and explains a wide lacuna in the
standard account of the early history of proof: this account is mute with
respect to proofs relating to arithmetical statements or addressing the cor-
rectness of algorithms. From this perspective, Colebrookes remarks on
‘algebraic analysis’ take on a new significance, since they pertain precisely
to proofs of that kind. In addition, the absence of algebraic proof from the
standard early history, noted above, appears to be one aspect of a systematic
gap. If we exclude the quite peculiar kind of number theory to be found in
the ‘arithmetic books’ of Euclid’s Elements, or in Diophantus’ Arithmetics,
the standard history has little to say about how practitioners developed
proofs for statements related to numbers and computations. Yet there is
no doubt that all societies had number systems and developed means of

!2 From the statement by J. B. Biot in 1841 (quoted by E. Charette) to the statement by M. Kline in
1972 (quoted by Hoyrup) - both cited above - there is a remarkable stability in the arguments
by which algorithms are trivialized: they are interpreted as verbal instructions to be followed
without any concern for justification. An analysis of the historiography of computation would
certainly be quite helpful in situating such approaches within a broader context. This point will
be taken up later.
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computing with them. Can we believe that proving the correctness of these
algorithms was not a key issue for Athenian public accounts or for the
Chinese bureaucracy?'? Could these rely on checks left to trial and error?
Clearly, there is a whole section missing in the early history of proof as it
took shape in the last centuries.'*

In fact, there appear two correlated absences in the narrative we are
analysing: on the one hand, most traditions are missing,'” while on the
other hand, proofs of a certain type are lacking. Is it because we have no
evidence for this kind of proof? Such is not the case, and it will come as no
surprise to discover that most of the chapters on proof that follow address
precisely those theorems dealing with numbers or algorithms. From a his-
toriographic perspective, again, it would be quite interesting to understand
better the historical circumstances that account for this lacuna.

Creating the standard history

As Charette recalls in the conclusion of his chapter, the standard early
history of mathematical proof took shape and became dominant in relation
to the political context of the European imperialist enterprise. As was the
case with the European missionaries in China a few centuries earlier, math-
ematical proof played a key role in the process of shaping ‘European civili-
zation’ as superior to the others — a process to which not only science, but
also history of science, more generally contributed at that time. The analysis
developed above still holds, and I shall not repeat it. The role that was allot-
ted to proof in this framework tied it to issues that extended far beyond the
domain of mathematics. These ties explain, in my view, why mathematical
proof has meant so much to so many people - a point that still holds true
today. These uses of proof have also badly constrained its historical and
philosophical analysis, placing emphasis on some values rather than others
for reasons that lay outside mathematics.

What is at stake today in the trustworthiness of computing is discussed in MacKenzie 2001.
The failure that results from not having yet systematically developed the portion of the
history of mathematical proof has unfortunate consequences in how some philosophers of
mathematics deal with ‘calculations as opposed to ‘proofs’ To take an example among those
to whom I refer in this introduction, however insightful Hacking 2000 may be, the paragraph
entitled “The unpuzzling character of calculation’ (pp. 101-3) records some common
misconceptions about computing that call for rethinking. See fn. 45.

> As is often the case, when ‘non-Western traditions’ - as they are sometimes called - are
missing, other traditions in the West have been marginalized in, or even left out from, the
historiography. Lloyd directly addresses this fact in his own contribution to this volume.
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Understanding what other elements played a part in the shaping of our nar-
rative is another way of developing our critical awareness of the narrative.

As R. Yeo has argued regarding the case of early Victorian Britain in
the publications mentioned above, the professionalization of science and
the development of the sense of a ‘scientific community, as well as the
need of the practitioners to reinforce the unity of ‘science’ for themselves
and its value in the eyes of the public, can be correlated with an increase
in the size and number of publications devoted to the ‘scientific method.
The distinctive features of the method enabled it to maintain the cohesion
of the community and enhance the value of the social group in the eyes of
the public. It shaped the social and professional status of those who were
soon to be called ‘scientists. Philosophy of science and history of science
emerged and developed as disciplines through this historical process and
were instrumental in the pursuit of the question of method. How were the
understanding and discussion of mathematical proof influenced by this
global trend? In my view, this is a key issue for our topic, to which we shall
come back below but which awaits further research.

A consideration of the mainstream development of academic mathemat-
ics during the nineteenth century casts more light on our narrative from
yet another perspective. It also allows the perception of other elements that
may have played a part in constructing the narrative. Indeed, the approach
to proofs of the past at different time periods correlates with more general
trends in the mathematics of the time. On the one hand, as we saw, in the
first decades of the nineteenth century, Colebrooke was reading his Indian

!¢ Clearly, proof was a topic of explicit discussion within disciplinary writings, as the first edition
of George PeacocK’s Treatise of Algebra (1830) shows. The pages starting from paragraph
142, on p. 109, were devoted to the question: ‘What constitutes a demonstration?” Further,
John Stuart Mill’s discussion of methodology, in his A System of Logic, Ratiocinative and
Inductive, first published in 1843, encompassed an analysis of mathematical proof and led
him to offer an interpretation of Euclidean proofs as reliant on an inductive foundation and
their certainty as an illusion (p. 296). This example shows how reflections of mathematical
proofs were influenced by wider discussion of methodology. By comparison, Auguste Comte’s
considerations on demonstrations were less systematic. Conversely, another question is worth
exploring: what role did ideas about and practices of mathematical proofs play in shaping the
various discourses about methodology? Even though considerations about demonstration
are pervasive in the methodological books of that period, it seems to me that this feature has
received little attention. An exception is the discussion of Whewell’s ideas regarding the various
practices of proof in the context of his wider concern for the teaching of mathematics and
physics in Yeo 1993: 218-22. In this case, questions of method relate to pedagogic efficiency
and tie mathematics to natural science. Hacking 1980 (reprinted as chapter 13 in Hacking
2002: 200-13) sheds interesting light on the question of the emergence of methodology in
the seventeenth century. On the issue of mathematical proof as such, this article is updated in
Hacking 2000.
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sources with mathematical analysis in mind. His comparisons were with
Wallis or D’Alembert. On the other hand, at the end of the nineteenth
century, when Greek geometry overshadowed all other evidence for the
early history of proof, the value of rigour had been growing in significance
for some decades, and academic mathematics was witnessing the begin-
ning of a new practice of axiomatic systems which would soon become the
dominant trend in the twentieth century.'”

These arguments suggest that different factors brought about the shift
in historiography outlined above and could account for the outline of the
now-standard narrative of the early history of proof. Some of these factors
clearly relate to the state of mathematics at a given time, both institutionally
and intellectually, but others are not directly related to it. The influence of
some of these factors may be felt at the present day and could explain the
lingering belief in this narrative as well as the significance widely attached
to it. However, the same arguments invite us to look at this narrative with
critical eyes: the narrative belongs to its time and the time may have come
that we need to replace it.

Dissatisfactions: overemphasizing certainty

For more than three decades now, some historians of mathematics have pub-
lished articles and books arguing that the Chinese, Babylonian and Indian
sources on which they were working contained mathematical proofs.'®

7 Tt would be interesting to document these correlations in greater detail. See e.g. I. Toth’s

work on the history of axiomatization. Other changes in the mathematics of the nineteenth
century also probably had an impact on the historiography in exactly the same way such

as the increasing marginalization of computing and the division between pure and applied
mathematics, which were soon perceived as two distinct pursuits and to be carried out in
separate institutions. Thibaut’s critical remarks, mentioned above, on the practical orientation
of the mathematics in the Sulbasutras are probably an echo of the latter trend and illustrate

a typical motif of nineteenth- and twentieth-century historical publications. Regarding the
marginalization of computing and its impact on historiography, I refer to the forthcoming joint
publication by Marie-José Durand-Richard, Agathe Keller and Dhruv Raina.

For the Chinese case, let us mention the first research works on the topic published in

English: Wagner 1975, Wagner 1978, Wagner 1979. One must also mention the first works

in Chinese systematically addressing the issue: the 8th issue of the journal Kejishi wenji
(Collection of papers on the history of science and technology), in 1982; the 11th issue of the
journal Kexueshi jikan (Collected papers in history of science); Wu Wenjun 1982. Since then,
the publications are too numerous to be listed here. The reader can find a more complete
bibliography in CG2004. The first publication on the topic of proofs that could be read in the
Mesopotamian sources is Hoyrup 1990. Since then, Hoyrup has continued exploring this issue,
and other specialists of the field have joined him to support and develop this thesis. A synthesis
of the outcomes of this research programme, the results of which were widely adopted by the
narrow circle of specialists of Mesopotamian mathematics, was published: H2002. As for the
Indian case, we can refer the reader to H1995: 75-7, Jain 1995. These were followed more
recently by Patte 2004, Srinivas 2005, Keller 2006, among others.

3
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They worked independently of each other and the proofs they discussed
were quite different in nature. Moreover, their interpretation of the facts
confronting them was not uniform. However, they brought forward exten-
sive evidence, partly new, partly old, which challenged the received view of
the early history of mathematical proof. It is interesting to note that, in a way,
they were partly returning to a past historiography.

A puzzling fact is that, beyond the strict circle of specialists in the same
domain, these results were at best ignored, but, more frequently, were
rejected outright. Clearly, these publications have so far not managed to
bring about any change in the view of the early history of mathematical
proof held by historians and philosophers of science at large, or the wider
population.

This sustained failed reception needed to be analysed. Thus, this book is
not only devoted to the history but also contains a section on the histori-
ography of mathematical proof. Needless to say, much more remains to be
done in this domain. These circumstances also explain why I chose to begin
this introduction with historiographical remarks. Some further factors are
at play in how mathematical proof is approached in our societies at large,
and we need to recognize these factors in order to restore some freedom to
the discussion and come to grips with the new evidence.

On the basis of the analysis outlined above, we see two types of obstacles
which could hinder the development of the discussion. Firstly, the whole
question of mathematical proof is entangled with extrascholarly uses in
which it plays an important part — among these uses are those of the issues
addressed earlier which are related to claims of identity.'” Additionally, and
in relation to this point, an image of what a mathematical proof endeavours
has crystallized and blurs the analysis. My claim is that this image is biased
and that dealing with the new evidence mentioned above presents an
opportunity for us to locate this distortion and to think about mathematical
proof anew.

We have reached the crux of the argument. Let me explain in greater
detail. The essential value usually attached to mathematical proof - topmost
for its wide cultivation and esteem outside the sphere of mathematics - is
that, as the word ‘proof” itself indicates, it yields certainty: the conclusion
which has been proved can (hopefully) be accepted as true.”” Securing the

Y How social groups construct identity through science or history of science is more generally a
key issue, on which much more research ought to be done.

20" Grabiner 1988 argues that certainty and applicability were the two features through which
mathematics was most influential to ‘Western thought’. Certainly, these two features occupy
a prominent position in Xu Guanggi’s preface to the Chinese translation of Euclid’s Elements
(Engelfriet 1998: 291-7). Grabiner’s analysis of how the certainty yielded by proof was
influential, especially in theology, reveals dimensions of the importance regularly attached
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truth of a piece of knowledge and convincing an opponent of the incontro-
vertibility of an assertion seem to be what mathematical proof offers and
the ideal it embodies.

Clearly, if we adopt this view of proof, we are immediately forced to admit
that starting points (definitions, axioms) are mandatory for the activity of
proof, if we are to achieve these goals. Moreover, the validity of these start-
ing points must be agreed upon, regardless of how this agreement is reached.
In his chapter, Geoftrey Lloyd treats at length the variety of terms used to
designate these starting points in ancient Greece and the intensity of interest
in, and debate about, them that this variety reflects. On this basis, and this is
where requirements such as rigour appear to come in, valid arguments are
required to derive assertions from the starting points in a trustworthy way,
and new assertions depend on the first ones or the starting points, and so on.

In other words, as soon as one has granted the premise that the goal of
mathematical proof is to prove in an indisputable way, then the conclu-
sion follows unavoidably that this aim can be only achieved within the
framework of an axiomatic—deductive system of one sort or another. In the
context of this assumption, Euclid’s Elements is the first known mathemati-
cal writing that contains proofs, and any claim that a given source contains
proofs has to be judged accordingly. And such claims have actually been
judged by that very standard.

This is, in my view, the simple device by which Greek geometrical writings
have become so central to the discussion of proof that they cannot possibly
be challenged, and this position lies at the core of the recent rejection of the
claim that Babylonian, Chinese or Indian sources contained proofs by some
part of the community of history and philosophy of science (among others).
The reasoning will look simplistic to many. However, I claim that this is pre-
cisely the core of the matter.”! If I am right, this is the point on which critical
analysis must be exercised for us to open our historical inquiry into proof
wider. The feature of mathematical proof just examined is certainly quite
meaningful, and was indeed deemed so outside mathematics. However, on
what basis do we grant ‘incontrovertibility’ as the essential value and goal of
mathematical proof within mathematics itself?

to this value. Hacking 2000 is a bright analysis of what certainty and its cognate values have
meant for some philosophers.

21 T formulated the reasoning relying on present-day perception of what yields certainty.
Although certainty, starting points and modes of reasonings based on the latter to secure
the former remained a stable constellation of elements in the history of discussions about
mathematical proof, the meanings and contents attached to them displayed variation in
history. As Orna Harari shows in her chapter in this book, earlier views were quite different
from present-day ones. Compare Mancosu 1996, especially chapter 1.
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To examine this question, let us restrict the discussion to mathemati-
cal proof as such, as carried out within the context of mathematics. The
recollection of a simple fact will prove useful here: many mathematical
proofs produced throughout history by duly acknowledged scholars were
not presented within axiomatic—deductive systems.? In fact, the periods
during which advanced mathematical writings were predominantly
composed in such a way are much shorter than the periods when they
were not. In tandem with the lack of interest in an axiomatic-deductive
organization of mathematical knowledge, the authors often did not place
much emphasis on rigour. Yet they referred to what they wrote as proofs.*
One may argue that these practitioners of mathematics overlooked
some difficulties and made errors. But these objections cannot possibly
obliterate the innumerable theories proposed and results obtained with
precisely such types of proof. These remarks have an inescapable conse-
quence: it reveals that for a fair number of practitioners of mathematics
the goals of proof cannot have been only ascertaining incontrovertibility
and assuring certainty through achieving conviction, if such was ever their
goal at all. Nevertheless, they considered it worthwhile to look for proofs,
and their practice of proof was no less productive from a mathematical
point of view.

In my view, this perception of proof still holds true today. Even though,
in their discourse on the contemporary practices of proof, mathemati-
cians may stress the axiomatic-deductive framework within which they
work and emphasize the certainty yielded by proofs as well as the rigour
necessary in their production,? the functions they ascribe to proof in their

22 Tronically enough, the proof that lies at the core of Plato’s Meno and that has exerted a huge
influence in the history of philosophy (Hacking 2000) is not formulated within an axiomatic—
deductive system. Philosophers of the present day such as Lakatos 1970 held ‘a no-foundation
view of mathematics’ (Hacking 2000: 124). Unfortunately such views have not yet shown any
clear impact on the history of ancient mathematics. Rav 1999: 15-19 lists several examples of
major domains of mathematics of the present day, for which axioms have not been proposed
and that are nevertheless felt to be rigorous. He further emphasizes the various meanings of
‘axioms’ as used in modern practice.

I'am not aware of any historical publication which denies that Leibniz, Euler, Poncelet,
Poincaré or others of their ilk wrote down actual proofs and suggests that these men should
be erased from the history of mathematical proof: whatever the evaluation may be, it is
without contest that they contributed to shaping practices of proof. More revealing examples
are discussed in Jaffe and Quinn 1993: 7-8. The fact that Jaffe and Quinn refer to cases of
‘weak standards of proof” and suggest that, in some cases, ‘expressions such as “motivation”
or “supporting argument” should replace “proof™ in actors’ language indicates that in the
contemporary mathematical literature the label ‘proof” refers to a great variety of types of
arguments (Jaffe and Quinn 1993: 7, 10). This topic recurs below.

See the very different and lucid account in Thurston 1994: 10-11. Among other refreshing
insights into the activity of proof, Thurston rejects the ‘hidden assumption that there is

23
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actual work seem quite different and multifaceted, in fact. Some insight on
this point can be gained from the contributions to a debate that broke out
in the pages of the Bulletin of the American Mathematical Society about a
decade ago.” The paper by Jaffe and Quinn that launched the discussion
recognized the importance of ‘speculating’ — which they called ‘theoretical
mathematics’ - for the development of mathematics, in addition to proofs
which secure certainty. However, the authors expressed concerns regarding
the confusion that could arise from confounding rigorous proofs (ones that
bring certainty), insights, arguments and so on. As a consequence, they
suggested norms of publication that would distinguish explicitly between,
on the one hand, ‘theorem), ‘show, ‘construct, ‘proof” and, on the other
hand, ‘conjecture; ‘predict, ‘motivation, and ‘supporting argument.’® One
may venture to recognize in this opposition a divide of the type we are
examining with respect to history.

It is impossible to review the debate in detail here. However, for our
purposes, it is interesting to observe the intensity of reaction that this sug-
gestion elicited in the mathematical community. From the responses pub-
lished in the Bulletin, a much more complex image of the activity of proof
emerges, in which rigorous proofs appear to arouse mixed feelings and
cohabit with all kinds of other modalities of proof.?” Moreover, the relation
of proof to other aspects of mathematical activity appears to be quite intri-
cate and calls for further analysis. In relation to our topic, I interpret the fact
that, ironically, many mathematicians do not find it difficult to recognize
as proofs arguments from Chinese or Indian texts although other scholars
deny them this quality as an additional sign of this coexistence of motley
practices of proof in the mathematical community. Were further evidence
still necessary, these facts indicate that there are conflicting ideas among
mathematicians about what a proof is or should be. Why, in such circum-
stances, should historians or philosophers opt for one idea as the correct
one and civilize the past, let alone the present, on this basis?

uniform, objective and firmly established theory and practice of proof” (p. 1.) A comparable,
yet different, account of proof, which is quite critical of standard views, is provided by

Rav 1999.

Some of the pieces written for this debate were already mentioned above. Here are the
references to the entire core exchange: Jaffe and Quinn 1993, Atiyah, Borel, Chaitin, Friedan,
Glimm, Gray, Hirsch, Lane, Mandelbrot, Ruelle, Schwarz, Uhlenbeck, Thom, Witten and
Zeeman 1994, Jaffe and Quinn 1994, Thurston 1994.

Jaffe and Quinn 1993: 10.

The relationship between the written text of the proof and the collective oral activity related to
proof that emerges from these testimonies presents a potentially worrying complexity to the
historian, whose only sources are written vestiges with a faint relation to real processes of proof
production.
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In connection with this issue, and to return to the question whether cer-
tainty is the main motivation for looking for proofs today; it is interesting to
note that many responses to the original paper by Jaffe and Quinn manifest
a concern that too strict a control in order to assure certainty could entail
losses for the discipline. By contrast, the debate also allows one to observe
how many different functions and expectations mathematicians attach to
proof: bringing ‘clarity and reliability’; providing ‘feedback and corrections)
‘new insights and unexpected new data’ (Jafte et al. 1993), ‘clues to new and
unexpected phenomena’ (Jafte et al. 1994), ‘ideas and techniques’ (Atiyah
et al. 1994), ‘understanding,”® ‘mathematical concepts which are quite inter-

esting in themselves, and lead to further mathematics’; ‘helping support of

certain vision for the structure of” a mathematical object (Thurston 1994).”

Only with this variety of objectives in mind can we account for some oth-
erwise mysterious practices. For instance, how else could we explain why
rewriting a proof for already well-established statements can be fruitful?*
Restricting ourselves to consideration of proof in the more limited domain
of mathematics brought to light a wealth of reasons which motivated the
writing of proofs for mathematicians.’! Moreover, it suggests the great loss
for the historical inquiry on mathematical proof if these proofs, the values
attached to them, and the motivations to formulate them and write them
down were not considered.

A comment by Martin Davis on the four-colour theorem nicely illustrates this point: the
problem with the computer proof, in his view, is not so much the lack of certainty it entails,
but the fact that it does not put us in a position to understand where the ‘4’ comes from, and
whether it is accidental or not (Martin Davis, 2 October 2007, personal communication).

# As I alluded to it above, rigour is a contested value in these pages (see the contributions by
Mandelbrot, Thom). What is more, it must be stressed that in contemporary mathematics,
as it may have been the case for the Aristotle of the Posterior Analytics, the value attached to
rigour is perhaps linked more to the understanding and additional insights it provides than
to the increased certainty it yields. Hilbert 1900, for example, testifies to the idea that rigour
yields fruitfulness and provides a guide to determine the importance of a problem (in the
English translation: Hilbert 1902: 441). However, as Rav 1999 stresses, even when proofs are
wrong or inadequate, they remain the main source from which new concepts emerge and
new theories are developed. He further suggests that it is in proofs, rather than in theorems,
that mathematicians look for mathematical knowledge and understanding: ‘Conceptual and
methodological innovations are inextricably bound to the search for and the discovery of
proofs, thereby establishing links between theories, systematizing knowledge and spurring
further developments’ (Rav 1999: 6).

%0 This point was stressed in Chemla 1992, which relies on how Rota 1990 had discussed the

issue.

Some historians have attempted to widen the history of proof by suggesting that the

actors of the past used various means to convince their peers of the truth of a statement.

In this vein attention has been paid to the rhetorical means that the actors employed.

The preceding remarks show why this does not help frame a wide enough perspective

on the activity of proof.

17



18

KARINE CHEMLA

New perspectives, or: the project of the book

From this vantage point, two conclusions can be discerned.

Firstly, we see how a history of proof limited to inquiry into how practi-
tioners devised the means of establishing a statement in an incontrovertible
way runs the risk of being truncated. This, in my view, is what happens
when the Babylonian, Chinese and Indian evidence is left out.

Secondly, and conversely, the outline sketched above suggests another
kind of programme for a history of mathematical proof, one likely to be
more open and allow us to derive benefits from the multiplicity of our
sources. We may be interested in understanding the aims pursued by
different collectives of practitioners in the past when they manifested
an interest in the reasons why a statement was true or an algorithm was
correct. We may also wonder how they shaped the practices of proof in
relation to the aims they pursued and how they left written evidence of
these practices.”

In fact, some of these other functions associated with proof were explic-
itly identified in the past and they were at times perceived as more impor-
tant than assuring certainty. In relation to this, epistemological values
distinct from that of incontrovertibility have been used to assess proofs. In
this respect, one can recall the seventeenth-century debates about how to
secure increased clarity through mathematical proofs, thereby achieving
conviction and understanding. Seen in this light, the versions of Euclid’s
Elements of the past were not much prized, and new kinds of Elements were
composed to fulfil more adequately the new requirements demanded from
mathematical proof.”” This example illustrates how different types of proof
were created in relation to different agendas for proving.

How would such a programme translate with respect to ancient tradi-
tions? This is the inquiry of the present book, as one step towards opening
a wider space for a historical and epistemological investigation into math-
ematical proof.

The book is mainly — we shall see why ‘mainly’ shortly — devoted to the
earliest known proofs in mathematics. By the term ‘proof’, it should be now
clear why we simply mean texts in which the ambition of accounting for the
truth of an assertion or the correctness of an algorithm can be identified as
one of the actors’ intentions. In other words, we do not restrict our corpus

32 This analysis and this programme develop the suggestion I formulated in Chemla 1997b:
229-31.

* On this question, see chapter 4, TCinterprétation d’Euclide chez Pascal et Arnauld; in Gardies
1984: 85-108.
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a priori by reference to norms and values that would appear to us as charac-
terizing proofs in an essential way.

From this basis, the various chapters aim at identifying the variety of
goals and functions that were assigned to proof in different times and places
as well as the variety of practices that were constructed accordingly. In brief,
the authors seek to analyse why and how practitioners of the past chose to
execute proofs. Moreover, they attempt to understand how the activity of
proving was tied to other dimensions of mathematical activity and, when
possible, to determine the social or professional environments within
which these developments took place.

Beyond such an agenda, several more general questions remain on our
horizon.

From a historical point of view, we need to question whether the history
of mathematical proof presents the linear pattern which today seems to be
implicitly assumed. How did the various practices of proof clearly distin-
guished in present day mathematical practice inherit from and draw on
earlier equally distinct practices? In more concrete terms, we seek to under-
stand how the various practices of proof identified in ancient traditions
or their components (like ways of proceeding or motivations), developed,
circulated and interacted with one another. These are some of the questions
that arise when attempting to account for the construction of proof as a
central but multifaceted mathematical endeavour that unfolded in history
in a less straightforward way than it was once believed.

From an epistemological point of view, on the other hand, we are inter-
ested in the understanding about mathematical proof in general that can be
derived from studying these early sources from this perspective.

Further lessons from historiography, or: the historical analysis
of critical editions

The analysis developed so far was needed to raise an awareness of the
various meanings that have overloaded - and still overload - the term
‘proof’ in the historiography of mathematics. We brought to light how
agendas involved in this issue fettered the development of a broader
programme which would consider proof as a practice and analyse it in all
its dimensions. Before we outline how the present book contributes to this
larger programme, further preliminary remarks of another type are still
needed.

Our approach to proofs from the past is mediated by written texts. In
his contribution to the debate evoked above, wherein he described the
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collective work involved in the making of a proof eventually produced and
written down by an individual, W. Thurston makes us fully aware of the
bias that such an approach represents. In fact, there are further difficulties
linked to the nature of the sources with which the historian works.

Some of these sources, like Babylonian tablets, were discovered in
archaeological excavations, on a spot where they were used by actors.
Others came down to us through the written tradition. In most cases, the
physical medium has travelled.” In the end of the best-case scenario, those
that can be read are available to us through critical editions. Through the
various processes of transmission and reshaping of the primary sources, the
agendas related to proof described earlier may have left an imprint. In such
cases, our analysis of the source material would be biased at its root.

We shall illustrate this problem with a fundamental example, which
will bring us back to nineteenth-century historiography of proof and a
dimension of its formation that we have not yet contemplated. Above, we
outlined the contribution that this book makes to analysing the evolution
of European historiography of science with respect to ‘non-Western' proofs.
As a complementary account, the first section of Part I in the book focuses
on the approach to Greek geometrical texts that developed in the late nine-
teenth century and the beginning of the twentieth century. Three chapters
examine how the critical editions of Euclid’s Elements and Archimedes’
writings produced by the philologist Johann Heiberg, on which we still
depend for our access to these texts, reflect, and hence convey, his own
vision of the mathematics of ancient Greece. These chapters illustrate a
new element involved in the historiographic turn described above: the pro-
duction of critical editions. Let us sketch why they invite us to maintain a
critical distance from the way sources have come down to us, lest we uncon-
sciously absorb the agendas that shaped these editions.

The problem affecting these critical editions was first exposed by Wilbur
Knorr, in an article published in 1996, the title of which was quite explicit:
“The wrong text of Euclid: on Heiberg’s text and its alternatives.* In it,
Knorr explained why in his view, Heiberg shaped Euclid’s text on the basis
of his own assumptions regarding the practice of axiomatic-deductive
systems in ancient Greece. Knorr’s article began with a critical examination
of a debate which at the end of the nineteenth century opposed Heiberg to

** The research programme entitled ‘Looking at it from Asia and Africa: a critical analysis of the
processes that shaped the sources of history of science, led by Florence Bretelle-Establet and
to which A. Bréard, C. Jami, A. Keller, C. Proust and myself contributed helped me clarify my
views on these questions.

% Knorr 1996. A paper that appeared posthumously took up this issue once again: Knorr 2001.
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Klamroth, a historian who specialized in Arabic mathematics. The debate
concerned the role ascribed to the editions and translations into Arabic
and Latin carried out between the eighth and the thirteenth centuries — the
so-called ‘indirect tradition’ - in the making of the critical edition of the
Elements. Heiberg’s position was that the Greek manuscripts dating from
the ninth century onwards - the ‘direct tradition’ — were closer to Euclid’s
original text. In contrast, Klamroth argued that the Arabic and Latin wit-
nesses, less complete from a logical point of view, bore testimony to earlier
states of the text, whereas the Greek documents had already been contami-
nated by the various uses to which the text had been put in the centuries
between its composition by Euclid and the transliteration into minuscule
that took place in Byzantium. In brief, Heiberg was committed to the view
that Euclid’s Elements contained a minimum of logical gaps in the math-
ematical composition which it delineated. This supposition dictated the
choice of sources on which he based his edition and motivated his rejection
of other documents as derivative. This is how his selective treatment of the
written evidence contributed to reshaping Euclid closer to his own vision.
Taking up Klamroth’s thesis, Knorr held the opposite view: for him, the
Arabic and Latin witnesses were closer to the original Euclid, and the addi-
tions of logical steps were carried out by later editors of the Elements. The
consequence of the resurgence of the debate was clear: some textual doubts
were thereby raised regarding Euclid’s original formulation of his proofs.

In articulating a critical analysis of this kind regarding the nineteenth-
century edition of the Elements still widely used today for the first time
since the publication of Heiberg’s volumes, Knorr launched a research
programme of tremendous importance to our topic. How much does our
perception of the practice of proof in the Elements depend on the choices
carried out by Heiberg? In other words, how far is his vision of Euclidean
proof, formed at the end of the nineteenth century, conveyed through the
text of his critical edition? Such are the fundamental questions raised. The
example illustrates clearly, I believe, a much more general problem, which
can be formulated as follows: how do critical editions affect the theses held
by historians of science and the transmission of this inheritance to the next
generations of scholars?

This general issue is to be kept in mind with respect to all the sources
mentioned in this volume. However, beyond providing the illustration of a
general difficulty, the example of the Elements is in itself of specific impor-
tance for our topic. In fact, the problem it raises extends beyond the case of
the Elements, since soon after the publication of Knorr’s first paper, a dif-
ficulty of the same kind became manifest with respect to Heiberg’s critical
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edition of Archimedes’ writings.*® What can we learn about the issue of
proof by examining the philologist’s impact on our present-day vision of
Euclid and Archimedes?

The three chapters of this book that are devoted to the analysis of the
nineteenth-century editions of Greek geometrical texts from antiquity —
the first one dealing with the Elements, the second one with the general
issue of the critical edition of diagrams and the third one with Archimedes’
texts — represent three critical approaches to Heiberg’s philological choices
and their impact on the editing of the proofs. Their argumentation benefits
from the wealth of twentieth-century publications on the Arabic and Latin
translations and editions of the Greek geometrical texts. Let us outline
here briefly the distinct textual problems on which these chapters focus.
Each chapter represents one way in which our understanding of the proofs
preserved in the geometrical writings of ancient Greece is affected by their
representation developed in the editions commonly employed.

In his contribution to the volume, Bernard Vitrac examines different
types of divergences between proofs, to which the various manuscripts that
bear witness to Euclid’s Elements testify. More specifically, Vitrac focuses on
a corpus of differences that were caused by deliberate intervention. Since
these transformations were most certainly carried out by an author in the
past who wanted to manipulate the logical or mathematical nature of the
text, they indicate clearly the points at which we are in danger of attributing
to Euclid reworking of the Elements undertaken after him.

Three types of divergences are examined. The first one, about which
the debate described above broke out, relates to the terseness of the text
of proofs: some proofs are found to be more complete from a logical point
of view in some manuscripts than in others. Vitrac brings to light that the
interpretation made by the two opponents in the debate relied on divergent
views of the possible evolution of such a book as the Elements. Klamroth’s
thesis presupposed that the evolution of the text could only be a progressive
expansion, motivated by the desire to make the deductive system more and
more complete from a logical or a mathematical point of view. In contrast,
Heiberg suggested that the Arabic and Latin versions were based on an
epitome of the Euclidean text, on which account he could marginalize their
use in restoring the Elements. Vitrac provides an analysis of the various
logical gaps and concludes that the later additions to the Greek text that
the indirect tradition allows us to perceive in the Greek manuscripts are
linked to a logical concern regarding the mathematical content of the text.

3 Chemla 1999.
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This also holds true for most of the material added (propositions, lemmas,
porisms). These remarks seem to support Klamroth’s view. In this respect,
Vitrac considers the indirect tradition as more authentic, a fact which calls
for a re-examination of proofs in the various versions of Euclid’s Elements.
Vitrac suggests, however, that the enlargement and ‘improvement’ of the
Elements could have started in Greek and continued in Arabic and Latin.
The extant versions all seem to bear signs of corruption by such activity.

The second type of divergence between the sources Vitrac examines
relates to the order in which propositions are arranged. This order con-
stitutes a key ingredient in an axiomatic—deductive structure. In fact, the
order does vary according to the version of the text. The decisions imple-
mented by any critical edition hence represent an interpretation of Euclid’s
original deductive structure. However, on this count, Vitrac suggests the
provisional conclusion that the indirect tradition more frequently bears
witness to modifications of this type.

The third kind of divergence which he analyses has perhaps the greatest
impact on our perception of Euclid’s proofs, since it relates to major dif-
ferences between the sources: substitution of proofs, integration of these
substitutions in a set of related proofs, addition or subtraction of cases, and
double proofs, of which Heiberg kept only one according to criteria that
need to be examined. Such cases indicate that proofs and their modification
were the subject of a continuous effort, part of which was integrated into the
editions of the Elements available to us today.

In conclusion, before we consult the critical editions of Arabic, Arabo-
Hebrew or Arabo-Latin versions of Euclid’s Elements, it may be difficult to
go substantially further in the analysis of the proofs or the deductive system
attributed to Euclid. Most probably, this goal may remain forever out of
reach. However, we can already appreciate the extent to which the textual
decisions made by the philologist affect the discourse on the practice of
proof in ancient Greece. This remark shows that the discourse on the prac-
tice of proof in ancient Greece may not be as solidly founded as was previ-
ously thought. As Vitrac suggests in his conclusion, rather than holding
to the romantic ideal of some day retrieving the original Elements, it may
be far more reasonable and interesting to consider the various versions of
Euclid’s Elements for which we have evidence. This new perspective would
provide us with a better grasp of the various forms that the text took in
history - namely, the forms through which different generations of scholars
read and used the Elements.

Ken Saito and Nathan Sidoli critically examine the work of the philolo-
gist from an entirely different perspective. The purpose of their chapter is
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to draw attention to the fact that the diagrams inserted by Heiberg in his
edition of Euclid’s Elements, among others, are quite different from those
actually and stably contained in the manuscripts. The sources indicate
that the diagrams were more often than not quite particular, represent-
ing the general case not by means of a generic figure, but rather by means
of a remarkable and singular configuration. By contrast, Saito and Sidoli
show how Heiberg tacitly altered the diagrams, modernizing them and
thereby conspicuously making them look more faithful to the situation
under study and more generic than they actually were. These operations
inserted diagrams in the nineteenth-century edition of the Elements which
displayed an artificial continuity between past practices and mathemati-
cal practices at the time, not only with respect to their appearance, but
also with respect to their way of expressing the general. Furthermore, the
Greek diagrams were thereby shown as being demonstrably more different
from the diagrams having specific dimensions contained in the Sanskrit or
Chinese sources than the manuscripts actually indicated. Such issues may
look minor, but they are not. In fact, Saito (2006) discusses a case in which
the option chosen by the philologist in the restoration of the figure has
had a crucial impact on the restored text. His conclusion is that, on both
counts, Heiberg’s choice seems to admit the results of a later intervention
as genuine.” It is important to notice that, in modernizing the diagrams in
this way, Heiberg removed any hint of the actors’ ways of drawing and using
figures, thereby impeding through his edition any study of the ancient prac-
tices with geometrical figures.

Saito’s and Sidoli’s critical analysis of the figures that Heiberg included in
his editions such as the Elements is in full agreement with what Reviel Netz
shows in the following chapter about Heiberg’s edition of Archimedes’ writ-
ings. In this chapter, Netz analyses more generally by which kinds of opera-
tion Heiberg’s philological interventions left a lingering imprint on Greek
mathematical texts of antiquity as we read them today. However, concen-
trating on the Danish philologist’s critical edition of Archimedes’ writings,
particularly the second edition published between 1910 and 1915, Netz
demonstrates further the specifics of Heiberg’s editorial operations with
respect to the Syracusan’s Opera Omnia. Netz’s analysis distinguishes three
types of intervention that, in his words ‘produce[d] an Archimedes who
was textually explicit, consistent, rigorous and yet opaque’. In particular,
Netz’s overall broader argument reveals how Heiberg shaped Archimedes’

*7" Saito 2006: 97-144 compares Heiberg’s diagrams in Book 1 of the Elements with those of the
Greek manuscripts which formed the basis of his critical edition.
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proofs according to his vision. In conclusion, we understand better how we
were mistaken, when we took Heiberg’s words for Archimedes’ writings as
the manuscripts bear witness to them.

To start with, Netz examines the diagrams of the critical edition. Clearly,
like cases analysed by Saito and Sidoli, the diagrams used by Heiberg differ
markedly from the evidence contained in the manuscripts, and Heiberg
drew the diagrams according to his own understanding of what the original
diagrams might have looked like. Yet Netz argues that the manuscripts rep-
resent a coherent and perfectly valid practice with diagrams. Further, three
criteria allow him to discern how the ancient diagrams, drawn within the
context of this practice, systematically differ from those which Heiberg sub-
stituted. Note that one of Netz’s criteria relates to a feature already discussed
by Saito and Sidoli: Heiberg tended to picture elements of the diagram as
unequal that the manuscripts, in contrast to the discourse, drew as equal.
Interestingly, the two chapters suggest slightly different interpretations of
this ancient element of practice. The broader analysis developed by Netz
further leads him to restore an ancient and consistent regime of conceiving
and using diagrams which Heibergs critical edition concealed and replaced
with another more modern usage, for which there exists no ancient evidence.
In addition, Netz argues that, in relation to this transformation, the role of
the diagrams in the text underwent a dramatic shift: although the ancient
evidence preserves diagrams that were an integral component of the argu-
mentative text, Heiberg turned the diagrams into mere ‘aids, dispensable ele-
ments for reading a discursive text that was ‘logically self enclosed’ This first
conclusion thus identifies one way in which the critical edition distorted the
texts of Archimedes’ proofs with respect to the extant manuscripts.

The second systematic intervention by Heiberg which Netz analyses is
the bracketing of words, sentences and passages in Archimedes’ writings,
despite the fact that the manuscripts all agree on the wording of these pas-
sages. In other words, by rejecting portions as belonging to the original text,
Heiberg modified the received text of Archimedes’ writings in conformity
with the representation that he had formed for Archimedes as a sharp con-
trast to Euclid. While, for Heiberg, Euclid was characterized by the careful
expression of the full-fledged argument, Archimedes’ style was, in his
view, to focus on the main line of the proof, leaving aside ‘obvious details.
Accordingly, Heiberg designated many passages of the received text as pos-
sible interpolations. Heiberg thus made Archimedes’ style more coherent
than what the manuscript evidence shows. Netz brings to light Heiberg’s
uneven pattern of bracketing and suggests factors which account for it.
What is important for us here are the conclusions that Netz’s analysis allows
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him to derive with respect to the text of proofs: Heiberg’s bracketing occurs
mainly in the texts for proofs, at precisely those points which suggest that
Heiberg felt that overly simple arguments in the course of a proof could not
be due to Archimedes. The more elementary the treatises, the more brack-
eting Heiberg carried out. In conclusion, Heiberg imposed on the text of
the proof his expectation regarding Archimedes” way of proof.

Lastly, Netz brings to light the subtle ways at the global level of the corpus
of texts in which Heiberg established Archimedes as a mathematician who
adopted a uniform style and wrote down his treatises according to the same
systematic pattern. By contrast, Netz suggests that Archimedes’ writings
manifested variety in several ways and at different levels. What matters
most for us, again, is how the philologist’s operations have a bearing on
our perception of proofs and the sequence of them in ‘axiomatic-deductive
organizations. And, here, the description of the editorial situation that Netz
offers us is quite striking. He reveals how Heiberg forced divisions between
propositions, types of propositions and components of propositions onto
texts that did not lend themselves equally well to the operations and thus
artificially created the sense of a standardized mathematical text, in con-
formity to modern expectations. In addition, Netz reveals Heiberg himself
decided to give some propositions the status of postulate and others that of
definition, with the manuscripts containing nothing of the sort. In that way,
beyond the Archimedean corpus, the whole corpus of Greek geometrical
texts acquired more coherence than what the written evidence records.

Together, these three chapters bring to light various respects by which
the critical editions tacitly convey nineteenth-century or early-twentieth-
century representations in place of Greek mathematical proofs to inat-
tentive readers. Still more will be developed on this point in relation to
Diophantus below. These conclusions provide impetus for developing
further research on these topics, in order to understand how representa-
tions of ancient mathematics were formed in the nineteenth century and
how they adhered to other representations and uses of Greek antiquity.
Another chapter of the book inquires further in this direction of research. It
complements our critical analysis of the historical formation of our under-
standing of Greek ideas of proof and shows how fruitful further research of
that kind could be for sharpening our critical awareness.

In this chapter, Orna Harari draws on the hindsight of history and ques-
tions the conviction widely shared today that Aristotle’s theory of dem-
onstration in the Posterior Analytics can be interpreted in reference to its
presumptive illustration, that is, Euclid’s Elements. In fact, she establishes
that this use of these two pieces of evidence in relation to each other became
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commonplace only in modern times. This brings us back to the issue of the
part played in our story by the philosophy of science as it took shape as a
discipline in the nineteenth century.

To make this point, Harari digs into the history of the discussions that
bore on the question of the conformity of mathematical proofs - particu-
larly, those contained in Euclid’s Elements - to Aristotle’s theory of demon-
stration. Her historical inquiry highlights that the present-day discussions
of the issue are at odds with how the question was understood and tackled
from late antiquity until the Renaissance. In contrast to the discussions by
John Philoponus and Proclus which took Aristotle’s theory as their founda-
tion and inquired into whether and how mathematical proofs, and which
mathematical proofs conformed to the Aristotelian theory, the contem-
porary view reversed the perspective. It took Euclid’s Elements as a basis
on which Aristotle’s theory of demonstration had to be interpreted and
understood. This repositioning reveals a fundamental shift in the interpre-
tation of Aristotle’s Posterior Analytics. By analysing how Philoponus and
Proclus discussed the issue, she emphasizes that, despite essential differ-
ences between their approaches, they both understood the key problems to
be whether proofs established mathematical attributes that belong to their
subjects essentially and whether the middle term of a syllogism could serve
as the cause of the conclusion. Thus, for these authors, the problem of the
applicability of Aristotle’s theory of demonstration related to the non-formal
requirements of the theory. The same criterion holds true for the discus-
sion until the Renaissance. By contrast, whatever conclusions they reach,
contemporary interpretations of the question only consider the formal
requirements. The main point of the discussion has hence become whether
an interpretation of the syllogism could be offered that could accommodate
what is to be found in, say, Euclid’s Elements. Harari’s contribution thereby
exposes the anachronism underpinning the common, present-day reading
of the relationship of Euclid and Aristotle to each other and highlights how
much stranger they might become - both to us and to each other - if we
attempted to restore them back to the context of the discussions and prob-
lems from which they emerged, so far as this is possible. Can we establish
a correlation between the modern readings of Euclid and Aristotle and the
way in which the critical editions discussed above were carried out? Such
questions are interesting to keep in mind generally when analysing the
various editions of Euclid’s Elements produced throughout history.

These remarks conclude our analysis of past historiographies of proof
and our identification of the factors at play in shaping and maintaining
them. Among these factors, we identified elements of the contexts in which
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historiographic ideas were formed, the values which past historians had
deemed central, the agendas they adopted and the critical editions they
produced. We are now brought back to the new agenda we suggested above:
what can be gained by widening our perspective on the practices of proof
while considering a richer collection of sources?

III Broader perspectives on the history of proof

Widening our perspective on Greek texts: epistemological values
and goals attached to proof

The biases in the history of proof on which the foregoing analysis
shed light first coloured the treatment of the source material written
in Greek. Historical approaches to proof in ancient Greece have so far
concentrated mainly on a restricted corpus of texts and have limited the
issues addressed. The ensuing account was accordingly confined in its
scope and left wide ranges of evidence overlooked. Some of the chapters
in this book deal precisely with part of this evidence. To begin with,
Geoffrey Lloyd’s chapter indicates some of the benefits that could be
derived from a radical broadening of the corpus of Greek proofs under
consideration. In particular, he discusses some of the new questions that
emerge from this extended context, with regard to the practices of proof
in ancient Greece.

Lloyd first reminds us of the fact that, despite the importance histo-
riography granted to Euclids Elements and cognate geometrical texts,
mathematical arguments in ancient Greece were by no means restricted
to proofs of the type that this corpus embodies. As Lloyd illustrates by
means of examples, Greek sources on mathematical sciences provide
ample evidence of other forms of argument as well as discussions on the
relative value of proofs.’® Enlarging the set of sources under consideration
thus opens a space in which the various practices of proof and the values
attached to them become an object of historical inquiry. Some of these
sources bear witness to the fact that some authors found it important to
use various modes of reasoning. Lloyd recalls the case of Archimedes, who
expounds in The Method why it is fruitful to consider a figure as composed
of indivisibles and to interpret it in a mechanical way in order to yield the
result sought for. However, as Lloyd insists, although Archimedes deemed
such reasoning essential to the discovery of the result to be proved, in

* Lloyd has made this point on other domains of inquiry; compare for instance Lloyd 1996b.
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Archimedes’ view, this type of argument could not be conclusive and had
to be followed by another purely geometrical proof. Our explorations into
matters of proof will allow us to come back to this example below, from a
new perspective. Let us stress for now that different kinds of reasoning have
different kinds of value.

Furthermore, Lloyd stresses that in numerous domains of inquiry in
ancient Greece, there were debates about the value of their starting points
or the proper methods to follow, and securing conviction was a key issue.
Keeping too narrow a focus on mathematics in this respect conceals impor-
tant phenomena. Here two points are worth emphasizing.

Firstly, within this extended framework, it appears that proofs carried
out according to an axiomatic-deductive pattern were developed in several
areas and were by no means confined to mathematics, although even in
antiquity, geometry came to be perceived as a singular field in this respect.
The recurring use of such a practice of proof echoes the variety of terms
used throughout the sources to demand ‘irrefutable’ arguments. One is
hence led to wonder how far, as regards ancient Greece, the history of an
axiomatic-deductive practice can be conducted while remaining within the
history of mathematics, or to what extent the interpretation of this practice
can be based only on mathematical sources. Here too, we encounter the
impact of a form of anachronism. Since this kind of proof is at the present
day deemed to be essential to, and even characteristic of, mathematics,
historiography has approached the question of axiomatic-deductive proof
mainly from within the field of mathematics, disregarding the fact that it
was employed much more widely in antiquity. What greater understanding
of such a practice of proof would a broad historical inquiry of proof more
geometrico yield? This is the issue at stake here.

Secondly, such an importance granted to one type of method and organi-
zation of knowledge cannot hide a much wider phenomenon which Lloyd
wants to emphasize: the numerous debates on the correct way of conduct-
ing an inquiry. We seem to have here an idiosyncrasy of ancient Greek writ-
ings, or at least among the writings that have been handed down to us. The
unique multiplicity of ‘second-order disputes” evidenced in ‘most areas of
inquiry’ leads Lloyd to suggest a third expansion.

Lloyd grants that disputes between practitioners of mathematics or
other domains of inquiry are a widespread phenomenon worldwide in the
ancient world. However, his comparison of such debates, in ancient Greece
and elsewhere, leads him to an important observation, namely, that the
modes of settling debates in various collectives appear to differ. Lloyd thus
invites us to consider engaging in a discussion on the standards of proof in
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order to conclusively resolve debates as a social phenomenon. The new and
important research programme which he proposes intends to account for
the development of such attempts to adjudicate debates in social terms. In
other words, Lloyd calls for developing a social account of the emergence of
second-order discussions on proof.

These suggestions show how, by concentrating on a set of texts wider than
the usual geometrical writings, one can define new horizons for research on
proof in Greek sources. In recent years, though, new approaches to proofs
in the writings that provided the standard historiography with its basis have
taken shape. These approaches are interesting for us, since they have brought
to the fore epistemological values other than being conducive to truth which,
as far as our sources can tell, may have been attached to proof, thereby side-
lining the issue of certainty that has dominated the discussion on ancient
proofs. To mention but one example, I shall show how, in my view, Ken Saito
has advocated a new way of interpreting proofs in the core corpus.

Saito takes as his starting point the thesis that, when one considers
this collection of texts as a whole, there emerges from the corpus a set of
‘elementary techniques’ that form a ‘tool-box’ on which Greek geometers
relied.*” Moreover, he argues that the practitioners developed knowledge of
how to combine the elements in the tool-box in standard and locally valid
methods - combinations which he also calls ‘techniques, or ‘patterns of
argument’ In Saito’s view, the ‘method of exhaustion, which was named and
discussed as such only in the seventeenth century, constitutes an example
of such a method. His approach not only yields an analysis of the method as
a specific sequence of elements taken from the tool-box, but it also embeds
a technique that has been long recognized into a larger set of similar tech-
niques which recur in proofs. What is worth stressing is his remark that, for
reasons yet unknown, these methods do not seem to have been described
at a meta-mathematical level or even named at the time. Nevertheless, the
sources bear witness to patterns of proof which circulate between proofs
and to the stabilization of a form of knowledge about them.

An initial hypothesis can be formulated with respect to these methods:
it is by reading the text of a proof per se and not merely as establishing the

* The insight about the ‘tool-box’ was introduced and worked out by Saito from 1994 on (see
Saito and Tassora 1998 and www.greekmath.org/diagram/). It was further developed in
N1999: 216-35. The latter book figures prominently among the publications that opened new
perspectives in the approach to deduction in the Greek mathematical texts of what I called the
‘core corpus’. I develop here reflections on a tiny part of the new ideas that were introduced
in this wider context. Saito’s project on the Greek mathematical tool-box has not yet come to
completion. To present his ideas here, I rely on personal communication and on drafts that he
sent me in 2005 and which contain abstracts of part of his project.
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truth of a proposition that such techniques could be grasped. The hypothe-
sis accounts for how the techniques brought to light took shape. It may also
account for one of the motivations at play in making proofs explicit and
writing them down. One can go one step further and speculate about why,
as far as we know, in ancient Greece the methods in question were neither
named, nor analysed in any second-order discussion. This point leads me
to a second hypothesis with respect to the text of a proof: were not some of
the proofs written down with the purpose of displaying a given technique
which they put into play? In that case, general techniques would have been
expressed through the proofs of particular propositions and thereby also
motivated the expression of these proofs in writing. In other words, some
proofs were to be read as a kind of paradigm, making a statement of more
general validity than a first reading would indicate. The interpretation of the
texts of these proofs would be comparable in that respect to how a problem
and the procedure for solving it made sense in the Babylonian or Chinese
writings.** Whatever the case, the essential point here is that the text of a
proof was not read only as establishing a proposition, but also as a possible
source for working techniques. Moreover, the generality and importance of
a textual unit in these books would not lie only in the proposition itself, but
also in the technique brought into play in its proof.

Let us consider these various points one by one to grasp what is more
generally at stake here.

To begin with, the first hypothesis formulated above suggests that readers
were likely to read a proof for itself and not merely for its capacity to estab-
lish the statement proved. There is nothing surprising about this assump-
tion. The recent debate on which we commented in Section 11 bore witness
to such uses of the text of proofs: some of these mathematicians testified to
the fact that they read proofs, seeking, among other things, techniques and
also concepts. This constitutes a challenge for us: how are we, as historians,
to gather evidence in order to take this dimension of the interest in proof
into account more generally and rigorously? Interestingly enough, the
hypothesis on the practice of proof prompted by Saito’s suggestion echoes
with how, as we shall see, proofs of the correctness of algorithms were
conducted in the earliest extant Chinese sources attesting to practices of
proof.*! In all these contexts, the proofs appear not to have been only means

0" On the latter, a discussion and bibliography can be found in Chemla 2009. Note that I
use paradigm in the sense that grammarians use this word. Also note that the text of a proof
could either state a general technique or document its existence by the fact of bringing it into
play.

1 See below and Chemla 1992, Chemla 1997b.
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for an end, but their texts were also read as conveying other meanings. The
‘techniques’ read in the proofs do not have the same nature in different con-
texts. However, what is important to note here is that in all these cases the
epistemological value of the proof cannot be exhausted by the question of
determining whether it duly establishes the statement to be proved.

According to the first hypothesis too, the reader looked for something
general in a proof — a method, the use of which could extend beyond the
limits of a proposition. The fact that, as Saito showed, some techniques of
somewhat general validity were actually composed indicates the possible
outcome of such a search. A straightforward interpretation of the text of
each proof taken separately would miss this feature of the practice of proof.
The virtue of the techniques thereby identified was their potential useful-
ness in other contexts: if we follow this interpretation, a certain fruitfulness
was recognized in it. These concerns indicate epistemological values that
actors may have attached to proofs and that too narrow a focus on certainty
could hide from our view.

The preceding remarks illustrate what kind of benefits could be derived
from re-examining standard texts with wider expectations in mind. They
also bring to light an issue that will prove essential in what follows. The
way in which actors have read proofs or have written them down, the
motivation driving the composition of explicit proofs, cannot be taken for
granted. As I have indicated, reading meanings into proofs is apparently
a widely shared practice. However, this does not mean that practitioners
belonging to different scholarly cultures read the meanings in texts in the
same way or that the texts intended the meanings to be read in the same
way. Whether one accepts only the first hypothesis or both hypotheses as
formulated, the perception of the various dimensions of the Greek texts to
which I have just alluded requires an unusual and specific reading of the
text. If one admits the second hypothesis, texts of proofs were to be read as
paradigms. Interestingly enough, as we saw in Section 11 of this introduc-
tion, the diagrams in Greek texts seem to have required the same kind of
reading, at least if we agree on the fact that the original figures resembled
those in the manuscripts and not those which Heiberg drew. Interpretation
of the sources appears more generally to be a delicate procedure, on which
our ability to perceive the various dimensions of the proofs examined will
depend. As I shall argue below, this problem is intrinsic to our endeavour:
it is, in my view, tied to the fact that shaping a practice of proof has always
involved designing a kind of text to work out and deliver the proofs. The
task of interpreting the texts thus cannot be separated from the job of
describing the practice of proof to which they adhere.
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The lines of inquiry just outlined illustrate some of the issues that more
generally have imposed themselves as central issues in the following chap-
ters of the book. To begin with, these issues are taken up from different
perspectives in the next two chapters of the book, both also devoted to
Greek sources.

The issue of generality in relation to proof directs Ian Mueller’s analysis
of marginalized Greek writings dealing with numbers, albeit from a differ-
ent perspective. Because they have been overshadowed by the treatment of
arithmetic in Books vi11 to 1x of Euclid’s Elements, the techniques of proof
used by Nicomachus in his Introduction to Arithmetic and by Diophantus
in On Polygonal Numbers have not yet been the object of detailed analysis.
Tan Mueller chooses to focus on them because they deal with numbers -
polygonal numbers - in a singular way, approaching them through the
prism of configuration and procedure of generation. These features raise
the problem of defining the polygonal numbers as general objects, making
general statements about them, and proving such statements in a general
way. The challenge is to reach generality not only with respect to all polygo-
nal numbers of a specific type, such as triangular or square numbers, but
also to define and work with n-agonal numbers.

Both Nicomachus and Diophantus attempted to meet with this chal-
lenge, by composing treatments of these numbers in general, stating propo-
sitions about them, and accounting for the validity of these statements. In
particular, both authors set themselves the task of establishing the value of
the nth j-agonal number. The conclusion of Mueller’s analysis is that both
attempts equally fail to establish the conclusion aimed at with full general-
ity. Nonetheless, the differences between the ways the two authors shape
textual elements to approach polygonal numbers, formulate statements
about them and design modes of proving to deal with the topic raise con-
siderable interest. This is what emerges from Mueller’s detailed description
of the different techniques of reasoning by which both authors address
these numbers and try to establish their properties.

Nicomachus makes use of specific diagrams that iconically represent the
numbers as configurations of units. In addition, Nicomachus introduces
a key tool - sequences of numbers - in a way that will be characteristic of
his approach. To begin with, he constructs arithmetical ways of generating
these sequences. He then strives to establish relationships between these
sequences and the first sequences of polygonal numbers (triangular, square,
pentagonal and so on). It is for this task that Nicomachus’ diagrams are
brought into play. Because of their features, these diagrams can be used
to indicate the reason of the correctness of the relationship only for the
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first terms of the sequences. However, this is how Nicomachus argues in
favour of the general statement, whereby his establishment of this general
statement differs from modern standards. In the second step, Nicomachus
further brings to light patterns in the modes of generation of the first
sequences, thereby indicating the general structure of the set of sequences
of polygonal numbers and pointing to further relationships between these
sequences. Again, Nicomachus indicates the general pattern and argues for
it by highlighting the pattern for the first sequences. And again this is where
his approach falls short of modern standards. The most general statement
by which Nicomachus summarizes his procedure of proof consists of a table
of numbers. It collects in its rows the sequences introduced and more. Since
it displays the pattern of relationship between the lines, the table allows
Nicomachus to generate subsequent lines by deploying the same pattern
further and thereby determining the value of any polygonal number.

The textual elements brought into play (diagrams, sequences and table
of numbers) and the ways of using and articulating them by modes of rea-
soning contrast sharply with how Diophantus approaches the same topic.
The core of Diophantus’ treatise On Polygonal Numbers consists of purely
arithmetical and general propositions. These propositions state arith-
metical properties in the form of relationships holding between numbers.
Diophantus proves these relationships through representations of numbers
as lines, using the representations in a way that is specific to this branch
of inquiry. Diophantus attempts to formulate the value of the nth j-agonal
number as a proposition of this kind. The diagrams used and the proposi-
tions stated thus exhibit a style completely different from Nicomachus.
However, their kind of generality is precisely what constitutes the problem
for concluding the proof. It is in Diophantus’ attempt to connect these
general statements to polygonal numbers with full generality that Mueller
identifies the gap in Diophantus’ proof. The tools Diophantus uses here are
too general to allow him to recapture the details of the general objects that
polygonal numbers represent. He manages to establish the link only for the
first n-agonal numbers.

These two texts devoted to the same topic illustrate quite vividly the
plurality of practices in Greek mathematics, the study of which Lloyd advo-
cated. Mueller highlights differences in the ways of making diagrams and
relating them to the mathematical objects being studied. He shows the dis-
tinct ways in which diagrams are employed in the arguments being devel-
oped, thereby bringing to light two distinct kinds of arithmetical methods.
Additional interest in this case study derives from what is revealed when the
proofs are considered from the viewpoint of generality. Clearly, both texts
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betray an ambition to reach a high level of generality. Mueller’s contrastive
analysis discloses how distinct means are constructed and combined for the
proofs to fulfil this ambition. Despite their failure in modern eyes to achieve
their goal, the two sets of proofs in the texts appear to form two strikingly
different, but carefully designed, architectures of arguments inspired by the
task that the authors had set for themselves. Taking the value of general-
ity into account in his interpretation allows Mueller to use finer tools and
describe with greater accuracy the argumentative structures and the differ-
ences between them. Mueller thus highlights how the conduct of proofs can
bear the hallmark of epistemological values prized by the actors.

More generally, Mueller’s analysis indicates how much more there can
be to the study of a practice of proof than simply assessing whether proofs
adequately establish their conclusions or not. The kinds of elements the
practitioners design for their proofs, the ways in which they use them,
and other questions, all essential for a historical inquiry into the activity
of proof, will appear quite fruitful in the following chapters. In particular,
the question of how a kind of text has been designed for a certain practice
of proof - a question that the multiplicity of the proofs examined brings to
the fore — appears relevant again for the further analysis of the sources. Its
fundamental character will soon become even clearer.

Further widening: the text of a proof

In his Arithmetics, Diophantus opts for a completely different style of
composition and presents solutions for hundreds of problems relating to
integers. Each problem is followed by the reasoning that leads to the deter-
mination of a solution. To formulate the problems and the kind of proof
following them, both of which involve statements relating to numbers and
unknowns, Diophantus regularly makes use of symbols. In his chapter,
Reviel Netz focuses on the question of determining the role played by this
symbolism in the development of the reasonings Diophantus proposed to
establish the solutions to the problems.

The fact that the symbols introduced are essential to Diophantus’ project
is made clear by the fact that they are the main topic of the introduction to
his book. On the other hand, Diophantus stands in contrast to his known
predecessors in that he makes explicit the reasoning by which he establishes
the solutions to problems. Therefore, the question of how the former are
linked to the latter is not only natural, but also essential to an analysis of
Diophantus’ activity of proving. Such is the main question of the chapter. It
pertains, as one can see, to the text with which an argument is conducted.
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Aware that the symbols of Diophantus must be distinguished from those
of Vieta, Netz first studies the specific historical context in which they were
designed and describes them in detail, on which basis he examines how
the editors of the nineteenth century transcribed them in their critical edi-
tions and translations. His conclusions are twofold. On the one hand, Netz
shows that the symbols are located at the level of noun-phrases, but are not
used for either the relations or the structural terms specific to a problem.
Moreover, he establishes their nature of being ‘allographs’ of the words
they stand for, that is, they write these words in another way. On the other
hand, Netz reveals that the use of these symbols is nowhere as systematic
in the manuscripts as Paul Tannery presented them in his 1893-5 edition.**
Tannery designed the proofs, rather than the statement of problems, as
the locus for the use of symbols, a fact which does not correspond to what
is found in the manuscripts. Moreover, Tannery introduced a distinction
between some terms which he systematically rendered as symbols and
other terms which he always wrote down in full, thereby establishing two
different kinds of terms, in contrast to the manuscripts which use abbrevia-
tions for both kinds in comparable ways. We meet again with the necessity
of a critical awareness regarding the critical editions carried out in the
nineteenth century.

This preliminary analysis provides a sound basis on which Netz can
address the main question raised by his chapter: what is the correlation
between Diophantus’ use of such symbols and the specific kind of proof he
systematically presented? In Netz’s view, Diophantus undertook to gather
problems he had received and complete their collection in a systematic way.
Moreover, his ambition was to present them for a literate, elite readership.
In relation to this goal, Diophantus opted for a solution of each problem
in the form of ‘analysis’. Hence Netz also addresses a part of the history of
proof that falls outside the scope of Euclid’s Elements. This holds true not
only because these proofs proceed through analysis. In addition, the point
in Diophantus’ Arithmetics is not to establish the truth of a statement, but
rather to fulfil a task correctly. In a context in which the procedure of the
solution provided for problems was also a topic for debate, Netz argues,
writing down the reasoning which establishes how the task was correctly
fulfilled contributed to showing the suitability of the mode of solution
adopted. In other words, for Netz, the proof here intended to highlight
the natural and rational character of the method chosen to solve a given

2 Compare T1893/5. The 1974 reprint of the book is freely available on Gallica:
http://gallica.bnf.fr/.
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problem. To this end, Diophantus shaped, primarily thanks to his symbols,
a kind of text that would enable the reader to survey in the best way pos-
sible the method followed. This is how Netz argues in support of his thesis
that the expressions formed with the specific symbols introduced are con-
substantial with the project and the kind of proof specific to Diophantus’
Arithmetics.

Note that here again, as in Mueller’s chapter, the examined proofs
proceed through operating with statements of equality between numbers.
However, in the Arithmetics, the symbols developed helped carry out such
operations in a specific way, linked to the peculiar features of Diophantus’
reasonings. Since they were allographs, they allowed the reader to keep
the meaning of the computations in mind. On that count, these symbols
differ from modern symbolism. This difference in nature possibly echoes a
difference in use: Diophantus’ symbols do not seem to have been used for
proving through blind computations, as is the case with modern symbol-
ism. Instead, they helped form a kind of writing transparent with respect
to the meaning of the statement. Since the symbols were abbreviations,
they enhanced the surveyability of the expressions, in the same way as
the technical writing of a number helps understand the structure of the
number.” This conclusion raises a general question. The surveyability of
a procedure or a proof depends on the kind of text constructed to write
down and work with the proof or procedure. Which resources did various
groups of practitioners create, or borrow, to this end? Netz’s contribution
can be viewed as a step towards a systematic inquiry in that direction. We
shall soon meet with further evidence that can be fruitfully analysed from
the same perspective.

To create this form of writing, Diophantus made use of possibilities
available in the written culture of his time, but used them in a way specific
to his project. As Netz stresses, Euclid’s Elements also exhibits evidence of
creating a specific language, characterized by distinctive formulaic expres-
sions. Thus we meet with the same phenomenon already emphasized on
several occasions above from yet another perspective: the kind of text used
is correlated to the type of proof developed. Given the fact that the kinds of
proof and the project embodied by the Elements differ from the objectives
of Diophantus, the kind of writing employed in the Elements differs from
those used by Diophantus.

%3 Neugebauer also interpreted some features of Mesopotamian ways of writing mathematics as
making statements surveyable. Hoyrup 2006 quotes at length the passages by Neugebauer on
this point and discusses them, with respect to Mesopotamian, Greek, Latin, Arabic and Indian
sources as well as sources written in vernacular European languages.
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From another viewpoint, Diophantus’ text can be contrasted with other
types of problem texts, which also attest to mathematical work on and with
operations or computations. Several of the following chapters consider
types of writing of the latter kind. Both the use of operations on statements
of equality and the introduction of symbols to carry out these operations
found in the Arithmetics contrast with what other traditions formatted
as algorithmic solutions to problems, for which the correctness needed
to be, and was, established. Even if these other writings bear witness to
other means of proof, via other techniques and in pursuit of other goals,
many parallels can be drawn between the Arithmetics and these other texts.
These texts all deal with operations and operations on operations, illustrat-
ing how different modes of manipulating mathematical operations were
devised in history. Most of these texts reveal an ideal of writing sequences
and combinations of operations in such a way that the meaning becomes
transparent. However, despite the fact that they shared a common feature,
in what follows we shall see that how this ideal was achieved depended on
the context and the type of text constructed. Lastly, these writings all raise
the question of what was meant by a problem and the procedure attached to
it. Was a particular problem representative only of itself, or was it read more
generally as a paradigm for all problems in the same class? Netz develops
an interpretation of the way in which Diophantus conceived of general-
ity. Whether or not this interpretation is accepted, it stresses an essential
point: the symbols used by Diophantus were not abstract. This feature
sheds an additional light on how these symbols differed from modern ones.
Moreover, it implies that if they had a general meaning, it was conveyed in
a specific way, requiring again a specific reading.

This chapter thus leads to two general conclusions, essential for our
purposes. Firstly, Netz’s article analyses how different groups of mathemati-
cians created different kinds of text in relation to the practice of proof they
adopted. Note that this approach offers one of the ways in which one could
systematically develop the programme suggested by Lloyd and account
for the variety of practices of proof in ancient Greece. More generally,
Netz foregrounds the fact that proofs have been conducted in history with
various kinds of texts, each being shaped in relation to the operations spe-
cific to a given kind of proof. The text of the proof is correlated to the act
of proving. The general question raised by Netz in his approach to Greek
sources may be phrased as ‘What types of text were shaped for the conduct
of which kind of proofs?” and has already proved relevant above. Clearly,
this question opens a field of inquiry into proof that could be - and will
prove so below - extremely fruitful. In particular, we can expect that the
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development of this inquiry provides means for interpreting these texts
more accurately.

In conjunction with the first point, Netz’s treatment yields insight into
how different the purposes for developing proofs may have been. This
brings us back to the programme suggested above for our historical inquiry
into proof, namely, the restoration of the motivations behind the develop-
ment of proofs and the description of the diversity in their conduct accord-
ingly. However, before we go further in widening the set of sources to be
considered with these issues in mind, a last point must be emphasized.

Netz’s discussion illustrates how the resources Diophantus introduced
for a given type of proof were adopted to design the text of another kind of
proof, i.e. algebraic proofs, in modern times. More precisely, Netz’s analysis
highlights why Diophantus’ proofs are not algebraic in nature. Nonetheless,
the shaping of the modern algebraic proof made use, for the conduct of
a reasoning, of symbolic resources similar to those designed within the
framework of the Arithmetics. This conclusion offers our first insight into
the history of algebraic proofs. What are its other components and how did
they take shape? These are some of the questions to which we shall come
back below.

Proving the correctness of algorithms

The ideal of transparency, which Netz interprets as informing the symbol-
ism used by Diophantus, is also the main force driving the way Babylonian
practitioners of mathematics composed the text of algorithms, according
to the interpretation of Jens Hoyrup. Before explaining this point further,
let us first recall some basic features of the writings to which we now turn.
These documents are, for the most part, composed of problems followed by
algorithms which solve them. The fact that the algorithm correctly solves
the problem is the statement to be proved, in contrast to what we find in
Euclid’s Elements, where proofs mainly deal with the truth of theorems.*
In such contexts, proving means establishing that the procedure carries

“ The claim here takes into account the fact that the statement of a problem in the Elements does
not include the statement of how to carry out a task. Interestingly enough, except for some
specific cases, the scholarship devoted to Euclid’s Elements has paid much less attention to
problems than to theorems. There are exceptions like Harari 2003. However, the problems still
await further study qua problems. How was the solution written down as text and how did the
proof relate to the formulation of the solution as such? These are questions that seem to me to
be promising for future research. It may well be that after these problems have been studied
more in depth, the statement contrasting proofs in Euclid’s Elements with those of algorithms
may have to be made more precise.
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out correctly the task for which it is given, that is, that the algorithm yields
the desired result. In this framework, the ideal of transparency that the
Mesopotamian tablets embody consists of the fact established by Heyrup
that the texts for procedures were simultaneously prescribing computations
and indicating the reasons underlying their correctness.* Since we have no
second-order comments by Babylonians explaining how these texts should
be interpreted, it took some time before this property was recognized.

Once again, like the previous examples, this case shows how given collec-
tives of practitioners shaped specific kinds of text to work with operations
and establish their correctness. It also highlights how this formation and
standardization of texts invited problems of interpretation. The technical
character of the texts hindered their interpretation by historians, who failed
to identify how proofs were expressed and hence drew derogatory conclu-
sions, such as M. Klines.

In this case, however, recognizing the proof in the text required
understanding something with respect to proof as well, that is, that the
rationale of a procedure can, at times, be given in the description of the
procedure itself and not as a separate text — this is precisely the manifesta-
tion of the ideal of transparency in this context, which demonstrates that
the same ideal can appear in various ways. More accurately, when we
examine Mesopotamian texts such as those with which Hoyrup establishes
his point from this perspective, we observe that the texts of algorithms do
not only contain specific prescriptions for operations that achieve transpar-
ency, but also contain elements of the reasoning that develops along the
statement of the algorithm. Again, widening the corpus of proofs under con-
sideration leads us to deeper insights into how a proof can be formulated.

This expansion of the corpus also broadens our understanding of the
motivations for writing down proofs in the ancient traditions. In Hoyrup’s

> One speaks of the ‘correctness’ of the algorithm. On this theme, it may be helpful to clarify two
points about which I often read misleading comments. Firstly, the text of an algorithm is the
statement to be proved and not its proof. It is on the basis of this distinction that one can make
the point that in Mesopotamian tablets, the two texts (the statement of the algorithm and the
formulation of its proof) merged with each other. Moreover, to perceive this requires a specific
reading, whereby two layers of meaning are discerned in the statement of the algorithm.
Secondly, the aim in proving the correctness of an algorithm is not only to show that the
algorithm yields an exact value — or to establish how accurate or inaccurate the value is - but
also to establish that the sequence of operations prescribed yields the desired magnitude. So
the depiction of algorithms only in association to approximations is doubly misleading. These
basic misconceptions lie at the root of what most commentators who have been discounting
computation have claimed. The section entitled “The unpuzzling character of calculation’ in
Hacking 2000: 101-3 comments on the text of an algorithm, overlooking the fact that this
is the statement to be proved and not the proof. The same pages make other claims that are
contradicted by the conclusions reached here.
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view, the proofs he reads in the formulation of the procedure intend to
guarantee an understanding of the reasons why the operations should
be carried out. He even suggests they are proofs precisely because they
have this goal. We see how the exclusive focus on the function of proof as
yielding certainty would leave out these sources as irrelevant for a history
of proof. However, these texts demonstrate that one motivating interest
in proofs and their transcription in one way or another may have been
not only - or perhaps not at all - to convince someone of the truth of a
statement but to make one understand the statement. This is still a strong
motivation for mathematicians today, as is evidenced, for example, by the
debate analysed in Section 11 and it has been so all through the history of
mathematics.

Let us pause for a while to consider the goal of ‘understanding’ within
the context of a practice of proof intended to establish the correctness of
algorithms. Far from being the final point of the analysis, it is in fact only
its beginning. The possibility that some proofs aim at providing an ‘under-
standing’ raises an essential question, for which the Babylonian case allows
further inquiry: what techniques or dispositifs were devised to provide an
‘understanding’ of the algorithms in the milieus of scribes? By Hoyrup’s
restoration, geometrical diagrams seem to have supported the procedure.
Moreover, these diagrams were made in a way which allowed material
transformations of their shape. The specific terms which prescribed the
operations designated such material transformations which helped make
sense of the computations. The arguments supporting this hypothesis
come from a close analysis of the terms used to write down the algorithm.
However, this conclusion would have remained only speculation, had not
Hoyrup discovered some texts from Susa that make explicit the kind of
training required by such a mode of understanding.

These texts are revealing for several reasons. The explanations in them
that produce the ‘understanding’ are developed very specifically within
the framework of paradigmatic situations similar to those described in
the outline of some geometrical problems. We hold that these explana-
tions reveal how the context of geometrical problems may have provided
situations as well as numerical values with which the understanding of
the effect of operations could be grasped. The texts from Susa also reveal
how diagrams with highly particular dimensions were used in the same
way. This parallel between geometrical figures and problems, as well as this
way of using geometrical problems, compellingly evokes the case of some
Chinese mathematical sources, about which two points can be established.
Firstly, the problems were not only a question to be addressed, but, as the
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paradigms that they were, they also provided a semantic field for interpret-
ing the operations of the algorithm or the operations required for the proof
of correctness. Secondly, just as problems provided particular numerical
data, geometrical figures displayed simple dimensions, and they were used
in the same way to make explicit the meaning of operations.*® In a moment,
we shall come back to this comparison, but note that exactly the same situ-
ation holds true for Sanskrit sources analysed by Colebrooke.*’

In addition, the Susa texts that Hoyrup analyses formulate the explana-
tions by describing the result of each operation in two ways: on the one
hand, a numerical value is provided and, on the other hand, an interpre-
tation of the magnitude which is determined is made explicit in the geo-
metrical terms of the field of interpretation. Such a kind of ‘meaning’ for
the effect of operations recalls what is found in Chinese texts. In the latter
sources, a specific concept (yi) is reserved to designate that ‘meaning), and
the meaning is made explicit by reference to the situations introduced in
the statements of problem. In my own chapter on early China, I discuss the
interpretation of this concept and provide cases where it is used in Chinese
sources. In correlation with this parallel, in early Chinese mathematical
writings we also find algorithms that are transparent regarding the reasons
of their correctness: the successive operations are prescribed in such a
way as to simultaneously indicate their ‘meaning, which can be exhibited
directly in the context of the situation described by the problem.**

This parallel shows that the early mathematical cultures which worked
with algorithms developed partially similar techniques for ‘understand-
ing, even though they did so in different ways, as we shall make clearer
below. More broadly, these remarks raise a general issue. They invite us
to study systematically the devices, or dispositifs, that various human col-
lectives constructed for ‘understanding’ and interpreting the ‘meaning’
of operations, or conversely, the kind of ‘interpretation’ that was rejected.
Interestingly enough, this question enables a perspective from which we
may cast a new light on the ‘Method’ described by Archimedes in the text
devoted to this topic, which Lloyd discusses in his chapter. Indeed, what
Archimedes offers with his ‘mechanical method’ is a way of ‘interpreting a
figure’ in terms of weight — specifically, an interpretation from which he can

4

>

See chapter A, in CG2004: 28-38 and Chemla 2009, which presents a fully developed analysis
of these issues.

’ See p. 6.

Chemla 1991. Chemla 2010 analyses more generally the two fundamental ways in which the
text of an algorithm can refer to the reasons for its correctness. Both can be recognized in the
way in which texts for algorithms were recorded in the tablets discussed by Hoyrup.
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derive a result. Even though he discards this method as inappropriate for a
proof, as did a tradition of scholars who developed comparable proofs, the
question remains open for us to understand what this kind of interpretation
actually achieved for him.*

Getting back to our Mesopotamian documents, I am aware that some
historians may question whether such modes of establishing the correct-
ness of algorithms ought to be considered proofs. The Babylonian source
material allows us to shed light on the difficulty that this division would
entail in the history of mathematics. In fact, the techniques that the scribes
used to provide an ‘understanding’ of the type discussed above could be,
and appear to have been later on, taken up in other practices of proof —
where the qualification as ‘proof” is less disputed. As Hoyrup has suggested
in previous publications, there is a strong historical continuity between
the modes of argumentation alluded to above, which appear to have
been developed in Babylonian scribal milieus on the one hand and what
are explicitly recorded as proofs in Arabic algebraic texts from the ninth
century onwards on the other hand.”® If only for this reason, these tech-
niques of ‘understanding’ do belong, in my view, to the history of mathe-
matical proof. The continuity evoked is of the same kind as that mentioned
above with respect to the textual techniques devised by Diophantus to
develop his arguments.

As a provisional conclusion, one may suggest that the text of a proof is
a technical text, the shaping of which may have benefited from all kinds of
resources available. Conversely, in some cases, the formation of a techni-
cal text for working out a kind of proof led to developing techniques that
could be brought to bear in other mathematical activities. In the case of
Babylonian tablets, not only the operations used in a procedure, but - as
is clearly shown by the Susa texts - also the transformations of algorithms,

% In the same way, Krob 1991 has developed a proof of a combinatorial theorem based on an
interpretation involving a plate, beads and pebbles. Such features are unusual in mathematical
publications. They occur more frequently in some fields, like combinatorics, than in others.
The reasons why it is so are worth exploring, since they shed light on social aspects of proving.
It is clear that precisely because of these features, not all mathematicians of the present day will
accept the proof Krob 1991 gives as a proof. This approach to the question, however, leaves
unanswered the questions which I find quite fascinating: what does the interpretation do for
the reasoning? And why do practitioners find it appealing to make use of such devices or
dispositifs of interpretation within proofs? Approaching the problem through the controversies
among mathematicians would yield interesting results.

See, for instance, Hoyrup 1986. In his recent edition and translation into French of
al-Khwarizmi’s book on algebra, Rashed 2007 puts forward a different hypothesis for the
history of these proofs, interpreting them rather as composed within the framework of
Euclidean geometry.
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such as embedding them into other algorithms or modifying their lists of
operations, could be established on the basis of problems and/or figures. In
the case of Diophantus, equalities were transformed qua equalities. Both
techniques were adopted in Arabic algebraic texts.

In addition to providing insights into how actors carried out interpreta-
tion for the algorithms recorded on Babylonian tablets, Hoyrup suggests
that the need for understanding perhaps developed in relation to teach-
ing. In other words, he links the professional context of training scribes in
Mesopotamia to the development of certain kinds of proof. Interestingly
enough, as we shall see below, such a hypothesis nicely fits with A. Volkov’s
thesis regarding the use of proofs for a teaching context in East Asia.

Christine Proust’s chapter suggests capturing an interest in the correct-
ness of algorithms in another kind of Mesopotamian tablet, which contain
texts consisting of only numbers. Note that, here, the work of the exegete is
particularly challenging, since she has to argue for an interpretation of texts
that contain no words, only numbers. The method Proust uses to read these
traces is deeply subtle but of particular interest for us.

At first sight, the tablets at the focus of Proust’s attention appear merely
to betray an interest in ‘checking’ the numerical results yielded by an algo-
rithm. Seen in that light, they recall some of the texts discussed by Heyrup,
in which a similar concern can be identified. However, as we shall see, the
two types of text call for different modes of interpretation.

The tablet VAT 8390, discussed by Heyrup, contains a ‘verification’
part, comparable in some sense to the ‘synthesis’ following the ‘analysis’ in
Diophantus’ Arithmetics. This part of the text relies on the values produced
by the algorithm as well as on the procedure described by the statement
of the problem to show that the values obtained satisfy the relationships
stated in the problem. However, the actual function of this section in the
text should not be interpreted too hastily: as Heyrup emphasizes, it does
not merely yield a ‘numerical control’ of the solution, since the way in
which the ‘verification’ procedure is written down requires the same kind
of ‘understanding’ from the reader as that attached to the text of the direct
algorithm. The nature and practice of the ‘verification’ must thus be consid-
ered somewhat further, without being taken for granted a priori.

Textual structures of this type are characteristic of other tablets, in
which, once an algorithm has yielded a result, this result is then subjected
to another procedure, immediately appended to the original one and
which has often been interpreted as a verification of it. The tablets on
which Proust focuses in her chapter display such a structure. The main
algorithm she examines is the one used to compute reciprocals of regular
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numbers.” Once the computation of a reciprocal has been recorded on
the tablet, the same algorithm is applied to the result and shows that
one thereby returns to the starting point of the original algorithm. In
fact, more accurately, this structure is typical of only one type of tablet
devoted to the algorithm computing reciprocals, precisely those tablets
that contain only numbers. These tablets record successive numbers pro-
duced through the flow of computations according to a determined and
highly specific layout until the result is yielded, and then record numbers
obtained through applying the algorithm to the result. However, as Proust
emphasizes, another type of text also refers to the same algorithm. In these
other tablets, the algorithm is expressed in words and the text prescribes
the operations to be carried out in succession. Among all the tablets con-
taining either formulation (the two never occur on the same tablet), Proust
chooses to concentrate on two tablets (Tablet A and Tablet B), one for each
kind of expression. In fact, she selects the two texts that repeat the same
pattern in a significant number of sections.

The verbal expression of the algorithm had been essential for Sachs to
interpret the purely numerical expression for it. However, once he had
established that the two tablets relate to the same algorithm, a key question
remained, which Proust addresses: why do we have two expressions of the
same algorithm? What are the specific meanings conveyed by each of them?
And, especially in her case, what does the numerical tablet say?

To answer these questions, Proust combines several methods. She restores
the practices of computation to which both tablets adhere, bringing to
light that they relate to the flow of computations in different ways. She also
compares the tablets to other parallel specimens. Lastly, she examines every
detail of the numerical tablet (Tablet A): the layout, the numbers chosen, the
way of conducting the algorithm in the direct and the reverse computations.
Through sophisticated reasoning, Proust can establish that the second part
of each section - the one containing the computations in the reverse direc-
tion — did most probably not play the part of checking the results of the direct
algorithm. She further demonstrates that the layout designed to record the
numbers, as evidenced in Tablet A, was created for such kind of texts and
introduces a way of managing the space of the tablet that was artificial.
This conclusion leads her to suggest that the spatial elements of the layout,
like columns, are precisely those which convey the meanings expressed by
Tablet A. We see here at its closest how the composition of a kind of text
relates to the work carried out with a text. In her view, the columns may be

°1 For greater technical detail, I refer the reader to Proust’s chapter.
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interpreted as related to the statement of rules which ground the correct-
ness of the algorithm. Proust thereby accounts for the meaning behind the
numerical display as found in Tablet A, suggesting that it made sense for its
readers in a way comparable to how an algebraic formula makes sense for us
today. For her, the numerical text enjoys a kind of transparency in regard to
the algorithm treated, making the operation of the procedure explicit. The
reader could thereby see why and how the algorithm worked. This is how
Proust argues that the numerical text bears witness to an interest in the cor-
rectness of the algorithm for computing reciprocals. Note that Proust’s argu-
ment is in agreement with what Heyrup has shown. Although they operate
in different ways, they both highlight that a specific kind of inscription has
been designed to note down an algorithm while pointing out the reasons for
its correctness. In some sense, Proust’s thesis with respect to these tablets
concurs with Netz’s conclusions on the Arithmetics. In her view, Tablet A
bears witness to the development of an artificial kind of text designed to
make the algorithm surveyable. Yet, in both cases, different aspects of the
working of the computations are made surveyable. Note further that, once
more, the fact that actors constructed a specific kind of text to make specific
statements with respect to algorithms means that historians have to design
sophisticated methods to argue how such texts should be interpreted and
what they mean. Here an interest in the correctness of the procedure can
only be perceived through lengthy consideration of the text itself.

Let us pause here for a while and consider what we have accomplished in
this subsection so far. We have entered the world of proving the correctness
of algorithms. As was stressed in Section 11 of this Introduction, this was
precisely a part missing from the standard account of the history of proof
in the ancient world. By enlarging the set of sources and the issues about
proofs considered, we began to see the emergence of a new continent. But
there is more.

We saw above that an operation - take multiplication, for example -
computes two things: a number and a meaning. A multiplication can
produce the value which is claimed to be the product of two numbers. Or
it can be interpreted as computing the area of a rectangle. On this basis, we
see that Proust analyses texts addressing the former feature of the opera-
tion, whereas Hoyrup considers texts that deal with the latter feature. In
what follows, we shall proceed in the development of this segment of the
history of proof, showing how various groups of actors have established the
correctness of algorithms.

Proust’s final point about Tablet A relates to its specific structure, namely,
the display of an application of the algorithm followed by the display of its
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application to the result. On that count, her conclusion is that the overall
structure of the text makes a statement regarding the fact that the algorithm
for computing reciprocals is its own reverse algorithm. Similar tablets can
be found for square-root extractions, displaying that squaring and square-
root extraction are in the same way the reverse of one another. A similar
interest in algorithms that are the reverse of one another — where one algo-
rithm cancels the effect of the other — emerges as central to a type of proof
to which Chinese early mathematical sources bear witness.” It is to this
type of proof that my own chapter is devoted.

Algebraic proofs in an algorithmic context

Like some of the Babylonian tablets analysed above, the earliest Chinese
writings attesting to mathematical activity stricto sensu are composed of
problems and algorithms solving them. The practice of proof to which they
bear witness also aims at establishing the correctness of algorithms.

Among these writings, those that were handed down through the
written tradition are of a type quite different from that of the Babylonian
tablets just examined.’® The most important one for our purpose, The Nine
Chapters on Mathematical Procedures (Jiuzhang suanshu), was probably
completed in the first century cE and considered a ‘classic’ soon thereafter.
In correlation with this adoption, commentaries on it were composed,
some of which were felt to be so essential to the reading of The Nine
Chapters that they were handed down with it. These are the commentary
composed by Liu Hui and completed in 263 as well as the one written
under the supervision of Li Chunfeng and presented to the throne in 656.
Two key facts regarding the commentaries prove essential for us in relation
to mathematical proof.

First of all, the commentaries attest to how ancient readers approached
the classic as such. This highlights why, as historians, when we interpret
The Nine Chapters, we are in quite a different situation from that confront-
ing historians who deal with sources for which no ancient commentary

°2 Chemla 1997-8.

** In addition to the source material handed down through the written tradition, we now
have recourse to writings that archaeologists excavated from tombs. The most important
of them, the Book of Mathematical Procedures (Suanshushu), found in a tomb sealed in c.
186 BCE, is useful for, but not central to, our purpose. Such sources can be compared to the
Babylonian tablets with respect to the way in which they were found and the conditions in
which we can interpret them. However, it is not yet clear within which milieus and how they
were used.
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exists.”* As alluded to above, The Nine Chapters, like Babylonian tablets,
describes some of the algorithms in such a way that they are transparent in
regard to the reasons accounting for the correctness of the computations
they prescribe. At this stage in the reasoning, ‘transparency’ is an observer’s
category. However, it is crucial that, with respect to this Chinese document,
the commentators did read the text of the algorithm as transparent and
made precisely these reasons explicit in their exegesis. “Transparency’ can
thus also be shown to correspond to an actor’s category.

It is in this context that the commentators bring to light exactly the
same type of ‘meaning’ that Hoyrup suggests reading in the transparent
algorithms found in Babylonian tablets. In the Chinese case, we can thus
demonstrate that this is the way in which the earliest observable readers
actually did ‘interpret’ the texts. Such evidence supports the hypothesis
that the practitioners of mathematics in ancient China designed a kind
of text to formulate algorithms, similar to that shaped in Mesopotamia to
express algorithms transparent about the reasons of their correctness. The
proof expressed in this way was read as such by ancient readers.” From the
point of view of the reception, after all, the historical continuity between
Babylonian and Arabic sources also indicates that Babylonian proofs were
read in this way by subsequent practitioners. On the other hand, from the
point of view of the text itself, it is remarkable that in different contexts, the
mode of expression chosen for indicating the reasons of the correctness was
the same. In my view, this remark indirectly reinforces Hoyrup’s argument,
in that it shows the usefulness of this property of the statements for practi-
tioners. The important point here is that for the Chinese commentators, in
my interpretation, such a reading was a way of making the ‘meaning’ of the
classic explicit. It is in order to designate that ‘meaning’ that they used the
concept of yi, which I introduced above.*

This brings us back to the question, for which we now have plenty of
evidence, of how the commentators made use of the context of a problem,
or the geometrical analysis of a body, to formulate the ‘meaning’ they read

°* Using ancient commentaries to interpret an ancient text does not mean that we attribute
anything found in the commentaries to the text commented upon without caution. Chemla
1997-8 constitutes an example of how the two kinds of sources are treated separately and only
thereafter articulated with each other.

> The commentators read the expression of the reasons for the correctness in various elements of

the classic. The structure of the text is one of them; compare Chemla 1991. The terms used in

The Nine Chapters to prescribe an operation is another one - see, for instance, Chemla 1997-8.

Chemla 2010 attempts to give a systematic treatment of this question and to highlight elements

of a history of these kinds of text.

On the fact that commentators assumed that the classic indicated the ‘meaning’ or ‘reasoning

see Chemla 2003, Chemla 2008a, Chemla 2008b.
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in the classic. Further analysis reveals that, beyond the similarity which we
suggested above with the Babylonian case as interpreted by Heyrup, the
understanding made explicit in the Chinese commentaries was not only
provided by ‘geometrical’ interpretations, but could also be achieved, more
generally, by recourse to the situation described in the statement of any
kind of problem.” In this sense, the way of generating a semantic analysis
of operations differed. A landscape of similarities and differences starts
emerging in our world history of mathematical proof in ancient traditions.

Secondly, the fact that the commentators made explicit the reasons
underlying the correctness of the algorithms in such cases is one aspect of
a much more general phenomenon. In effect, the commentaries system-
atically established the correctness of the algorithms contained in The Nine
Chapters, thereby bearing witness to a considered practice of proof for such
kinds of statements.

My own chapter focuses on one dimension of this practice, which, as far
as I know, appears to be specific to ancient China. This dimension, which
reveals another fundamental operation used to establish the correctness of
procedures, sheds light on why the texts of algorithms are not all transpar-
ent about the reasons for their correctness.

As I show, in some cases, to establish that an algorithm correctly ful-
filled the task for which it was given, the commentators, on the one hand,
established another algorithm fulfilling the same task and, on the other
hand, carried out operations on the text of this algorithm to transform it
into the proper algorithm, the correctness of which was to be established.
Moreover, in such cases the commentary usually made explicit the reasons
they adduced for explaining why, although the former algorithm was trans-
parent, the classic substituted the latter algorithm for it.

My chapter mainly focuses on the section of such a proof in which the
algorithm is reworked by means of transformations carried out on the list of
operations directly. My claim is that, within a context in which mathematics
was worked out on the basis of algorithms, this section of the proof repre-
sents a practice of algebraic proof.

By algebraic proof, I mean, in this context, a proof that starts from a
statement of equality, first established in a given way that is not of interest
here and then transforms this original equality as such and in a valid way
into other equalities, until the desired equality is obtained. The first part
of my claim is thus that the commentaries record proofs of precisely this
kind, with the only difference being that algorithms, and not equalities, are

57 Compare chapter A in CG2004, Chemla 2009.
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transformed. We would then have a form of algebraic proof in an algorith-
mic format.

The second part of my claim relates to the concern for the validity of such
a method of proof. In fact, an analysis of the commentaries reveals that the
exegetes considered the question of the validity of the operations applied to
an algorithm as such.

A close inspection shows that the exegetes linked the validity of their
operations to the set of numbers introduced in The Nine Chapters, which
includes not only integers but also fractions and quadratic irrationals. The
key point, in their eyes, was that these quantities allowed the expression
of the results of divisions and root extraction exactly, thereby allowing the
inverse operation of multiplication to cancel the effect of these operations
and restore the original number. This point recalls the Mesopotamian
tablets described by Proust, which demonstrate the same concern. Why
was this fact important for practitioners of mathematics in Mesopotamia?
Further inquiry into that question could prove interesting for our topic.

At the same time, I argue that it is when the commentators establish the
correctness of algorithms for carrying out the arithmetic with fractions
that they address the validity of applying some of the operations to lists of
operations. Several points must be stressed here.

Firstly, the analysis of this dimension of the practice of proof preserved
from ancient China brings to light an essential point, which allows us to
capture a key feature of algebraic proof: the validity of such kinds of proof
is essentially linked to the set of numbers with which one operates and how
one operates with them. This point, I argue, was understood in ancient
China, but it is a point of general validity regarding algebraic proof.

Secondly, the question arises whether dimensions of algebraic proofs as
we practise them today may have historically taken shape within practices
of proving the correctness of algorithms.

This brings me back to a point raised at the beginning of this introduction.
Iinsisted on the fact that the standard account of the history of mathematical
proof had nothing to say about the history of how the correctness of algo-
rithms was established in the past. At this point, I am in a position to sum-
marize our findings on this question. We now see even more clearly that this
was a lacuna which contributed to the marginalization of sources that were
‘non-Western’ and sources that bore witness to practices of proof related to
computations. In addition, we also see that this lacuna may also prevent us
from providing a historical account of the emergence of algebraic proof.

Last, but not least, if the answer to the previous question proves positive,
a new historical question presents itself quite naturally: one may further
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wonder whether the algebraic proof in an algorithmic context as demon-
strated in ancient China could not have played a part in the actual emer-
gence of the algebraic proof as we practise it today.

This set of issues demonstrates the ways in which the broadening of our
corpus leads to the formulation of new directions of research in the early
history of mathematical proof.

Proving as an element of the interpretation of a classic

The Chinese case just examined is not the only historical instance in which
the formulation of mathematical proofs took place within the framework of
commentaries on a classic. Agathe Keller’s chapter is devoted to the earliest
known Indian source in which an interest for mathematical proof can be
identified: it turns out to be the seventh-century commentary by Bhaskara
I on the mathematical chapter of the fifth-century astronomical treatise
Aryabhatiya. As in the Chinese case, Keller shows how the development of
arguments to establish the correctness of procedures is part of the activity
of an exegete who comments on a classic.”®

The proof is part of Bhaskaras way of justifying the classic, unless it
justifies his own interpretation of the classic. A Sanskrit classic is com-
posed of sutras, the interpretation of which requires skills. It is within this
context that, when the classic deals with mathematics, proof - together
with grammar - seems to be a means for a commentator to inquire into
the meaning of the classic and to advance his interpretation. Despite the
fact that commenting on a classic provided the impetus for making proofs
explicit in both Sanskrit and Chinese, the way in which proofs relate to the
interpretation seems to present differences between the two contexts.

In the case discussed by Keller, the classic, i.e. the Aryabhatiya, indi-
cates algorithms. The commentator Bhaskara states them fully, showing by
means of Paninian grammar how the sutras mean the suggested algorithms
and then accounting for why the suggested algorithms are correct. Bhaskara
manifests his expectation that the classic does not provide explanations.
By contrast, he introduces a set of terms (explaining, verifying, proving)
that indicate how he understands the epistemological status of parts of his
commentary.

Keller provides evidence to support an interpretation of what ‘explain-
ing, ‘verifying’ and ‘proving’ meant for him, in terms of actual intellectual

*% Srinivas 2005 insists more generally on the fact that in Indian writings proofs occur in
commentaries, and in Appendix A he provides a list of these commentaries.
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acts. Moreover, she delineates the techniques used by the commentator to
account for an algorithm.

Here, similarities with the Chinese sources appear. One of the key
techniques Bhaskara uses is to highlight how a given procedure is in fact
supported by a fundamental, general procedure, in the terms of which
the original procedure can be rewritten. Such a technique also appears
in Chinese commentaries, where a technical term ‘meaning (yi’)” is used
exclusively to refer to the kind of meaning of the procedure that a proof
brings to light in this way.” This similarity between the two contexts pos-
sibly derives from the fact that the activity of interpreting a classic inspired
similar conceptions of the ‘higher meaning’ of an algorithm.

Showing that different procedures can in fact be explained in the terms
of the same fundamental, general procedure is one way in which proofs
highlight relationships between algorithms which at first glance might
appear unrelated. In such cases, something circulates among the proofs,
and thanks to the proofs, in a way that can be compared to the techniques
brought to light by Saito in the core corpus of Greek geometrical texts. This
circulation again requires a reading of the proof in and of itself, and not
merely as a means to prove the correctness of a procedure. Moreover, what
circulates between the proofs differs depending on the context. In Sanskrit
and Chinese sources, a procedure circulates, that is, a statement of the same
kind as the proposition to be proved. In other terms, the technique of proof
is at the same time a new statement. Again, this echoes present-day math-
ematicians’ claim that proofs are a source of knowledge for them. However,
the procedure in question is not ordinary, since the mere fact that it can be
put to such uses indicates that it is more fundamental and more general
than others. One may hypothesize that the identification of procedures of
this kind formed one of the goals that motivated the interest in proving in
these contexts.® In this case, the historian would miss one of the epistemo-
logical expectations with respect to proving, were he to analyse it only from
the viewpoint of its ability to establish the statement to be proved.

It is also interesting that, in the context of Bhaskaras commentary as
well as in the Chinese commentaries, figures were introduced for types of

% On this ‘meaning’ yi’, see the glossary I compiled, CG2004: 1022-3.

0 For Chinese sources, there is evidence supporting the claim. Compare Chemla 1992, Chemla
1997b. We reach a conclusion that was already an outcome of Lakatos’ analysis of the activity of
proving in Lakatos 1970. This convergence is not surprising: we share with Lakatos’ enterprise
a starting point, that is, that there is more to proof than mere deduction. However, the nature
of the statements produced in the contexts Lakatos studied and those we studied differs,
showing that one could go deeper in the analysis of how proofs yield mathematical knowledge
(concepts, statements and techniques).
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‘explanation” which are referenced with specific terms. Once the ‘explana-
tion’ is given in the form of such a diagram, it comes to a close. Is it that
the argument is left for the reader to develop or is it that it was developed
orally? It is difficult to tell. However, we recognize a feature of proofs that
was frequently mentioned in nineteenth-century accounts of ‘Indian’ math-
ematical reasoning but was subject to divergent assessments, as Charette’s
chapter shows. Seen from another angle, we may note that the written for-
mulation of a proof carried out in relation to a diagram took quite different
forms in history. Further development of a comparative analysis of such
texts arises as a possible venue for future research.

On the other hand, the commentator used the term ‘explanation’
(pratipadita) to refer specifically to another component that he intro-
duced: problems solved by means of the algorithm described. In which
ways did the problems contribute to providing an explanation of the
algorithms? Here too, the source material calls for a comparative analysis
of the part allotted by different traditions to problems for establishing
an algorithm.

The evidence discussed so far illustrates the variety of contexts that may
have prompted an interest in writing down proofs. The sources analysed
by Keller and myself show how commenting upon a canonical text has
been an activity by which proofs were made explicit. In addition Heyrup
suggests the hypothesis that teaching could have motivated an interest in
formulating proofs. In fact, the two explanations are not mutually exclusive,
if we embrace Volkov’s hypothesis that Chinese commentaries were com-
posed within the context of mathematical education. We come back to this
hypothesis below. In addition, the evidence discussed so far also shows the
variety of motivations that led to the formulation of proofs in the ancient
traditions. What they contribute to our historical approach and under-
standing of mathematical proof is an issue to be taken up in the conclusion.
Before we can address our conclusions, however, one more dimension of
our world history is worth considering.

The persistence of traditions of proof in Asia

One may be tempted to believe that it is relevant to adopt the perspective
of a world history to deal with mathematical proof in ancient traditions,
but that after the seventeenth century, the story to be told is that of the
‘Western’ practices and their adoption worldwide. The final two chapters of
the book illustrate two ways in which such a view must be qualified. They
constitute the only incursions of this book into later traditions of proof. The
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main reason for including them in the book is that they reveal historically
interesting modes of continuity with what was analysed above.

Alexei Volkov devotes his chapter to an apparently discrete topic:
mathematical examinations in China and the sphere of Chinese influence
in East Asia. However, the link to our questions appears immediately.
The issue at hand for him is that of the relation between the practices of
examination in mathematics and mathematical proof as evidenced by the
commentaries on Chinese classics. This question leads him to focus on
the extant evidence regarding the teaching of mathematics in this part of
the world.

Among all the channels through which mathematical knowledge was
taught throughout Chinese history, the channel of state institutions is the
least poorly documented. Relying on the extant Chinese administrative
sources, Volkov describes the textbooks used for mathematics in the state
educational system from the seventh century onwards and the way in
which they were used. It is important for us that among these textbooks,
one finds precisely The Nine Chapters on Mathematical Procedures along
with the commentaries by Liu Hui and Li Chunfeng introduced above.!
Moreover, Volkov discusses in great detail how the terse description of the
kind of examinations the students had to take by the administrative sources
can be interpreted concretely.

The interpretation of the extant administrative sources would have
remained a matter of speculation, had not Volkov discovered a piece
of evidence in nineteenth-century Vietnamese sources. Some elements
of context are needed to understand this point better. As in Japan and
Korea, Vietnamese state institutions had a history closely linked to that of
their parallel institutions in China. In particular, from the Tang dynasty
onwards, Chinese state institutions for teaching were imitated in East
Asia and the textbooks used by these institutions were transmitted in this
process. Moreover, state examinations in mathematics were held in all
other contexts, including in Vietnam, as Volkov shows. This explains how
Vietnamese sources clarify practices carried out in China: the margins
often keep alive traditions that are modified in the centre.

In Vietnam, an additional factor played a decisive role: at the beginning
of the nineteenth century, Western books had not yet become influential
there. The extant mathematical writings composed in Vietnam until that
time consequently appear to belong mainly to a tradition on which Chinese

©1 Please note that Volkov opts for another interpretation of the title of the Chinese book,
translating it in a different way. Appendix 2 in his chapter presents various transcriptions and
translations for the title of Chinese mathematical texts.
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books exerted a strong influence. It is in such a Vietnamese source that
Volkov found a model for mathematical examination which he translates
and analyses in his chapter.

This piece of evidence leads him to put forward the hypothesis that
the shape taken in China by the mathematical classics and the seventh-
century commentaries may reflect precisely the requirements of the
teaching institution. On this basis, one can shed light on the connection
between these texts and the examination system from another angle. It is
quite striking, indeed, that the administrative texts analysed by Volkov
describe the tasks to be carried out by students in the seventh-century
Chinese state institutions with technical terms that can be found inter alia
in The Nine Chapters and the commentaries on the mathematical classics
that were mentioned above. This holds true, as Volkov stresses, for words
like wen ‘problem; or da ‘answer’, which refer to components of texts like
The Nine Chapters. However, most importantly, this also holds true for
terms like yi’ ‘meaning, which is the second type of meaning given above
for a procedure, a meaning that is intimately connected to the activity of
proving. Such a link between the two types of sources supports Volkov’s
thesis that commentaries played a key part in the training of students,
since terms like yi" are not to be found in the texts of the mathematical
classics themselves, but only in commentaries.®” In conclusion, Volkov
suggests a social context for the interest in the proofs of the correctness of
algorithms in ancient China.

Two points are worth emphasizing for our main argument here. Firstly,
let me stress again what was said above: if Volkov’s hypothesis holds true,
we would have at least two cases — East Asia and Babylon - in which the
professional context of teaching was instrumental for composing proofs,
even though the proofs actually written down differed in the two contexts.
Secondly, it is worth noting that this piece of evidence confirms the longev-
ity of practices of proof in East Asia. This is but one example which shows

92 One may even go a step further. We mentioned above two commentaries on The Nine Chapters:
the one completed by Liu Hui in 263, and the one presented to the throne by Li Chunfeng
in 656. In fact, several scholars have produced clues which indicate that the text of the two
commentaries may have been commingled during the process of transmission (in CG2004:
472-3, I have summarized the current contributions treating this difficult issue which awaits
further research). For the question discussed here, it may be relevant to note that many clues
suggest that the concept of yi’, when used in relation to procedures, may belong to the layer
of commentary from the seventh century. If this is confirmed, the connection between the
administrative sources and the seventh-century commentary would be even more striking. The
correlation between the terms used in both types of documents should invite us, in my view,
to take the occurrence of the terms in the commentaries on the classics into account when
interpreting the administrative prescriptions.
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that the late history of practices of proof bears witness to circulations and
preservations that challenge the standard account sketched above.*

At the beginning of his chapter, Volkov recalls how the sinologist
Edouard Biot, in his 1847 Essai sur lhistoire de linstruction publique en
Chine, dismissively belittled the format of problems in Chinese mathemati-
cal texts, their absence of proof and the elementary level of state education.
With respect to what was discussed above, the additional denigration of
everything classed as educational in the historiography of mathematics may
be partly responsible for the lack of discernment regarding sources that
could have modified Biot’s assessment at least to a certain extent.

In China, the approach to mathematics of the past was strikingly differ-
ent, if we judge it on the basis of Li Rui’s Detailed Outline of Mathematical
Procedures for the Right-Angled Triangle completed in 1806, which Tian
Miao analyses in her chapter. This text illustrates a second form of pro-
longed relevance of ancient practices of proof, which reveals several inter-
esting features.

To be more precise, Li Rui’s practice of proof exemplifies a revival of past
Chinese practices of proof and shows how they were at that time trans-
formed mathematically while simultaneously reshaped under the influence
of — or rather as an alternative to — practices of proof identified as ‘Western.

The topic on which Li Rui chose to write his book, the right-angled tri-
angle, was one in which, as he knew, an interest was documented in both
Chinese and Greek antiquity. The ninth of The Nine Chapters is devoted
to the right-angled triangle and it is the subject of theorems in the part of
Clavius’ edition of Euclid’s Elements that Ricci and Xu Guangqi translated
into Chinese in 1607.

Li Rui approached the right-angled triangle as was done in the tradition
which descends from The Nine Chapters. Among the various identifiable
traces of this approach, one notes that his book takes the form of problems
for which solutions are provided in the form of algorithms. In addition,
Li Rui makes use of the traditional terminology developed throughout
Chinese history and completed in the Song dynasty to designate the quanti-
ties attached to a triangle.

On the other hand, Tian argues, the influence of the Elements can be
perceived in the fact that Li Rui provided a systematic set of solutions to
all the problems that can be encountered. Moreover, he organized this set
according to the dependencies of its elements. In the system produced, the

A similar kind of continuity in the practice of proof is described by Francois Patte, in his work
on sixteenth-century Sanskrit commentaries; see Patte 2004.
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solution to any problem depended only on those before it. The proofs of the
correctness of the algorithms were thus a key element for deciding over the
structure of the system.

Tian highlights several mathematical innovations in the book. To
begin with, Li Rui invoked combinatorial methods to state and solve any
problem that could be asked about a right-angled triangle. Moreover, Li
Rui innovatively employed the ancient ‘heavenly unknown (tianyuan)**
method to establish the correctness of the algorithms which solve each
of the problems in the most uniform way possible. The earliest surviving
evidence for this method, which is equivalent to the modern practice of
using polynomial algebra to set up an equation which solves a problem,
dates to 1248, the year that Li Ye completed his Sea-Mirror of the Circle
Measurements (Ceyuan haijing). After having been forgotten in China,
the method had been recovered by Mei Juecheng in the first half of the
eighteenth century, thanks to the understanding Mei gained through his
acquaintance with European books of algebra.®> In particular, Mei deci-
phered the meaning of the algebraic symbolisms for writing down poly-
nomials and equations that had been developed in China a few centuries
earlier and had since been lost.

Li Rui could thus rely on the method and its related symbolisms that had
been rescued from oblivion only a few decades before he wrote his book.
When using the symbolism to establish algebraically the correctness of the
algorithms he stated, Li Rui was using symbols that differed in form from
those of Diophantus, but which had played a similar part in the past. Like
Li Ye, Li Rui used these symbolic notations to account for the correctness
of the equation — the ‘procedure’ - yielded to solve a general problem.
However, the way in which Li Rui was now using them modified the status
of the proofs carried out with them. The main point that Tian highlights in
this respect is that, when considering given quantities attached to a triangle
as data, Li Rui discriminated among the different categories of triangles
according to the relative size of the data in them. More precisely, in contrast
to Li Ye before him, Li Rui formulated as many problems as there were
distinguishable cases so that he could prove the correctness of the general
equation in a way that would be valid for each case and that would establish

4 The literal interpretation of the expression tianyuan is ‘celestial origin’ This interpretation
permits the identification of occurrences of the concept before the thirteenth century in the set
of mathematical classics gathered in the seventh century; see above. I shall come back to this
point in a future publication.

% On this episode, compare Needham and Wang Ling 1959: 53, Horng Wann-sheng 1993: 175-6,
Yabuuti Kiyosi 2000: 141-3.
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the equation with full generality. This distinction between cases relates to a
concern about the validity of the operations in the proof and the generality
of the proven statement. Li Rui distinguished cases in such a way that the
proof carried out through polynomial computations would be valid for all
triangles of the same case. This step ensured the correctness of the kind of
algebraic proof which he conducted in a way that Li Ye's proofs before him
did not.

As a consequence, Li Rui established general equations through poly-
nomial computations — the proof of their correctness - that were valid for
the particular category of triangles delineated and he probably developed
this structure of proof intentionally. Otherwise, there would be no reason
for him to differentiate different cases of a given type. Yet, even though this
feature reveals that Li Rui was interested in the generality of procedures,
like the ancient Chinese mathematical texts, he expressed this property for
each case within the context of a particular problem, which he thus used as
a paradigm. We see here again that the search for generality and the ways
in which generality is expressed both account for specific features of the
practice of proof that was constructed.

Several other elements manifest how, through his mathematical practice,
Li Rui simultaneously presented himself as continuing the tradition of his
Chinese predecessors of the past and yet changed it. His deployment of
geometrical diagrams to provide yet another (geometric) proof of the cor-
rectness of the equation is one of these elements. However, although the
diagrams clearly call to mind Li Ye's own diagrams in his Yigu yanduan,
completed in 1259, or Yang Hui’s 1261 commentary on The Nine Chapters,
they betray differences, due not least of all to an influence of Western
practices with geometrical figures. Further, like Xu Guangqi before him, Li
Rui seems to be using the concept of ‘meaning (yi’)’ in a way that displays
affinity with how the commentators on The Nine Chapters used the same
term. This reveals a continuity of mathematical theory that has not yet been
addressed adequately.

In addition, Tian surmises that Li Rui was also interested in showing
the power of the ‘procedure of the right-angled triangle (gougushu)’ - the
ancient name and formulation for Pythagoras’ theorem - to solve any
problem in a uniform way. Li’s book can be interpreted as having explicitly
developed the system covered by this older procedure, even if it had been
presented in the past in relation to a particular problem.

In conclusion, the Detailed Outline of Mathematical Procedures for the
Right-Angled Triangle demonstrates a synthesis of goals for and techniques
of proof, which take their origins from both East and West. The book
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composes a new type of text with which to carry out proofs, one that inte-
grates different agendas. Most importantly, however, if we follow Tians
interpretation of it, we can read Li Rui’s discourse and practice as illustrat-
ing the politics of the proof, in that they attempt to embody the ideal of
proving in the ‘Chinese way), and not in the ‘Western’ way. Some decades
later, the politics of the historiography of mathematical proof would
become by far more visible.

IV Conclusion: a research programme
on mathematical proofs

It is time to gather the various threads that we have followed and conclude,
by considering our findings with respect to ancient mathematics and the
research programme that they open for us.

Let us begin with facts. What we have seen emerging in Section 111 is the
outline of a history of proving the correctness of algorithms in the ancient
world. Mesopotamian, Chinese and Indian sources bear witness to the fact
that practitioners have attended to the correctness of the algorithms with
which they have practised mathematics. An analysis of their attempts helps
us identify some of the fundamental operations involved in such proofs.
We have seen that these practitioners have striven to establish how an
algorithm correctly yields the desired magnitude and the value that can be
attached to it. To do so, they have designed devices or dispositifs that have
allowed them to formulate the ‘meaning’ of operations. The proofs they
constructed share common features. They also demonstrate specificities in
the way in which proof was practised.

Among the specificities noted in the way of approaching the correctness
of algorithms, one fact proved of special relevance for a history of proving.
Chinese sources demonstrate the fact that operations — meta-operations,
if one wishes - were sometimes applied to the sequence of operations that
an algorithm constitutes. These meta-operations were used to transform
an algorithm known to be true, qua algorithm, into another algorithm, the
correctness of which was to be established. Moreover, these sources bear
witness to the fact that a connection was established between the validity
of these meta-operations and the numbers with which one worked. I sug-
gested the conclusion that we have here a kind of ‘algebraic proof within an
algorithmic context.

This remark leads to several questions. What kind of understanding can
practices developed specifically to prove the correctness of algorithms yield
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into the nature of algebraic proofs, on the one hand, and the process of their
emergence, on the other? If a historical link can be established between the
two, what evidence can we find regarding the historical process by which
both kinds of proof were connected? This question opens onto another one,
much more general: through what concrete historical processes did alge-
braic proof take shape and develop?

The analyses developed in this introduction have brought to light several
elements inherent to that kind of proof as we experience it: textual tech-
niques, reflections on numbers and problems of generality. What other
elements constitute algebraic proof and how did this cluster crystallize?
What type of historicity is attached to it? This book offers a contribution to
this agenda by identifying elements essential to algebraic proof and hypoth-
esizing a historical scenario regarding the kinds of practice in which these
elements took shape. Clearly, much more remains to be done.

These first results show the benefits that broadening of the scope of
sources taken into consideration can produce through the change of
perspective we advocated in the approach to proofs and their history. A
scarcely considered branch of the history of proof thus emerges: namely,
the history of proving the correctness of algorithms. And as it takes shape, it
elucidates parts of the history of proof that still await better understanding.
In correlation with opening new pages in the history of proof, we have been
naturally led to approach the topic of proof more comprehensively. From
this global perspective, we understand more clearly the link between the
devaluation of computation as a mathematical activity, which was and still
is quite widespread, and the exclusive focus on only some proofs, written
in ancient Greece, that has dominated the history of mathematics. Now,
what changes will this outline of the history of proving the correctness of
algorithms bring in the history of proof? How far will these tools of analysis
allow historians to examine anew other proofs, for instance proofs written
in Greek? These remain open questions.

Our exploration of ancient practices of proof has met with another
important issue, which is worth pondering further. As suggested by Lloyd,
Hoyrup, Keller and Volkov among others, the interest in proof and, more
specifically, in writing proofs down has been stimulated by distinct activi-
ties and social contexts. Among those activities and contexts we have seen,
let us mention the rivalry between competing schools of thought or the
development and promotion of one tradition as opposed to another,
teaching mathematics or interpreting a classic, all activities that need not
have been exclusive of each other. The list is by no means exhaustive. Still,
this remark brings to the fore two points that are important much more
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generally. On the one hand, proving is an activity that takes place in specific
social and professional groups which have specific agendas. On the other
hand, as we saw, the practices of proof betray a variety of modalities which
one can attempt to correlate to the social groups which sustain them. This
leaves us with two tasks: finding the means to describe the practices in their
variety and identifying the social and professional contexts that are relevant
to account for their formation and relative stability.

Such a research programme is quite meaningful to inquire into the
history of proof in the ancient world. Indeed, only along these lines can
we hope to bring to light and accommodate the variety of practices in a
way more satisfactory than the old model of competing civilizations which
has been pre-eminent from the nineteenth century onwards. However,
the research programme is laden with difficulties. The evidence available
with respect to ancient time periods is in general so scanty that rigorously
reconstructing the social environment in which proofs were actually com-
posed is an ideal for the most part out of reach. One can only put forward
hypotheses. In that context, concentrating on the description of the varying
practices appears to be an initial means of overcoming the difficulties and
perhaps discerning from mathematical sources different social groups that
carried out the practice of proof.

This is the project on which we focus in the book and what our explo-
rations into matters of proof open to reflections of wider relevance. The
conclusions which we propose bring forth some suggestions for the task of
describing practices of proof whose value appears to me to exceed the scope
of the ancient world to which we have restricted ourselves. Let me comment
on some of these suggestions by way of conclusion.

Among the various sets of sources which they treat, the chapters in this
book identify different goals ascribed to proof, different values attached to
proving and different qualities required from a proof. In this Introduction, I
have outlined some of them. We have seen that some proofs seem to be con-
ducted in order to understand the statement proved or the text which states
it. In other cases, proofs have appeared to have had as one of their goals the
identification of fundamental operations or the display of a technique. We
have also seen that in some contexts, proofs were expected to be general or
to comply with an ideal of generality. In others, they should bring clarity,
yield fruitfulness or manifest simplicity. Much more remains to be done in
identifying goals and values practitioners have attached - and still attach
today - to proof and the constraints they imposed on themselves.

What is important is that in each of these cases the identification of
these elements, far from being the end of the inquiry, constitutes only its
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beginning. Indeed, the main question then raised is to identify how the
way in which the proof is conducted or written down helps practitioners
to reach the goals, achieve the values or implement the qualities they value.
This is where the issue of the practices of proof is inextricably linked to the
issue of the expectations actors have with respect to proofs. In relation to
this issue, I introduced the notion of devices or dispositifs that actors have
created in various contexts to carry out key operations with respect to
the proof. We have seen that the dispositifs constructed by Mesopotamian
scribes or Chinese scholars to make explicit the ‘meaning’ of operations in
an algorithm had commonalities as well as specific differences. The differ-
ences between the two Greek texts dealing with polygonal numbers that
Mueller described can also be approached in these terms: the dispositifs
used by the authors to treat their topic show two distinct attempts at achiev-
ing generality. Seen in this light, axiomatic-deductive systems appear to be
a dispositif designed to yield certainty. Describing these dispositifs appears
to me as a method to attend more closely to differences between the various
practices of proof, thereby breaking down what is all too often presented
collectively as ‘the mathematical practice’

Can we spot transformations in the modalities of proof that demonstrate
a change of values or a combination of a larger set of values? Which of these
goals, of these values, of these qualities were held together? Which combi-
nations can we identify and how have these various constraints been held
together? Which of them seem to have been in tension with each other,
because they were difficult to fulfil simultaneously? Archimedes’ practices
of proof offer a case study that can be approached from this perspective.
All the questions that arise in this context now explain, I hope, how an
overly strict focus on the value of certainty would yield an essentially trun-
cated account of mathematical proof. Clearly, such an approach does not
do justice to the variety of agendas that were ascribed to proof and to the
variety of practices that were developed accordingly.

When describing the diverse practices of proof exhibited in ancient
sources, the various chapters of the book collectively bring to the fore
another fact that is, in my view, both important and of general relevance.
They converge on the conclusion that various types of technical texts have
been designed for the conduct of proofs, depending on the context in which
these proofs have been written down and the constraints bearing on them.
Let me gather various hints that support this conclusion.

The texts of proofs we have mentioned consist of distinct basic com-
ponents. Among them, one can list equalities, proportions or lists of
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operations. Moreover, within the context of distinct practices of proof,
these basic components appear to have been composed in various ways
and to have been combined in distinct kinds of technical texts. Among the
kinds of texts and inscriptions we encountered, let me recall a few: texts
for algorithms transparent with respect to the reasons of their correctness;
the material dispositifs by means of which their meaning was made explicit;
symbolic inscriptions of different sorts (including those of Diophantus,
those which Colebrooke first described in the Sanskrit texts, and those of
the Chinese past revivified by Li Rui); and texts composed with formulaic
languages. In addition, it regularly appeared that paradigms in the form of
particular figures or mathematical problems were used to formulate general
proofs.

This variety of texts developed for proofs merely reflects the variety of
contexts within which proofs were carried out. This means that the design
of texts is, in an important sense, an indicator of the context in which they
were composed. Moreover, the shaping of kinds of texts to carry out proofs
is an aspect of the practice of proof as such which has been little studied so
far. This shaping demands study, even if only as a limited component of the
practice of proof. However, there is another equally fundamental reason to
study this range of phenomena.

The examples just summarized remind us of the fact that the interpreta-
tion of the text of a proof is a thorny issue, and it is so in relation to the effort
involved in the construction of a kind of text adequate for the execution of
proofs of a certain type. In other words, it is because each human collec-
tive which carried out mathematical proofs deliberately designed texts for
this activity that these texts cannot be interpreted straightforwardly.®® This
claim can be illustrated easily with the example of the recently mentioned
transparent algorithms. In order to read a proof in the statement of the
algorithm itself, the historian has to establish the way in which the texts
made sense. The interpretation of paradigms as paradigms would constitute
another example.

These remarks explain why the relation between the type of text used
and the kind of proof developed is an essential topic for future research. It
is essential not only because the shaping of texts to carry out proofs is an
aspect of the practice of proof in itself, but also because inquiring into this
issue yields better tools to interpret the texts in question.

 In this respect, we return to the conclusions that emerged from the collective effort published
in Chemla 2004.
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Such are some of the general issues that emerged from our histori-
cal analysis of ancient practices of proofs. As such, they appear to me to
provide useful directions of research if we are to develop more generally a
genuinely historical approach to the activity of proving and understand the
motley practices of mathematical proofs as such. What results can these
issues yield for the study of modern proofs? Let this task constitute our
future endeavour.
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1 The Euclidean ideal of proof in The Elements
and philological uncertainties of Heiberg’s
edition of the text

BERNARD VITRAC, TRANSLATION MICAH ROSS

Introduction

One of the last literary successors of Euclid, Nicolas Bourbaki, wrote at the
beginning of his Eléments d’histoire des mathématiques:

Loriginalité essentielle des Grecs consiste précisément en un effort conscient pour
ranger les démonstrations mathématiques en une succession telle que le passage
d’un chainon au suivant ne laisse aucune place au doute et contraigne l'assentiment
universel ... Mais, dés les premiers textes détaillés qui nous soient connus (et qui
datent du milieu du v¢ siécle), le « canon » idéal d’'un texte mathématique est bien
fixé. Il trouvera sa réalisation la plus achevée chez les grands classiques, Euclide,
Archimede, Apollonius; la notion de démonstration, chez ces auteurs, ne différe en
rien de la notre.!

I am unsure what was intended by the last possessive, whether it acts as
the royal or editorial we designating the ‘author, or if it ought to be under-
stood in a more general way: ‘la notre’ could mean that of the Modernists,
of the twentieth-century mathematicians, of the French, or formalists. All
jokes aside, the affirmation supposes a well-defined and universally accepted
conception of what constitutes a mathematical proof. The aforementioned
conception, the citation for which is found in a chapter titled ‘Fondements
des mathématiques, Logique, Théorie des ensembles, is at once logical,
psychological (through a rejection of doubt), and ‘sociological’ (based on
universal consensus). Perhaps this assertion ought to be considered nothing
more than a distant echo of the Aristotelian affirmation that all scientific
assertions (not just mathematical statements) are necessary and universal.

The following list of Greek geometers is also interesting. It contains the
classics, and the triumvirate was probably intended to follow chronological
order. Here, then, Euclid is not simply a convenient label, sometimes used to
designate one or several of the many adaptations of Euclid’s famous work,
as when one speaks about the Euclid of Campanus (c. 1260-70), the Arab

! Bourbaki 1974: 10.
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Euclid or the Euclid of the sixteenth century. Rather, this Euclid indicates
the third-century Hellenistic geometer and author of the Elements. To speak
about the Hellenistic Euclid, to describe the contents of his composition with
precision — which certainly implies the fact that it qualifies as a ‘classic’ -
and to adopt or reject its approach towards proof presumes a reasonably
certain knowledge of the text of the Elements. Precisely this knowledge,
however, is in doubt.

To examine these assumptions, in the first part I revisit some informa-
tion (or hypotheses) concerning the transmission of ancient Greek texts,
particularly the text of the Elements. I emphasize there the indirect char-
acter of our knowledge about this subject, and I review the history of the
text proposed by the Danish philologist J. L. Heiberg, at the time when he
produced, in the 1880s, the critical edition of the Greek text to which the
majority of modern studies on Euclid still refer.” I raise some uncertainties
and mention the recent criticism of W. Knorr.” In the second part, I give
examples of differences between preserved versions of the text, illustrating
the uncertainties which dismantle our knowledge about the Euclidean text,
notably the texts of certain proofs.

Reflections on the History of the Text of the Elements

A brief history of the ancient Greek texts

Lest the present study become too complicated,” let us admit that there
existed in thirteen books a Hellenistic edition (¢x8oois) of the Elements
(T& ZToikela), corresponding, at least in rough outline, to that which has
come down to us and produced by Euclid or one of his closest students.” In

o

Heiberg and Menge, 1883-1916. It has been partially re-edited and (seemingly) revised by E.S.
Stamatis: Heiberg and Stamatis, 1969-77. In the following, I will designate these editions by
the EHM and EHS respectively.

Knorr 1996.

The literature on this subject is immense. I have consulted Pasquali 1952, Dain 1975, Reynolds
and Wilson 1988, Dorandi 2000 (which contains extensive information about papyri)

and Irigoin 2003 (a collection of articles published between 1954 and 2001, plus several
unpublished studies).

At least two other possibilities are conceivable, by analogy with some known cases of ancient
scholarly editions:

w

IS

@

o Euclid had produced two versions of his text: the first, a provisional copy, for a restricted
circle of students, correspondents or friends; the other, revised and authorized. This
corresponds with the composition of the Conics of Apollonius, as described by the author
himself in the introduction of Book 1 (of his revised version). Consequently, this hypothesis
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Greek antiquity, when there existed neither printing press nor any form
of copyright, edition signified ‘the introduction of a text into circulation
among a circle of readers larger than the school, friends and students of
the author’ - in other words, a ‘publication’ in the minimal sense of having
been ‘rendered public’ and of having been reproduced from a manuscript
revised and corrected by the author (or a collaborator).® The books of the
Hellenistic era (third to first century before our era) were written in majus-
cule and, in theory, on only one side of papyrus scrolls of a modest and
relatively standardized size. Thus, they were rather limited in contents.” In
the case of the Elements, this tradition implies a likely division into fifteen
rolls, each containing one book, with the exception of the lengthy Book x.*

Of course, like practically any other text from Greek antiquity, the ‘origi-
nal’ (which was not necessarily an autograph copy)? has not come down to us.
The rather limited lifespan of such papyrus scrolls required that they be
periodically recopied, with each copy capable of introducing new faults
and, even more importantly, alterations. Certainly chance played a role in
the preservation of particular papyri, but, in the long run, because of the
fragility of the writing material, a text could come to us only if certain com-
munities found enough interest in it to reproduce it frequently.

In the course of these recopyings, two particularly important technical
operations occurred in the history of the ancient Greek book:

o the change from papyrus scrolls (volumina) first to papyrus codices but
later to parchment codices, and
o the Byzantine transliteration.

allows the possibility of variations by the author from the beginning of the textual tradition.
Nonetheless, there is no evidence of this process for the Elements.

Euclid had not gone to the trouble of producing an é&&oo1s in the technical sense of the term.
His writings had been circulated in his ‘school’ (in a form that we evidently do not know),
and the edition was made some time later, such as at the beginning of the Roman era in the
circle of Heron of Alexandria. This scenario is traced in the history of the body of ‘scholarly’
works of Aristotle, officially edited only after the first century before our era, by Andronicos
of Rhodes, among others.

In order to be able to dismiss such a (completely speculative) hypothesis, fully detailed
testaments about the role of the Elements in the course of the three centuries before our era
must be in evidence, and this is not the case. On the contrary, we are nearly certain that Heron
had made an important contribution to the Elements - in particular from a textual point of
view - but the epoch in which he lived (traditionally, after the work of Neugebauer, the second
half of the first century is named) is not free from dispute. This second hypothesis has been
suggested to me by A. Jones. I thank him for it.

© The most famous case is that of the edition of the works of Plotinus by Porphyry.
7 See Reynolds and Wilson 1988: 2-3.

% Dorandi 1986.

° See Dorandi 2000: 51-75.
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The first operation, apparently begun in Rome at the beginning of our
era, is nothing more than the adoption of the book with pages, written on
both sides and with contents definitely more important than the volumen.
This shift allows the composition of textual collections and the develop-
ment of marginal commentaries which previously appeared in a separate
scroll. Writings that were not converted into this format had a relatively
small chance of being transmitted down to us. The texts known only
through papyrus scrolls are small in number and frequently nothing more
than fragments. In other words, in the case of the Elements, the creation
of (at least one) archetypal codex must be postulated. We know nothing
of when this fabrication occurred or who (whether a mathematician or an
institution similar to a library with a centre for copying) undertook this
labour. However, the adoption of the codex was a rather slow operation
which spanned from the first through to the fourth centuries of our era,
and beyond. The fact that this adoption was applied in wholesale to the
texts from previous eras probably ought to be attributed to the revival of the
study of classical texts under the Antonines (second century).'

The other operation, the Byzantine transliteration, was more limited
than the change from scrolls to codices. It was done in the Byzantine empire
from the end of the eighth century. The Byzantine transliteration consisted
of using a form of cursive minuscule for the edition of texts in place of the
majuscule writing termed uncial. Previously, cursive minuscule had been
limited to the drafting of administrative documents, but uncial had proven
too large and thus ‘costly’ for use with parchment. Here, too, the success
and systematization of the process were certainly linked with a renewed
interest in ancient texts during the course of the ‘Byzantine Renaissance,
which began in the 850s and was associated with individuals like Leo the
Wise (or the Philosopher), the patriarch Photius and Arethas of Cesarea.
Such transliteration was a rather delicate technical operation composed of
two phases - the first (and the largest) of which fell in the ninth and tenth
centuries, the second in the years 1150-1300.!! Here, again, translation
acted as a filter. Non-transliterated texts progressively ceased to be read.
Save for some fortunate circumstances, they disappeared.

For the ancient writings which survived these two transformations, we
may, if we are reasonably optimistic, emphasize on the one hand the fact
that on occasions in these two situations, the editors intervened in impor-
tant ways, and the specimens were produced according to particularly

' On the change from scroll to codex, see the accessible summary by Reynolds and Wilson 1988:
23-6. Cf. also Blanchard 1989.
' Cf. Irigoin 2003: 6-7.
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‘authorized’” manners which played a decisive role in the transmission.
These two circumstances produced the archetypal codex (or codices) of the
Roman era and the transliterated example or examples in minuscule begin-
ning in the ninth century. On the other hand, on these occasions there was
the risk and opportunity that the substance or presentation of these texts
would be radically modified.

The oldest preserved complete examples of the Elements in thirteen
books were produced immediately after the transliteration into minuscule
which has just been called into question.

They are:

 one manuscript from the Vatican Library, Vaticanus gr. 190, assigned to
the years 830-50 according to palaeographic and codicological consid-
erations;'?

o one manuscript from the Bodleian Library at Oxford, D’Orville 301,
which, other than its exceptional state of conservation, has the advan-
tage of having been explicitly dated, since its copying, ordered from the
cleric Stephanos by Arethas, who was then deacon, was completed in
September 888.

Two remarks are in order:

(1) These pieces of evidence are from more than a thousand years after the
hypothetical original of Euclid.

(2) The case of the Elements is, however, one of the most favourable
(or, perhaps, least unfavourable?) in the collection of profane Greek
texts.

Other than these two precious copies, about eighty manuscripts contain-
ing the text (either complete or in part) are known; of these roughly thirty
predate the fifteenth century. Likewise, a palimpsest, dated to the end of
the seventh or the beginning of the eighth century and written in uncial,
contains extracts from Books x and x111."? It thus seems assured that the
study of the Elements had not completely ceased during the so-called Dark
Ages of Byzantine history (650-850). Also known are several papyrus frag-
ments,'* the oldest of which are ascribed to the first century and the most

12 Cf. Irigoin 2003: 215 (original publication, 1962). Cf. Follieri 1977, particularly 144; Mogenet
and Tihon 1985, 23-4 (Vatican fr. 190 = ms probably from the first half of the ninth century)
and 80-1. At the time of Heiberg, this copy was assigned to the tenth century, and the
manuscript in the Bodleian was considered the oldest. One sometimes still finds this debatable
assertion.

!9 See Heiberg 1885.

4 Cf. EHS: I: 187-9 and Fowler 1987: 204-14 and Plates 1-3.
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recent to the third century. In contrast to the manuscripts, the papyri have
the privileged position of being documents from Antiquity. An author
represented among the papyri is likely to have been used in teaching. In the
mathematical realm, the bulk of papyri preserved for us represent two cat-
egories: (1) very elementary school documents, and (2) astronomical texts.
It is therefore significant that Euclid is the only geometer of the ‘scholarly’
tradition who appears in this type of text.

Direct and indirect traditions

Nicolas Bourbaki probably did not consult the manuscripts of the Elements
to determine his opinion about the subject of the Euclidean ideal of proof,
and it is the same for the majority of Euclid’s modern readers. Generally,
they rely on a translation, or if they know ancient Greek, on a critical
edition produced by a modern philologist. In the case of the Greek texts of
the Elements, the critical edition was produced by J.L. Heiberg. If he reads
the work in Greek, the reader labours under the illusion that he has read
what Euclid has written. In this respect, the philological terminology and
its label ‘direct tradition’ can be misleading. The ‘direct’ tradition designates
the set of Greek manuscripts and papyri which contain the text either in its
totality or in part. Despite this label, we must not forget the considerable
number of intermediaries that came between us and the author, even in the
direct tradition. These intermediaries include not only the copyists, who we
would like to believe did nothing more than passively reproduce the text,
but also, more importantly, those who took an active part in the transmis-
sion of the text — in particular ancient and medieval re-editors and, last
of all, the philologists who, beginning with the collection of the available
information, have constructed the critical edition that we read today. I have
thus reported, too briefly, the several elements of the history of the preced-
ing ancient Greek texts to make the point that our knowledge about the
text of the Elements, like that of the majority of other ancient Greek texts,
is essentially indirect.

Classical philology is not without resources. It has developed methods to
‘reverse’ the course of time. These methods make it possible to trace the rela-
tionships between manuscripts, to detect the mistakes of the copyists, and
in the ‘good’ cases to reconstitute an ancestor of the tradition, often imme-
diately before the transliteration, sometimes an ancient prototype from late
antiquity or from the Roman era. In the case of a Hellenistic author, this
result is still rather removed from the ‘original’ and thus necessitates appeals
to other sources. These sources constitute the so-called indirect tradition
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Figure 1.1 Textual history: the philological approach.

(see Figure 1.1). Generally, it is used to decide between variant manuscripts
or as confirmation in the testing of conjectures about the state of the text
before the production of the oldest preserved manuscripts.

In brief, the work of the editor comprises two dimensions: (1) the estab-
lishment of the text, and (2) the reconstruction of what philologists call
the ‘textual history), that is to follow the avatars of the manuscripts, but
also the commentaries and translations through which we have access to
the text, to review the evidence about the use of the work in education, in
controversies, or its presence in libraries. Although the one dimension is
certainly articulated with respect to the other, it is nonetheless convenient
to distinguish between them.

For the reconstruction of the textual history, all information ought to be
taken into account. Because the collected sources will probably be contra-
dictory (variants among manuscripts, incompatible quotations, etc.), it is
necessary to classify the information and search for plausible explanations
(accidents in copying, editorial action by a re-editor, influence of a com-
mentary through marginal notations, decisions of the translator, influence
of pedagogical, philosophical or mathematical context) in order to provide
an account of the development of the manuscript. Since the history of the
text serves to justify the choices made in its establishment (see the flow-
chart, in Figure 1.1 above), it must be understood how the two aspects of
the philological work are articulated.
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In the case of the Elements, the group of sources which constitutes the indi-
rect tradition is rich. First of all, in the case of citations by ancient authors,
the Elements received commentaries on several occasions (namely, by Heron
of Alexandria, Pappus of Alexandria, Proclus of Lycia, Simplicius (?)).!” The
Elements were also used abundantly by the authors of late antiquity. Some
extracts of several of these commentaries are found in the thousands of
marginal annotations contained in the manuscripts of the text. Moreover,
tracing the indirect tradition of the translations, quotations and commen-
taries in languages other than Greek is practically unmanageable, even
when the task is limited to ancient and medieval periods. Consequently, it is
impossible to imagine an exhaustive textual history undertaken by a single
individual.

The first task for whoever wants to edit the text will be to limit the
pertinent information, in a way that is not only selective enough to be
operational, but also wide-ranging enough that no essential elements are
left behind. In the matter of editing a Greek text, in Greek, it is reasonable
that the philologists privilege the direct tradition of manuscripts and papyri
for the establishment of the text. They also emphasize the obvious limits of
the different elements of the indirect tradition. Whether the quotations are
in Greek or not, philologists note that the citations were sometimes made
from memory. As for the translations, they introduce into the process of
transmission not only the passage from one language to another in which
the linguistic structures may be somewhat different, but also the prelimi-
nary operation of the comprehension of the text, which is not necessarily
implied for a professional copy. Indeed, there is even something about
which to be happy when the Greek text no longer exists. Hellenists are
generally grateful to the Latin, Syriac, Arabic, Persian, Armenian and
Hebrew translators for having preserved whole fields of ancient literature.
In the case of mathematics, the medieval Arabic translations have had great
importance for our knowledge of Apollonius, Diocles, Heron, Menelaus,
Ptolemy and Diophantus, to mention only the best-known cases. These
examples suggest not only that the savants of the Arab world had assidu-
ously sought out Greek manuscripts — indeed, they have borne frequent
witness to this subject — but also that they had some skill in finding them
in formerly Hellenized areas. The decline of Greek as a scientific language
and the ascendancy of Syriac and then Arabic made translation necessary.

The possibility is thus foreseen that, in so doing, these translations
had preserved an earlier state of the text than that transmitted by the

!5 The first and last are accessible indirectly, thanks to the Persian commentator an-Nayrizi.
Heron is also cited several times by Proclus.
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manuscripts elaborated in the Byzantine world. Consequently, important
decisions must be made about instances in which the medieval translations
show important textual divergences from the version of the same work pre-
served in Greek. As we will see, it is exactly this situation which occurs in
the case of the Elements of Euclid.

In the case of such divergences, at least two explanations may be
imagined:

(1) The medieval translators took great liberties with the text, and they did
not hesitate to adapt it to their own ends.

(2) Their versions were based on Greek models appreciably different from
those which we know. Thus, we can imagine that these models were
(i) more authentic, or, (ii) on the contrary, more corrupt, than our
manuscripts.

In either case, it will be necessary to make an account of the history of the
text, to establish the innovative informality or rigorous fidelity of the trans-
lators, to account for the methods and the context of the transmission. It is
clear that, within the framework of hypotheses 1 or 2(ii), translations will
not be taken into account in the establishment of the text. But if we prove
that the translators scrupulously respected their models (non 1), which
were less corrupted (2(i)) - let us remain realistic, though - what then?

The textual inventory in the case of the Elements

In order to produce his critical edition (1883-8), Heiberg had (partially)
collated about twenty manuscripts. He continued this task for fifteen years
after the publication of the aforementioned edition, extending the scope
to nearly thirty other manuscripts. He compared his edition with papyrus
fragments, as they were discovered.'® In order to establish his text, he
used seven of the eight manuscripts from before the thirteenth century.
He systematically explored the indirect tradition of quotations by Greek
authors and the tradition of fragments of ancient Latin translation. As for
the medieval versions, they were not particularly well known. Heiberg used
several previous works and, as far as the phase of Arabic translations of the
ninth century was concerned, he accepted the description published by
M. Klamroth in 1881, at which time he inventoried the materials useful

'o See Heiberg 1885 and Heiberg 1903.

17" At the time when he edited the chapter devoted to the medieval Arabic history of the text of
the Elements in Heiberg 1882, he seems not to know Klamroth 1881, which he later criticized
in his 1884 article.
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for the establishment of his edition. A debate — but not to say a polemic'® —
between the two scholars followed on the subject of the obligation of
recognizing the value of the indirect tradition from the medieval era.

At any rate, Heiberg knew that there had been at least two Arabic
translations, that of al-Hajjaj (produced before 805 and modified by the
author for the Kalif al-Ma'mun between 813 and 833), then that of Ishaq ibn
Hunayn (1910-11) revised by Thabit ibn Qurra (+901). Klamroth believed
himself to have the al-Hajjaj version for Books 1-v1 and x1-x111 and that
of Ishaq for Books 1-x. The Hebrew and Arabo-Latin translations likewise
began to be studied. Heiberg also knew (especially) about several recensions
(falsely) attributed to Nésir ad-Din at-Ttsi (1201-73) and that of Campanus
(+1296).1°

From the comparison of Greek manuscripts produced by Heiberg and
from the statement that Klamroth had furnished concerning the Arabic
Euclid emerges an assessment of the situation which I will describe roughly
in the following way:

o For the ‘direct’ Greek tradition, it is necessary to distinguish two versions
of the text in the collection of the thirteen Books of the Elements, and
even three for x1.36-x11.17. A simple structural comparison of the
manuscripts is sufficient to establish this point. The two divergent ver-
sions of the complete text?’ are represented on the one hand by the man-
uscript Vaticanus gr. 190 (P) - the oldest complete manuscript — and, on
the other, by the strongly connected BFVpqS manuscripts,”' as well as
the Bologna manuscript (denoted as b),* for the whole of the text, save
the section x1.36-x11.17. In these twenty-one Propositions, the Bologna
manuscript presents a structure completely different from that of P and
BFVpqsS, which on the whole are less divergent from each other than
they are with respect to b.

o For the indirect tradition of the Arabic translations, the report of
Klamroth was that there was a considerable difference between the Greek
and Arabic traditions. This difference went beyond the scope of the

I allow myself to recall the first part of Rommevaux, Djebbar and Vitrac 2001: 227-33 and
235-44, in which I analyse the arguments of the two parties.

For a synthesized presentation of the Arabic, Arabo-Latin and Arabo-Hebrew traditions as
they are known today, see Brentjes 2001a: 39-51 and De Young 2004: 313-23.

This is what I have termed ‘dichotomy 3’ (see Appendix, Table 3).

Codex Bodleianus, D’Orville, 301 (B), Codex Florentinus, Bibl. Laurentienne, xxvriir, 3 (F),
Codex Vindobonensis, philos. Gr. 103 (V); Codex Parisinus gr. 2466 (p); Codex Parisinus gr.
2344 (q); Codex Scolariensis gr. 221, F, 111, 5 (S). The sigla used here are the same as those used
by Heiberg.

Codex Bononiensis, Bibl. communale, n°. 18-19.

20
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unavoidable variations between manuscripts. Klamroth further declared
that the Arabic tradition was characterized by a particular ‘thinness’ and
several structural alterations in presentation (specifically, in modification
of order, division or regrouping).”

The history of the text of the Elements in antiquity

Let us consider now the history of the text of the Elements. Starting with
these inventories, let us examine the interpretation of the different pieces of
evidence which our two scholars proposed. The interpretation of Klamroth
is simple: the ‘thinness’ of the Arabic (and Arabo-Latin) tradition is an
indication of its greater purity. The textual destiny of the Elements has been
the amplification of its contents, particularly for pedagogical reasons. The
medieval evidence about the translators’ methods and the context in which
they worked shows that the medieval translators had a real concern about
the completeness of translated texts. The gaps (with respect to the Greek
text) cannot be ascribed to negligence on the part of these translators.
The additions are interpolations in the Greek tradition. Consequently, for
Klamroth, it is necessary to take the indirect tradition into account, not
only for the history of the text, but also in the establishment of the text.**

The history of the text proposed by Heiberg is completely different. This
history is clearly dependent on the way in which the transmission of the
Elements was conceptualized by Hellenists since the Renaissance, particu-
larly since the Latin translation produced by Zamberti, taken directly from
the Greek and published at Venice in 1505.% The presentation of this last
work raised two essential questions:

(1) For Zamberti, the ‘return’ to the Greek text was a remedy for the
abuses to which the text had been subjected in medieval editions. The
focus of his concern was the then highly renowned Latin recension of
Campanus. This edition had just been printed at Venice in 1482 and
was itself composed from an Arabo-Latin translation. A debate arose
about the (linguistic and mathematical) competence of the translators
and the quality of the models which would establish for quite some
time the idea that the indirect medieval tradition could be discarded.

(2) Zamberti presented his Elements as if the definitions and the state-
ments of the propositions were due to Euclid, while the proofs were

* He thus identified a well-established line of demarcation between the direct tradition and the
indirect tradition. I have named this distinction ‘dichotomy 1’ (see Appendix, Table 1).

' Generally, this position has been taken up by Knorr in his powerful 1996 study.

* See Weissenborn 1882.
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attributable to Theon of Alexandria. In fact, we have a (single) example of
this authorial division. Theon indicates explicitly, in his Commentary to
the Almagest, that he had been given an edition of the Elements and that
he had modified the last Proposition of Book v1 (v1.33 Heib.) in order
to append an assertion concerning proportionality of sectors and arcs
upon which they stand in equal circles. Zamberti’s attribution of proofs
to Theon was undoubtedly inferred from the glosses ‘of the edition of
Theon (ék Tfjs Ofwvos ékdooews)’ marked on the Greek manuscripts
used by him. Consequently, since it was understood that Theon had
re-edited the Elements in the second half of the fourth century of our
era, the question arose of what ought to be ascribed to Euclid and what
ought to ascribed to the editorial actions of Theon. For someone like
R. Simson (1756), the answers were particularly clear. All that was
worthy of admiration originated with Euclid; all the deficiencies were
due to the incompetence of the re-editor.

Thus, the debate on the subject was open. When E Peyrard, around
1808, undertook to check the Greek text for his new French translation
of Elements which was based on the Oxford edition of 1703, he discov-
ered among the manuscripts which had been brought back from Italy by
Gaspard Monge (after the Napoleonic campaigns) a copy belonging to the
Vatican Library (Vaticanus gr. 190), which contained neither mention ‘of
the edition of Theon’ nor the additional portion at v1.33 and which dif-
fered considerably from the twenty-two other manuscripts known to him.
From this divergence, he deduced that this manuscript, unlike the others,
preceded the re-edition of Theon and that it moreover contained the text of
Euclid!*® He at once decided to make a new edition of the Greek text.

Heiberg accepted (with some reworking) the interpretations of Peyrard,
particularly the idea that all the manuscripts with the exception of Vaticanus
gr. 190 were derived from Theon’s edition. He called these the “Theonine’*’
As for the Vatican copy, he was more careful. Heiberg noted that the copyist
admits in the margins of Proposition x1.38 vulgo*® and Proposition X111.6 to
have consulted two editions, one ‘ancient’ and the other ‘new’. Proposition
XII1.6 existed in the first but was missing in the other. Exactly the oppo-

% Peyrard 1814: xiii, xxv.

7 Consequently, in the following, I will use the abbreviation Th to designate the aforementioned
family of manuscripts.

% Several Propositions appearing in the editio princeps (and reproduced in the following
editions) were discarded by Heiberg who designated them in this way lest there be some
confusion in numbering. x1.38 vulgo was No. 38 in the preceding editions. It was rejected by
Heiberg in the Appendix. His Proposition 38 was thus No. 39 in the previous editions.
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site was the case for Proposition x1.38 vulgo. Heiberg considered that the
manuscript — which he would call P in homage to Peyrard - had been pro-
duced beginning with at least two models, one of which was pre-Theonian,
and the other was Theonian. His edition was thus founded on the compari-
son of P with Th and on an examination of the total or partial agreement
or disagreement between the two families.”” From there, he claimed he
had determined the editorial actions of Theon of Alexandria, and passed
severe judgement on the changes. Theon’s re-edition of the Elements did not
compare favourably with the editions of the great poetical texts produced
by the Alexandrian philologists of the second and third centuries before the
modern era.”

If we return to the terms of our previous line of reasoning and if
we accept this history of the text, we ought to distinguish two textual
archetypal manuscripts: the first representing the re-edition of Theon and
realized in the 370s, and the second corresponding to the pre-Theonine
model called P. However, the alterations which Theon is supposed to have
effected on the text, as deduced by a comparison with the manuscript P, are
so limited that with a few exceptions (which are listed in the Appendices),
Heiberg believed he could combine the two versions in one text with a
single apparatus criticus.

For the divergent Greek text (b x1.36-x11.17), his solution was somewhat
different. It seems that the discovery of this manuscript must be attributed
to Heiberg in the context of the previously mentioned debate. In an 1884
article, he presented this new Greek evidence, taking the opportunity
to respond to the arguments presented by Klamroth. The reason for his
approach was that this ‘dissenting’ Greek text and the Arabic translations
are incontestably related in this portion of the text. Precisely this incom-
plete but incontestable structural agreement in opposition to the tradition
in P + Th constitutes the principal argument in the article by W. Knorr.
However, noting that the text of b, copied in the eleventh century and
also Theonine, is particularly deficient in section x1.36-x11.17, Heiberg
introduced into the history of the text a Byzantine redactor, the author
of an abridged version of the Elements, in order to explain the difference.
From this abbreviated work was derived b x1.36-x11.17 and the models
used by the Arabic translators. The consequences for the edition of the text
were clear. Aside from some specific references to the Latin recension of
Campanus, the indirect medieval tradition which had been connected from

» See EHS: V, 1, XXV—XXXVi.
30 1viii. The comparison is irrelevant: see Rommevaux, Djebbar and Vitrac 2001: 246-7.
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the beginning to a lower-quality model was not taken into account by the
Danish editor. The portion b x1.36-x11.17 was relegated to Appendix II of
Volume 4 of the edition, together with portions of the text which Heiberg
deemed inauthentic.

In other words, his decisions (or rather his non-decisions) resulted in
a critical edition that can be described as ‘conservative’ In order to clarify
the meaning of this term, let us recall that the Greek text had undergone
five editions in recent times: the editio princeps by S. Grynée (Béle, 1533),
the edition by D. Gregory (Oxford, 1703), the edition by F. Peyrard (Paris,
1814-18), that of E. F. August (Berlin, 1826-29) and finally Heiberg’s own
edition. I do not intend to examine in detail their respective merits, but
two or three facts are clear. The first two editions were produced from
manuscripts belonging to the family later characterized as ‘Theonine.
Despite the many discussions of the sixteenth century, 170 years had
passed before the appearance of a new edition, which Peyrard judged to be
no better than the preceding!

At any rate, Peyrard’s edition scarcely agrees with his history of the text.
After he affirmed that the Vatican manuscript contained the text of Euclid,
he continued to follow the text of the editio princeps of 1533 (and thus
the Theonine family of texts) in several passages where the divergences
are especially well-marked. The quest for authenticity was not of primary
importance. It was more important to present a mathematically correct
Euclid. We may suppose that it is for this reason that Peyrard continued to
follow the Theonine family which is more correct in the case of 1x.19 and
more general in the case of x1.38, but privileged P which is (apparently) less
faulty in the case of 111.24 and more complete in the case of x111.6. Peyrard
also wanted his edition to be easy to use. Quite bluntly, Peyrard admits to
having retained what is now designated as Proposition x.13 vulgo lest he
introduce a shift in the enumeration of the Propositions of the book with
respect to the previous editions — even though this proposition is omitted
in P and is clearly an interpolation! More generally, he preserves most of
the additional material (various additions, lemmas, alternate proofs) which
P would have been able to dismiss as inauthentic had it been taken into
account.

It was not until the edition of Heiberg that the primacy of manuscript P
was truly assumed. A large part (but not all!) of the material thereafter con-
sidered additional was added to the Appendices inserted at the end of each
of the four volumes. Whenever the textual divergence is marked and the
result (in Th) is identified as the product of a voluntary modification, the
reading of P is retained, even if this destroys the mathematical coherence,
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as in the previously mentioned example of 1x.19.°! Contrary to Peyrard,
Heiberg does not admit that Euclid could have provided several proofs for
the same result, which would constitute what I have called above an ‘autho-
rial variation. We will return to this important topic later. For now, let us say
simply that the criteria of Heiberg are simple. In the case of double proofs,
he retains as the sole, authentic proof that which occurs first in P, whether
it is better than the other or not.

The limitations of this edition thus result from the adopted history of the
text and the resulting principles of selection, while the merits of the edition
derive from a more coherent observation of these choices than Peyrard
managed. Another (and not the least) of its merits is that the text as pub-
lished corresponds rather well with something which had existed, namely
manuscript P of the Vatican,*” whereas the archetypal texts reconstituted
by the modern editors of ancient texts are sometimes nothing more than
fictions or philological monsters. What it represents with respect to the
ancient text is more uncertain. The incidental remarks of the copyist of P
already suggest a certain contamination between (at least) two branches of
the tradition.

Until the 1970s it was believed that the manuscripts resulting from the
transliteration were faithful copies of ancient models, with the only change
being the replacement of one type of writing with another. Nowadays belief
in this practice is not so sure, and there are even a number of cases in which
it may be frankly doubted.”” We will see an argument (see below, p. 111)
which casts doubts on the two oldest witnesses of the Elements (P and B).
Let us assume that the copyist of P followed what was termed the ‘ancient
edition] and that he compared the ‘ancient edition’ with the ‘new edition’
only after the copying. (Indeed, there is a good probability that this was the
case.) Even so, our faith in the antiquity of the text produced in this way
depends entirely on the confidence accorded to the history of the text pro-
posed by Heiberg. In particular, the strength of the argument rests on the
validity of the interpretation he proposes for the distinction between P and
Th in connection with the re-edition by Theon of Alexandria, around 370.

This history was accepted by T.L. Heath and J. Murdoch - who have
significantly contributed to its diffusion - and thus by the majority of
specialists. Disconnectedly and periodically challenged, this history was

*" See Vitrac 2004: 10-12.

% In a certain number of passages, and more generally for minor variants, Heiberg preserved the
text of the Theonian family. Cf. the list that he gives in EHS: v, 1, XXXiv-XXxV.

See Irigoin 2003: 37-53. The (very illuminating) example from the Hippocratic corpus is the
object of the article reproduced on pp. 251-69 (original publication 1975).

33
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thoroughly called into question by W. Knorr in his article of 1996. In
particular, our late colleague there affirms that all the preserved Greek
manuscripts depend on the edition of Theon, that the differences between
the Vatican manuscript and the Th family are microscopic, and that these
differences are not characteristic of a re-edition. Stated differently, if the
opinion of Knorr is adopted, the Euclid edited by Heiberg ought to corre-
spond, at best, to the text in circulation at Alexandria in the second half of
the fourth century of our era.

The arguments of Knorr are not all of the same value - far from it.** The
difference between P and Th is real. It is not a question only of divergences
attributable to errors by the copyist which philologists try to dismiss. The
reader can convince himself of the extent of differences between P and Th
by consulting the list which I give in Table 3 of the Appendix. However,
it should also be emphasized that there is not, in this internal dichotomy
in the Greek, any substitution of proofs (!), any change in the order of the
Propositions, or any Lemma which exists in one of the two versions but not
in the other. When there are double proofs, the order is always the same as
in P and in Th.

At the present stage of my work, I see only two solutions: (i) to adopt
Knorr’s opinion, or (ii) to conclude that the goal of Theon’s re-edition was
not a large-scale alteration. About Theon’s motivations, we know next to
nothing. He presents us with a single indication relating to the contents (the
addition at v1.33). It is possible, for example, to conceive of the hypothesis
that Theon’s re-edition was in fact the transcription of the edition(s) written
on scrolls into a version in the form of a codex or codices. If the text of the
previous vulgata appeared satisfactory to him, the goal would not have
been to propose a different mathematical composition, but to revitalize
the treatise by adopting a new format for the old book. The second half of
the fourth century represents a relatively late date, but it is known that the
pagan circles sometimes resisted innovations which seemed to meet with
their first successes in Christian quarters.*> And, what is known, if not
about Theon himself, then at least about his daughter Hypatia, suggests that
he was connected with pagan, neo-Platonic intellectual circles. Moreover,
even if this explanation is adopted, nothing guarantees that he was the
first to unfold this way, nor that he was the only one. On the other hand,
it is certain that this version played an important role in the transmission
of the Elements, as is proven by the statements contained in the family of
manuscripts titled Th.

** See Rommevaux, Djebbar and Vitrac 2001: 233-5 and 244-50.
35 See van Haelst 1989: 14, 26-35.
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The second scenario which might account for the limited but real varia-
tion shown between P and Th satisfies me more than Knorr’s reconstruction.
We have only two criteria external to the text by which we can understand
the aforementioned re-edition: the glosses ‘of the edition of Theon (& Tfs
©éwvos ékdooews)’ and the presence or absence of the addition at vi.33. We
have so little information about the history of the text*® that it is a little too
daring to throw out some part of our information without external support
for the decision. As for the problem discussed here, I do not believe that my
hypotheses change anything regarding the state of the texts that the Greek
manuscripts enable us to establish. It is probably approximately the text as
it circulated around the turn of the third and fourth centuries of our era. Is
it possible to advance from here? With regard to the edition of a minimally
coherent Greek text, I am not sure. However, other sources clarifying the
history of the text are provided to us, thanks to the indirect tradition and,
in this arena, our situation is a little more favourable than the time-frame of
the Klamroth-Heiberg debate.

New contributions to the textual inventory

With regard to the indirect tradition of the quotations by Greek authors, we
have two more valuable sources:

o The Persian commentator an-Nayrizi has transmitted to us a certain
number of testimonies about the commentaries of Heron and Simplicius,
whose original Greek texts are now lost. Some of them provide interesting
information about the history of the text.”” Heiberg had taken note of this
evidence. He had even taken part in the edition of Codex Leidensis 399
through which the commentary was first known, although this edition
was produced after Heiberg’s edition of the Elements. He gives an analysis
of these new materials, among other things, in an important 1903 article.

o In the same vein, he had nothing except a very fragmentary knowledge
about the commentary on Book x, attributed to Pappus and preserved
in an Arabic translation by al-Dimashqi, from which Woepcke, around

3

In this regard, the indirect medieval tradition, so rich in new textual variants, teaches us
nothing about the history of the text during antiquity, particularly about the existence or not
of several editions of the Elements.

7 In the case of Heron, see Brentjes 1997-8: 71-7; in this article Brentjes suggests that other
Arabic authors knew about the commentary by Heron independently of an-Nayrizi, in
particular Ibn al-Haytham. In Brentjes 2000: 44-7, she shows that it is probably true for
al-Karabisi, also. Heron proposed a number of textual emendations, among other things. See
Vitrac 2004: 30-4.
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1855, published only extracts. Thenceforth, the text was edited and trans-
lated into multiple languages.*®

In the course of the two decades during which Heiberg worked on the
tradition of the text of Euclid, new information, accessible thanks to the
indirect tradition,* could have led him to alter certain editorial decisions
made in the years 1883-6 at the time when he argued with Klamroth.
These alterations might have stemmed notably from taking into account
manuscript b (in the portion where it diverges) and the indirect medi-
eval tradition. The works which he published in the years 1888-1903 are
indispensable to those who use his critical edition. Regrettably, Heiberg
did not produce a second revised edition, as he did for Archimedes, after
the discovery of the so-called Archimedes Palimpsest.*” This text gave
access to the previously unavailable Greek texts of On Floating Bodies and
The Method of Mechanical Theorems. To his eyes, the necessity of a revised
edition was probably much smaller in the case of the Elements of Euclid,
but the resumption of such a work would perhaps have led him to revise his
position concerning the indirect medieval tradition.

We know this tradition somewhat better than Klamroth or Heiberg,
thanks to a more developed textual inventory. At least a score of manu-
scripts of the version called Ishag-Thabit have been identified today,*
whereas Klamroth knew only two! Multiple works on the methods and
contexts of medieval translations from Greek into Syriac or Arabic, or from
Arabic into Latin or Hebrew, either in general or more directed toward
mathematical texts, including the Elements, have been undertaken. Busard
has published seven Arabo-Latin versions from the twelfth and thirteenth
centuries*’ as well as a Greco-Latin version from the twelfth century dis-
covered by J. Murdoch.* We even have partial editions of the Books v and
* See notably Thomson and Junge 1930. It might be argued that this partial knowledge led
Heiberg to some debatable conclusions concerning the collection of the “Vatican’ scholia (see
Vitrac 2003: 288-92) and the pre-Theonine state of the text of Book x (see Euclid/Vitrac, 1998:
111 381-99). Let us add that the integrity of the text attributed to Pappus and the uniqueness of
the author (pace Thomson and Junge 1930) are not at all certain (see Euclid/Vitrac, 1998:111:
418-19).

It ought to include the new information contained by the scholia found in the margins of the
Greek manuscripts and we once again know about these sources thanks to the monumental
work of Heiberg. See EHS, v, 1-2 and Heiberg 1888, to which should be added Heiberg 1903.
Regrettably, in his ‘revision’ (EHS), Stamatis did not supplement ‘Heiberg with Heiberg.

See Folkerts 1989 (with the corrections of Brentjes 2001: 52, n. 13). Some of these manuscripts
contain fragments attributed to the translation by al-Hajjaj.

Respectively Busard 1967-1972-1977 (HC), 1983 (Ad. I), 1984 (GC); Busard and Folkerts
1992 (RC); Busard 1996, 2001 (JT), 2005 (Campanus). Complete references are provided in the
bibliography.

Busard 1987.
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vii-1x from the so-called IshAq-Thabit version.** A second manuscript of
the commentary by an-Nayrizi made it possible to complete the evidence
from the (mutilated) Codex Leidensis regarding the principles in Book 1.*°
Several other commentaries (al-Mahani,*® al-Farabi,*” Ibn al-Haytham,*
al-Jayyani,” ‘Umar al-Khayyam®’) have also been edited, translated and
analysed. The wealth of materials since made available is exceptional. It
is obvious that the history of the text of the Elements during the Middle
Ages and perhaps even from the beginning of the Renaissance ought to be
entirely rewritten.

This is clearly not what I propose to do in the remainder of this chapter,
as this task surpasses my competence. I will adopt a more limited perspec-
tive and focus on more modest aims. What does this renewed knowledge
about the indirect tradition teach us about the history of the text in an-
tiquity, more particularly about the redaction of mathematical proofs?
What are the limits?

In so doing, I attempt to explore the consequences of the hypotheses
put forth by Knorr. In his striking 1996 study, knowing that I was in the
process of carrying out an annotated French translation (which was then
partially published), he suggested that I compare the Greek text established
by Heiberg with that of two Arabo-Latin translations, the first attributed to
Adelard of Bath and the second ascribed to Gerard of Cremona, the former
composed around 1140, and the latter about 1180.

Knorr was convinced that these versions transmitted to us a text less
altered than the one contained in the Greek manuscripts. He believed that it
was possible to reconstitute a Greek archetype from the group of medieval

* Engroff 1980; De Young 1981.

%> See Arnzen 2002. See also the new partial edition of the Latin translation by Gerard of Cremona,
initially published as vol. 1x of EHM: Tummers 1994. The preserved Arab and Latin versions of
the text of an-Nayrizi may be described as passably divergent. See Brentjes 2001b: 17-55.

Risdla li-al-Mahani fi al-mushkil min amr al-nisba (Epitre dal-Mahani sur la difficulté relative
a la question du rapport). Edition and French translation in Vahabzadeh 1997. Reprinted, with
English translation, in Vahabzadeh 2002: 31-52; Tafsir al-maqdla al-dshira min kitab Uglidis
(Explication du Dixiéme Livre de louvrage d’Euclide). Edition and French translation in Ben
Miled 2005: 286-92.

Sharh al-mustaglaq min musadarat al-maqdala al-ila wa-1-hamisa min Uglidis. The text was
translated into Hebrew by Moses ibn Tibbon. See Freudenthal 1988: 104-219.

Sharh musdadarat Uqlidis. Partial edition, English translation and commentaries in Sude 1974.
Magqala fi sharh al-nisba (Commentaire sur le rapport). Facsimile of manuscript Algier

1466/3, fos. 74r-82r and English translation in Plooij 1950. Edition and French translation in
Vahabzadeh 1997.

Risala fi sharh ma ashkala min musadarat Kitab Uqlidis (Epitre sur les problémes posés par
certaines prémisses problématiques du Livre d’Euclide). French translation in Djebbar 1997 and
2002: 79-136. Edition of Arabic text with French translation in Rashed and Vahabzadeh 1999:
271-390.
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translations. This hypothetical archetype represented the state of the text
prior to the re-edition of Theon, a re-edition from which he believed any
of the preserved Greek manuscripts stemmed. The adoption of this point,
one suspects, would overturn the entire ancient history of the text and
have grave consequences for the establishment of the text, not only at the
structural level, but also for the redaction of each proof as is shown in the
example of x11.17 analysed in detail by Knorr.

In order to present my results (and my doubts), I must first give the
reader some idea of the size and nature of the collection of textual diver-
gences found by the comparison of the direct Greek tradition with the
indirect medieval tradition.

Extent and nature of the textual divergences between versions
of the Elements

Typology of deliberate structural alterations

It is obviously not possible either to give an exhaustive list of deliberate
alterations which the text of the Elements has undergone or to detail the
relatively complex methods of detection and identification of specific
divergences. I am not interested in the variants that the philologists use:
variant spellings, small additions and/or microlacunae, saut du méme au
méme, and dittographies (that is, reduplications of lines of text). The errors
shared between copies of the same text make it possible to establish the
genealogy of manuscripts. They constitute textual markers, all the more
interesting because they are reproduced by generations of copyists who did
not notice them because they could not understand the text or did not try
to understand it.

I have tried to determine the variants which are connected with the
deliberate modifications made by those responsible for the re-edition of
the Greek text or the possible revisers of the Arabic translations, such
as Thabit ibn Qurra, not those related to the ‘mechanical” errors directly
associated with the process of copying. This concern goes particularly for
the global modifications of proofs.” When such variations existed among
the Greek manuscripts, they had a good chance of surviving the process
of translation. Even the structure of the text of the Elements, composed

°1 For the local variants of the Greek text, another phenomenon must be taken into account: the
multiple uses of the margins of manuscripts after the adoption of the codex. See Euclid/Vitrac
2001: 1v 44-5.
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of rather easily identifiable textual units, facilitates this work. In the same
way, the formulaic character of Greek geometrical language has been main-
tained in the translations and permits the identification of local variants
which would probably be more difficult in a philosophical or medical text.

My sample size is sufficiently large to propose a typology, although the
qualitative considerations are provisional and clearly depend on the given
range of the analysed corpus.” In the absence of critical editions of the
Arabic versions and in accounting for the multitude of recensions, epito-
mes and annotated versions inspired by Euclid’s work, we cannot pretend
to determine with any degree of certainty the extent of the corpus to be
taken into consideration. For the present purposes, I use the various com-
ponents of the direct tradition, the so-called Greco-Latin version® and
the available information concerning the Arabic translation attributed to
Ishaq ibn Hunayn and revised by Thabit ibn Qurra, as well as the fragments
attributed to al-Hajjj in the manuscripts of the Ishaq—Thabit version, the
Arabo-Latin translations attributed respectively to Adelard of Bath and
Gerard of Cremona. This group corresponds to what the specialists of the
Arabic Euclid call the ‘primary transmission, in order to distinguish it from
the secondary elaborations (recensions, epitomes, ...).”*

I currently work with a list of about 220 structural alterations of which
the principal genres and species appear in Figure 1.2. They relate to well-
defined textual units: Definition, Postulate, Common Notion, Proposition,
Case, Lemma, Porism, even a collection of such units, particularly when
there is a change in the order of presentation. The debate which divided
Klamroth and Heiberg in the 1880s concerned a corpus of this genre, itself
strongly determined by the indications provided in the medieval recen-
sions such as those of Nasir at-Din at-Tasi and of the author known as
pseudo-Tasi.>

The ‘global/local’ distinction is necessary because of the question of the
proofs. It is easy to identify the phenomenon of double proofs. Generally

<

the second proofs are introduced by an indicator ‘@AAws’ (‘in another way’)

°2 T add that the information which I have gleaned about the medieval Arabic (and Hebrew)
tradition is second-hand and depends on the accessibility of the publication or the goodwill
with which my friends and colleagues have responded to my requests. Particular thanks are
due to S. Brentjes, T. Lévy and A. Djebbar.

A very literal version, directly translated from Greek into Latin in southern Italy during the
thirteenth century, discovered and studied by J. Murdoch in 1966 and edited by H. L. L. Busard
in 1987.

% See Brentjes 2001: 39-41 and De Young 2004: 313-19. Other information is likewise accessible,
thanks to the Greek or Arabic commentators, as well as through the scholia in Greek and
Arabic manuscripts.

See Rommevaux, Djebbar and Vitrac 2001: 235-8 and 284-5.
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DELIBERATE ALTERATIONS
|
[ |

Addition/Suppression of Material Modification of Presentation
I
[ I I
Change in Order Change of Status Different
Formulations

Fusion of 2 Propositions into | Alteration o Proofs
Division of 1 Proposition into 2 |

Global Local
| [ |
Addition/Suppression Stylistic Logical
of Cases Interventions Interventions
Substitution of Proof Abridged Construction

or Shortened Proof
Double Proofs (Existence of Alternative Proof)

Figure 1.2 Euclid’s Elements. Typology of deliberate structural alterations.

or ‘f kai oUTeos ..." (‘Or, also thus ...).°° In the same way, in the Arabo-
Latin translation of Gerard of Cremona, the great majority of the second
proofs are explicitly presented as such, thanks to indications of the type ‘in
alio libro ... invenitur’ (‘in another book is found ...). On the other hand
the identification of proofs as distinct is much more delicate when it is a
question of comparing two solitary proofs appearing in different versions -
for example, when one compares a proof from a Greek manuscript and its
corresponding proof in the Arabic translation, or one from Adelard of Bath
and the other from Gerard of Cremona. The intricacies of the manuscript
transmission prevent two proofs which have only minimal variations from
being considered as truly different. If this were not so, there would be as
many proofs of a Proposition as there are versions or, even, manuscripts!
This is why it has proven necessary to introduce the division between
local and global. Ideally, it ought to be possible to identify the ‘core argu-
ment’ which characterizes a proof and to distinguish it from the type
of ‘packaging’ which is stylistically or didactically relevant but which is
neither mathematically nor logically essential. The expression ‘substitution
of proof” (global modification) will be reserved for those cases where there
is a replacement of one core argument by another. The distinction between
‘core’ and ‘packaging’ is not always easy to establish, but it may be thought
that the distinction will be better understood if the different methods of
‘packaging’ have been previously delineated. In other words, in order that

%6 Nonetheless, there are confusions. Thus, the addition at v1.27 is introduced as if it were an
alternative proof (&AAws). See EHS: 11 231.2.
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the category of global differences - that is, substitution of proof - be well
defined, it is necessary also to propose a typology®’ of changes for which I
will reserve the qualifier local (see the figure 1.1 above).

Let us also give a few explanations or examples for the variations for
which the designation is perhaps not immediately apparent:

o There is a doubling when a Proposition concerning two Cases is replaced
by two distinct, consecutive Propositions. This expansion is observed in
the indirect medieval tradition for x.31 and 32, x1.31 and 34. The inverse
operation is fusion. Of course, these alterations are not the same as the
substitution of a proof. Thus, the doubling might correspond to a logical
or (in the case of very long proofs) pedagogical concern. Even stylistic
concerns might be represented, but they would not alter the mathemati-
cal content of the proofs.

» The change of status may, for example, affect a Porism (corollary). This
is the case of the Porism to Heib. x.72, transformed into an independ-
ent Proposition in the indirect medieval tradition. According to another
example, the (apocryphal) principle that ‘two lines do not contain an area’
is presented as Postulate No. 6 in some of the Greek manuscripts (PF), in
the translation by al-Hajjaj>® and in the work of Adelard, but as Common
Notion No. 9 in another part (BVb) of the direct tradition, in the transla-
tion of Ishaq-Thabit, and in the work by Gerard of Cremona.

o There is, for example, a different formulation in Proposition 11.14. The
translations of al-Hajjaj and the Adelardian tradition propose to present
the quadrature of a triangle, while the Greek manuscripts, the Ishaq-
Thabit and Gerard of Cremona translations undertake the quadrature
of an unspecified rectilinear figure. This is related to another category
of variations represented by the absence of Proposition 1.45 in the first
group of witnesses just mentioned. In the same way, the Porism to v1.19
is formulated differently in the manuscript P (for a figure) and in the
manuscript Th (for a triangle). Here, too, the variant is connected with
the existence of the Porism to v1.20, No. 2 (for a figure), found in only the
so-called Theonine manuscripts. The divergences may thus be correlated
at long range.

o As for the local variants with some possible logical and pedagogical
purpose, we will see some examples in what follows. Let us specify only
those which approach the category ‘abridged demonstrations. This cat-
egory concerns the use of proofs described as analogical proofs (AP) and

%7 See this point introduced in Euclid/Vitrac 2001: 1v 41-69, in particular the chart on p. 55.
¢ See De Young 2002-3: 134.
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potential proofs (PP) introduced by the formulae: ‘So also for the same
reasons ... (= ‘81& T& ot 8n kad ...”) (AP), ‘Similarly we will prove
(alternatively, it will be shown) that ... (= ‘6poics 81 SeiSopev (alter-
natively, Seixfnoetoan) 611...") (PP). These phrases refer to the desire to
shorten the text. The first is the equivalent of our mutatis mutandis; it
allows the omission of a completely similar argument with a particular
figure or elements from a different figure. The second is a false ‘prophecy.
It is invoked precisely not to have to prove in detail what it introduces.

The ‘abbreviated’” proofs are not uncommon in the Elements (they
number about 250), but in certain cases, it is easy to imagine that a later
editor has used this Euclidean stylistic convention to abridge his text. It is
rather striking that the Arabo-Latin versions are on the whole much more
concise than the Greek text and sometimes have complete proofs, where the
latter uses one of the formulae just cited. In Proposition x11.6, the version
carried by manuscript P uses a potential proof (‘Serx6noetar’), whereas that
of the so-called Theonine manuscripts advances an analogical proof (‘di&
T& a¥Td 81)). The appearance of these formulae is therefore not independ-
ent of the transmission of the text.”

Quantitative aspect

The 220 structural modifications in my database include: more than 60
Definitions out of about 130, 8 of 11 Common Notions, 29 of 35 Porisms,
41 of 42 Lemmas and additions, 173 Propositions of 474 (actually, 465 in
the Greek tradition) which is a little more than a third of the total.®® These
modifications are very unequally distributed through the Books, depend-
ing on the type of textual units. Taking a cue from medieval scholars, I have
grouped together the principal global variations according to three (not
completely, but almost) independent criteria:

(a) The presence or absence of certain portions of the text (35 Definitions,
8 Common Notions, 27 Porisms, 41 Lemmas and additions, 25
Propositions).

(b) A change in the order of presentation. There are roughly 30 which
relate to about 30 Definitions and more than 60 Propositions.

(c) The (structural) alteration of proofs. For now, I have listed about 80
which concern a little fewer than 100 Propositions.®!

% For other examples, see the references given in Euclid/Vitrac 2001: 1v 46-7, n. 51, 53.
0" Some relate to a group of Propositions, for a total greater than 220.
1 See Vitrac 2004: 40-2.



The Elements and uncertainties in Heiberg’s edition

In comparing Heiberg’s text with the text of the Arabo-Latin translations
by Adelard of Bath and by Gerard of Cremona, I have noted (at least) three

textual dichotomies (in decreasing order of importance):®*

Dichotomy 1: Edition Heiberg (v P) versus medieval tradition
(existence of 18 Definitions, 12 Propositions, 19 Porisms, all the
additional material (!), numerous changes in order, the majority of
substitutions of proofs)

Dichotomy 2 (in Books 1-x): Adelardian tradition versus Gerard of
Cremona translation (al-Hajjaj / Ishaq-Thabit?)*

(existence of 16 Definitions, 10 Propositions, 2 Porisms, some
changes in order, double proofs in GC)

Dichotomy 3: P versus Th
(existence of 3 Propositions, 2 Porisms, 3 additions, 2 inversions of
Definitions, several modifications)

To return to certain elements from our first part, the Heiberg edition
is founded on Dichotomy 3. The Danish editor refused to account for
Dichotomy 1 demonstrated by Klamroth. Knorr finally proposed an inter-
pretation somewhat similar to that of Heiberg. His interpretation was linear
and consisted of two terms (pre-Theonine/Theonine), simply replacing P
with the hypothetical Greek archetype which he believed possible to recon-
struct for the medieval tradition. Taking into account the information at
his disposal, Heiberg was not able to identify Dichotomy 2. Knorr appears
to have ignored it, which is at the very least surprising, as he declared
that the Arabo-Latin versions which he used (Adelard and Gerard) were
neither divergent, nor contaminated. This break in the indirect tradition
in Books 1-x dashes hopes of reconstructing a common archetype for the
indirect medieval tradition.* As for the local variants, they number in
the hundreds, probably amounting to 1000-1500 and concerning about
80 per cent of the Propositions in the Greek text. It might be thought that
a single instance of an analogical proof or a simple stylistic intervention in
a Proposition is hardly significant. If examples of this type are disregarded,
70 per cent of the Propositions from the Euclidean treatise nonetheless

2 For details, see the three tables given in the Appendix.

9 Accounting for the Arabo-Latin versions adds a supplementary difficulty from my point
of view (to return to the Greek) since it is a doubly indirect tradition. But the structural
divergences which we observe between Adelard of Bath and Gerard of Cremona nearly
always find an explanation in their Arabic precursors, in particular in the differences between
al-Hajjaj and Thabit, as they are described - for right or wrong - by the copyists, commentators
and authors of the recension (for example at-Tusi).

% Tt is particularly clear in Book x; see Rommevaux, Djebbar and Vitrac 2001: 252-70.
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remain, the difference being especially apparent in the arithmetical Books
VII-VIIL, as a matter of fact more ‘salvaged’ by these variants than the geo-
metric portions, in particular Book x and the stereometric Books.

An example of a local variant

The rather simple example which I propose is that of Proposition x1.1. It
shows how accounting for the indirect medieval tradition allows us to go
beyond the confrontation between P and Th to which Heiberg was con-
fined. The codicological primacy which he accords to the Vatican manu-
script is not inevitable because all Greek manuscripts, including P, have
been subjected to various late enrichments. It also probably indicates the
intention of these specific additions.

As with several other initial proofs in the stereometric books, in x1.1
Euclid tries to demonstrate a property he probably would have been better
off accepting (i.e. as a postulate) — namely, the fact that a line which has some
part in a plane is contained in the plane.® Here, the philological aspect inter-
ests me, even though the changes in the text were probably the result of the
perception of an insufficiency in the proof. The text is as follows:

(a)

EdvBeias ypopufs uépos pév T1 oUk EoTiv év T Some part of a straight line is not
UTTOKELUEV® ETTITIED W, PEPOS BE £V UETEWPOTEPW. in a subjacent plane and another
part is in a higher plane.

Ei y&p Suvatov, elbeios  For, if possible, let some part AB
ypowpfis TRis ABI pépos  of the straight line ABC be in
pév T1 1O AB EoTeo év TG the subjacent plane, another

UTroKeLuEVEY ETTITTES W, part, BC, in a higher plane.

wépos B¢ T1 1o BI év There will then exist in the
HETECOPOTEPCY. subjacent plane some straight
"EoTan 8¢ 115 7] AB line continuous with AB in a
ouvexs eUbeia straight line.

e0Beias év TGOV Let it be BD; therefore, of the
UTTOKEINEVEY ETITTESC). two straight lines ABC and ABD,
totw 1) BA™ 8Uo &pa the common part is AB; which is

eubeicov T@v ABIT, ABA  impossible,
KooV TUfjud éoTiv 1) AB”
Srep éoTiv &BUVATOVY,

> On the weaknesses of the foundations of the Euclidean stereometry, see Euclid/Vitrac, 4, 2001:
31 and my commentary to Prop. x1.1, 2, 3, 7.
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(b) Then the two textual families distinguished by Heiberg diverge:

P ¢meldnmep éQv KEVTP TS B kad Because, if we describe a circle with the
SiaoThpaTt TG AB KkUkAov ypdyawyey, centre B and distance AB, the
ai SidpeTpot dvioous &morypovtar  diameters will cut unequal arcs of the
ToU KUKAOU Trepi@epeias. circle

BFVb elfsia yop elfeic ol oupBaiel kara  for a straight line does not meet a
TAslopa onueia ) ko® év- el 8¢ pn, straight line in more points than one;
¢pappdoouctv oM Aals o evbeia. otherwise the lines will coincide.

(c) The general conclusion follows, then the closing of the theorem:

E¥Beias &pat ypapptis pépos uév T oUk Therefore, it is not the case that some part
EoTwv &v T Utrokelpéva EmiTréScy, pépos  of a straight line is in a subjacent plane and
B¢ &V UETEWPOTEPL” another part is in a higher plane.

Srep €de1 Beifan.®® Which is what was to be proved.

Conforming to the general rule which he follows, Heiberg has retained
the reading of P in his text, and he consigns the reading of the Theonine
manuscripts in his apparatus criticus.®” From the stylistic point of view, one
can see that:

 The two variants are what I call post-factum explanations because they
have the form ‘g, because p’, rather than ‘if p, then g’ The ‘cause’ (p) is
stated after the fact (q) of which it is supposed to be the cause.®®

o The variant P is introduced by the conjunction ‘¢meidnep, which is suf-
ficient to arouse suspicions about its authenticity.” Moreover, I call what
appears here an ‘active, personal, conjugated form’ (“ypdyeouev’) since
the normal Euclidean form of conjugation in the portion of the deduc-
tive argument is the middle voice,”® which reinforces the suspicion of
inauthenticity.

 See EHS: 1v: 4.8-5.3.

7 This same variant appears in the margin of P, but by a later hand, followed by the addition:
‘oUTws &v &AAo1s eUpnTal, Emerta 1O elbeias &pa ypaupdis (alternatively, this is found in
other [copies]: ‘Of a straight line ...).

See Euclid/Vitrac 2001: 1v 50, 56, 67-9.

There exist, in the text of Book x11 as edited by Heiberg, about fifteen passages introduced

by the conjunction ‘¢treidnmep’, all of which contain elementary explanations found neither

in manuscript b, nor in the Arabo-Latin translations by Adelard of Bath and by Gerard of
Cremona. In the whole of the Elements, 38 instances occur. As already indicated by Knorr 1996:
241-2, we know that there are relatively late interpolations in manuscripts used by Heiberg. A
posteriori, we can see that Heiberg considered seven of these passages interpolations on the basis
of criteria other than their absence in manuscript b and the indirect tradition.

70" See Euclid/Vitrac, 2001: 1v 47.
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Let us now consult the indirect medieval tradition, for example the

Arabo-Latin translation by Gerard of Cremona,”' compared to parts (a)

and (c) of the text edited by Heiberg:

Parts (a) and (c) of Heiberg’s text

Gerard of Cremona’s version

Edfeias ypopuns uépos uév T1 oUk EoTiv
&V TG UTTOKELMEVLD ETTITIES D, UEPOS BE TL

&V UETEWPOTEP.

Recte linee pars non est una in superficie et
pars alia in alto.

G

B

A

Quoniam non est possibile ut ita sit, quod
in exemplo declarabo.

El y&p Suvatdv, edbeias ypapuis T1s
ABI pépos pév 11 16 AB EoTw év &
UTTOKEIMEVQ ETTITTES W, MEPOS 8¢ T1 TO Bl
&V UETEWPOTEPW.

Si ergo possibile fuerit, sit pars linee ABG
que est AB in superficie posita et sit alia
pars que est BG in alto.

"EoTan 8¢ T1s Tf) AB ouveyrs eUfeia &’
eUBeias év T Utrokelpéved EiTedSco.
gotw 1 BA: dUo &pa edbeiddv tédv ABT,
ABA xowov tufjud éoTiv 1) AB”

Protaham ergo a linea AB in data superficie
lineam coniunctam linee AB

que sit BD. Linea ergo ABG est linea recta
et linea ABD est linea recta, ergo linea AB
duabus lineis BG et BD secundum
rectitudinem coniungitur.

Srep éoTiv ABUvaTo.

Quod est omnino contrarium.

Edvfeias &pa ypauuts uépos pév T1 oUk
EOTIV v T UTTOKELUEVED ETTITTES O, PEPOS
8¢ &V peTewpoTEPW”

Non est ergo linee recte pars in superficie et
pars in alto.

Srep Edel Bei€an.

Et illus est quod demonstrare voluimus.

Despite the Arabic intermediary, the reader will easily recognize the

faithfulness of this Latin translation to the Greek, with two exceptions:

o the Latin adds a clause intended to introduce an indirect reasoning

(a systematic characteristic shared with several manuscripts of the Ishaq-

Thabit translation)

« it has neither of the post-factum explanations of the Greek (part b).

71 Busard 1984: 338-9.
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It is possible to imagine (at least) two scenarios: either these post-factum
explanations are inauthentic, or the translator (or the editor Thabit), noting
the divergence among the Greek manuscripts and the deficiency of the
proposed explanations, refrained from retaining one or the other. In other
words, he has ‘cleaned up’ the text.

The mathematical deficiency of the explanation in P is obvious. It allows
the points ABCD to be co-planar. In order to prove the co-planarity of
lines ABC and ABD starting from the fact that they are secant (they even
have a segment in common), one would have to use x1.2 - which in turn
invokes x1.1! Thus, and this is Heiberg’s reading, an argument akin to lectio
difficilior may be implemented and the text of the Theonine manuscripts
may be declared an improvement. Hence, his editorial decision. This
scenario is hardly likely.

In fact, in certain manuscripts of the Th family, particularly V, there exists
a scholium proposing a proof of the impossibility of two straight lines having
a common segment, that is the concluding point of our indirect proof: 7>

For two straight lines, there is no common segment. Thus, for the two straight
lines ABC and ABD, let AB be a common segment, and on the straight line ABC,
let B be taken as the centre and let BA be the radius and let circle AEZ be drawn.
Then, since B is the centre of the circle AEZ and since a straight line ABC has been
drawn through the point B, line ABC is thus a diameter of the circle AEZ. Now, the
diameter cuts the circle in two. Thus AEC is a semi-circle. Then, since point B is the
centre of circle AEZ and since straight line ABD passes through point B, line ABD
is thus a diameter of circle AEZ. However, ABC has also been demonstrated to be
a diameter of the same AEZ. Now semi-circles of the same circle are equal to each
other. Therefore, the semi-circle AEC is equal to semi-circle AED, the smallest to
the largest. This is impossible. Thus, for the two straight lines, there is no common
segment. Therefore, [they are completely] distinct. From that starting point, it is
no longer possible to continuously prolong the lines by any given line, but [only]
a [given] line and, that because, as has been shown, [namely] that for two straight
lines, there is no common segment.

This scholium does not exist in P, but its absence may be explained if it
is the origin of the post-factum explanation, albeit in severely abbreviated
form, inserted in the text of the manuscript. Thus, there was no longer
need to recopy the aforementioned scholium. It is likely that the explana-
tions appearing in the Theonine manuscripts come from the insertion of an
abridgment of some (another) scholium into the text. There is even a chance
that we know the source of these marginal annotations. In his commentary
to Proposition 1.1, Proclus reports an objection by the Epicurean Zenon of

72 Cf. EHS: v, 2, 243.27-244.22.
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Sidon. The Euclidean proof of 1.1 presupposes that there is not a common
segment for two distinct straight lines,” precisely what is here declared to be
impossible. The commentator denies the objection, using three arguments,
the first and last of which are close to the contents of the two post-factum
explanations (in Th and P respectively), as well as to the scholia.”

In this example, there is every reason to believe that the first scenario was
the better one, that the ‘Euclidean’ proof of x1.1 was similar to that of the
indirect tradition. Heiberg could not have known the Gerard of Cremona
translation (discovered by A.A. Bjornbo at the beginning of the twenti-
eth century), but he could have consulted Campanus’s edition, which has
neither of the post-factum explanations.

It goes without saying that the difference, from a mathematical point of
view, is minuscule. However, from the point of view of the history and use
of the text, it is the number of alterations of this type - in the hundreds”™ -
which is significant. Additions like those which we have just seen regarding
xI1.1 have been introduced on different occasions, undoubtedly indepen-
dently of each other, since each version - including the Arabo-Latin trans-
lations which escape nearly uncorrupted by this phenomenon - has some
which are proper to it.”° This work of improvement undoubtedly owes much
to the marginal annotations eventually integrated into the text itself. Yet it
partially blurs the distinction between ‘text’ and ‘commentary..

For the majority of them, these additions ensure the ‘saturation” of the
text. The interpretation of the Elements which the annotators presuppose is
more logical than mathematical. Indeed, for them, Euclid’s text represents
the very apprenticeship of deduction more than a means for the acquisition
of the fundamental results of geometry. Even if the role of the marginal
annotations has probably been less effective in the case of structural diver-
gences, we will see that the purpose which they pursue — when it can be
determined - is frequently the same.

From the point of view of the history of the text, the abundance of these
sometimes independent improvements implies that for the Elements and for
certain other mathematical texts the methods of transmission were much
more flexible than those postulated by philologists whose model rests on the
tradition of poetic texts. It is not possible either to put the different examples
of a text in a linearly ordered schema (stemma) or even to admit the simple
primacy accorded to a manuscript, such as Heiberg accorded to P. Clearly,

73 See Friedlein 1873: 215.11-13, 215.15-16.

7+ See Friedlein 1873: 215. 17-216. 9.

75 For example, about 600 sentences are intended to point out a hypothesis or what was the object
of a previous proof. About twenty terminological explanations, mostly in Book x, may be added.

76 See Euclid/Vitrac 2001: 1v 63.
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in the discussion of problematic places, variant readings of the indirect
medieval tradition ought to be accounted for. This was exactly what Knorr
recommended. He even thought that it was possible to reconstruct a Greek
archetype for the whole of the medieval tradition.

In other words, by comparing the different states of the text for each
attested divergence, we ought to be able to identify the least inauthentic
version (or versions). Taking into account the three principal types of struc-
tural variants that we have recognized, this amounts to:

o solving the question of authenticity for each contested textual unit (the
determination of the ‘materiel’ contained there)

o selecting a method of presentation (in particular, an order) when several
are known; and

» knowing, for the cases of substitution or double proofs, which of the two
is older.

To pronounce such judgements supposes criteria. There are essentially
two of them:

(i) the first concerns the ‘quantity’ of material transmitted by various ver-
sions, and

(ii) the second bears on the form of this material (order of presentation,
modification of proofs).

These criteria rest on the presuppositions that the historians accept regard-
ing the nature of the text of the Elements and on the hypotheses that they
imagine regarding its transmission. According to Klamroth (and Knorr),
the textual history has essentially been an amplification. Thus, for example,
except by accident, a Proposition missing from a ‘thin’ version (contain-
ing less material than another or even several others) will be judged
inauthentic.

As for the transformations of form, if it is not an accident of transmission
but a deliberate alteration of the structure of the text (supposing that it is
possible to discriminate between the two), the criterion, as stated explicitly
by W. Knorr, will be improvement - that is, whether it met with success or
failure, whether it was really justified or invalid, the deliberate modifica-
tion of the form (order, proof) of the text sought to better the composition.
Obviously, this is an optimistic vision of the history of mathematics.

To see how to apply these principles and to understand the nature of
the structural modifications that we have called up, it is easiest to produce
some examples. The limitations of the aforementioned criteria will appear
more clearly when we examine their application to the proofs (see below,
pp- 111-13).
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Questions of authenticity and the logical architecture of the Elements

If the different versions are considered from the point of view of the ‘mate-
rial contents; the question of authenticity is perhaps the least complex of the
three, at least as far as the first dichotomy is concerned. There exists in the
Greek manuscripts material which I describe as ‘additional’ This additional
material includes cases, some portions identified as additions, the double
proofs, and the Lemmas.”” The critical edition of Heiberg, completed in
1888, four years after the debate with Klamroth, condemns the lot of this
material as inauthentic. In this regard, the (rather relative) thinness of P
compared with the other Greek manuscripts is one of the criteria which jus-
tifies its greater antiquity.”® Now this additional material, to nearly a single
exception,” is absent from the medieval Arabic and Arabo-Latin tradition.
However, Heiberg did not alter his position and did not accept this conclu-
sion about the ‘thinness’ of the indirect tradition as a gauge of its purity.
According to Heiberg - and this too is a hypothesis about the nature of the
treatise — the Elements could not be so thin that it suffered from deductive
lacunae, but such thinness is the case with the medieval versions.

I do not believe that anyone (and certainly not Klamroth or Knorr)
contested the global deductive structure of the Elements. If the Elements is
compared with the geometric treatises of Archimedes or Apollonius, the
local ‘texture’ may not be so different, but the principal variation resides
in the fact that the Elements was edited as if it supposed no previous geo-
metric knowledge. The identification of what would be a deductive lacuna
in Euclid is thus a crucial point, but not always a simple one. Indeed, all
the exegetical history of the Euclidean treatise, from antiquity until David
Hilbert, has shown that the logical progression of the Elements, probably
like any geometric text composed in natural language, rests on implicit
presuppositions.®*” The identification of the deductive lacunae supposes
that consciously permitted ‘previous knowledge’ is always capable of clearly
being distinguished from ‘implicit presumption’

Let us take the example of Proposition x11.15. Here it is established that:

The bases of equal cones and cylinders are inversely [proportional] to the heights;
and among the cones and cylinders, those in which the bases are inversely [propor-
tional] to the heights are equal,

77 For details, see Table 1 of the Appendix.

¢ See Table 3 of the Appendix.

7 The addition of special cases in Prop. 111.35, 36 and 37.
80 See the beautiful study by Mueller 1981.
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Figure 1.3  Euclid’s Elements, Proposition X11.15.

a property likewise shown for the parallelepipeds (x1.34) and pyramids
(x11.9).

In the first part of the proof, let us suppose the cones or cylinders on
bases ABCD and EFGH, with heights KL and MN, are equal. If KL is not
equal to MN, NP equal to KL is introduced and the cone (or cylinder) on
base EFGH with height NP is considered (see Figure 1.3).

Schematically, in abbreviated notation, we have (by v.7) a trivial
proportion:

cylinder AQ = cylinder EO = cylinder AQ: cylinder ES:: cylinder EO:
cylinder ES

in which a substitution is made for each of the two ratios:

cylinder AQ: cylinder ES:: base ABCD: base EFGH  (which is justified
by xii.11)
cylinder EO: cylinder ES:: height MN: height PN (S).
From which: base ABCD: base EFGH:: height MN: height PN (CQFD)

However, the proportion (S) is an ‘implicit presumption’ in the Arabo-
Latin versions. Admittedly, it may be easily deduced by those who under-
stand Propositions v1.1 and 33, as well as x1.25, that is the way one employs
the celebrated Definition v.5. In the Greek manuscripts, though, the
situation is different. Proportion (S) is justified on the basis of previous
knowledge: x11.13 in P and Th, x11.14 in b.*' These Propositions x11.13-14
do not exist in the indirect medieval tradition and thus it may be inferred

81 Here, the indirect medieval tradition is not in accord with ms b which presents the most
satisfying textual state from the deductive point of view! For details, see Euclid/Vitrac 2001: 1v
334-44.
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from their absence, as Heiberg has done, that there is a deductive ‘lacuna’
in the proof of x11.15. However, from the point of view of the history of the
text, the question immediately arises about whether or not the insertion
of Propositions x11.13-14 represents an addition aimed at filling a lacuna
perceived in the original proof of x11.15. Let us add that the assertions of
Heiberg on this subject are often a little hasty because the status of authen-
ticity cannot be judged independently of the status of the proofs.

For example, the indirect tradition does not contain Proposition x.13 (‘If
two magnitudes be commensurable and one of them be incommensurable
with any magnitude, the remaining one will also be incommensurable with
the same’). Heiberg suggests that the absence of this Proposition introduces
deductive lacunae in several Propositions which exist in the Arabic transla-
tions. In these Propositions, the Greek text explicitly uses x.13. However,
in fact, when the proofs in the aforementioned translations are examined,
they are formulated a little differently than in Greek and x.12 (‘Magnitudes
commensurable with the same magnitude are commensurable with one
another too’) is employed in place of x.13. Consequently, there is not a
deductive lacuna!® By consulting the indirect tradition of Greek citations
in Pappus, the idea may be supported that x.13 did not exist in his version
of the Elements.*’ Thus, the most natural conclusion is that x.13 is effec-
tively an inauthentic addition and its addition has allowed reconsideration
of the proofs of the other Propositions.

Through a simple comparison of the different versions, I have examined
each of the Propositions whose authenticity has been called into question.
My conclusion regarding this point — the details would exceed the scope
of this essay — is that the real deductive lacunae, proper to the indirect
tradition, are, so far as can be judged, far from numerous:

» Two in Book x11,** with the provision that in any event the stereometric
Books constitute a particular case in the transmission of the Elements
(see below).

%
g

2 See Vitrac 2004: 25-6.

? See Euclid/Vitrac 1998: 111 384-5.

84 The second is due to the absence, this time in b as well as in the indirect medieval tradition,

of Proposition x11.6 and the Porisms to x11.7-8 which generalize the results established for
pyramids on a triangular base to pyramids on an unspecified polygonal base, respectively

in Propositions x11.5, 7 and 8. There also, Euclid may have considered this generalization

as intuitively obvious given the decomposition of all polygons into triangles and the rule
concerning proportions established in (Heib.) v.12: ‘If any number of magnitudes be
proportional, as one of the antecedents is to one of the consequents, so will all the antecedents
be to all the consequents. The non-thematization of pyramids on an unspecified polygonal
base is comparable to what we have seen above regarding 11.14 (triangle unspecified rectilinear
figure) in only the Adelardo-Hajjajian tradition. The difference is that it introduces a deductive

%
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o One in Proposition 1v.10 of the Adelardo-Hajjajian tradition, connected
to the absence of 111.37, probably due to an accident in transmission,
namely, the mutilation of the end of a Greek (or possibly Syriac?) scroll
containing Book 111.

Books 1-x, perhaps the only ones to have been both translated by Ishaq
and reworked by Thébit,*” contain no supplementary deductive lacunae.
In other words, the deductive lacunae which appear there already existed
in the Greek text which served as their model. The most striking case is
that of the Lemmas designed to fill what can be regarded as a ‘deductive
leap; especially in Book x.% In fact, there are in (some manuscripts of) the
Ishaq-Thabit and Gerard of Cremona translations a number of additions
that fulfil the same role of completion.®” When compared with the direct
tradition, they are presented as additions, mathematically useful, but well
distinguished from the Euclidean text. Those who composed our Greek
manuscripts had no such scruples.

The addition of the so-called missing propositions and part of the addi-
tional material (Lemmas of deductive completion, some of the Porisms)
serve with a certain fluidity the obvious intention of improving the proofs
and reinforcing the deductive structure. The second part of the Porism
to x.6 allows the resolution of the same problem as the lemma {x.29/30}.
The Proposition x1.38 vulgo is clearly a lemma to x11.17. The Proposition
was probably inspired by a marginal scholium and then moved to the
end of Book x1.% The textual variants of X11.6 suggest that perhaps it was
initially introduced as a Porism to x11.5 and eventually transformed into a
Proposition. For the other additional Porisms, it would certainly be exces-
sive to speak about a deductive lacuna to be filled. However, v.7 Por. and
v.19 Por explicitly justify the use of inversion and conversion of ratios. The
Porisms to v1.20, 1x.11, X1.35 serve to make explicit a deductive dependence
on the Propositions x.6 Por., 1x.12 and x1.36, respectively. Our examples,
found in Books x-xi1, show that this work of enrichment began in the
Greek tradition, but the Arabic and Arabo-Latin versions tell us that the

lacuna in the proofs of Propositions x11.10-11. Here the properties established previously for
pyramids and prisms are shown for cones and cylinders, by using the method of exhaustion.
To do this, the pyramids are considered as having polygonal bases with an arbitrary number of
sides, inscribed in the circular bases of the cones and cylinders.

See below, pp. 116-19.

I have called them the ‘lemmas of deductive completion’ in order to distinguish them from
lemmas with only a pedagogical use. See the list given in Euclid/Vitrac 1998:111 391. To these
might be added Lemma x11.4/5.

%7 See Euclid/Vitrac 1998: 111 392-4.

% See Euclid/Vitrac 2001: 1v 229-30.
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enrichment was not confined to the final, more complicated portion of the
text in question.

It is even probable that the entire treatise has been subjected to such treat-
ment. For example, the arithmetic books of the Ishaq-Thabit and Gerard of
Cremona versions possess four supplementary Propositions with respect to
the Greek. Ishadq-Thabit 1x.30-31 are added to improve (Heib.) 1x.30-31,
and Ishaq-Thabit vi.24-25 are the converses of (Heib.) vii.26-27.
In fact, the proof of (Ishaq-Thabit) viir.24 (plane numbers) is nothing more
than the second part of (Heib.) 1x.2! Hence the idea, again suggested by
Heron, to remove this portion in order to introduce it as a Proposition in
its own right and to do the same for the converse of vi11.27 (solid numbers)
to simplify the proof of 1x.2.%°

Insofar as the Euclidean approach is deductive, the work just described
represents a real improvement of the text as much from a logical perspec-
tive as from a mathematical point of view. A number of implicit presump-
tions which might be described as harmless but real deductive lacunae have
been identified and eliminated. However, the logical concerns have been
sometimes pushed beyond what is reasonable. For example, in the desire
to make the contrapositives appear in the text, Propositions viir.24-27
in the Ishaq-Thabit version expect the reader to know that two numbers
are similar plane numbers if and only if they have the ratio that a square
number has to a square number to one another. The Lemma x.9/10 - an
addition probably connected to Ishaq-Thébit vii1.24-25 - thence deduces
that non-similar plane numbers do not have the ratio that a square number
has to a square number to one another.

Likewise, the (important) Propositions x.5-6 establish that the ‘com-
mensurable magnitudes have to one another the ratio which a number has
to a number’ (5) and the inverse (6). In the Greek manuscripts, but not in
the primary indirect tradition, two other Propositions (Heib.) x.7-8 have
been inserted: Incommensurable magnitudes have not to one another
the ratio which a number has to a number’ (7, contrapositive of 6) and its
inverse (8, contrapositive of 5)!

Propositions viir.14-15 show that ‘if a square (resp. cube) [number]
measures a square (resp. cube) [number], the side will also measure
the side; and, if the side measures the side, the square (resp. cube) will
also measure the square (resp. cube). In the Greek manuscripts these
Propositions are followed by their contrapositives (Heib. vii.16-17, for
example): ‘If a square number does not measure a square number, neither

89 See Vitrac 2004: 25.
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will the side measure the side; and, if the side does not measure the side,
neither will the square measure the square. If the indirect tradition is con-
sulted, an interesting division is observed:

o In the translation of Ishdq-Thébit the contrapositives do not exist,
but each of the Propositions vii1.14-15 is followed by a Porism which
expresses the same thing.”

o In the translation of al-Hajjj’! and in the Adelardian tradition® is found
a single Proposition combining the equivalent of Heib. vii1.16-17. The
assertion about cube numbers is simply left as a potential proof.

o Gerard of Cremona transmits the two version successively.”

I think there is hardly any doubt in this case. The Propositions vi11.16-17
of the Greek manuscripts are inauthentic and all the versions, including
those of the indirect tradition, contain augmentations or additions which
proceed along different modalities and which are probably of Greek origin.
Logical concerns have certainly played a role in the transmission of the text.”*

The change in the order of v1.9-13

The examples that we have examined until now are rather simple in the
sense that their motivations appear rather clearly to be the improvement of
a defective proof (cf. x1.1), or filling a gap or explaining a deductive connec-
tion (supplementary material and Propositions). In a significant number
of cases we have seen the advantages of taking into account the Arabic and
Arabo-Latin indirect tradition. However, it ought not to be believed that
this simplicity is always the case or that the indirect tradition systematically
presents us with the state of the text least removed from the original. As we
have already seen regarding the supplementary Propositions, the altera-
tion of Books x-xi11 is especially clear in the Greek, although among the

% See De Young 1981: 151, 154-5, 431, 435.

L This we know thanks to Nasir ad-Din at-Tasi. See Lévy 1997: 233.

92 See Busard 1983 (Prop. viir. 15 Ad. I): 239.359-240.371.

% See Busard 1984, respectively, 201.11-16 (= v1i1. 14 Por. GC), 202. 11-16 (= viir.15 Por GC)
and 202.19-40 (= viir.16 GC).

4 One might add here the supplementary Porism to Prop. 1x.5 found in the IshAq-Thabit and
Gerard of Cremona translations. 1x.4 establishes that a cube, multiplied by a cube, yields a
cube, and 1x.5 states that if a cube, multiplied by a number, yields a cube, the multiplier was a
cube. The Porism to 1x.5 affirms that a cube, multiplied by a non-cube, yields a non-cube and
that if a cube, multiplied by a number, yields a non-cube, the multiplier was a non-cube. In a
subfamily of Ishaq—Thabit manuscripts, this Porism has been moved after 1x.4. In Gerard of
Cremona, there is a Porism after 1x.4 and one after 1x.5! See De Young 1981: 201, n. 7, 202-3,
480-1 and Busard 1984 213.29-31 and 213.51-6.
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Greek order Medieval order

9: From a given straight line to cut off ~ 13: To two given straight lines to find

a prescribed part. a mean proportional.

10: To cut a given uncut straight line 11: To two given straight lines to find
similarly to a given cut straight line. a third proportional.

11: To two given straight lines to find 12: To three given straight lines to find
a third proportional. a fourth proportional.

12: To three given straight lines to find 9: From a given straight line to cut off
a fourth proportional. a prescribed part.

13: To two given straight lines to find 10: To cut a given uncut straight line
a mean proportional. similarly to a given cut straight line.

arithmetical books, the Ishdq—Thébit version (itself inspired by Heron) is the
best evidence of this ‘betterment’ The consideration of changes in order con-
firms the complexity of the phenomenon. In Book v1, Propositions v1.9-13
(according to the numbers of the Heiberg edition), resolve the five problems
listed in the table above.

In the indirect tradition, the order of presentation runs 13-11-12-9-10.
The solutions of the problems are independent of each other. Thus the
inversion has no influence on the deductive structure, but v1.13 uses (part
of) v1.8 Por.:

From this it is clear that, if in a right-angled triangle a perpendicular be drawn
from the right angle to the base, the straight line so drawn is a mean proportional
between segments of the base.”

The Proposition has thus been moved in order to place it in contact with
the used result. Since there are clearly two groups - one concerning pro-
portionality, the other about sections — the coherence of the two themes has
been maintained by also moving v1.11-12 (or, in the case of Adelard’s trans-
lation, only v1.11 because it lacks v1.12 as a result of a ‘Hajjajian’ lacuna).”®
This order of the indirect tradition appears to be an improvement over the
Greek.

95

In the majority of Greek manuscripts, a second assertion declares that each side of a right angle
is also the mean proportional between the entire base and one of the segments of it (which has
a common extremity with the aforementioned side). It is absent in V, for example. Heiberg
considered it inauthentic and bracketed it (see EHS11: 57.1-3). Both parts exist in the Ishaq-
Thabit version and Adelard of Bath and Gerard of Cremona, but the complete Porism does not
figure in the Leiden Codex (the an-Nayrizi version). Moreover a scholium, attributed to Thébit,
explains that the Porism had not been found among the Greek manuscripts. Without a doubt,
this is in error. In (at least) two mss of the Ishaq—Thabit version, a gloss indicates that Thabit
had not found what corresponds to only the second part of the Porism (excised by Heiberg).
See Engroff 1980: 28-9.

¢ This we know thanks to the recension of pseudo-Tusi. See Lévy 1997: 222-3.
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When the various versions are considered,” the inversions are not the
result of happenstance in binding or in later inexpert replacement of lost
pages. As in our example, they leave practically all the deductive structure
intact and they even improve it. Of course, not all the examples are equally
simple, and the same principle clearly cannot be applied to the inversions
in the Definitions, for which it seems that a criterion, which I call ‘aesthetic’
for lack of anything better, has prevailed. The evidence is divided but at this
stage in my work, it seems to me that the preliminary conclusions about the
orders conflict with what can be determined about the content.”® Namely,
for problems regarding order, notably in Books v-x, the indirect tradition
received the greatest number of improvements!

Although changes in order may be limited, they are interesting because
they have an advantage with respect to the authenticity or alteration of
proofs. Such changes are hardly conducive to contamination. Admittedly,
we have several remarks by Thabit ibn Qurra affirming that he had found a
different order of presentation in another manuscript,” but no one saw fit
to reproduce the Propositions twice in each of the orders. In contrast, for
the problems of authenticity, the contamination between textual families
concerns the whole text, beginning particularly with the margins of the
manuscripts. As for the substitutions of proofs, we will see that they are the
cause, at least in part, of the phenomenon of double proofs.

From the substitution of proof to the phenomenon of double proofs:
the example of x.105

The Propositions (Heib.) x.66-70 and 103-107 establish that the twelve types
of irrational lines obtained through addition and subtraction distinguished
by Euclid are stable with respect to commensurability. In the Greek version,

7 Things are a little different at the level of individual manuscripts which have not been
preserved though the accidents of transmission.

For example, in the Greek, the order of the Propositions (Heib.) vir.21-22 (each the converse
of the other) runs opposite to the order in medieval indirect tradition. The inversion has no
influence on the deductive structure, but the proof of (Heib.) vir.21 uses v11. 20. It is probable
this time that the inversion was made in the direct tradition, in order to make the two

98

connected deductive theorems consecutive.

For example, in Book v1 which was just discussed. In (at least) three mss of the Ishaq-Thébit
version, the following gloss appears after (Ishaq-Thabit) v1.9 = (Heib.) v1.13. “Thébit says: we
have found, in certain Greek manuscripts, in the place of this Proposition, that which we have
made the thirteenth? Undoubtedly, the existence of two distinct orders ought to be understood
as having been observed by the Editor among the Greek manuscripts which he consulted.
(Thus, the change is Greek in origin.) The editor retained the better order (which was that
already in al-Hajjaj). See Engroff 1980: 29, who mentions two mss. The gloss also exists in ms
Tehran Malik 3586 (the oldest preserved copy of the Ishaq-Thabit version), fo.75a. I thank

A. Djebbar for this information.

N
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two alternative proofs for Propositions x.105-106 are inserted at different
places in the manuscripts.'” Called here ‘superficial’ as opposed to the origi-
nal ‘linear’ Greek proofs, they apply to and argue about rectangular areas.
Let us explain this difference by an example, Proposition (Heib.) x.105:

A [straight line] commensurable with a minor straight line is a minor.

Aliter in Greek = first proof in
First proof in Greek!"! medieval tradition

Let AB be a minor straight line and CD Let A be a minor straight line and B

commensurable with AB; I say that CD [be] commensurable with A; I say
is also minor. that B is minor.

B ¢ F H

Al f {E
Ct f | F
D
Al IB
D E G

We will consider the two components Let CD be a commensurate straight line.
(AE, EB) of AB and let DF be constructed ~ Let the rectangles be constructed:
so that (AB, BE, CD, DF) are in CE = square on A, width: CE,
proportion. By v1.22, their squares FG = square on B, width: FH.

will also be in proportion and, thence by ~ CE is the square on minor A so CE is
x.11, x.23 Por. it will be shown (CD, DF) the fourth apotome (x.100).

have the same properties as (AB, BE). We have Comm. (A, B).
Thus, by definition, CD will be a minor. Thus: Comm. (CE, FG) and Comm.
(CE, FH).

FH is the fourth apotome (x.103).
The square on B = Rect. (EF, FH), thus B
is a minor (x.94)

o In each of the linear proofs, the argument concerns the two parts of an
irrational straight line. The same type of argument is repeated ten times.
Though repetitive, the approach has the advantage of not employing
anything other than the Definitions of different types and the theory of

1% In the Greek manuscripts the proof aliter to x.105-106 is inserted at the end of Book X, after
the alternative proof to x.115, which without a doubt implies that they had been compiled in
this place, after the transcription of Book x, in a limited space. Thus, they are in the margins
of manuscripts B and b. In one of the prototypes of the tradition, x.107 aliter has been lost or
omitted, probably for reasons of length, or because it was confused with x.117 vulgo which
follows immediately (but which is mathematically unrelated).

10 My diagrams are derived from those found in the edition of Heiberg (EHS: 111 191 and 229,
respectively). Those of the manuscripts are less general. The segments AE, CF are very nearly
equal (the same goes for A, B in aliter) and divided similarly.
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proportions. Deductively, the linear proofs may be characterized as mini-
malist.

o The superficial proofs introduce areas, which, from the point of view of
the linguistic style used, might seem more geometric than the proofs
using the theory of proportions, which is a second-order language. But,
in fact, they strengthen the deductive structure because they establish
new connections by using Propositions (Heib.) x.57-59+63-65+66
(resp. 94-96+100-102+103). In addition, these superficial proofs -
like the linear ones - present results expressed for commensurability in
length but the former proofs may be immediately generalized to com-
mensurability in power.

The first anomaly occurs in x.107. No alternative proof exists, although
this Proposition, along with two others, constitutes a triad of quite similar
Propositions. Alternative proofs are no longer known for the parallel triad
of x.68-70, which concerns the irrationals produced by addition, whereas
the other triad x.105-107 treats the corresponding irrationals produced by
subtraction.'”” However, in the indirect Arabic and Arabo-Latin tradition,
there is a textual family in which these two triads of Propositions have (only)
superficial proofs. This is the case in Arabic, with the recension of Avicenna,
and in Latin, with the translation of Adelard I. Evidence from the copyist
of the manuscript Esc. 907 establishes a link between the superficial proofs
and the translation of al-Hajjaj.'” The Ishaq-Thabit version is less coher-
ent. It contains the linear proofs of the Greek tradition in the triad x.68-70
and the superficial proofs for the triad x.105-107. In the manuscript from
the Escorial and the translation of Gerard of Cremona, which agree on this
point, the situation is nearly the inverse to the Greek translation. There are
only the superficial proofs for x.105-107 (like the indirect tradition), but
they present proofs of this type as aliter for the first triad, whereas the Greek
texts includes them only for (two Propositions of) the second triad!

Let us add that the same type of substitution (and thus, generaliza-
tion) is possible in Propositions (Heib.) x.67 + 104 which concern the two
corresponding types of bimedials and apotomes of a bimedial.'** Such
substitution is precisely what is found in the recensions of at-Tési and
pseudo-Tasi, but not in the Arabic or Arabo-Latin translations.

102 On the plan of Book x, see Euclid/Vitrac 1998: 111 63-8.

103 See De Young 1991: 659.

104 However, this is not possible for Prop. Heib. x.66 (binomials) and 103 (apotomes) because,
in this case, it is required to show that the order (from one to six) of the straight lines
commensurable in length is the same. This crucial point is required for the superficial proofs
concerning the other ten types of irrationals.
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If the principle of improvement advanced by Knorr is applied, we are led
to think that the linear proofs of the Greek are authentic, with the superfi-
cial proofs clearly being ameliorations from a mathematical point of view.
This attempt at strengthening the deductive structure and generalizing
was begun in Greek, as demonstrated by the proofs aliter to x.105-106. It
is likely that there was also a proof aliter to x.107 which has disappeared.
The opposite hardly makes any sense. Its disappearance is probably due to
codicological reasons.

However, the question of knowing who produced the alternative proofs
for the Propositions of the first triad remains unanswered. A likely hypoth-
esis is that the same editor is responsible for the parallel modification of the
two triads and he happened to be a Greek. But it could also be imagined that
it was a contribution from the indirect tradition, occurring as the result of an
initiative by al-Hajjaj. This latter explanation is the interpretation of Gregg

105

De Young.'” The examples of at-Tasi and pseudo-Tisi show that improve-
ments continued into the medieval tradition, but it should not be forgotten
that these were authors of recensions, not translators. As for the structure
for the Ishaq-Thabit version, it may be explained in different ways - either
by the existence of a Greek model combining the two approaches or by an
attempt at compromise on the part of the editor Thébit. In the first case, there
would have been at least three different states of the text. In the second case,
Thabit would have combined the first (linear) triad from the translation of
Ishaq (considered closer to the Greek) and the second (superficial) triad pre-
sented in the earlier translation! In neither of these scenarios does recourse
to the indirect tradition simplify the identification of the oldest proofs.
Whatever scenario is chosen, it must be admitted that there was a sub-
stitution of proofs in one branch of the tradition. The substitution occurred
in the model(s) of al-Hajjaj, if the superficial proofs are considered later
improvements, but in the Greek, if the opposite explanation is adopted.

106 Tn the situations in which the Greek tradition

This fact is not surprising.
contains double proofs, the medieval versions contain only one of them.
(This is confirmed by the remarks of Thabit and Gerard when they make
such comments as ‘in another copy, we have found ... and thus, probably,
in Greek models of which we have no evidence.)

It is possible to take a lesson from this example. The existence of double

proofs in the Byzantine manuscripts could be explained, for the majority of

105 See De Young 1991: 660-1.

106 Tt is noted for 1.44p; 11.14; 111.7p, 8p, 25, 31, 33p, 35, 365 1v.5; V.5, 18; V1.9p, 20p, 31; viiL.11p-
12p; 22-23; x.1, 6, 14, 26p, 27-28, 29-30, 68-70, 105-107, 115; x1.30, X111.5. The note P’
signifies that the variant pertains only to a portion of the proof.
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cases, by the fact that the aforementioned manuscripts have compiled the
proofs from different versions which contained these proofs in isolation. If
what we have seen about Propositions x.107 and x.68-70 is recalled, the
process of transliteration and the desire to safeguard a flourishing tradi-
tion seems to us to constitute a propitious occasion for compiling proofs,
however incomplete.

Returning to discussions concerning the history of the text, we ought to
first note that the double proofs do not fall within what is called authorial
variants. Euclid did not propose several proofs with the same results. Thus
the Greek manuscripts closest to the operation of transliteration (P and B)
are most likely the results of a compilation of the tradition, rather than of
simple reproduction - changing only the writing — of a venerably aged
model.'"

The limits of Knorr’s criteria

It is often possible to perceive one or more reasons for the other types of
structural changes that I described earlier (additions, modifications of the
order). Thus Knorr thought it possible to order the different states of the
text, if not according to authenticity, then at least relative to the degree of
alteration. We have already noted that this criterion of improvement applies
locally, and the example of changes in the order suggested to us that it does
not seem always to have been exercised for the benefit of the one and the
same version. The phenomenon of the substitution of proofs evidences
another difficulty.

The criterion of improvement works well enough as long as there is only

a single parameter (or even more,'%

but all acting in the same direction)
which governs the replacement of a proof or the modification of a presen-
tation. But, when there are at least two acting in opposite directions, the
change which is more sophisticated from a certain point of view may be
less desirable from another point of view. Let us reconsider our example of
Proposition x.105. Admittedly, from a mathematical point of view, there is
an improvement (generalization), but from the logical, or metamathemati-

cal, point of view — and it is no doubt one of the points of view adopted by

107 See n. 33.

108 The most frequent parameters governing the replacement of proofs are the reinforcement of
the deductive structure, the substitution of a direct proof with an indirect proof (a criterion
notably explained by Heron - see Vitrac 2004: 17-18 (regarding 111.9 aliter) — and Menelaus),
the addition of the case of a figure and the level of discourse used (geometric objects versus
proportions; a criterion clearly noted by Pappus).
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those who deliberately changed the text of the Elements — different criteria
could be used. From the logical, or metamathematical, point of view, the
criteria are:

o Render the deductive structure more dense, as the superficial proofs have
done, or conversely minimize the structure in order not to introduce
what would eventually become accidental ‘causalities, that is, links of
dependence, as found among the linear proofs.

o Prefer either a type of object language over a second-order language -
that is, a relational terminology, like the theory of proportions - or, on
the contrary, privilege a concise but more general second-order language.
A choice of this kind explains the aliter family of proofs conceived for
Propositions v1.20, 22, 31, x.9, x1.37.1% The same choice exists also in our
families of proofs, but in these instances it acts in the opposite direction
with respect to reinforcing the deductive structure.

It would then be welcome to be able to organize these criteria hierarchi-
cally. The deductively minimalist attitude seems well represented in the
Elements. For example, deductive minimalism may safely be assumed to
underpin the decision to postpone as long as possible the intervention of
the parallel postulate in Book 1. It appears again in the decision to establish
a number of results from plane geometry before the theory of proportions
is introduced at the beginning of Book v, even though this theory would
have allowed considerable abbreviation. The idea that geometry ought to
restrict itself to a minimal number of principles had already been explained
by Aristotle.''’ Deduction is not neglected, but emphasis is placed on the
‘fertility” of the initial principles, rather than on the possible interaction of
the resultants which are deduced from them.

There are thus different ways to put emphasis on the deductive structure.
The case of our proofs from Book x is not unique. The ten Propositions
from Book 11 and the first five from Book x111 are successively set out in a
quasi-independent manner based on the least number of principles, even if
this means reproducing several times certain portions of the arguments.'!!
Remarkably, we know that for the sequences 11.2-10 and x111.1-5 alternative
proofs had been elaborated, annulling this deductive mutual independence
in order to construct a chain in the case of 11.2-10 or to deduce x111.1-5 from
certain results from Books 11 and v. Even better, thanks to the testimony of

109 See Vitrac 2004: 18-20.
11 De ceelo, 111, 4, 302 b26-30.
11 Similarly in the group EI. 111.1, 3, 9, 10 (considering the first proofs of 111.9-10).
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the Persian commentator an-Nayrizi, we know that the author of the first
suggestion was Heron of Alexandria. It is thus tempting, as Heiberg did
in his Paralipomena of 1903, to attribute to him the other alteration (in
x111) that shares the same spirit.!'? If, in order to strengthen the deductive
structure, it is appropriate to argue about segments rather than the surfaces
described thereon as in the case of Books 11 and x111,'"? it will be noted that
the opposite is the case in the example from Book x which has just been dis-
cussed. Reinforcement of the aforementioned structure is realized through
the introduction of surfaces. For us to attribute it to Heron, it is necessary
to be sure that the parameter most important to him was indeed the den-
sification of the deductive structure. Without any external confirmation or
other historical information, as in the case of Books 11 and 111, this scenario
remains a stimulating hypothesis, but only a hypothesis!''*

Conclusions: contributions and limitations of the
indirect tradition

From the study of a better-known indirect tradition, several lessons may
be drawn. Newly available information confirms certain results of the
Klamroth-Heiberg debate. Consideration of a greater number of versions
of the Elements than Heiberg or Klamroth could have used reinforces the
existence of a dichotomy between the direct and indirect traditions.

(1) Although they agree (albeit with opposite interpretations of the fact),
the ‘thinness’ of the indirect tradition is not so marked as Klamroth
and Heiberg would have us believe, especially in Books 1-x. The most
complete inventory of variants, probably Greek in origin, which we
have now (by induction or thanks to information transmitted by Arab
scholars or copyists), has several consequences:

o Itputsinto perspective the different textual dichotomies. For example,
No. 3 (P / Th), within the Greek direct tradition, is quite modest with

!12 See Heiberg 1903: 59. I have espoused the same hypothesis in Euclid/Vitrac 2001: 1v 399-400.

113 The insertion of 111.10 aliter, explicitly attributed to Heron by an-Nayrizi, has the same effect of
strengthening the deductive structure.

114 A single thing seems likely. The version of Euclid which Pappus had - if he is indeed the
author of the second table of contents of Book x contained in the first Book of Commentary to
the aforementioned book transmitted under his name - contained the linear proofs. In effect,
Propositions x.60-65 and x.66-70 were inverted (similarly for x.97-102/103-107) and this
fact precludes the existence of superficial proofs for x.68-70.
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respect to No. 1 (direct tradition/indirect medieval tradition) or even
to No. 2, within the Arabic and Arabo-Latin translations.'"”

o It convinces us that some part of what exists in Greek, and preserved
by Heiberg in his edition, is very probably inauthentic.

o It gives a possible interpretation to some ‘isolated’ variants in Greek
by integrating them into a broader picture which makes sense. For
example, it makes sense of families of alternative proofs created by

the same editorial principles.''®

(2) However, because of the number of variants, the homogeneity of the

115
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entire indirect tradition, which Klamroth believed existed, no longer
exists in Books 1-x. I have called this dichotomy 2, within the Arabic,
Arabo-Latin and, it seems, the Hebraic traditions. For certain portions,
notably Books 111, viir and X, it seems that (at least) two rather struc-
turally different editions existed and they contaminated each other sig-
nificantly. Consequently, it will be impossible to reconstitute a unique
Greek prototype for this portion of the whole of the medieval tradition
as Knorr had wanted."”

If the study of the material contents, order, presentation, and proofs
of the preserved versions of the thirteen books is resumed, it is not to
be expected to find that among the preserved versions, one of them,
for instance Adelard I or Ishaq—-Thabit, may be declared closer to the
original in all its dimensions than all the other versions. The ‘local’
criteria used by Klamroth, Heiberg and Knorr, either focusing on the
material contents (according to the principle of expansion) or on the
improvement of the form, do not converge upon a global criterion
which applies to the entirety of the collection of the thirteen books.
The result is thus that the indirect tradition appears more authentic in
regard to the material contents but not for the order of presentation.
For the problems of order and of presentation, conversely, the indirect

See Tables 1-3 of the Appendix.
We have seen an example of this with the superficial proofs of x.105-106. Another family
of double proofs may be reconstituted for Propositions v1. 20p, 22, 31, x.9, x1.37. See Vitrac

2004: 18-20.
It should be emphasized that Knorr had not considered the problem at its full scale:

» He considered at most a group of 21 Propositions and proceeded by induction.

» He did not take into account more than one single criterion of structural divergence - that
of material contents — with one exception: the proof of x11.17, poorly handled in the indirect
tradition and interpreted not as an accident of transmission but in terms of development.

 He took into account neither changes in order nor the rich collection of double proofs.

» He did not ask himself the question of whether the two Arabo-Latin translations that he
used, Adelard and Gerard, were representative of the whole of the indirect tradition. Whether
these translations are representative is not at all certain in the stereometric books (cf. below,
pp- 118-19).



The Elements and uncertainties in Heiberg’s edition 115

tradition has the benefit of many more improvements, and the Greek
tradition seems to have been very conservative in this area.

(3) Furthermore, the conclusions drawn from the results of the compari-
son of versions change according to the book or group of books being
studied. For example, interaction between Euclid and the Nicomachean
tradition has had an impact on the text of the arithmetical Books.
If x.68-70 and 105-107 and x11.1-5 are judged by the criteria of
improvement, the medieval versions (particular Adelard’s) are more
sophisticated than the Greek text, at least as far as the contents are
concerned. At the end of Book 111 (and perhaps also in response to an
initiative by Heron), the medieval versions are also more sophisticated

with regard to the material contents,'"®

although the opposite is much
more frequent.

Along the same lines, the mathematically insufficient proofs (accord-
ing to the criteria of the ancients) in the Elements are four in number if
the direct and indirect traditions are combined: viir.22-23, 1x.19 and
x11.17. If, as Knorr argues, we assume the errors are from Euclid and
not textual corruptions, we arrive then, by applying his criteria, at the

following conclusions:

o For vi.22-23, the original proofs are those common to both the

Greek and to the Hajjajian tradition; the proofs presented by the

Ishaq-Thabit version are improvements.'"’

« For 1x.19, the original proof is that of manuscript P; those of Th and
of the indirect tradition are improvements.

o For x11.17, the original proof is that of the indirect tradition; those of

b as well as of P and Th are improvements.'*

The type of statements must also be taken into account. The
Definitions occupy a privileged place in philosophical exegesis. The
Porisms are particularly prone to the vagaries of transmission because
they may easily be confused with additions. '*!

U8 There is the addition of the case of figures in the Propositions (Heib.) 111.25, 33, 35, 36;
1v.5. The copyists ascribe them to the version of al-Hajjaj, and even to his second version if
al-Karabisi is to be believed. See Brentjes 2000: 48, 50. Other cases are also added in 111.37
without al-Hajjaj being mentioned.

119 See De Young 1991: 657-9.

120 For my part, contrary to Knorr, I believe that the criterion of improvement does not apply for

1x.19 or x11.17. T also believe that the proofs of P in one case and the proofs of the indirect

tradition in the other are corrupt. For 1x.19, see Vitrac 2004: 10-12. For x11.17, see Euclid/

Vitrac 2001: 1v 369-71.

Heiberg 1884: 20 observed that with the Definitions and Corollaries (Porisms) ‘die Araber ...

sehr frei verfahren haben’ In fact, it is not even simple to say exactly how many Porisms

there are in the Greek text. Heiberg identifies 30 of them as such but makes a second Porism

12
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(4) To explain this state of affairs, I see at least two explanations, that

perhaps work in tandem:

o Either our different witnesses of the text reflect a general contamina-
122

tion'** and a global criterion — at the scale of the complete treatise
- cannot be reached.

o Or the principles that underpin the local criteria are inadequate.
If certain branches of the tradition have epitomized the Elements,
then the principle used by Klamroth and Knorr that the text of the
Elements grew increasingly amplified proves inadequate. These prin-
ciples may also miss their goals if it is not possible to identify the
motivations of the ancient re-editors when they sought to improve
the form of a mathematical text. We have seen that the criterion of

mathematical refinement is sometimes difficult to use.

(5) Certain characteristics of the preserved versions and different external

N

confirmations have convinced us that there has been both contamina-
tion and epitomization. Thus, not only is the text of the version by
Ishéq, as revised by Thabit, without any additional deductive lacuna
in Books 1-x, but the medieval evidence teaches us that the revision
of Thabit implied the consultation of other manuscripts and, con-
sequently, the collation of alternative proofs.'* In so doing, various
versions of the Greek or Arabic texts, if not contaminated by, were at

from what, in the manuscripts, is nothing more than an addition to the Porism to v1.20 and
an insertion of a heading [Porism] before the large recapitulation following x.111, although
he did not do this for the summary following x.72! For fifteen Porisms, there is one or more
Greek manuscripts in which the heading <Porism> is missing. Fifteen Porisms are placed
before the standard clause (‘what ought to be proved’), particularly true for P. Eleven are
inserted after the clause. Normally, a Porism begins with the expression, ‘From this, it is clear
that’ (‘éx 87 ToUToU @avepov 81 ...), but in seven cases (1v.5, v1.20, 1x.11, x.9, x.111, x.114
and x11.17), the formulation is not canonical. The possibility of confusion appears in the fact
that ten Porisms retained by Heiberg were amplified by inauthentic additions. If the indirect
tradition is consulted, it ought not to be forgotten that two Porisms from the Greek are related
to substitutions of proof (111.31, 1v.5) and to an addition (x.114) which do not exist in this
tradition. Thus, it is not at all surprising that these Porisms did not exist in it. By holding to
comparable cases, the indirect tradition counts eleven Porisms from the Greek, but two exist
in a different form. The Porism to x.111 exists as a Proposition and the one to x11.17 appears
as part of a proof (as is also the case in certain Greek manuscripts). This ‘mépiouc’ exists only
in the margin of P and not in the other manuscripts! It may be remarked that neither has

the standard formulation and that the indirect tradition has none of the other five Porisms
‘heterodox’ to the Greek text. For the others, their number decreases (to seven from nine in
1-1x to which could be added three supplementary Porisms from the Ishdq-Thabit version (to
vIir14, 15; 1x.5), to one from four in X, to nil from six in X1-XI111).

This is the opinion of Brentjes, at least as concerns the Arabic and Arabo-Latin traditions. See
Brentjes 1996: 205.

!23 See Engroff 1980: 20-39.
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least compared with each other in order to produce Thabit’s revision of
Ishaq’s translation. There is no reason for astonishment: these scholars
were not working to provide guidance to modern philologists who
want to establish the history of the text of the Elements. They sought to
procure a complete and stimulating mathematical text. Knowing the
hazards of manuscript transmission, they compared different copies,
and I believe that Thabit ibn Qurra used other Arabic translations,
probably that of al-Hajjaj, and even some Greek commentaries, in
particular that of Heron of Alexandria, which has some consequences
for the structure of the revised text. At some points, it is more sophis-
ticated than the Greek text of Heiberg.'** In the Arabo-Latin domain,
the Gerard of Cremona version also proceeds by juxtaposition of dif-
ferent texts, some of which Thébit had already combined, but also the
alternate proofs that the tradition attributes to al-Hajjaj and which
often appears in the Latin of Adelard of Bath.

(6) The case of the translation (or translations) of al-Hajjaj is much more

124

12

126

127

difficult to judge because we know it only very incompletely and
indirectly through several citations by copyists of manuscripts of the
Ishaq-Thabit versions and through the evidence of Tasi and pseudo-
Tasi.'* Virtually all the characteristics that distinguish it — primarily
its thinness and the structure of several families of proofs — appear
in the Arabo-Latin version of Adelard of Bath.!*® Its antiquity and its
thinness make it tempting to ascribe to it a privileged role. Nonetheless,

the evidence from the preface of the Leiden Codex introducing the

commentary of an-Nayrizi is troubling.'”” The principle of amplifica-

tion, to which Klamroth (and Knorr) subscribe concerning the textual
development, suppose that no deliberately abridged version has played
arole in the transmission of the text. It is to precisely this phenomenon
of abbreviation that the preface to the second translation (or revision)
of al-Hajjaj makes reference. Thus, I am not sure that this principle,

This is particularly clear in Books vIii-Ix, first of all for the alternative proofs proposed

for vii1.22-23, then the insertion of the converses to Prop. (Heib.) vi11.24-25 and the
simplification of the proof of 1x.2, finally the addition of the Propositions (Ishaq-Thabit)
1x.30-31 to simplify the proofs of 1x.32-33 (= Heib. 1x.30-31), without forgetting the addition
of Porisms (cf. n. 121).

See Engroff 1980: 20-39. Recently Gregg de Young has discovered an anonymous commentary
relatively rich in references to divergences between the versions of Ishaq-Thabit and al-Hajj4j.
See de Young, 2002/2003.

Twenty structural divergences are supposed to characterize the version of al-Hajjaj. Of these,
sixteen appear in Adelard. The other four from Book 1x and the first part of Book x — the lost
portion in Adelard’s translation — appear in the related Latin versions by Herman of Carinthia
and Robert of Chester.

See the text and French translation in Djebbar 1996: 97, 113, partially cited below as n. 142.
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which functions rather well in the case of dichotomy 1, also applies to
dichotomy 2.'%

(7) Moreover, the case of the stereometric books, on which Knorr founded

his argument, seems problematic to me. The Arabo-Latin translations
are particularly close to each other in these books. Knorr relied on
this point to deduce that the same thing would happen to their Arabic
models and thus also the versions of al-Hajjaj and Ishaq-Thébit.'> What
I have called dichotomy 2 hardly occurs there at all.'** However, there
are, in two manuscripts of this last version (Copenhagen, Mehrens 81;
Istanbul, Fatih 3439), glosses indicating that Book x is the last which
Ishaq has translated and that what follows is ‘Hajjajian’ The author
of the gloss to the manuscript in Copenhagen specifies exactly that it
‘comes from the second translation of al-Hajj4j, i.e., the abridgement."*"
From this reference, Klamroth deduced that Ishdq had translated only
Books 1-x and that Thabit had taken x1-x1i1 from the translation of
al-Hajjaj. This thesis has been challenged by Engroft and I obviously
have no expertise on this point, but it seems to me that the stereomet-

132 Even then, at-T{si

ric books undeniably constitute a particular case.
had remarked that there is no structural divergence between what he
believed to be the two versions of the stereometric books.'** T would
add that there is not, to my knowledge, any mention of the sort “Thabit
says ... beyond Book x.!%

A final element must be taken into account. In Proposition x111.11
it is established that the side of a pentagon inscribed in a circle with
a rational diameter is irrational, of the ‘minor’ type. Thus, in Book
X, ‘@hoyos is translated as ‘asamm’ (‘deaf’) by al-Hajj4j and ‘ghayr
muntaq (‘un-expressible’) by Ishaq-Thabit. The divergence appears,
for example, between Avicenna and the manuscript Petersburg 2145
on the one hand and the other Ishaq-Thabit manuscripts on the other

128 Tt seems to me that Brentjes equally admits the idea that the so-called al-Hajjaj version No. 2

represents an improved and abridged re-edition. See Brentjes 1996: 221-2.

129 See Knorr 1996: 259-60.

130 See Table 2 of the Appendix.

31 See Engroff 1980: 9.

132 See Engroff 1980: 9-10, 12-13. Let us add that at the end of Book x1 in the manuscript Tehran

Malik 3586, a gloss indicates that Thabit ibn Qurra had revised only Books 1-x and that Books
x1, X11 and x111 are Hajjajian! See Brentjes 2000: 53.

133 See Rommevaux, Djebbar and Vitrac 2001: 275, n. 184.
134 In the anonymous commentary cited above at n. 125, the references relative to the divergences

between the versions of Ishdq-Thabit and al-Hajj4j stop after the first third of Book x. This
observation is well explained in the line of the gloss inserted in the manuscript Tehran Malik
3586 (cf. above, n. 132).
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hand.’** It is interesting to note that in Proposition (Heib.) x111.11
(=1IsTh 14), the manuscript Petersb. 2145, as well as Tehran Malik 3586
and Rabat 1101, record ‘asamm!”**® This does not necessarily mean that
Ishaq did not translate Books x1-x111,'*” but it at least suggests that at
some moment of transmission, the stereometric books existed only in
a single version.'*® This homogeneity, recorded by Tasi, might even be
the cause of the glosses inserted in the three manuscripts of the Ishaq-
Thébit version that I just mentioned.'*’

(8) Two consequences may be drawn from the preceding considerations.

First, Knorr’s hypothesis that the indirect tradition derived from a
single Greek archetype, based only on the stereometric books - in fact
only on the portion x1.36-x11.17 - is challenged. Second, I have said
that there are, in the versions of al-Hajjaj and Ishaq-Thébit, three and
two deductive lacunae respectively. Those of Ishaq-Thabit occur in
Book x11. But, if the hypothesis of Klamroth or one of his variations is
adopted, we know the translation of Ishaq-Thabit only for Books 1-x.
The translation here is without deductive lacunae, which, considering
the work of the Reviser, is to be expected. As for the translation of al-
Hajjaj, the evidence of the preface in the Leiden manuscript suggests
that it could scarcely be other than an epitome!

(9) These consequences being noted, it ought not to be forgotten that
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it is thanks to the indirect tradition itself that we have been able to
determine some of its limitations. The medieval versions, notably
those of Ishdq-Thabit and Gerard of Cremona, are more attentive to
problems of textual origin than the Greek manuscripts and thereby
more informative about the divergences between versions observed
by their authors. The contamination is clearly not the doing of medi-
eval scholars only. The subject of double proofs demonstrates this.
The abundance of additional material and local alterations of the

See Rommevaux, Djebbar and Vitrac 2001: 259, 288-9.

I thank A. Djebbar for this information.

It is possible to doubt such an abstention by Ishaq given that there are two series of definitions
for Book x1 in Tehran Malik 3586, the latter being attributed to Hunayn ibn Ishaq and,
probably, there was some confusion here between the father and the son (see Brentjes 2000:
54). However, Ishdq may well have brought his translation to an end with the Definitions for
Book x1, which have been (piously) conserved, though he did not translate what followed.
Thus, one again arrives at the thesis of Klamroth.

Although she disagrees with the thesis of Klamroth, Brentjes pointed out that in regard to
Definition x1, the first version of Tehran Malik 3586 (the Ishaq-Thabit version) and the version
given by al-Karabisi, who, (according to Brentjes), follows Hajjajian version, have minuscule
differences. See Brentjes 2000: 53. This seems to me to concur with the preceding remark.

See above, nn. 131-132.
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(10)

sort of post-factum explanations in Byzantine Greek manuscripts (cf.
above the example of x1.1) shows that the Greek text is itself enriched
through recourse to the relevant elements of the commentary, prob-
ably through the intermediacy of marginal annotations by simple
readers or by scholars.
The intervention of the epitomes in the indirect tradition is quite prob-
able. There are, however, different ways of abridging a text like that of
the Elements. An editor could eliminate portions considered inauthen-
tic or some theorems dealing with a theme judged too particular.
Regroupings could be made. Abbreviated proofs could be substituted,
using in particular the previously discussed formulae for potential
and analogical proofs or by removing the uninstantiated general state-
ments, which are often less comprehensible than the example (set out
in ecthesis and diorism) accompanied by a diagram and labelled with
letters. More radically, all the proofs could be removed, and only what
Bourbaki called a ‘fascicule de résultats’ might be retained, or some
number of books no longer considered indispensable might be cut
out. In this case, the very structure of the treatise and its plan, which
have often been criticized, would be changed. Such recensions are
not at all rare beginning from the sixteenth century, but in the major-
ity of ancient and medieval versions, even in a recension like that of
Campanus which introduces numerous local changes, the Euclidean
progression through thirteen books is maintained, even if at some
stage supplementary books (X1v; XV, XVvI, ...) were added.
Alternatively, the other operations of abbreviations listed above are
all mentioned in the medieval prefaces, such as those of al-Maghribi,'*°
the recension now called pseudo-Tasi'*! or the Leiden Codex, wherein
the authors described recensions or epitomes. Moreover, as we have
noted above, according to the preface of the Leiden Codex, al-Hajj4j,
in order to win the favour of the new Khalif al-Ma'min, improved his
first translation ‘by rendering it more concise and shortening it. He
did not find an addition without removing it, nor a lacuna without
filling it, nor a fault without repairing and correcting it, until he had
purged, improved, summarized and shortened it all’'*? It is possible

10 One can read a Latin translation in Heiberg 1884: 16-17, with several errors of identification

about the cited Arabic authors (and even about the author of the preface! See Rommevaux,
Djebbar and Vitrac 2001: 230, 239). It allows us however to have some idea of the liberties
taken by the authors of recensions. Completed by Sabra 1969: 14-5 who corrects the
identifications and Murdoch 1971: 440 (col. b).

!l Tt is taken up again by Murdoch in the article cited in the preceding note.

142 Translation in Djebbar 1996: 97.
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that this passage contains some rhetorical exaggerations or stock
phrases about the improvement of a text. If the quest for conciseness
seems hardly debatable, the preface indicates neither the motivations
for the suppressions nor the criteria used to identify the ‘additions.
It is conceivable that al-Hajjaj knew of other Greek versions, more
concise than the text or texts initially translated, to which the phe-
nomenon of the epitomization had itself already been applied.
We know that at least one abridged version of the Elements had been
produced in antiquity by Aigeias of Hierapolis. Mentioned by Proclus,
he wrote therefore no later than the fifth century of the modern era.
The difference with the second version of al-Hajj4j is that there is no
evidence that it played a role in the transmission of the text. However,
besides the obvious textual enrichment, it is not possible to completely
exclude the intervention of one or several abridged Greek versions.
The relative ‘thinness’ of the al-Hajjaj version, as far as can be
known, can indeed be explained in different ways depending on
the portion of text considered. Proposition 11.14, which treats the
quadrature of the triangle (with the associated absence of 1.45), and
Propositions x11.5, 7 and 8, which treat pyramids on a triangular base,
proceed from the same attitude, and, in these cases, there are good
reasons to think that the origin of this minimalist treatment has a
Greek origin.'*® For the absence of Proposition 111.37 I have noted that
it was probably an accident of transmission. The absence of the bulk
of the additional material, of several Definitions in Books v, v1, viI
and x1 and of the Porisms in the stereometric books may perhaps be
explained because al-Hajj4j had identified them as additions. Similarly,
several other Propositions missing from his version (v1.12, viir.1la-
12a, x.16, x.27-28), but present in the Ishaq-Thébit translation, might
be the result of additions lacking from the Greek or Syriac manuscripts
consulted by al-Hajjaj, or they might have possessed these assertions,
but he judged them to be useless, as they very nearly are.
The existence of abridged versions in Greek also made up part of the
hypothesis of Heiberg, and he described the model of manuscript
b in this way for its divergent part (x1.36-x11.17).'** Manuscript b
is, however, very flawed. It contains problems in the lettering of the

143 Let us recall that Proposition x11.6 and the Porisms to x11.7 and 8 are missing in manuscript
b. For 11.14, Simplicius seemingly knew two versions of the theorem: the ‘rectangular’ version
in his commentary to the Physics of Aristotle (CAG, 62. 8 Diels) and the ‘triangular’ version in
his commentary to De ceelo: (CAG, ed. 414.1 Heiberg).

144 See above, pp. 81-2.
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diagrams, saut du méme au méme, and even, as it seems to me, faults
in reading the uncial script. Manuscript b could thus be the result of
a new transliteration, being more faulty since it was further removed
from the ninth century, and produced (for reasons which elude us) at
the same time as the copy, in the eleventh century, of the Bologna man-
uscript from a model which was either truly ancient (the hypothesis
of Knorr) or proceeding from another archetype, such as an abridged
version of the ‘Aigeias’ type. Here, I call upon the possibility of an
ancient model, whereas Heiberg imagined a Byzantine recension.

Whatever the case may have been, I do not believe that this really changes
the attitude that the editor of the Greek text may have adopted toward it. The
appeal to b x1.36-x11.17 may prove useful for removing some cases of textual
divergences between P and Th, in the aforementioned portion. However,
adopting these readings would probably create a philological monster which
never existed. Perhaps it can yet be used to improve the edition of a similar
Arabic version. Knorr wanted to adopt the text of b, rather than what he
called ‘the wrong text’ of Heiberg, because he hoped that a comparison of
the primary Arabic translations would permit the reconstitution of a Greek
archetype of comparable antiquity for the remainder of the treatise. This
reconstitution is impossible, at least for the present state of our knowledge.

Therefore, the conception of a new critical edition of the Greek text
seems useless to me for the moment. The critical editions of the various
identified Arabic, Arabo-Latin and Arabo-Hebrew versions would be pref-
erable. It would be necessary to produce an ‘instruction manual’ for the
reader to navigate these versions according to the problem, the time period,
the language of culture, even the Euclid available to (another) interested
author. Such a manual would be especially necessary in the cases of double
proofs or substitutions of proofs, cases which the indirect tradition has
considerably enriched.

This necessity has long been perceived by the historians of the medieval
and modern periods. Undoubtedly, the Hellenist would also admit the same
necessity. The movement to ‘return’ to the original which inspired the work
of the philologists of the nineteenth century seems to need a break. A less
partial knowledge of the indirect tradition provides us not only with much
richer information at a local level, but also with more uncertainty about its
ancient components. Thus stripped of our (false) certainties, we may feel a
little frustrated, but the hope remains that new discoveries of ancient papyri,
manuscripts of medieval translations of Euclid or of its commentators
will allow us to move forward.



The Elements and uncertainties in Heiberg’s edition

Appendix

The appendix contains three tables (each describing one of the breaks
observed in the textual tradition of Euclid’s Elements). I have used the fol-
lowing abbreviations:

Df., Definition; Post., Postulates; CN, Common Notion; Prop. proposition;
Por. Porism (= corollary); The notation N/N+1 designates the lemma between
Propositions N and N+ 1. Brackets indicate portions considered inauthentic by
Heiberg, but which exist in Greek manuscripts.

(+) or (-) signify the presence or absence of a textual element, respectively;

(+2): fusion of two elements into one;

(x2): subdivision of an element into two.

aliter marks the existence of a second proof, possibly partial (indicated by ‘p’) or the
existence of a second definition.

Ad., version called Adelard T (Busard 1983); GC, version attributed to Gerard
of Cremona (Busard 1984); gr.-lat., Greco-Latin version (Busard 1987); Heib.,
Heiberg’s edition; IsTh, Ishdq-Thébit version; P, manuscript Vatic. Gr. 190; Th,
Greek manuscripts called Theonians (on P / Th, see above, pp. 82-5); mg.,
marginalia.
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2 Diagrams and arguments in ancient Greek
mathematics: lessons drawn from comparisons
of the manuscript diagrams with those in
modern critical editions

KEN SAITO AND NATHAN SIDOLI

Introduction

In some ways, the works of ancient Greek geometry can be regarded as
arguments about diagrams. Anyone who has ever looked at a medieval
manuscript containing a copy of an ancient geometrical text knows that
the most conspicuous characteristic of these works is the constant presence
of diagrams.! Anyone who has ever read a Greek mathematical text, in any
language, knows that the most prevalent feature of Greek mathematical
prose is the constant use of letter names, which refer the reader’s attention
to the accompanying diagrams.

In recent years, particularly due to a chapter in Netz’s The Shaping of
Deduction in Greek Mathematics entitled “The lettered diagram; historians of
Greek mathematics have had a renewed interest in the relationship between
the argument in the text and the figure that accompanies it.” Research pro-
jects that were motivated by this interest, however, quickly had to come to
grips with the fact that the edited texts of canonical works of Greek geom-
etry, although they contained a wealth of information about the manuscript
evidence for the text itself, often said nothing at all about the diagrams. For
years, the classical works of Apollonius, Archimedes and, most importantly,
the Elements of Euclid have been read in edited Greek texts and modern
translations that contain diagrams having little or no relation to the dia-
grams in the manuscript sources. Because they are essentially mathematical
reconstructions, the diagrams in modern editions are often mathematically
more intelligible than those in the manuscripts, but they are often histori-
cally misleading and occasionally even mathematically misleading.’

! In some cases, the diagrams were never actually drawn, but even their absence is immediately
evident from the rectangular boxes that were left for them.

2 N1999: 12-67.

* In this chapter, we will see a number of examples of modern diagrams that are more
mathematically consistent with our understanding of the argument and a few that may have
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In fact, a few scholars of the ancient mathematical sciences have for
many years made critical studies of the manuscript figures, and Neugebauer
often called for the critical and conceptual study of ancient and medieval
diagrams.” These scholars, however, were mostly working on the exact
sciences, particularly astronomy and, perhaps due to the tendency of his-
torians of science to divide their research along contemporary disciplinary
lines that would have made little sense to ancient mathematicians, these
works have generally formed a minority interest for historians of ancient
mathematics. Indeed, in his later editions, Heiberg paid more attention
to the manuscript figures than he did in his earlier work, but by this time
his editions of the canonical works were already complete. In fact, for his
edition of Euclid’s Elements, it appears that the diagrams were adopted from
the tradition of printed texts without consulting the manuscript sources.

In this chapter, after briefly sketching the rise of scholarly interest in pro-
ducing critical diagrams, we investigate the characteristics of manuscript
diagrams in contrast to modern reconstructions. To the extent that the
evidence will allow, we distinguish between those features of the manu-
script diagrams that can be attributed to ancient practice and those that are
probably the result of the medieval manuscript tradition, through which
we have received the ancient texts. We close with some speculations about
what this implies for the conceptual relationship between the figure and the
text in ancient Greek mathematical works.

Heiberg’s edition of Euclid’s Elements

Heiberg (1883-8), on the basis of a study of manuscripts held in European
libraries, prepared his edition of the Elements from seven manuscripts and
the critical apparatus accompanying his text makes constant reference to
these sources.” Nevertheless, there is usually no apparatus for the diagrams
and hence no mention of their source.® An examination of the previous

led to historical misunderstandings for this reason. Mathematically misleading modern
diagrams, on the other hand, are relatively rare; Neugebauer discusses one example from

the edition of Theodosius” On Days and Nights prepared by Fecht. Neugebauer 1975: 752; Fecht
1927.

For example see the section 1v D, 2, ‘Figures in Texts’ in his A History of Ancient Mathematical
Astronomy. Neugebauer 1975: 751-5.

Heiberg 1903 later published a more detailed account of the manuscript sources and the reasons
for his editorial choices. For a more extended discussion of Heiberg’s work on the Elements and
a discussion of the overall history of the text see Vitrac’s contribution in this volume.

While this is largely the case there are some exceptions. For example, the diagrams for Elem.
x1.39 and x111.15 are accompanied with apparatus. Heiberg and Stamatis 1969-77: 1v, 73

and 166.

IS
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Figure 2.1 Diagrams for Euclid’s Elements, Book x1, Proposition 12.

printed editions of the text, however, makes it clear that the diagrams
accompanying Heiberg’s edition were drawn entirely, or for the most part,
by copying those in the edition of August (1826-9).” The August edition
would have been particularly convenient for copying the diagrams, since,
as was typical for a German technical publication of its time, the diagrams
were printed together in fold-out pages at the end of the volumes.
Although nearly all the diagrams appear to have been so copied, a single
example may be used to demonstrate this point. For Elem. x1.12, concerning
the construction of a perpendicular to a given plane, the diagrams in all the
manuscripts consist simply of two equal lines, AA and BT, placed side by
side and labelled such that points A and B mark the top of the two lines. In
Figure 2.1, we compare the diagram for Elem. x1.12 in Vatican 190, as rep-
resentative of all the manuscripts, with that in both the August and Heiberg
editions.®* While Vatican 190 is typical of the manuscript diagrams, that in
Heiberg’s text is clearly copied from the August diagram. Although the given
plane is not shown in the manuscript figures, it appears in both the printed
editions and it is used with the techniques of linear perspective to make the
two lines appear to be in different planes from the plane of the drawing.
Most significantly, however, there is a labelling error in the line BI'. Point
I is supposed to be in the given plane, and hence must be at the bottom of
line BT, as in Vatican 190. This error was transmitted when the diagram was

7 The diagrams to the arithmetical books are a clear exception. The August diagrams are
dotted lines, whereas Heiberg’s edition returns to the lines we find in the manuscripts. There
also other, individual cases where the diagrams were redrawn, presumably because those in
the August edition were considered to be mathematically unsatisfactory. For example, the
diagram to Elem. x1.38 has been redrawn for Heiberg’s edition, whereas all the surrounding
diagrams are clearly copied. See also the diagram for Elem. x11.17. Compare Heiberg and
Stamatis 1969-77: 1v 75 and 128 with August 1826-9: Tab. 1x and Tab. x.

In this chapter, we refer to manuscripts by an abbreviated name in italics. Full library shelf
marks are given in the references. For the Euclidian manuscripts see also Vitrac’s chapter in

®

this volume.
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Figure 2.2 Diagrams for Euclid’s Elements, Book 1, Proposition 13.

copied, despite the fact that it could have been easily corrected from consid-
erations of the orientation required by the text.

Indeed, whereas through the course of the modern period, following the
general trends of classical scholarship, the editors of successive publications
of the Elements tended to consult a wider and wider range of manuscripts
and give their readers more and more information about these manu-
scripts, the diagrams that accompanied these editions were generally made
on the basis of the diagrams in the previous editions.

As an example of this practice, we may take Elem. 1.13, which con-
cerns the sum of the angles on either side of a straight line that falls on
another straight line. The manuscripts all agree in depicting angle ABT as
opening to the left, as shown in Figure 2.2 by the example of Vatican 190.°
Nevertheless, all printed editions, following the editio princeps of Grynée
(1533), print angle ABT opening to the right.

In some sense, this may have been a result of the division of labour of
the publishers themselves. Whereas the editions were prepared by classical
scholars and typeset by printers who were knowledgeable in the classical
languages and generally had some sensitivity to the historical issues involved
in producing a printed text from manuscript sources, the diagrams were
almost certainly drafted by professional illustrators, who would have been
skilled in the techniques of visual reproduction but perhaps uninterested in
the historical issues at hand. Nevertheless, the fact that the scholars who pre-
pared these editions and the editors who printed them were content to use
the diagrams of the previous editions as their primary sources says a great
deal about their views of the relative importance of the historical sanctity of
the text and of the diagrams in Greek mathematical works.

Already, during the course of Heiberg’s career, the attitudes of scholars
towards the importance of the manuscript diagrams began to change. In
the late 1890s, in the edition he prepared with Besthorn of al-Nayrizi’s

? See Saito 2006: 110 for further images of the manuscript figures.
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commentaries to the Elements, the diagrams were taken directly from Leiden
399, and hence often quite different from those printed in his edition of the
Greek.'” By the time he edited Theodosius™ Spherics, he must have become
convinced of the importance of giving the diagrams critical attention,
because the finished work includes diagrams based on the manuscripts,

generally accompanied with a critical note beginning ‘In fig.*!

Editions of manuscript diagrams

Because the manuscript diagrams for spherical geometry are so strikingly
different from what we have grown to expect since the advent of the con-
sistent application of techniques of linear perspective in the early modern
period, the editions of ancient Greek works in spherical astronomy were
some of the first in which the editors began to apply critical techniques to the
figures. For example in the eighth, and last, volume of the complete works of
Euclid, for his edition of the Phenomena, Menge (1916) provided diagrams
based on the manuscript sources and in some cases included critical notes.

One of the most influential editions with regard to the critical treatment
of diagrams was that made by Rome (1931-43) of the commentaries by
Pappus and Theon to Ptolemy’s Almagest. The diagrams in this long work
were taken from the manuscript sources and their variants are discussed
in critical notes placed directly below the figures themselves.”> Rome’s
practices influenced other scholars working in French and the editions by
Mogenet (1950), of Autolycus’ works in spherical astronomy, and Lejeune
(1956), of the Latin translation of Ptolemy’s Optics, both contain manu-
script figures with critical notes.

More recently, the majority tendency has been to provide manuscript
diagrams with critical assessment. For example, the editions by Jones
(1986) and Czinczenheim (2000) of Book vir of Pappus’ Collection and

!0 Besthorn et al. 1897-1932.

! Heiberg 1927. In fact, these critical notes are difficult to notice, since they are found among
the notes for the Greek text. The notes for the Greek text, however, are prefaced by numbers
referring to the lines of the text, whereas the diagrams are always located in the Latin
translation, which has no line numbers. Neugebauer 1975: 751-5 seems to have missed them,
since he makes no mention of them in his criticism of the failure of classical scholars to pay
sufficient attention to the manuscript diagrams of the works of spherical astronomy.

In connection with the early interest that Rome and Neugebauer showed in manuscript figures,
we should mention the papers they wrote on Heron’s Dioptra, the interpretation of which
depends in vital ways on understanding the diagram. Rome 1923; Neugebauer 1938-9; Sidoli
2005.
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Theodosius™ Spherics, respectively, both contain critical diagrams, and a
recent translation of Archimedes’ Sphere and Cylinder also includes a criti-
cal assessment of the manuscript figures."’

Nevertheless, although there are critically edited diagrams for many
works, especially those of the exact sciences, the most canonical works —
the works of Archimedes and Apollonius, the Elements of Euclid and the
Almagest of Ptolemy - because they were edited by Heiberg early in his
career, are accompanied by modern, redrawn diagrams. Hence, because a
study of Greek mathematics almost always begins with the Elements, and
because the manuscript diagrams of this work contain many distinctive
and unexpected features, it is essential that we reassess the manuscript
evidence.

Characteristics of manuscript diagrams

In this section, focusing largely on the Elements, we examine some of the
characteristic features of the manuscript diagrams as material objects that
distinguish them from their modern counterparts. Manuscript diagrams
are historically contingent objects which were read and copied and redrawn
many times over the centuries. In some cases, they may tell us about ancient
practice, in other cases, about medieval interpretations of ancient practice,
and in some few cases, they simply tell us about the idiosyncratic reading
of a single scribe. In the following sections, we begin with broad general
tendencies that can almost certainly be ascribed to the whole history of
the transmission, and then move into more individual cases where the
tradition shows modification and interpretation. In this chapter, we present
summary overviews, not systematic studies.

Overspecification

One of the most pervasive features of the manuscript figures is the ten-
dency to represent more regularity among the geometric objects than is
demanded by the argument. For example, we find rectangles represent-
ing parallelograms, isosceles triangles representing arbitrary triangles,

13 Netz 2004. In fact, however, the figures printed by Czinczenheim contain some peculiar
features. Although she claims to have based her diagrams on those of Vatican 204, they
often contain curved lines of a sort almost never seen in Greek mathematical manuscripts
and certainly not in Vatican 204. Thus, although her critical notes are useful, the visual
representation of the figures is often misleading.
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Figure 2.3 Diagrams for Euclid’s Elements, Book 1, Proposition 7.

squares representing rectangles, and symmetry in the figure where none is
required by the text.!* This tendency towards greater regularity, which we
call ‘overspecification, is so prevalent in the Greek, Arabic and Latin trans-
missions of the Elements that it almost certainly reflects ancient practice.
We begin with an example of a manuscript diagram portraying more
symmetry than is required by the text. Elem. 1.7 demonstrates that two
given straight lines constructed from the extremities of a given line, on the
same side of it, will meet in one and only one point. In Figure 2.3, where
the given lines are AT" and BT, the proof proceeds indirectly by assuming
some lines equal to these, say AA and BA, meet at some other point, A, and
then showing this to be impossible. As long as they are on the same side of
line AB, points I' and A may be assumed to be anywhere and the proof is
still valid. Heiberg, following the modern tradition, depicts this as shown
in Figure 2.3. All of the manuscripts used by Heiberg agree, however, in
placing points I and A on a line parallel to line AB and arranged such that
triangle ABA and triangle ABT appear to be equal.’” In this way, the figure
becomes perfectly symmetrical and, to our modern taste, fails to convey the
arbitrariness that the text allows in the relative positions of points I' and A.
We turn now to a case of the tendency of arbitrary angles to be rep-
resented as orthogonal. Elem. 1.35 shows that parallelograms that stand
on the same base between the same parallels are equal to each other. In
Figure 2.4, the proof that parallelogram ABI'A equals parallelogram EBI'Z
follows from the addition and subtraction of areas represented in the figure
and would make no sense without an appeal to the figure in order to under-
stand these operations. In the modern figures that culminate in Heiberg’s
edition, the parallelograms are both depicted with oblique angles, whereas

!4 In this chapter, we give only a few select examples. Many more examples, however, can be seen
by consulting the manuscript diagrams themselves. For Book 1 of the Elements, see Saito 2006.
For Books 11-vr of the Elements, as well as Euclid’s Phenomena and Optics, see the report of a
three-year research project on manuscript diagrams, carried out by Saito, available online at
www.hs.osakafu-u.ac.jp/~ken.saito/.

1> See Saito 2006: 103 for further images of the manuscript figures.
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Figure 2.4 Diagrams for Euclid’s Elements, Book 1, Proposition 35.
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Figure 2.5 Diagrams for Euclid’s Elements, Book vi1, Proposition 20.

in the manuscripts the base parallelogram ABI'A is always depicted as a

rectangle, as seen in Bodleian 301, and often even as a square, as seen in

Vatican 190."° Once again, to our modern sensibility, the diagrams appear

to convey more regularity than is required by the proof. That is, the angles

need not be right and the sides need not be the same size, and yet they are

so depicted in the manuscripts.

We close with one rather extreme example of overspecification. Elem.

v1.20 shows that similar polygons are divided into an equal number of

triangles, of which corresponding triangles in each polygon are similar,

and that the ratio of the polygons to one another is equal to the ratio of

corresponding triangles to one another, and that the ratio of the polygons

to one another is the duplicate of the ratio of a pair of corresponding sides.

Although the enunciation is given in such general terms, following the

usual practice of Greek geometers, the enunciation and proof is made for

a particular instantiation of these objects; in this case, a pair of pentagons.

In Figure 2.5, the modern diagram printed by Heiberg depicts two similar,

but unequal, irregular pentagons. In Bodleian 301, on the other hand, we

find two pentagons that are both regular and equal. This diagram strikes
the modern eye as inappropriate for this situation because the proposi-
tion is not about equal, regular pentagons, but rather similar polygons of

1o See Saito 2006: 131 for further images of the manuscript figures.
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any shape.'” In the modern figure, because the pentagons are irregular, we
somehow imagine that they could represent any pair of polygons, although,
in fact a certain specific pair of irregular pentagons are depicted.

The presence of overspecification is so prevalent in the diagrams of
the medieval transmission of geometric texts that we believe it must be
representative of ancient practice. Moreover, there is no mathematical
reason why the use of overspecified diagrams should not have been part of
the ancient tradition. For us, the lack of regularity in the modern figures
is suggestive of greater generality. The ancient and medieval scholars,
however, apparently did not have this association between irregularity and
greater generality, and, except perhaps from a statistical standpoint, there
is no reason why these concepts should be so linked. The drawing printed
by Heiberg is not a drawing of ‘any’ pair of polygons, it is a drawing of two
particular irregular pentagons. Since the text states that the two polygons
are similar, they could be represented by any two similar polygons, as say
those in Bodleian 301 which also happen to be equal and regular. Of course
statistically, an arbitrarily chosen pair of similar polygons is more likely to
be irregular and unequal, but statistical considerations, aside from being
anachronistic, are hardly relevant. The diagram is simply a representation
of the objects under discussion. For us, an irregular triangle is somehow a
more satisfying representation of ‘any’ triangle, whereas for the ancient and
medieval mathematical scholars an arbitrary triangle might be just as well,
if not better, depicted by a regular triangle.

Indifference to visual accuracy

Another widespread tendency that we find in the manuscripts is the use of
diagrams that are not graphically accurate depictions of the mathematical
objects discussed in the text. For example, unequal lines may be depicted as
equal, equal angles may be depicted as unequal, the bisection of a line may
look more like a quadrature, an arc of a parabola may be represented with
the arc of a circle, or straight lines may be depicted as curved. These tenden-
cies show a certain indifference to graphical accuracy and can be divided
into two types, which we call ‘indifference to metrical accuracy’ and ‘indif-
ference to geometric shape’

We begin with an example that exhibits both overspecification and indif-
ference to metrical accuracy. Elem. 1.44 is a problem that shows how to

17 In fact, the proof given in the proposition is also about a more specific polygon in that it
has five sides and is divided into three similar triangles, but it achieves generality by being
generally applicable for any given pair of rectilinear figures. This proof is an example of the
type of proof that Freudenthal 1953 called quasi-general.
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Figure 2.6 Diagrams for Euclid’s Elements, Book 1, Proposition 44.

construct, on a given line, a parallelogram that contains a given angle and
is equal to a given triangle. As exemplified by Vatican 190 in Figure 2.6, in
all the manuscripts, the parallelogram is represented by a rectangle, and in
the majority of the manuscripts that Heiberg used for his edition there is
no correlation between the magnitudes of the given angle and triangle and
those of the constructed angle and parallelogram.'® In the modern figure,
printed by Heiberg and seen in Figure 2.6, however, not only is the con-
structed figure depicted as an oblique parallelogram, but the magnitudes of
the given and constructed objects have been set out as equal.

We turn now to an occurrence of metrical indifference that is, in a sense,
the opposite of overspecification. In Elem. 1.7, Euclid demonstrates a
proposition asserting the metrical relationship obtaining between squares
and rectangles constructed on a given line cut at random. The overall geo-
metric object is stated to be a square and it contains two internal squares.
Nevertheless, as seen in the examples of Vatican 190 and Bodleian 301 in
Figure 2.7, the majority of Heiberg’s manuscripts show these squares as
rectangles.'”” We should note also the extreme overspecification of Bodleian
301, in which all of the internal rectangles appear to be equal. In general,
there seems to be a basic indifference as to whether or not the diagram
should visually represent the most essential metrical properties of the
geometric objects it depicts.

'¥ In this chapter, when we speak of the majority of the manuscripts, we mean the majority of
the manuscripts selected by the text editor as independent witnesses for the establishment
of the text. We should be wary of assuming, however, that the majority reading is the best,
or most pristine. See Saito 2006: 140, for further images of the manuscript figures. In Vienna
31, as is often the case with this manuscript, we find the magnitudes have been drawn so as
to accurately represent the stipulations of the text (see the discussion of this manuscript in
‘Correcting the diagram, below).

19" See Saito 2008 for further images of the manuscript diagrams. In Vienna 31 and Bologna
18-19, the squares, indeed, look like squares.
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Figure 2.7 Diagrams for Euclid’s Elements, Book 11, Proposition 7.

As well as metrical indifference, the manuscript diagrams often seem to
reveal an indifference toward the geometric shape of the objects as speci-
fied by the text. The most prevalent example of this is the use of circular
arcs to portray all curved lines. As an example, we may take the diagram
for Apollonius Con. 1.16. As seen in Figure 2.8, the diagram in Vatican 206
shows the two branches of an hyperbola as two semicircles. Indeed, all
the diagrams in this manuscript portray conic sections with circular arcs.
Heiberg’s diagram, on the other hand, depicts the hyperbolas with hyper-
bolas.

This diagram, however, is also interesting because it includes a case
of overspecification, despite the fact that Eutocius, already in the sixth
century, noticed this overspecification and suggested that it be avoided.”
In Figure 2.8, the line AB appears to be drawn as the axis of the hyperbola,
such that HK and ®A are shown as orthogonal ordinates, whereas the
theorem treats the properties of any diameter, such that HK and ®A could
also be oblique ordinates. Eutocius suggested that they be so drawn in
order to make it clear that the proposition is about diameters, not the axis.
Nevertheless, despite Eutocius’ remarks, the overspecification of this figure
was preserved into the medieval period, and indeed was maintained by
Heiberg in his edition of the text.”! This episode indicates that overspecifi-
cation was indeed in effect in the ancient period and that although Eutocius
objected to this particular instance of it, he was not generally opposed, and
even here his objection was ignored.

As well as being used to represent the more complicated curves of the
conics sections, circular arcs are also used to represent straight lines. As
Netz has shown,* this practice was consistently applied in the diagrams for

20 Heiberg 1891-3: 224; Decorps-Foulquier 1999: 74-5.

I A more general figure, which would no doubt have pleased Eutocius, is given in Taliaferro,
Densmore and Donahue 1998: 34.

2 Netz 2004.
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Figure 2.8 Diagrams for Apollonius’ Conica, Book 1, Proposition 16.

Archimedes’ Sphere and Cylinder for a polygon with short sides that might
be visually confused with the arcs of the circumscribed circle.”

In the manuscript diagrams of Elem. 1v.16, however, we have good
evidence that the curved lines are the result of later intervention by the
scribes. Elem. 1v.16 is a problem that shows how to construct a regular
15-gon in a circle (Figure 2.9). The manuscript evidence for this figure is
rather involved and, in fact, none of the manuscripts that Heiberg used
contain the same diagram in the place of the primary diagram, although
there is some obvious cross-contamination in the secondary, marginal dia-
grams.”* Nevertheless, it is most likely that the archetype was a metrically
inexact representation of the sides of the auxiliary equilateral triangle and
regular pentagon depicted with straight lines, as found in Bologna 18-19

% In the present state of the evidence, it is difficult to determine with certainty whether or not
the curved lines in the Archimedes tradition go back to antiquity, but there is no good reason
to assert that they do not. All of our extant Greek manuscripts for the complete treatise of
Sphere and Cylinder are based on a single Byzantine manuscript, which is now lost. This is
supported by the fragmentary evidence of the oldest manuscript, the so-called Archimedes
Palimpsest, whose figures also contain curved lines. The diagrams in an autograph of William
of Moerbeke’s Latin translation, Vatican Ottob. 1850, however, made on the basis of a different
Greek codex, also now lost, have straight lines, but this does not prove anything. The source
manuscript may have had straight lines or Moerbeke may have changed them. Whatever

the case, we now have three witnesses, two of which agree on curved lines and one of which
contains straight lines.

See Saito 2008: 171-3 for a full discussion. This previous report, however, was written before
the manuscripts could be consulted in person. Since Saito has now examined most of the
relevant manuscripts, it is clear from the colour of the lines, the pattern of erasures and so on,
that the curved lines are part of the later tradition. See www.hs.osakafu-u.ac.jp/~ken.saito/
diagram/ for further updates.

2
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Figure 2.9 Diagrams for Euclid’s Elements, Book 1v, Proposition 16. Dashed lines were
drawn in and later erased. Grey lines were drawn in a different ink or with a different
instrument.

and in the erased part of Florence 28.%° In Bodleian 301 and Paris 2466 we
see examples in which the scribe has made an effort to draw lines AB and
AT so as to portray more accurately the sides of a regular pentagon and an
equilateral triangle, respectively. In Bodleian 301, the external sides of the
figures are clearly curved, while in Paris 2466 this curvature is slight. In
Vienna 31, the original four lines were straight and metrically accurate, as
is usual for this manuscript, and a later hand added further curved lines. In
Vatican 190, it appears that all the sides of the auxiliary triangle and pen-
tagon were drawn in at some point and then later erased, presumably so as
to bring the figure into conformity with the evidence of some other source.

Not only were circles used for straight lines, but we also have at least one
example of straight lines being used to represent a curved line. This rather
interesting example of indifference to visual accuracy comes from one
of the most fascinating manuscripts of Greek mathematics, the so-called
Archimedes Palimpsest, a tenth-century manuscript containing various
Hellenistic treatises including technical works by Archimedes that was

» In Florence 28, the metrically inaccurate figure with straight lines was erased and drawn over
with a metrically accurate figure with curved lines. The colour of the ink makes it clear that the
rectilinear lines that remain from the original are AT and the short part of AB that coincides
with the new curved line AB.
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Figure 2.10 Diagrams for Archimedes” Method, Proposition 12.

palimpsested as a prayer book some centuries later.?® In the section of the
treatise that Heiberg called Method 14, Archimedes discusses the metrical
relationships that obtain between a prism, a cylinder and a parabolic solid
that are constructed within the same square base.”” In Figure 2.10, the base
of the prism is rectangle EATH, that of the cylinder is semicircle EZH,
while that of the parabolic solid is triangle EZH. Thus, in this diagram,
a parabola is represented by an isosceles triangle. Since the parabola is
defined in the text by the relationship between the ordinates and abscissa,
and since the triangle intersects and meets the same lines as the parabola,
this was apparently seen as a perfectly acceptable representation. In this
way, the triangle functions as a purely schematic representation of the
parabola. Indeed, without the text we would have no way to know that the
diagram represents a parabola.

Diagrams in solid geometry

The schematic nature of ancient and medieval diagrams becomes most
obvious when we consider the figures of solid geometry. Although there are
some diagrams in the manuscripts of solid geometry that attempt to give
a pictorial representation of the geometric objects, for the most part, they
forego linear perspective in favour of schematic representation. This means
that they do not serve to convey a sense of the overall spacial relationships

¢ The circuitous story of this manuscript is told by Netz and Noel 2007.

" This section of the Method is discussed by Netz, Saito and Tchernetska 2001-2. The diagram
found in the palimpsest is difficult to see in the original. Here, we include two images developed
by researchers in the Archimedes Palimpsest Project. The diagram is in the left-hand column
of the text spanning pages 159v-158r. These images, licensed under the Creative Commons
Attribution 3.0 Unported Access Rights, are available online at www.archimedespalimpsest.org.
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Figure 2.11 Diagrams for Euclid’s Elements, Book x1, Proposition 33 and Apollonius’
Conica, Book 1, Proposition 13.

obtaining among the objects, but rather to convey specific mathematical
relationships that are essential to the argument.

Some conspicuous exceptions to this general tendency should be men-
tioned. For example, the diagrams for the rectilinear solids treated in Elem.
x1 and x11 and the early derivations of the conic sections in the cone, in
Con. 1, appear to use techniques of linear perspective to convey a sense
of the three-dimensionality of the objects. In Figure 2.11, we reproduce
the diagram for Elem. x1.33 from Vatican 190 and that for Con. 1.13 from
Vatican 206.

In all of these cases, however, it is possible to represent the three-
dimensionality of the objects simply and without introducing any object
not explicitly named in the proof merely for the sake of the diagram. For
example, in Figure 2.1 above, the plane upon which the perpendicular is
to be constructed does not appear in the manuscript figure. Hence, even
in these three-dimensional diagrams, techniques of linear perspective are
used only to the extent that they do not conflict with the schematic nature
of the diagram. Auxiliary, purely graphical elements are not used, nor is
there any attempt to convey the visual impression of the mathematical
objects through graphical techniques. An example of this is the case of
circles seen at an angle. Although it is not clear that there was a consist-
ent theory of linear perspective in antiquity, ancient artists regularly drew
circles as ovals and Ptolemy, in his Geography, describes the depiction of
circles seen from an angle as represented by ovals,”® nevertheless, in the
medieval manuscripts such oblique circles are always drawn with two

2 Knorr 1992: 280-91; Berggren and Jones 2000: 116.
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Vatican 204
Figure 2.12 Diagrams for Theodosius” Spherics, Book 11, Proposition 6.

circular arcs that meet at cusps, as seen in Figure 2.11.% This confirms that
the diagrams were not meant to be a visual depiction of the objects, but
rather a representation of certain essential mathematical properties.

Likewise, in the figures of spherical geometry, if the sphere itself is not
named or required by the proof, we will often see the objects themselves
simply drawn free-floating in the plane, to all appearances as though they
were actually located in the plane of the figure. Theodosius’ Spher. 11.6
shows that if, in a sphere, a great circle is tangent to a lesser circle, then it is
also tangent to another lesser circle that is equal and parallel to the first. In
Figure 2.12, we find the great circle in the sphere, ABT, and the two equal
and parallel lesser circles that are tangent to it, A and BH, all lying flat in
the same plane, with no attempt to portray their spacial relationships to
each other or the sphere in which they are located.

The diagram for Spher. 11.6 thus highlights the schematic nature of dia-
grams in the works of spherical geometry. The theorem is about the type of
tangency that obtains between a great circle and two equal lesser circles and
this tangency is essentially the only thing conveyed by the figure. The actual
spacial arrangement of the circles on the sphere must either be imagined by

the reader or drawn out on some real globe.*

With respect to linear perspective, there is still a debate as to whether or not the concept of
the vanishing point was consistently applied in antiquity. See Andersen 1987 and Knorr 1991.
As Jones 2000: 55-6 has pointed out, Pappus’ commentary to Euclid’s Optics 35 includes

a vanishing point, but it is not located in accordance with the modern principles of linear
perspective.

We argue elsewhere that Theodosius was, indeed, concerned with the practical aspects of
drawing figures on solid globes, but that this practice was not explicitly discussed in the
Spherics; Sidoli and Saito 2009.
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Vatican 204 Perspective diagram

Figure 2.13 Diagrams for Theodosius’ Spherics, Book 11, Proposition 15.

The schematic role of diagrams in spherical geometry becomes unmis-
takable when we compare the diagram of one of the more involved propo-
sitions as found in the manuscripts with one intended to portray the same
objects using principles of linear perspective. Spher. 11.15 is a problem that
demonstrates the construction of a great circle passing through a given
point and tangent to a given lesser circle. As can be seen in Figure 2.13,
merely by looking at the manuscript diagram, without any discussion of the
objects and their arrangement, it is rather difficult to get an overall sense of
what the diagram is meant to represent. Nevertheless, certain essential fea-
tures are conveyed, such as the conpolarity of parallel circles, the tangency
and intersection of key circles, and so on. It is clear that the manuscript
diagram is meant to be read in conjunction with the text as referring to
some other object, either an imagined sphere or more likely a real sphere
on which the lines and circles were actually drawn. It tells the reader how to
understand the labelling and arrangement of the objects under discussion,
so that the text can then be read as referring to these objects. The modern
figure, on the other hand, by selecting a particular vantage point as most
opportune and then allowing the reader to see the objects from this point,
does a better job of conveying the overall spacial relationships that obtain
among the objects.*!

1 'We should point out, however, that the modern diagram in Figure 2.13, as well as being in
linear perspective, employes a number of graphical techniques that we do not find in the
manuscript sources, such as the use of non-circular curves, dotted lines, highlighted points,
and so on.
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Figure 2.14 Diagrams for Euclid’s Elements, Book 111, Proposition 36.

One diagram for multiple cases

In the foregoing three sections, we have discussed characteristics of the
medieval diagrams that are so prevalent that they almost certainly reflect
ancient practice. We turn now to characteristics that are more individual
but which, nevertheless, form an essential part of the material transmission
through which we must understand the ancient texts.

For a few propositions that are divided into multiple cases, we find, nev-
ertheless, the use of a single diagram to represent the cases. There is some
question about the originality of most of these, and in fact it appears that, in
general, Euclid did not include multiple cases and that those propositions
that do have cases were altered in late antiquity.” Nevertheless, even if the
cases are all due to late ancient authors, they are historically interesting and
the manuscript tradition shows considerable variety in the diagrams. This
indicates that single diagrams for multiple cases were probably in the text
at least by late antiquity and that the medieval scribes had difficulty under-
standing them and hence introduced the variety that we now find.

As an example, we consider Elem. 111.36. The proposition shows that if,
from a point outside a circle, a line is drawn cutting the circle, it will be
cut by the circle such that the rectangle contained by its parts will be equal
to the square drawn on the tangent from the point to the circle. That is, in
Figure 2.14, the rectangle contained by AA and AT is equal to the square
on AB. In the text, as we now have it, this is proved in two cases, first
where line AA passes through the centre of the circle and second where it

2 See Saito 2006: 85-90 for the case of a single figure containing two cases in Elem. 111.25, in
which the division into cases was almost certainly not due to Euclid. The Arabic transmission
of the Elements gives further evidence for the elaboration of a single figure into multiple
figures. In the eastern Arabic tradition, we find a single figure for both Elem. 111.31 and 1v.5
(see for example, Uppsala 20: 42v and 38v), while in the Andalusian Arabic tradition, which
was also transmitted into Latin, we find multiple figures for these propositions (compare
Rabat 53: 126-8 and 145-6 with Busard 1984: 83-5 and 102-5).
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does not. In Heiberg’s edition, and Vienna 31 (which often has corrected
diagrams), there is an individual figure for each case. In the majority
of Heiberg’s manuscripts, however, there is only a single figure and it
contains two different points that represent the centre, one for each case.
In Figure 2.14, we reproduce the two diagrams from Heiberg’s edition,
which are mathematically the same as those in Vienna 31, and an example
of the single figure taken from Bodleian 301. In the single diagram, as
found in Bodleian 301, there are two centres, points E and Z, and neither
of them lies at the centre of the circle. Nevertheless, if we suppose that they
are indeed centres, the proof can be read and understood on the basis of
this figure.

Despite these peculiarities, there are a number of reasons for thinking
that this figure is close to the original on which the others were based. It
appears in the majority of Heiberg’s manuscripts, and the other diagrams
contain minor problems, such as missing or misplaced lines, or are obvi-
ously corrected.’* Moreover, the single figure appears to have caused wide-
spread confusion in the manuscript tradition. In most of the manuscripts,
there are also marginal figures which either correct the primary figure or
provide a figure that is clearly meant for a single case.

Hence, although we cannot, at present, be certain of the history of this
theorem and its figure, the characteristics and variety of the figures should
be used in any analysis of the text that seeks to establish its authenticity
or authorship. This holds true for nearly all of the propositions that were
clearly subject to modification in the tradition.

Correcting the diagrams

Medieval scribes also made what they, no doubt, considered to be correc-
tions to the diagrams both by redrawing the figures according to their own
interpretation of the mathematics involved and by checking the diagrams
against those in other versions of the same treatise and, if they were dif-
ferent, correcting on this basis. We will call the first practice ‘redrawing’
and the latter ‘cross-contamination. We have already seen the example of
Elem. 1v.16, on the construction of the regular 15-gon (see Figure 2.9), in
which the scribes corrected for metrical indifference and drew the lines of
the polygon as curved lines to distinguish them better from the arcs of the
circumscribing circle.

3 See Saito 2008: 78-9 for a discussion of variants of this diagram in the manuscripts of the
Elements.
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Figure 2.15 Diagrams for Euclid’s Elements, Book 111, Proposition 21.

In a number of cases, the tendencies toward overspecification and
graphical indifference resulted in a figure that was difficult to interpret as a
graphical object. For example, we may refer again to Figure 2.14 in which
two different centres of the circle are depicted, neither of which appears to
lie at the centre of the circle. In such cases, the scribes often tried to correct
the figure so that it could be more readily interpreted without ambiguity.

As an example of a redrawn diagram, we take Elem. 111.21, which proves
that, in a circle, angles that subtend the same arc are equal to one another.
As seen in Figure 2.15, Vatican 190 portrays the situation by showing the
two angles BAA and BEA as clearly separated from the angle at the centre,
angle BZA, which is twice both of them. In the majority of Heiberg’s manu-
scripts, however, as seen in Bodleian 301 and Vienna 31, through over-
specification the lines BA and EA have been drawn parallel to each other
and at right angles to BA, so that the lines AA and BE appear to intersect
at the centre of the circle. In the course of the proposition, however, centre
Z is found and lines BZ and ZA are joined. In order to depict centre Z as
distinct from the intersection of lines AA and BE, centre Z has been placed
off centre, often by later hands, as seen in the examples of Bodleian 301 and
Vienna 31.°* Because of the variety of the manuscript figures, it does not
seem possible to be certain of the archetype, but it probably either had point
Z as the intersection of AA and BE, as in the example of Vienna 31, or it had
a second centre called Z but not located at the centre of the circle, as in the
example of Bodleian 301.%> Later readers, then, found this situation confus-
ing and corrected the diagrams accordingly. In this case, the redrawing was
done directly on top of the original figure.

** See Saito 2008: 67 for further discussion of this diagram.
* In Bodleian 301, a later hand appears to have crossed out this original second centre, Z, and
moved it closer to the centre of the circle.
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Figure 2.16 Diagrams for Euclid’s Elements, Book 1, Proposition 44.
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Vatican 190 Vienna 31

Figure 2.17 Diagrams for Euclid’s Elements, Book 1, Proposition 22.

The redrawing, however, might also be done at the time when the text
was copied and the figures drafted. In this case, the source diagram is lost in
this part of the tradition. Of the manuscripts used by Heiberg, the diagrams
in Vienna 31 are often redrawn for metrical accuracy, but less often for
overspecification.’ For the diagram accompanying Elem. 1.44, the figure in
Vienna 31 (see Figure 2.16) should be compared with that in Vatican 190
(see Figure 2.6). As can be seen, the given area I' is indeed the size of the
parallelogram constructed on line AB, but the parallelogram is depicted as
arectangle and this is reflected in the fact that the given angle, A, is depicted
as right. In this case, the diagram is metrically accurate but it still represents
any parallelogram with a rectangle.

For an example in which the diagram in Vienna 31 has been corrected
both for metrical accuracy and overspecification, we consider Elem. 1.22,
which demonstrates the construction of a triangle with three given sides.
As seen in Figure 2.17, the older tradition, here exemplified by Vatican 190,
represents the constructed triangle with the isosceles triangle ZKH, and
the given lines with the equal lines A, B and I'. In some of the manuscripts,
however, the constructed triangle ZKH is drawn as an irregular acute
triangle.”” In Figure 2.17 we see the example of Vienna 31, in which the

% As we saw in the foregoing example, in the case of Elem. 111.21, however, the original scribe of
Vienna 31 did not correct the diagram, but a correction was added by a later hand.

%7 See Saito 2006: 118 for a larger selection of the manuscript figures. The fact that Vatican 190
belongs to the older tradition is confirmed by the Arabic transmission.
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constructed triangle is depicted as an irregular, acute triangle and all of its
sides are depicted as the same length as the sides that have been given for
the construction. Indeed, here we have a figure that is fully in accord with
modern tastes.

For Elem. 1.22, of the manuscripts used by Heiberg in his edition, Bodleian
301 also depicts the constructed triangle as an irregular, acute triangle,
similar to that in Vienna 31. The fact that Vienna 31 and Bodleian 301 have
a similar irregular, acute triangle could either indicate that scribes in both
traditions independently had the idea to draw an irregular, acute triangle
and randomly drew one of the same shape or, more likely, a scribe in one
tradition saw the figure in the other and copied it. There is considerable
evidence that this kind of cross-contamination took place. As another
example that we have already seen, we may mention Elem. 111.21 in which
both Vienna 31 and Bodleian 301 show a second centre drawn in freehand
at some time after the original drawing was complete. Moreover, in the
case of Elem. 111.21, in Florence 28, which has the same primary diagram
as Bodleian 301, we find a marginal diagram like that in Vatican 190, while
in Bologna 18-19, which has the same primary diagram as Vatican 190, we
find a marginal diagram like that in Florence 28.

Hence, as well as being used as a cross-reference for the primary
diagram, the figures of a second or third manuscript were often drawn into
the margin as a secondary diagram. Although we are now only at the begin-
ning stages of such studies, this process of cross-contamination suggests
the possibility of analysing the transmission dependencies of the diagrams
themselves without necessarily relying on those of the text. Indeed, there is
now increasing evidence that the figures, like the scholia, were sometimes
transmitted independently of the text.’® The process of cross-contamination
has left important clues in the manuscript sources that should be exploited
to help us understand how the manuscript diagrams were used and read.

Ancient and medieval manuscript diagrams

Since the ancient and medieval diagrams are material objects that were
transmitted along with the text, we should consider the ways they were
copied, read and understood with respect to the transmission of the text.

* For examples of the independent transmission of the scholia of Aristarchus’ On the Sizes and
Distances of the Sun and Moon and Theodosius’ Spherics see Noack 1992 and Czinczenheim
2000. The independent transmission of the manuscript figures for Calcidius” Latin translation
of Plato’s Timaeus has been shown by Tak 1972.
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Although, for the most part, the text and diagrams appear to have been
copied as faithfully as possible, at various times in the Greek transmission,
and perhaps more often in the Arabic tradition, mathematically minded
individuals re-edited the texts and redrew the diagrams.

For the most part, in Greek manuscripts the diagrams are drawn into
boxes that were left blank when the text was copied, whereas in the Arabic
and Latin manuscripts the diagrams were often drawn by the same scribe
as copied the text, as is evident from the fact that the text wraps around
the diagram. Nevertheless, except during periods of cultural transmission
and appropriation, the diagrams appear to have been generally transmitted
by scribes who based their drawings on those in their source manuscripts,
despite the fact that the diagrams can largely be redrawn on the basis of a
knowledge of the mathematics contained in the text. Hence, the diagrams
in the medieval manuscripts give evidence for two, in some sense conflict-
ing, tendencies: (1) the scribal transmission of ancient treatises based on
a concept of the sanctity of the text and (2) the use of the ancient works
in the mathematical sciences for teaching and developing those sciences
and the consequent criticism of the received text from the perspective of a
mathematical reading.

For these reasons, when we use the medieval diagrams as evidence for
ancient practices, when we base our understanding of the intended uses of
the diagrams on these sources, we should look for general tendencies and
not become overly distracted by the evidence of idiosyncratic sources.

Diagrams and generality

The two most prevalent characteristics of the manuscript diagrams are what
we have called overspecification and indifference to visual accuracy. The
consistent use of overspecification implies that the diagram was not meant
to convey an idea of the level of generality discussed in the text. The diagram
simply depicts some representative example of the objects under discussion
and the fact that this example is more regular than is required was appar-
ently not considered to be a problem. In the case of research, discussion
or presentation, a speaker could of course refer to the level of generality
addressed by the text, or, in fact, could simply redraw the diagram. The indif-
ference to visual accuracy implies that the diagram was not meant to be a
visual depiction of the objects under discussion but rather to use visual cues
to communicate the important mathematical relationships. In this sense,
the diagrams are schematic representations. They help the reader navigate
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the thicket of letter names in the text, they relate the letter names to specific
objects and they convey the most relevant mathematical characteristics of
those objects. Again, in the course of research, discussion or presentation,
a speaker could draw attention to other aspects of the objects that are not
depicted, or again could simply redraw the diagrams.

We have referred to the fact that the diagrams could have been redrawn
in the regular course of mathematical work, and, in fact, the evidence of
the medieval transmission of scientific works shows that mathematically
minded readers had a tendency to redraw the diagrams in the manuscripts
they were transmitting.*” This brings us to another essential fact of the manu-
script diagrams. They were conceived, and hence designed, to be objects
of transmission, that is, as a component of the literary transmission of the
text. Nevertheless, the extent to which mathematics was a literary activity
was changing throughout the ancient and medieval periods and indeed
the extent to which individual practitioners would have used books in the
course of their study or research is an open question. This much, however,
is virtually certain: the total number of people studying the mathematical
sciences at any time was much greater than the number of them who owned
copies of the canonical texts. Hence, in the process of learning about and
discussing mathematics the most usual practice would have been to draw
some temporary figure and then to reason about it.

In fact, there is evidence that, contrary to the impression of the diagrams
in the manuscript tradition, ancient mathematicians were indeed interested
in making drawings that were accurate graphic images of the objects under
discussion. We argue elsewhere that the diagrams in spherical geometry,
as represented by Theodosius’ Spherics, were meant to be drawn on real
globes and that the problems in the Spherics were structured so as to facili-
tate this process.”’ As is clear from Eutocius’ commentary to Archimedes’
Sphere and Cylinder, Greek mathematicians sometimes designed mechani-
cal devices in order to solve geometric problems and to draw diagrams
accurately.*! In contrast to the triangular parabola we saw in Method 14,
Diocles, in On Burning Mirrors, discusses the use of a horn ruler to draw a
graphically accurate parabola through a set of points.** Hence, we must dis-
tinguish between the diagram as an object of transmission and the diagram
as an instrument of mathematical learning and investigation.

w

¥ See Sidoli 2007 for some examples of mathematically minded readers who redrew the figures

in the treatises they were transmitting.
*0" Sidoli and Saito 2009.
1 Netz 2004: 275-6 and 294-306.
2 Toomer 1976: 63-7.
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In fact, we will probably never know much with certainty about the
parabolas that were drawn by mathematicians investigating conic theory
or the circles that were drawn on globes by teachers discussing spherical
geometry. Nevertheless, insofar as mathematical teaching and research are
human activities, we should not doubt that the real learning and research
was done by drawing diagrams and reasoning about them, not simply by
reading books or copying them out. Hence, the diagrams in the manuscripts
were meant to serve as signposts indicating how to draw these figures and
mediating the reader’s understanding of the propositions about them.

We may think of the manuscript diagrams as schematic guides for
drawing figures and for navigating their geometric properties. In some
cases, and for individuals with a highly developed geometric imagination,
these secondary diagrams might simply be imagined, but for the most part
they would actually have been drawn out. The diagrams achieve their gen-
erality in a similar way as the text, by presenting a particular instantiation
of the geometric objects, which shows the readers how they are laid out
and labelled so that the readers can themselves draw other figures in such a
way that the proposition still holds. Hence, just as the words of the text refer
to any geometric objects which have the same conditions, so the diagrams
of the text refer to any diagrams that have the same configurations.

We may think of the way we use the diagram of a difficult proposition,
such as that of the manuscript diagram for Spher. 11.15 in Figure 2.13, in
the same way that we think of the way we use the subway map of the Tokyo
Metro.”> We may look at the manuscript diagram in Figure 2.13 before we
have worked through the proposition to get a sense of how things are laid
out, just as we may look at the Tokyo subway map before we set out for a
new place, to see where we will transfer and so forth. Although this may
help orientate our thinking, in neither case does it fully prepare us for the
actual experience. The schematic representation of the sphere in Figure
2.13 tells us nothing of its orientation in space, an intuition of which we will
need to develop in order to actually understand the proposition. The Tokyo
subway map tells us nothing about trains, platforms and tickets, all of which
we will need to negotiate to actually go anywhere in Tokyo. In both cases,
the image is a schematic that conveys only information essential to an activ-
ity that the reader is assumed to be undertaking.

There is, however, also an important distinction. The Tokyo subway map
points towards a very specific object — or rather a system of objects that are

* The Tokyo subway map, in a number of different languages, can be downloaded from www.
tokyometro.jp/e/.
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always in flux, and probably not nearly as determinate as we would like to
believe — nevertheless, a system of objects with a very specific locality and
temporality. A Tokyo subway map is useless for Paris. If it was drawn this
year, it will contain stations and lines that did not exist ten years ago and
ten years from now it will again be out of date. The manuscript diagram
in Figure 2.13, however, has no such specificity. It can refer to any sphere
and does. Anyone who wants to draw a great circle on a sphere tangent to
a given line and through a given point can use this diagram in conjunction
with its proposition to do so. In the centuries since this proposition was
written, a great many readers must have drawn figures of this construction
- on the plane, on the sphere, in their mind’s eye - and this diagram, strange
and awkward as it is, somehow referred to all of them. It is in such a way
that the overspecified, graphically inaccurate diagrams that we find in the
manuscript tradition achieve the generality for which they were intended.
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3 The texture of Archimedes’ writings: through
Heiberg’s veil

REVIEL NETZ

The reading of Archimedes will always be inextricably intertwined with
the reading of Heiberg. The great Danish philologer, involved with so
many other projects in Greek science and elsewhere,! had Archimedes
become his life project: the subject of his original dissertation, Quaestiones
Archimedeae (1879), which formed the basis for his first Teubner edition
of Archimedes’ Opera Omnia (1880) and then, following upon the discov-
ery of codices B and C, the second Teubner edition of the Opera Omnia
(1910-15). The second edition appears to have settled the main questions
of the relationship between the manuscripts, and has established the read-
ings with great authority and clarity (it is this second and definitive edition
which I study here). This is especially impressive, given how few technical
resources Heiberg had for the reading of codex C - the famous Palimpsest.
Even if today we can go further than Heiberg did, this is to a large extent
thanks to the framework produced by Heiberg himself: so that, even if his
edition is superseded, his legacy shall remain. Let this article not be read
as a criticism of Heiberg - the most acute reader Archimedes has ever had.

The historical significance of Heiberg’s publication is due not only to his
scholarly stature, but also to his precise position in the modern reception of
Archimedes. Classical scholarship is a tightly defined network of texts and
readers, organized by a strict topology. The ‘standard edition” has a special
position. Its very pagination comes to define how quotations are to be made.
Indeed, even more can be said for Archimedes specifically. First, the rise of
modern editions inspired by German philological methods, in the late nine-
teenth century, coincided with an early phase of an interest in the history of
science. Thus Heath’s work of translating and popularizing Greek mathemat-
ics in the English-speaking world took place in the same decades that Heiberg
was producing his edition of Archimedes. The version of Archimedes still
in use by most English readers — Heath 1897 — depends, paradoxically, on
Heibergs first (and deficient) edition. Czwalina’s German translation (1922-
5) was based on the second edition, as was Ver Eecke’s French translation
(1921). Perhaps the most useful version among those widely available today,

! For Heiberg’s somewhat incredible bibliography, see Spang-Hanssen 1929.
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Mugler’s Budés text (1970-2) goes further: it not merely translates the text
of the second edition of Archimedes, but also provides a facing Greek text —
which directly reproduces the original edition by Heiberg! Mugler’s decision
to avoid any attempt to revise Heiberg may well have been due to another
curious twist of fate: by the 1970s, the Palimpsest had gone missing so that
a new edition appeared impossible. Stamatis’ version (1970-4) repeats the
same procedure, with modern Greek instead of French.

An edition is ontologically distinct from its sources. It is a synthesis of
various manuscripts into a single printed text. The editor, aiming to pre-
serve a past legacy, inevitably transforms it. It is a truism that Heiberg’s
version of Archimedes is not the same as the manuscript tradition - let
alone the same as Archimedes’ original ‘publication’ (whatever this term
may mean). Once again: the point is not to criticize Heiberg. The point is to
try to understand the distinguishing features of his edition, which may even
form part of the image of Archimedes in the twenty-first century. In this
chapter I survey a number of transformations introduced by Heiberg into
his text. These fall into three parts, very different in character. First, Heiberg
ignored the manuscript evidence for the diagrams, producing instead his
own diagrams (this, indeed, may be the only point for which his philology
may be faulted; I return to discuss Heiberg’s possible justifications below).
Second, at the local textual level, Heiberg marked passages he considered to
be late glosses and thus not coming from the pen of Archimedes. Third, at
the global textual level, through various choices of modern format as well
as textual extrapolation, Heiberg introduced a certain homogeneity of pres-
entation to the Archimedean text. The net result of all those transforma-
tions was to produce an Archimedes who was textually explicit, consistent,
rigorous and yet opaque. I move on to show this in detail.

The texture of Archimedes’ diagrams

This is not the place to discuss the complex philological question of the
origins of the diagrams as extant in our manuscripts. I sum up, instead,
the main facts. Of the three known early Byzantine manuscripts, one — the
Palimpsest or codex C - is extant. The two others are represented by copies: a
plethora of independent copies of codex A, allowing a very confident recon-
struction of the original; and Moerbeke’s Latin translation based in part on
codex B (and in part based also on codex A). For most works we can recon-
struct two early Byzantine traditions (codices A and C for SC 1, SC 11, SL,
DC; codices A and B for PE 1; codices B and C for FB 1, FB 11. For PE 11 alone
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we have some evidence from all three traditions).” The agreement between A
and C is striking. We can also see that Moerbeke’s Latin translation involved
a considerable transformation of the diagrams he had available to him from
codex A. This may serve to explain why, when we don’t have the separate evi-
dence of A and just compare codices B and C, the two appear different: this
is likely to be the influence of Moerbeke’s transformation. In short, the evi-
dence suggests that the various early Byzantine manuscripts were probably
identical in their diagrams. This is certainly the case for the two independent
early Byzantine manuscripts A and C, for the works SC1, SC 11, SL and DC -
representing the bulk of Archimedes’ extant work in pure geometry.

In all likelihood, such resemblance stems from a close dependence on a
Late Ancient archetype. Whether or not this archetype can be pushed back
to the original publication by Archimedes — whatever that could mean - is
an open question. To the extent that the manuscript evidence displays strik-
ing, original practices, a kind of lectio difficilior makes it more likely that it
is an original practice. The argument could never be very strong and it is
probably for this cogent reason that Heiberg avoided offering an edition
of the manuscripts’ diagrams. However, even if the following need not
represent the original form of Archimedes” works, it certainly represents
one important way in which Archimedes was read for at least some part of
antiquity. In understanding Archimedes’ modern reception, it is helpful to
compare this with the ancient reception to which the manuscripts testify.
In what follows, then, I compare Heiberg’s diagrams with the Late Ancient
archetype reconstructed for the two books on Sphere and Cylinder (con-
centrating on these two books for the reason that I have already completed
their edition). I arrange my comments as three comparisons - three ways in
which Heiberg transformed the original found in the manuscripts.

Heiberg goes metrical

I put side by side the two diagrams for SC 1.16 (see Figure 3.1). The differ-
ences as regards the triangle — in fact, a ‘flat’ view of a cone - are immaterial.
Neither do I emphasize at the moment the differences in overall layout (it is
clear that Heiberg saves more on space, aiming at a more economic produc-
tion; this may have been imposed by the press). The major difference has to
do with the nature of the circles A, ® and K. Heiberg has them concentric,

2 Here and in what follows I use a system of abbreviation of the titles of works by Archimedes, as
follows: SC (Sphere and Cylinder), DC (Measurement of the Circle), CS (Conoids and Spheroids),
SL (Spiral Lines), PE (Planes in Equilibrium), Aren. (Arenarius), QP (Quadrature of Parabola),
FB (Floating Bodies), Meth. (Method), Stom. (Stomachion), Bov. (Cattle Problem).
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Figure 3.1 Heiberg’s diagrams for Sphere and Cylinder 1.16 and the reconstruction of
Archimedes’ diagrams.

in a descending order of size. The manuscripts have them arranged side by
side, all of equal size.

The proposition constructs the circles in a complex way which is then
shown to determine that the circle A equals the surface of the cone BAT,
circle K equals the surface of the cone BAE, and O the difference between
the surfaces, that is the surface of the truncated cone at the lines AAET.
It is therefore geometrically required that A>K, A>® (the relationship
between K, ®, though, is not determined by the proposition).

It is clear that Heiberg’s diagram provides more metrical information
than the manuscript diagrams do. In this particular case, indeed, Heiberg
provides more metrical information than is determined by the proposition;
while the manuscripts provide less than is determined by the proposition.
This immediately suggests why the manuscripts” practice is in fact rational.
Let us suppose that the manuscripts would set out to diagram the precise
metrical relations determined by the proposition. It would make sense,
then, to have both ® and K smaller than A. However, how to represent the
relationship between ® and K? Once A appears bigger than both ® and K,
this is already taken to suggest that diagrams are metrically informative;
and so the reader would look for the diagram relationship between ® and
K so as to provide him or her with the intended metrical relation. Thus,
a diagram where, say, A is greater than both ® and K, the two, say, equal
to each other, falsely suggests that the intended metrical properties are:
A>®=K. The difficulty of representing indeterminate metrical relations
inside a metrical diagram is obvious.
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The manuscripts’ diagram avoids this difficulty altogether. The three
equal circles - in flagrant violation of the textual requirement that A>®,
A>K - imply that the diagram carries no metrical consequences (at least
so far as these three circles are concerned) and therefore the diagram itself
leaves the metrical relationship between K and ® indeterminate.

This is a systematic feature of the manuscripts’ diagrams. There are
twenty-four cases where a system of homogeneous, unequal magnitudes
(typically all circles, or all lines) is represented by equal magnitudes set side
by side, as well as five cases where a system of homogeneous unequal mag-
nitudes is represented by magnitudes some of which (in contradiction to
the text) are represented equally. There are only four cases where a system
of unequal magnitudes is allowed to be represented by a diagram where all
traces are appropriately unequal.

The consequence of this convention is clear: the ancient diagrams are not
read off as metrical. As a corollary, they are read more for their configura-
tional information. This is obvious from the comparison with Heiberg: in
the latter’s diagram of 1.16, the readers” expectation clearly is not that the
three circles should indeed all be concentric. Indeed, the reader must under-
stand that such figures are pure magnitudes and do not stand to each other
in any spatial, configurational sense. While the conical surface ABI' does
indeed envelope the smaller surfaces ABE, AAET, no such envelopment is
understood between the three circles K, A and © that merely represent three
magnitudes manipulated in the course of the proposition. Now, this does not
make Heiberg’s diagram false. It simply highlights what Heiberg’s reader — in
direct opposition to the reader of the ancient diagrams - is supposed to edit
away in his reading of the diagram. Heiberg’s reader is supposed to edit away
a certain piece of configurational information (the circles merely appear to
envelop each other), whereas the ancient reader was supposed to edit away
a certain piece of metrical information (the circles merely appear equal).
One can say that both representational systems foreground one dimension
of information, overruling the other dimension: The metrical dimension of
information is foregrounded in Heiberg and overrules the configurational
dimension; the configurational dimension of information is foregrounded
in the ancient diagram and overrules the metrical dimension.

This may serve to elucidate the following. Interestingly, the five cases
where the ancient diagrams represent unequals by unequals — proposi-
tions SC 1.15, 33, 34, 44 - all involve lines. Consider the typical case of 1.15
(see Figure 3.2). B is the radius of the circle A, T' - the side of a cone set
up on that circle, E - a mean proportional between the two. The metrical
relationship B<E<T is indeed determined. Further, the circle A is drawn
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Figure 3.2 A reconstruction of Archimedes’ diagram for Sphere and Cylinder 1.15.

around the radius E. It thus follows also that A <A. The diagram displays
the inequality between the lines B<E<T but not the equally determined
inequality between the circles A <A. There are six other cases, however,
where unequal lines are represented by equal diagram traces. The rule then
appears to be that the manuscripts’ diagrams have a very strong prefer-
ence to mark unequal plane figures as equal, but only a tendency to mark
unequal line segments as unequal. Why should that be the case? Clearly,
lines are less configurationally charged than plane figures are. The represen-
tation of a system of line traces does not suggest so powerfully a configura-
tion made of those lines in spatial arrangement, and it is easier to read as a
purely quantitative representation (indeed, such lines form the principle of
representation used by Greek mathematicians when dealing with numbers
or with general magnitudes, whose significance is purely quantitative, as in
Euclid’s Elements v, vii-1x). The principle is clear, then: the more the dia-
grams are taken to convey configurational meaning, the less metrical they
are made. Lines — whose non-configurational character is easy to establish —
may sometimes take metrical characteristics; but with plane figures, metri-
cal characteristics are altogether avoided.

The upshot of this is obvious: diagrams which mostly carry configura-
tional information, to the exclusion of the metrical, can also be rigorous. As
Poincaré pointed out long ago, diagrams may be geometrically correct, to
the extent that they are taken to be purely topological.” Of course, Poincaré

* Poincaré 1913: 60. Needless to say, topology or ‘analysis situs’ (as Poincaré would say) meant
something different a century ago: in particular, this to Poincaré had absolutely nothing to do
with Set Theory and instead had everything to do with a study of spatial relations abstracted
away from any metrical conditions — which of course makes ‘topology’ even more obviously
relevant to the study of schematic diagrams.
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himself knew Greek mathematics only via editions such as Heiberg’s. Little
could he guess that the ancient manuscripts for Archimedes had just the
kind of diagrams he considered logically viable!

Heiberg goes three-dimensional

A group of propositions early in Sphere and Cylinder 1 involves the com-
parison of cones or cylinders with the pyramids or prisms they enclose:
propositions 7-12. Proposition 12 selects a diagram focused on the base
alone, but the diagrams of propositions 7-11 require that we look at the
entire solid construction. The manuscripts’ diagrams (with a single excep-
tion, on which more below) produce a representation with a markedly ‘flat’
effect, whereas Heiberg produces several times a partly perspectival image
with a three-dimensional effect.

The figure for 1.9 (see Figure 3.3) may be taken as an example. What is
the view selected by the manuscripts’ diagram? Perhaps we may think of it
as a view from above, slightly slanted so as to make the vertex A appear to
fall not on the centre of the circle but somewhat below. The view selected
by Heiberg’s diagram is much ‘lower, so that the point A appears higher
above the plane of the base circle, allowing the pyramid to emerge out and
produce an illusionistic three-dimensional effect. The net result is that
Heiberg’s figure impresses the eye with the picture of an external object; the
manuscripts’ diagram is reduced to a mere schema of interconnected lines.

This definitely should not be understood as a mark of poor draughts-
manship on the part of the manuscripts. Indeed, the one exception is
telling: 1.11 has a clear three-dimensional representation of a cylinder,
and here the motivation is clear: since the proposition refers in detail to
both the top and bottom bases of the cylinder, a view from ‘above, where
the bases coincide or nearly coincide, would have been useless. It turns
out, therefore, that once the view from above was excluded, the manu-
scripts were capable of producing a lower view, with its consequent three-
dimensional illusionistic effect. Strikingly and decisively, we note that
the manuscripts’ diagrams for 1.11 represent the bases by almond-shapes
(standardly used elsewhere for the representation of conic sections).* This
is a deliberate foreshortening effect — which Heiberg himself eschews
in his own diagram. Clearly, Heiberg has established a certain compro-
mise between three-dimensional representation and geometric fidelity, to

* This practice is commented upon, for the Arabic tradition, in Toomer 1990: Ixxxv, and it is
indeed widespread in the various manuscript traditions of Greek mathematics.
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Figure 3.3 Heiberg’s diagram for Sphere and Cylinder 1.9 and the reconstruction of Archimedes’

diagram.

which he is consistent. The manuscripts, on the other hand, insist on the
preference, where possible, of a more schematic representation, even while
they mark their ability to produce a full three-dimensional representation.

The manuscripts’ decision clearly is not motivated by simple considera-
tions of space. As we have seen in the preceding section, the manuscripts
tend to have much bigger figures. No one invests in an Archimedes’ manu-
script for considerations of practical utility, so that these manuscripts should
all be seen as luxury items,” so that one is allowed more space. A printed
book, of course, is not typically based on a patronage economy and its cal-
culations are different. I do think that a certain consideration of layout is
relevant, however: what we do see in the manuscripts’ diagrams is a certain
preference for the horizontal arrangement, perhaps reflecting the origins of
such diagrams within the spaces of papyrus columns.® This would in itself
make a three-dimensional representation less preferable. But note that this is
a mere tendency in the manuscripts’ diagrams: as we will see with 1.12 below,

°> The main proof for the lack of practical purpose in Byzantine Archimedes manuscripts is
in their plethora of uncorrected, trivial errors. The extant Palimpsest shows not a single
correction by a later hand (indeed, it was consigned to become a palimpsest!). We have
a credible report from one of the scribes copying codex A that this, too, was replete with
uncorrected errors (a reported supported by the pattern of errors in the extant copies of A): see
Heiberg 1915: x.

© On the tendency of papyrus illustrations to orient horizontally, see Weitzmann 1947.
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some diagrams in the manuscripts take a vertical arrangement (even though
this arrangement is not determined by the geometrical situation). I do think
the manuscripts avoid the three-dimensional representation, among other
things, because of their preference for the horizontal over the vertical; what
I wish to stress is that this shows how little weight they allow the pictorial
quality of the diagram - so that the minor consideration of a preferred ori-
entation trumps over that of the three-dimensional representation.

Note now that our discussion touches on a small stretch of text, but
this is in fact in itself meaningful. The Archimedean corpus is sometimes
dedicated to purely plane figures (Spiral Lines, Planes in Equilibrium,
Measurement of Circle, Stomachion, Quadrature of Parabola) but, even
in the several cases where Archimedes studies solid objects, these are
studied essentially via some plane section passing through them (Floating
Bodies 11, Method, Conoids and Spheroids, Sphere and Cylinder11). Sphere
and Cylinder 1 forms an exception because of its mathematical theme of the
comparison of curved, concave surfaces — one which calls for a direct three-
dimensional treatment.” Now consider 1.12, where Archimedes’ treatment
of the three-dimensional cone is mediated via the plane base (where
two lines form tangents to the circle of the base). Such is the standard
Archimedean diagram. In the manuscripts, the diagrams of 1.12 and of
1.9 are closely aligned together, displaying a similar configuration of criss-
crossing lines; whereas Heiberg’s diagrams open up a chasm between the
two situations, the solid picture of 1.9 marked against the planar view of 1.12
(see Figure 3.4). I would venture to say as much: that by making 1.9 appear
more solid, Heiberg simultaneously makes 1.12 appear more planar. If 1.9
is designed to bring to mind a picture of what a pyramid looks like, then
1.12 should be seen to be designed so as to bring to mind a picture of what
a circle looks like. But if 1.9 is a mere schematic representation of lines in
configuration, then the same must be said of 1.12 as well: it is not a picture of
a two-dimensional figure. It is, instead, a geometrically valid way of provid-
ing information, visually, about such a figure.

This, of course, is an interpretation that goes beyond the evidence. The
facts on three-dimensional representation are simple: such representation
is avoided as far as possible by the manuscripts, but is produced, wherever

7 Among the lost works by Archimedes, the Centres of Weights of Solids may well have been
based on planar sectional treatment — which Archimedes invariably pursues in the closely
related Method (where various spheres, conoids and prisms are represented by planar cuts).
One wonders how Archimedes’ treatment of semi-regular solids was handled: the account
in Pappus (Hultsch 1876: 350-8) carries no diagrams and is based on a purely numerical
characterization of the figures.
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Figure 3.4 Heiberg’s diagram for Sphere and Cylinder 1.12 and the reconstruction of Archimedes’

diagram.

applicable (which is rare), by Heiberg. My interpretation of this evidence is
based on the facts shown above - the non-metrical character of the manu-
scripts’ diagrams — as well as those to which I now turn: their non-iconic
character.

Heiberg goes iconic

I have suggested that Heiberg goes beyond the manuscripts, in making the
two-dimensional figures more of a ‘picture’ of the object they are designed
to represent. So far, my argument has been based purely on the contrast of
such two-dimensional diagrams to their three-dimensional counterparts.
What we require, then, is to see whether there are cases where Heiberg’s
representation of two-dimensional figures inserts into them a visual ‘cor-
rectness’ absent in the manuscripts. We have to a certain extent seen this
already with the quantitative, metrical character of Heiberg’s diagrams.
Even more striking, however, is a certain systematic way by which Heiberg’s
two-dimensional diagrams are qualitatively more ‘correct’ than those of the
manuscripts.

I turn now to SC 1.33 (see Figure 3.5). I note quickly the metrical facts.
The figure by Heiberg has A much bigger than the main circle, which is
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Figure 3.5 Heiberg’s diagram for Sphere and Cylinder 1.33 and the reconstruction of
Archimedes’ diagram.

indeed ‘correct’; the manuscripts’ smaller A is in a sense ‘false’® The manu-
scripts agree with Heiberg, however, in the arrangement of the line seg-
ments, all in keeping with the practice described above (pp. 167-8).

Qualitatively, Heiberg represents the propositions’ requirement — of a
4n-sided regular polygon circumscribed and inscribed about a circle - by
two octagons. The manuscripts, instead, have a system made of two nested
sequences of curved lines, 12 outside and 12 inside. The visual effect could
not have been more different and here we see the manuscripts’ diagrams
becoming markedly non-iconic. A sequence of 12 curved lines, each nearly
a semicircle, does not make the visual impression of a polygon.

The manuscripts, in this case, have a very good reason to choose their
non-iconic system of representation. As we can see from Heiberg’s diagram,
it is difficult to make the visual resolution between such a polygon and a

8 Incidentally, note that I did not count such false planar inequalities in my treatment of
the non-metrical character of the manuscripts’ diagrams. My survey focused on the (very
common) case where homogeneous objects are put side by side — typically unmarked circles
or lines. I did not look into the case of heterogeneous objects, such as the simple circle A
alongside the more complex main circle in 1.33.

o)
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Figure 3.6 The general case of a division of the sphere.

circle. A square perhaps could still do, but this offers a very special case
of the 4n-sided regular polygon: considered as a division of the sphere, it
reduces to a system of two cones, without any truncated cones. The octagon
already brings in a truncated cone, but this is the limiting truncated cone
lying directly on the diameter of the sphere. Only with the dodecagon do
we begin to see the general case of a division of the sphere based on 4n-
sided regular polygons, with a limiting truncated cone lying directly on the
diameter, another truncated cone next to it, and finally a non-truncated
cone away from the diameter (Figure 3.6). Of course, a regular dodecagon
is nearly impossible to distinguish, visually, from a circle, but the entire
point of avoiding a limiting case for the diagram is the desire to limit the
extent to which the visual impression of the diagram creates false expecta-
tions. The same desire, then, accounts for the radical, non-iconic represen-
tation itself: no one is going to base an argument concerning polygons on
the visual impression made by the curved arcs. Indeed, the visual impres-
sion as such does not play into the argument. What matters, for the argu-
ment, is the similarity of the polygons and the purely topological structure
they determine - a circle nested precisely between two polygons, triggering
Archimedes’ results on concave surfaces.

This diagrammatic practice is not isolated: it defines the character of
Archimedes’ SC 1. As soon as the structure of a polygon inscribed inside
the circle is introduced, in proposition 21, and right through the ensuing
argument, the manuscripts systematically deploy such representations
based on curved lines - in fifteen propositions altogether (1.21, 23-6, 28, 30,



Archimedes’ writings: through Heiberg’s veil

32-3,37-42).1find it hard to see how a scribe, asked to copy a manuscript
where polygons are represented by polygons, would produce a manuscript
where polygons are represented by a system of curved lines. This lectio dif-
ficilior argument is the best I have for showing that, if not introduced by a
scribe, such diagrammatic practice is likely authorial. Perhaps our simplest
hypothesis is that the diagrams as a whole derive, largely speaking, from
Archimedes himself.

The texture of Archimedes’ diagrams: summary

Whether by Archimedes or not, the non-iconic character of the repre-
sentation of polygons in SC 1 is a striking example of how schematic the
manuscripts’ diagrams are — and how Heiberg has turned such schematic
representations into pictures. This is of course consistent with the manu-
scripts’ preference for a ‘flat’ representation as against Heiberg’s pictorial
pyramids, as well as with the much wider manuscript practice of metrical
simplification, typically that of representing unequal magnitudes by equal
figures.

Heiberg has clearly transformed the manuscripts’ schematic diagrams into
pictorially ‘correct’ ones. By so doing, however, he has also constructed dia-
grams of a different logical character. If diagrams are expected to be pictori-
ally correct, then one is expected to read them for some metrical information;
and if so, the information one gathers from the diagrams is potentially false
(since no metrical drawing can answer the infinite precision demanded
by mathematics) as well as potentially overdetermined (since a particular
metrical configuration may introduce constraints that are less general than
the case required by the proposition). The schematic and more ‘topologic-
al’ character of the manuscripts’ diagrams, on the other hand, makes them
logically useful. One can rely on the manuscripts’ diagrams as part of the
argument, without thereby compromising the logical validity of the proof.

A major claim of my book (N1999) was that diagrams play a role in Greek
mathematical reasoning.” I have suggested there — following Poincaré — that
the diagrams may have been used as if they were merely topological. My
consequent study of the palacography of Greek diagrams has revealed a
striking and more powerful result: the diagrams, at least as preserved by
early Byzantine manuscripts, simply were topological. Heiberg’s choice to
obscure this character of the diagrams was not only philologically but also
philosophically motivated. Clearly, he did not perceive diagrams to form

¥ N1999, especially chapters 1, 2, 5.
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part of the logic of the text and for that reason, on the one hand, did not
value them enough to care for their proper edition and, on the other hand,
preferred to produce them as mere ‘illustrations’ - as visual aids revealing
to the mind a picture of the object under discussion. The implication - false
for Archimedes as for Greek mathematics more generally - would be that
the text is logically self-enclosed, that all claims are textually explicit. This,
then, was the first transformation introduced by Heiberg into the texture of
Archimedes’ reasoning.

The texture of Archimedes’ text: the local level

An overview of Heiberg’s practice of excision

A characteristic feature of Heiberg’s edition is his use of square brackets
in the sense of text present in the manuscripts, which however is to be
excluded as non-authorial. This, incidentally, is not the current practice
among classical philologers, where the ‘{}" are used for the same purpose,
whereas square brackets are used to signal text restored by the editor - for
which Heiberg himself used the ‘<>’ brackets.!” This practice should be
compared with two other options Heiberg had available to him.

(1) One was to omit excluded text from his printed text altogether, relegat-
ing it into the critical apparatus alone. Such, indeed, is Heiberg’s prac-
tice whenever already any of the manuscripts exclude the passage. For
instance, SL 68.15-16 has the printed text cupTecerton 8¢ auta Tot TZ,
“This will meet TZ} which Heiberg has on the authority of codices BG.
Heiberg’s apparatus has the comment: ‘auta] G, T auta A(C), ipsi B’
(G is the siglum used for one of the Renaissance copies of codex A), that
is: the reconstructed manuscript A certainly read fa auta ta (as this is the
text read in all copies save the relatively mathematically sophisticated G),
and so probably (Heiberg was unsure, but he was right) codex C; in codex
B, Moerbeke translated the relevant words as if they were auta ta alone -
though once again, Moerbeke is relatively mathematically sophisticated.

Heiberg could in principle have printed ‘[Ta] auta Tor, commenting
in the apparatus “ta] del. prae. BG’ This he did not do: his practice was
to relegate such excluded words to the apparatus alone. On the other
hand, in such cases where there was unanimous textual authority for a
particular passage which Heiberg preferred to omit, his practice was to
print that passage in the main text, surrounded by square brackets.

10" See e.g. http://odur.let.rug.nl/~vannijf/epigraphy1.htm.
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(2) Another option was to avoid the square brackets altogether, leaving his
doubts to footnotes. He does so occasionally — particularly, it seems,
when the exclusion involves both an excision as well as an addition to
the text. So, for instance, footnote 2 in PE 1, 11.149, where the text is
printed simply as Tremoinobe:

‘memroinobew lin. 19 fortasse vestigium recensionis posterioris est. u. Quaest.
Arch. p. 70. yeyovetw scripsit Torellius cum Basil’, that is ‘let it be made in
line 19 may be due to a late re-edition; see Quaest. Arch. p. 70 [Heiberg’s PhD].
Torelli [The Oxford 1792 edition] as well as Basil [the first edition from 1544]
have let it come to be’.

Heiberg could have instead printed [memoinofw] yeyovetw, with a
note in the apparatus “yeyovetw] memoinodw ABC, scripsi prae. Tor.,
Basil’ By printing, simply, Temoinofe, Heiberg shows in this case more
respect to the manuscripts’ authority and allows a smoother reading of
the main printed text.

Heiberg’s strategy is well balanced. It is designed to help the reader navigate
the main text as readable prose, without encumbering the apparatus (a nec-
essary consequence of (1) above) or the footnotes (a necessary consequence
of (2) above). The square brackets are a helpful feature of the text. They
allow the reader to consider two possible ways of reading the text — with or
without the excluded passage — and to see for herself which she likes best.

We should contrast Heiberg’s treatment of the text with his treatment of
the diagrams. He made sure as much of the manuscript evidence as possible
remained visible as regards the text, even taking pains to print text in whose
inauthenticity he was certain - all of this, while removing the evidence for
the manuscripts’ diagrams nearly in its entirety!

However respectful Heiberg’s practice may have been towards the
manuscripts’ textual evidence, its outcome was to define a certain set of
expectations concerning the local texture of Archimedes” writing. Heiberg
effectively shares with us his view: ‘Archimedes could not write like this,
and readers would take notice of views with such authority. Let us consider,
then, Heiberg’s judgements.

I move on to describe the pattern of Heiberg’s square brackets. The first
point to note is their unequal distribution among the treatises. I have gone
through the corpus, counting all square brackets and classifying them as
‘single words’ (with the possible addition of the definite article), ‘phrases’
(i.e. no more than a single claim or construction), ‘passages’ (consisting of
several phrases) and ‘long passages’ (the border between these and ‘pas-
sages’ is difficult to define, but I mean an entire train of thought, going
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Table 3.1 Heiberg’s use of square brackets

Length (Teubner Bracketed by Notes
Treatise pages of Greek) Heiberg (~BEPP) (discussed below)
Floating Bodies 1 13 1 word (~0.05) Doric, Palimpsest
Arenarius 22 3 words (~0.15) Doric, discursive
Method 41 4 words, 2 phrases Koine, Palimpsest
(~0.25)
Spiral Lines 60 5 words, 2 phrases, 1 Doric
passage (~0.35)
Floating Bodies11 ~ ~26 8 words (~0.35) Doric, Palimpsest
Quadrature of 27 6 words, 3 phrases Doric
Parabola (~0.55)
Conoids and 100 10 words, 10 phrases, 2~ Doric
Spheroids long passages (~0.95)
Planes in 25 3 words, 5 phrases, Doric, Eutocius
Equilibrium 11 2 passages (~1.4) extant
Planes in 20 7 words, 12 phrases, 2 Doric, Eutocius
Equilibrium 1 passages (~2.6) extant
Measurement 6 7 words, 1 phrase, Koine, Eutocius
of the Circle 1 passage (~3.1) extant
Sphere and 31 12 words, 20 phrases, 12 Koine, Eutocius
Gylinder 1x passages, 3 long passages €Xtant
(~8.7)
Sphere and 83 11 words, 48 phrases, 29  Koine, Eutocius
Cylinder 1 passages, 12 long extant

passages (~9)

Note: The table is arranged by ascending BEPP (Stom. and Bov. are not included in this
survey).

beyond a single argument or so). In Table 3.1, I list for each treatise its
length in Teubner Greek pages, as well as its square-bracketed passages. I
believe that a good way of quantifying the impact of such square brackets is
not by mere word-count - excising five times a single-word passage is more
significant than excising a single five-word passage — and instead I develop
an ad-hoc ‘logarithmic’ count, with each ‘single word” counting for one
unit, each ‘phrase’ counting for three units, each ‘passage’ for nine and each
‘long passage’ for twenty-seven. I then sum up this logarithmic value as
the ‘Bracketing Equivalent’. I then calculate the ‘Bracketing Equivalent per
Page’ or BEPP, which is the Bracketing Equivalent divided by the number
of Teubner pages. This entire exercise is of course somewhat absurd, but it
does arrange the data in a useful way.
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Several factors emerge. Heiberg’s tendency was to introduce brackets
much more into those texts for which we have an extant commentary
by Eutocius (PE, DC, SC). Second, he introduced brackets into Koine
treatises (DC, SC 1-11, Meth.) more than to Doric treatises (thus, of the
treatises for which we have a commentary by Eutocius, PE in Doric has far
fewer brackets than DC, let alone SC). On the other hand, he was reluctant
to introduce brackets into texts for which he had textual authority from the
Palimpsest (thus, he introduced few brackets into the text of the Method,
even though it is extant in Koine). Finally, he practically did not intervene
in the more discursive text of the Arenarius. I move on to comment on
those factors.

Eutocius

A common source of square brackets (especially at the level of words) is
the comparison of the manuscripts’ text to that of Eutocius’ quotation.
Heiberg’s judgement here may be faulted on philological grounds: it is now
widely understood that many ancient quotations did not aim at precision,'’
and the transformations introduced by Eutocius (e.g. a different particle)
can be explained by the new grammatical context into which the quotation
is inset by Eutocius. Furthermore, the texts for which there is a commentary
by Eutocius are the more elementary, and it appears that Heiberg suspected
that such texts were more heavily retouched by their readers: a reasonable
assumption, seeing that the more advanced works by necessity had much
fewer readers. The net result is to make the advanced works the benchmark
against which all the treatises are judged.

Dialect

Archimedes the Syracusan may have written at least some of his works in
Doric - even when addressing Koine readers in Alexandria. The manu-
scripts present a variety of positions, between stretches of text written
in what appears like pure Doric, through more mixed passages and all
the way to texts in normal Hellenistic Koine. Heiberg’s edition turns this
variety into just two options: treatises that Heiberg considered to have been
transmitted in the Doric throughout antiquity (which we may call ‘Doric
treatises’), and those he considered to have been turned into Koine at some
point in antiquity (which we may call ‘Koine treatises’). Thus, the presence

1" A case studied in great detail is the quotations of Plato by his epitomizer Alcinous: Whittaker
1990: xvii-xxx.
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of Koine anywhere in the manuscript tradition of ‘Doric treatises’ — a pres-
ence which is often considerable, even preponderant - is taken by Heiberg
to represent no more than the failure of scribes whose Doric may not have
not have been up to Archimedes’ text. I shall return to discuss all of this in
considering the global texture of Archimedes. What is clear, however, is
that Heiberg’s initial decision — whether or not to treat a treatise as ‘Doric’ -
had consequences at the local level. Understandably enough, Heiberg felt
less compelled to preserve the text of the ‘Koine treatises, considering them
the product of some late re-edition, as opposed to Archimedes’ pristine
words preserved in the Doric. Thus the ‘Doric works’ come to serve as the
benchmark against which the verbal texture of Archimedes as a whole is
to be judged. This is comparable to the ‘Eutocius’ effect and indeed may
be related to it. (Was the transition to Koine related to the presence of
Eutocius’ commentaries?)

Palimpsest

Since the text of the Method is printed by Heiberg in its original Koine, we
would expect him to bracket its text more extensively. As I will point out in
the next section, the Method provides enough textual difficulties to allow
for such editorial intervention. In fact, Heiberg leaves the text of the Method
almost as it is. The reason must be, I believe, what we may call a purely
sociological or even psychological factor. The text of the Method is recov-
ered from the Palimpsest, through Heiberg’s major palaeographic tour de
force. In sociological terms, Heiberg has already displayed his professional
skill by his very recovery of the text and is therefore less under pressure to
scrutinize it so as to display his professionalism. In psychological terms, I
suspect Heiberg must have become attached to the words he did manage to
read - it would be a pity to go through all the trouble just so as to discover
some late gloss! (A reader of the Palimpsest myself, I am all too familiar
with this urge.) For whatever reason, the fact is that the texts recovered
from the Palimpsest are among those Heiberg trusts the most. Since these
also happen to be among the more advanced works by Archimedes (in par-
ticular FB 11 as well as the Method) this has the tendency of confirming the
role of the advanced works as paradigmatic.

Arenarius

The Arenarius is an outsider in the Archimedean corpus: written mostly in
discursive prose rather than in the style of proofs and diagrams, it presents
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many verbal and stylistic variations on the norm elsewhere.'”> The same
goes for Heiberg’s interventions in this text. In 11.236.24, Heiberg brackets
the particle men which is unanswered by the obligatory de; in 11.258.11 he
brackets the particle eti which seems to be a mere scribal error anticipating
the following preposition epi. The case of 222.31, with the words tou kulin-
drou bracketed, is more complex. The text as it stands in the manuscript
does not make any sense, as Greek grammar or as mathematics. Heiberg
not only brackets tou kulindrou but also adds in a particle oun and changes
the gender of a relative pronoun. In short, Heiberg’s interventions are philo-
logical rather than mathematical in character; that they are so few is a mark
of Heiberg’s tact as an editor. Of course, Heiberg’s apparatus records many
more variations that Heiberg introduced into the main text and indeed all
three brackets could equally have been relegated to the apparatus alone.
Needless to say, the Arenarius does not thereby obtain a canonical position
for Heiberg’s reading of Archimedes: here, the lack of intervention signals,
paradoxically, a marginal status. What the Arenarius reminds us is that
Heiberg’s exclusions are so closely focused on the proofs-and-diagrams
style. Indeed, there are, I believe, no words bracketed inside the introductions
to Archimedes’ works.

To sum up: Heiberg intervened in Archimedes” text mostly to exclude
words and passages that, in his view, do not square with what should have
been Archimedes’ style of proof, as judged mostly by the advanced works
extant in Doric.

Heiberg’s practice of excision: close-up on Sphere and Cylinder

The mathematics of Archimedes, especially in the more advanced works,
is very difficult. Generally speaking, Heiberg’s brackets tend to keep it that
way. Many of the excluded passages take the form of brief explanations
to relatively simple arguments. The excluded passages make the text of
Archimedes locally transparent, and this is what Heiberg avoids - in this
way also introducing a certain consistency which is absent from the manu-
scripts’ evidence.

Consider SC 1.4. Archimedes constructs a triangle ®KA, with K® given
and the angle at ® right. It is also required that KA be equal to a certain line
H. At this point the text comments (1 16.25): ‘For this is possible, since H is
greater than ®K. This comment is bracketed by Heiberg. There seem to be
three reasons for Heiberg’s bracketing.

12 N1999: 199.
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First, this is an argument headed by the particle gar, usually translated
‘for’: having established a claim, the text moves on to offer further grounds
for it. Heiberg’s tendency, especially in the books on Sphere and Cylinder,
was to excise a great proportion of gar statements. There are altogether 155
occurrences of the particle in the text of SC1, 11 outside of the introductions,
but of these 58 occur not in the context of a backwards-looking argument
but in the context of some meta-mathematical formulaic expression using
a gar, such as the heading of the reductio mode of reasoning: “for if pos-
sible’, ei gar dunaton. Remaining are 95 occurrences. Of these 54 are inside
Heiberg’s brackets; only 41 are considered genuine. The 54 excised gars
represent fewer than 50 excisions (a few long passages excised by Heiberg
include more than a single gar), all of them constituting at least a phrase
(Heiberg never excises a gar alone — which of course would have produced
an asyndeton). Heiberg excised altogether 124 phrases and passages from
the text of SC 1, 11, and so we see that about 40 per cent of these excisions are
claimed by gars. Note however that many of the remaining excisions have a
similar logical character, even while using a connector other than gar: e.g. a
deélon, ‘clearly’ phrase in SC1.34 130.20-1, or even an ara, ‘therefore’ phrase
in SC1.32 120.8. In most cases, the excision is motivated by the elementary
character of the claim made.

This can be seen from the distribution of excisions of gar between the
two treatises. Of the 68 gars in SC 1, Heiberg excises 45 or about two-thirds;
of the 27 gars in SC 11, Heiberg excises 9, that is a third. The major difference
between the two treatises is that SC 11 is usually much more complex than
most of SC 1."* The rule then begins to emerge: Heiberg excises gars in the
context of relatively simple mathematics.

Going back finally to our example from SC 1.4, we can now see one
reason why Heiberg chose to bracket it: in this example, the text looks back
to explain why a certain construction is possible. This condition, however,
is relatively simple: in constructing a right-angled triangle, the hypotenuse
must be greater than the side. Heiberg’s view was that Archimedes could
well have just taken such a condition for granted.

For this, Heiberg had something of a corroboration. Here I pass to the
second ground for Heiberg’s excision: his search for consistency. In the
preceding proposition 3, Archimedes requires an analogous construc-
tion, and there the text does not provide an explicit backwards-looking
argument, merely stating (1 14.8) “for this is possible’ (this is bracketed by

'3 As a comparison: in the advanced treatise Spiral Lines, Heiberg brackets 2 out of 33 gars -
which forms, however, a large part of his overall editorial intervention in that treatise.
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Heiberg, for reasons that will be made clear immediately). Why should the
text be fuller here than in the preceding proposition? Consistency, there-
fore, requires an excision.

I now move to the third reason for Heiberg’s bracketing. To understand
it, let us note the following: the received text for Archimedes’ proposi-
tions 3 and 4 seems to open a strange gap between propositions 3 and 4.
Why would Archimedes offer no more than a brief ‘this is possible’ claim
in proposition 3, expanding it in proposition 4? If anything, the opposite
- going from a more spelled-out expression to a briefer one — would be
more natural. On the other hand, the entire picture makes perfect sense if
we pursue the following hypothesis. Now, the text of Eutocius contains a
commentary to proposition 3, starting with the following words: ‘And let
[the construction be made]. For this is possible, with KL being produced
etc] (11 18.24-5). Let us assume that Archimedes’ text had none of the
backwards-looking argument, and that some late reader has taken Eutocius’
commentary, first inserting the words ‘for this is possible’ from Eutocius’
commentary into the text of proposition 3, then using Eutocius as a kind
of crib from which to insert a very brief backwards-looking argument into
proposition 4 (for which there is no commentary by Eutocius).

We see how the various factors - the presence of Eutocius’ commentary,
the elementary nature of the claims made, the use of a backwards-looking
argument, textual inconsistency — all come together to inform Heiberg’s
considerations.

Was Heiberg right? I tend to believe he was, at least in part. This, for the
following reason. Either we take the words ‘for this is possible’ in proposition
3 to represent Eutocius’ original words, inserted into the text of Archimedes;
or we take them as Archimedes’ original words, quoted by Eutocius as part
of his commentary. Now, the word order of those words is dunaton gar touto.
This word order is natural as an anticipation of the genitive absolute used
by Eutocius in his commentary; inside Archimedes’ full phrase, the word
order expected would more likely be touto gar dunaton. The excision in
proposition 3 therefore seems likely. And if so, it becomes somewhat more
likely that the words in proposition 4, too, are due to some late reader. But
then again, perhaps Archimedes’ text was strangely inconsistent, offering no
argument in proposition 3 but some minimal argument in proposition 4?
Obviously, such questions can be answered only based on some overarching
argument concerning Archimedes’ style, an argument which would have to
be derived - circularly - from the established text of Archimedes.

In some cases, and in particular in the longer passages, Heiberg’s exci-
sions seem very reasonable. One of the clearest cases is SC1.13 (1 56.10-24).
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This should be read in full to get a sense of the manuscript evidence Heiberg
had to contend with (I quote together with my numbering of claims in the
argument. It should be clear that this is something of an extreme case,
though not at all a unique one):

(16) But that ratio which T A has to Hin square - T A has this ratio to PZinlength [(17)
for His a mean proportional between TA, PZ (18) through <its being a mean propor-
tional> between T'A, EZ, too; how is this? (19) For since AT is equal to TT, (20) while
PE <is equal> to EZ, (21) therefore I'T is twice TA, (22) and PZ <is twice> PE; (23)
therefore it is: as AT to AT, so PZ to ZE. (24) Therefore the <rectangle contained>
by T'A, EZ is equal to the <rectangle contained> by T A PZ. (25) But the <rectangle
contained> by 'A, EZ is equal to the <square> on H; (26) therefore the <rectangle
contained> by TA, PZ, too, is equal to the <square> on H; (27) therefore itis: as TA to
H, so H to PZ; (28) therefore it is: as T A to PZ, the <square> on TA to the <square>
on H; (29) for if three lines are proportional, it is: as the first to the third, the figure
on the first to the figure on the second which is similar and similarly set up]

The expression ‘how is this?’ inside claim 18 is without parallel in the
corpus, and seems like a didactic order to a pupil (or, perhaps, an autodi-
dact’s cri de coeur?). The passage from 19 to 21 is indeed extraordinarily
simple (from A =B to A + B being twice A). The final explicit quotation from
Euclid’s Elements is natural coming from a didactic context. And overall the
argument is very simple, strikingly so given its length. It is therefore quite
likely that the entire passage from ‘how is this?’ in the end of claim 18 down
to the end of claim 29 is a scholion inserted into the manuscript tradition.
Heiberg’s choice, however, was to bracket starting from step 17 itself - this,
apparently, merely because step 17 begins with a gar.

It would be easy for us to condemn Heiberg’s use of square brackets as
disrespectful to the manuscripts’ evidence, or as involving massive circular
reasoning. But Heiberg’s practice is not unreasonable and is likely to be
correct at least in part. I doubt any editor could have come up with a single
system better than Heiberg — short, that is, of the confession of editorial
ignorance which might have been best of all (and which Heiberg, in a
sense, did finally follow - by allowing the bracketed words to be printed
inside the main text). I stand by my judgement of Heiberg as a superb, and
superbly tactful, philologer. Having said that, however, the fact remains that
we cannot really say how correct he was. There are three texts at play here:

(A) Heiberg’s text with the bracketed segments inserted, i.e. the manu-
scripts’ reading.

(B) Heiberg’s text with the bracketed segments removed.

(C) Archimedes’ original text.
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Heiberg’s intention was of course to take A and, by transforming it into
B, to make it come as close to C as possible. It is indeed certain that A and
C are not identical. However, it is impossible to judge how close B is in fact
to C. The only judgement we can make with confidence has to do with the
relationship between A and B. The transformation introduced by Heiberg
into the manuscripts’ text is motivated by two main considerations: the
avoidance of explicit argument in the context of relatively simple math-
ematics; and the avoidance of textual inconsistencies. This determines the
image of Archimedes as projected by Heiberg’s method of excision: neither
transparent nor inconsistent. I do not address right now the question
whether this image is, or is not, correct. I merely point out the presence
of this image, before moving on to consider the influence of this image in
Heiberg’s treatment of the texture of Archimedes at the global level.

The texture of Archimedes’ text: the global level

As usual, my point is not to criticize Heiberg. In some ways, any edition
involves a transformation at the global level. The ‘feel’ of an Opera Omnia
in its Teubner print is very distinct from that of codices A or C which, in
turn, would have felt, possibly, even more different from their antecedent
of a basket of rolls in ancient Alexandria. Some of Heiberg’s decisions were
of this inevitable character: so, for instance, an Opera Omnia must proceed
in some order, and the fact that this calls for editorial decision does not
thereby make the editor unfaithful to his author. On the other hand, in
some other forms Heiberg made choices for presentation that went beyond
the manuscripts’ evidence, mostly informed by a sense of overall math-
ematical consistency.

The order of Archimedes’ works
Knorr was upset over that issue:'*

Following the start made by Torelli in 1792, Heiberg had in 1879 attempted to
determine the relative chronology of the treatises then known to him. But in
setting them out in his ensuing editions of Archimedes he chose to retain the
traditional order in the principal manuscripts, based on the prototype A, and then
tacked on the few remaining works and fragments preserved in other sources.

4 Knorr 1978: 212-13.
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Heiberg’s ordering has been adopted in all subsequent editions and translations,
notably those by T. L. Heath, P. Ver Eecke, E.]J. Dijksterhuis and C. Mugler. Indeed,
Ver Eecke pronounced it to be of all possible orderings “le plus rationnel”. What
began as merely a philological concern to keep strictly to the sequence of the
manuscript sources has thus given rise to the astonishing view that this ordering
has intrinsic rational merit, despite such patent incongruities as the placing of
the Sand Reckoner and the Quadrature of the Parabola and others to be discussed
below.

This may, first of all, serve as a nice reminder of the pre-eminent position
of Heiberg in our contemporary reading of Archimedes. Further, I am not
quite clear as to what ‘patent incongruities’ Knorr meant. Clearly his inter-
est lay with the chronological sequence, and as such the order of the Opera
Omnia makes no sense. It is not a random order, though, and its signifi-
cance should be pondered.

Here is the order of Heiberg’s second edition:

SC1-SCu-DC-CS-SL-PE1-PEmu- Aren. - QP - FB1 - FB 11 - Stom. -
Meth. - Book of Lemmas - Bov. - Fragments (in reality, Testimonia).

Up to QP, inclusive, this follows (as explained by Knorr) the order of
codex A (which was the only order available to Heiberg, on manuscript
authority, for his first edition). The works extant on the Palimpsest follow
in the order FB - Stom. — Meth. (perhaps designed to keep the Method
till later?), and then follow several works from diverse sources: the Book
of Lemmas from the Arabic, the Cattle Problem from a different line of
transmission altogether, and then of course the Testimonia from sources
other than Archimedes himself. One should note the outcome, that Heiberg
foregrounded the works in which he detected most interpolations. This is
not a paradox: the works foregrounded by Heiberg were the elementary
works in pure geometry, and the detection of many interpolations could
have meant to Heiberg an indication of the significance such works had for
Archimedes’ ancient and medieval readers.

While Heiberg’s principle was purely philological, he followed manu-
scripts that, themselves, made rational choices (so that Ver Eecke’s judge-
ment is not necessarily false). The system underlying A is quite clear.
A sequence of five works in pure geometry (SC 1, SC 11, DC, CS, SL) is
followed by a sequence of four works that refer in some way or another to
the physical order (PE 1 - PE 11 — Aren. - QP; this is followed in codex A
by Eutocius’ commentaries, and then by a treatise by Hero on Measures).
Such an arrangement is suggestive of a previous ‘canonical’ selection of



Archimedes’ writings: through Heiberg’s veil

‘top five Archimedean geometrical rolls, ‘top four Archimedean physical
rolls, perhaps representing a previous arrangement of rolls by baskets,
perhaps of some majuscule codices with only four to five works each.”” In
each sequence, the internal order is roughly from the simpler to the more
complex.

It so happens that the works preserved via traditions other than codex
A tend to be less focused on pure geometry. Three of the works pre-
served via C - FB 1, FB 11, Meth. - have a marked ‘physical’ character. The
Stomachion, also preserved via C, may be a unique study in geometrical
combinatorics.'® And while the Book of Lemmas does touch on pure
geometry, the Cattle Problem is an arithmetical work. The fragments,
finally, refer to such diverse topics as astronomy, optics or the arithmetico-
geometrical study of semi-regular solids reported by Pappus.'” In short,
the emphasis on pure geometry - very natural based on codex A alone - is
less faithful to the corpus as a whole as recognized today. Or indeed as
recognized by some other past traditions. For the order of codex C was
distinct:

PE1(?)'® = PE11-FB1-FB11- Meth. - SL-SC1-SCi-DC - Stom.

This has five works referring to the physical world (PE 1-11, FB 1-11,
Method) followed by five works of a non-physical character (SL, SC 1-11,
DC, Stomachion). Once again, the origin in some earlier arrangement
is likely, and the main classificatory principle is the same - referring, or
failing to refer, to an outside physical reality. The striking difference is that
codex C chose to position the physical works prior to the non-physical
ones.

At issue is a fundamental question regarding Archimedes’ scientific
character. Was he primarily a pure geometer, who indulged in some
exercises of a more physical or non-geometrical character? Or was he
primarily an author of ‘mixed’ works, so that the more purely geometrical
works — such as Sphere and Cylinder — should be seen as no more than
one further option in the spectrum of possible Archimedean variations?
A very different Archimedes would emerge if we were to order his works,
say, as follows:

15 These two options, of course, do not rule each other out. See Blanchard 1989 for some
suggestive comparisons.

Netz et al. 2004.

Hultsch 1876: 350-8.

The beginning of the Archimedes portion of the Palimpsest appears to be lost. The text begins
towards the end of PE 11. There could be works prior to PE 1, or the manuscript could start with
PE 11 only. Either option, however, is less likely than that the manuscript started with PE 1.
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Semi-Regular Solids"
Stomachion

Book of Lemmas
Measurement of the Circle
Method

Conoids and Spheroids
Sphere and Cylinder 1
Sphere and Cylinder 11
Cattle Problem

Planes in Equilibrium 1
Planes in Equilibrium 11
Spiral Lines

Arenarius

Quadrature of Parabola
Floating Bodies 1
Floating Bodies 11

What would such a counterfactual order suggest? Above all, a certain
lack of order, and the sense of an author who reveled in variety. This,
indeed, may not be too far of the mark. But notice how different this is from
the impression made by Heiberg’s order chosen for the Opera Omnia! For
his sober-minded Teubner edition, based on the authority of the sober-
minded scribe of A, Heiberg has produced a sober-minded Archimedes —
one who was above all a pure geometer. This, once again, may possibly be
historically correct. But then again, perhaps it is not. The one thing clear is
that the order forms an editorial decision: a different ordering of the works
would have given us perhaps a less sober, perhaps even a less geometrical
Archimedes.

The dialect of Archimedes’ works

The very language in which Archimedes’ works should be read forms a
genuine philological puzzle. I do not think we are ready to solve this puzzle,
yet, and so I merely outline here the problem, expanding somewhat the
discussion of this problem from pp. 179-80 above and focusing on the sig-
nificance of Heiberg’s approach to it.

! While not extant, Archimedes’ work on semi-regular solids is known through a report in Book
v of Pappus’ Collection. I am envisaging how Archimedes’ works would have looked had a
work such as this appeared first.
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Some of the manuscripts that give evidence for Archimedes” works
contain a significant presence of Doric dialect forms, in particular ot
for Koine TTPOS, ELUEV for Koine svai, ecositon for eoton as well as certain
phonological variations, predominantly the use of long « for Koine n. Such
dialect forms are very common in the manuscript evidence for PE 1, CS, QP,
Arenarius (A alone), FB1(C alone) and SL (both A and C). The dialect forms
are much less common, or totally missing, in SC 1, SC 11, DC, PE 11 (both A
and C), FB 11, Stomachion and Method (C alone). Heiberg’s comment on this
last work (11.xviii) is telling: ‘And even though I do not doubt that this work,
too, was written in Doric by Archimedes, I dare not reinstate the dialect that
was so diligently removed by the interpolator’”® In other words, Heiberg
sees the Koine dialect as a kind of interpolation, inserted into the text of SC
1, SC 11 and DC (works that Heiberg would anyway consider heavily medi-
ated by their readers) as well as some other works.

While SC 1, SC 11 and DC are completely free of Doric dialect, all the
other works display a certain mixture of Doric and Koine, more Doric in
such works as SL, much more Koine in works such as Method. Heiberg’s
edition removes this sense of gradation, introducing instead a clear bifur-
cation. SC 1, SC 11, DC and Method are printed mostly in pure Koine, no
mention made in the critical apparatus for the (rather few) cases where
Doric forms are present. PE 1, PE 11, CS, QP, Arenarius, FB 1, FB 11 and SL
are printed in pure Doric, no mention made in the critical apparatus for the
(rather many) cases where Koine forms are present.”’ Notice that Heiberg
imposed Doric on PE 11 and FB 11, against the manuscripts — which he
avoided doing for Method - presumably because of a desire to preserve
their continuity with PE 1 and FB 1, respectively. Underlying this simple
bifurcation is an even simpler monolithic image of Archimedes’ language.
As Heiberg said plainly, his position was that Archimedes wrote in Doric
and in Doric alone.

Heiberg, ever the philologer, did produce an explicit survey of the dialect
variation. This however he did not in the critical apparatus itself, but inside
a dedicated index of manuscript variations, positioned as the major com-
ponent of the introduction to the second volume. This doubly marginal-
izes the importance of the dialect variations. First, by taking them away
from the critical apparatus, and second, by positioning them in the second

20 ‘et quamquam non dubito, quin hoc quoque opus Dorice scripserit Archimedes, dialectum de

industria ab interpolatore remotam restituere ausus non sum’

21 The Stomachion - preserved in fragmentary form and therefore more tactfully handled - is the
only work for which Heiberg simply prints, without comments, the form of the manuscript
(according to Heiberg’s readings), allowing a ‘mixed’ dialect.
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volume, rather than in the third and final volume (which is where critical
editions typically present their major philological observations).

In this case as in the case of excisions (to which the question of dialect
is after all closely related, as Heiberg’s excisions, as we saw, centred on
what he defined as Koine-only treatises) Heiberg could well be right. We
could never tell for sure whether Heiberg was indeed right on dialect, but
his position is indeed plausible. What Heiberg did achieve however is to
obscure the very question which, to my knowledge, has not been addressed
at all to date. Which dialect(s) did Archimedes write in, and what was the
significance of such choice? I do not have the expertise required to solve
such questions, but I wish to emphasize that these questions have yet even
to be posed. Would a choice to write in Doric, or in Koine, carry specific
cultural meanings? It is very intriguing that a late source tells us that
Archytas is the model for Doric prose.” Archytas of course was primarily
a scientific author, indeed known for his contribution to the exact sciences.
Was there a cultural value attached to Doric as a marker of scientific prose?
(Eudoxus, from the Doric-speaking island of Cnidus, could have written
in Doric as well; for certain, he did not write in Koine which was not yet
available in his time.)** Clearly, dialectal choice was, in Archimedes’ time,
a charged generic marker. Hellenistic authors were keenly aware of their
position as heirs to a rich literary tradition, varied by genre and by dialect -
the two often going hand in hand. Elegy would be written in (a specific
variety of) Ionic, epic poetry in the Homeric dialect (which in itself was a
Kunstsprache, an ad-hoc amalgamation of several layers of Greek that never
served together in any actually spoken Greek).*

Heiberg’s implicit claim was that the question of dialect was minor,
because it was unmarked: what would Archimedes write in, if not his
native language? Even deeper lies the assumption that a mathematician’s
language does not matter. Archimedes would write in Doric, the unmarked

o
N}

Gregory of Corinth, On Dialects. (A6g in Huffman 2005: 279-80). This — Byzantine — source
mentions Archytas and Theocritus as the models of Doric, Archytas clearly intended therefore
as the model of Doric prose. While late, it is difficult to see how such a statement could emerge
based on anything other than solid ancient testimony from the time that Archytas’ works were
still widespread.

Nor should we think in terms of a monolithic ‘Doric’ opposed to a monolithic ‘Koine’. It is
completely unclear to me, for instance, whether the Doric prose of Archimedes’ usage could
not have allowed Twv, instead of Tav, more often than Heiberg assumes (there are about
twenty cases of such variation in each of SL and Arenarius, where Heiberg always prints Tav).

2!

2

b

The locus classicus for an interpretation of this traditional observation is an essay by Parry
from 1932, ‘Studies in the epic technique of oral verse-making. 11. The Homeric language as the
language of an oral poetry, most conveniently available as chapter 6 of Parry 1971.
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form he would speak anyway, since he would not even think about which
language to use: the contents matter, and not their verbal form. Such is the
image projected by Heiberg’s editorial choice to minimize the question
of dialect and to assume a purely Doric Archimedes. I am not sure this
is true, and so I suspect that there is an open question as to the cultural
significance of Archimedes’ choice of dialect. This question is elided by
Heiberg’s editorial choices.”

Once again: I do not condemn Heiberg. I point, instead, to the sig-
nificance of Heiberg’s move away from the manuscripts, regardless of how
close this may or may not have brought him to the ‘original text. The main
consequence of Heiberg’s move was to make the verbal texture of the text
appear much more consistent than it was in the manuscript evidence. The
main implication of that would be to minimize the very significance of
verbal texture: to make Archimedes, once again, into a pure geometer — one
who cares about his mathematics and not at all about his style.

The format of Archimedes’ works

If Heiberg’s Archimedes ignores questions of verbal shape, this Archimedes
certainly pays attention to mathematical shape or format. In the criti-
cal edition, the text is articulated throughout by a systematic arrange-
ment based on two dualities: that of the introductory text as against the
sequence of propositions; and, inside the propositions, that of the general
statement as against the particular proof. Both are determined by the
major feature of the format, namely the sequence of numbers of proposi-
tions inside each work. The first numeral, preceding the first proposition,
marks the transition from introduction to the sequence of propositions;
from then onwards, each numeral is followed by a single paragraph written
out without diagrammatic labels, which is the general statement preceding
the main proof.

This format has basis in the manuscripts’ authority and may to some
extent reflect Archimedes himself. In some ways, however, Heiberg tends
to emphasize the regularity of this format and even to insert it against the
manuscripts’ authority.

The layout itself is significant. Heiberg has the proposition numerals
written inside the block of printed text with clear spaces preceding and

2> All of this is closely parallel to the question of dialect in Theocritus - another third-century
Syracusan extant, mostly, in some form of Doric, poetic in this case — and even though the
analogous problem has been researched for the case of Theocritus, scholars are far from
consensus (see Abbenes 1996).
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following them, serving in this way to articulate the writing in a highly
marked form. Following that, Heiberg writes out his text in accordance
with the clear paragraph arrangement dictated by modern conventions,
with the general statement always occupying a separate paragraph. The
Byzantine manuscripts followed a somewhat different layout. Numerals
for propositions — where present — are marginal notes that do not break
the sequence of the writing (this articulation is provided, however, by the
diagrams, as a rule positioned at the end of their respective propositions).
Division into paragraphs is less common in Byzantine manuscripts (where
it is performed by spacing inside the line of writing, where the break
is to take place, together with an optional bigger initial in the following
line, positioned outside the main column of writing). Typically, general
statements do not form in this sense a paragraph apart, such division into
paragraphs being reserved for more major divisions in the text — typically
for the very beginning of a proposition or, occasionally, in such major tran-
sitions as the passage from the ‘greater’ to the ‘smaller’ cases in the Method
of Exhaustion (so, for instance, codex C in SL 25, 1 96.30). It is likely that
Archimedes’ original papyrus’ rolls were, if anything, less articulated than
that.”® Not that this impugns Heiberg’s use of paragraphs: modern editions
universally ignore such questions of layout, imposing modern conven-
tions, and even though the layout of the manuscripts, as of Archimedes
himself, did not possess Heiberg’s visible articulation, it is fair to say that
the two divisions - of introduction from main propositions, and of general
statements from proofs — are genuinely part of Archimedes’ style.

However, because Heiberg is committed to a visible layout, he is also
forced to set clear-cut divisions where the original may be less clearly
defined.

First, even though the Archimedean text does operate between the
polarities of discursive prose and mathematical proposition, it is not as if
the transition between the two is typically handled as a break in the text.
Rather, Archimedes negotiates the transition in varied ways that make it
much smoother. To take a few examples: following the main introduc-
tory sequence in CS (1 246-258.18), Archimedes moves on to a passage
(1 258.19-260.24) where several simple claims are either asserted without
argument, or are accompanied by a minimal argument without diagram-
matic labels (e.g. Archimedes explains that when a plane cuts both sides
of a cone, it produces either a circle or an ellipse). Only following that,
at 1 260.25, Archimedes moves on to a longer and more complicated

%6 On early papyrus practices of articulation of text, see Johnson 2000.
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proposition that also calls for a diagram. Codex A also marked this propo-
sition with the marginal numeral A. Heiberg prints the entire sequence 1
246-260.24 preceding ‘proposition 1’ as a single paragraphed block of text,
that is the ‘introduction; followed by the sequence of ‘propositions’ starting
at 1 260.25. But clearly Archimedes’ intention was to create a smooth tran-
sition mediated by the passage 1 258.19-260.24, which does not fall easily
under either ‘introduction’ or ‘propositions.

Very similar transitions are seen in SC 1, SC 11, QP and PE 1, with Heiberg
making different choices: in SC 1 and SC 11 the transitional material is
incorporated into the ‘introduction’; in QP and PE 1 it is incorporated into
the ‘propositions. Further, while the first proposition of the Method has a
complex argument that calls for a diagram, Archimedes rounds it off with
a second-order comment that makes it appear rather like part of the ‘intro-
duction’ (11 438.16-21). Heiberg, very misleadingly, prints this comment as
if it formed part of proposition 2: clearly Archimedes’ point was to smooth,
once again, the transition from introduction to propositions. If we bear in
mind that the complex interplay of introduction and propositions is typical
of the Arenarius, and that FB 11, PE 11 and DC do not possess an intro-
duction at all, we discover that Heiberg’s neat dichotomy of introduction
divided from text is found in SL alone!

Heiberg’s clear articulation of the text into ‘propositions’ falling into
paragraphs tends to obscure, once again, the variety of formats found in
the corpus. Quite often, the text relapses into briefer arguments set in a
general language that does not call for a diagram. Heiberg marks such
passages off and heads them as ‘corollaries’ or porisma, but this is done
against the manuscripts’ evidence where, instead, such passages form part
of the unbroken flow of the text. This happens twenty times in the corpus.
Heiberg systematically introduces the title porisma into the printed text,
noting in the apparatus that the manuscripts ‘omit’ this title! For instance
PE 1: Heiberg prints mopiopa o in 11 130.22 and mopiopa B in 11 132.4,
with the following apparatus: 130.22 om. AB Tlo D, 132.4 om. AB. That is:
one copy of A introduced, in the first case, a marginal mark anticipating
Heiberg’s own intrusion. But the original text had no such headings. The
important consequence is that the original text allowed stretches of text,
inside the main flow of ‘propositions, where no detailed, diagrammatic
argument was required — and without segregating such passages by a title
such as ‘corollary’

The variety of the original is wider than that. Thus, for instance, some
propositions have a complex internal structure not neatly captured by the
simple division into general statement and particular proof (such as the
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analysis-and-synthesis pairs typical of SC 11, as well as the extraordinar-
ily complex internal structures — punctuated by several diagrams - of FB
11.8-10). Other propositions do not even display this simple division: for
instance, several key propositions of SC 1, starting with 23, take the form
of a ‘thought experiment’ where a certain operation is carried out followed
by an observation. Such propositions do not call for a general statement.
Further, many of the propositions of QP do not have a general statement
and start instead directly with diagrammatic labels. Now, Heiberg does
report correctly the contents of such deviant propositions, but his overall
system of articulating the text by explicit numerals tends to force the read-
ings of all propositions into a single mould. More, indeed, can be said for
the case of QP. The manuscripts do mark numerals for the first four propo-
sitions (the first three of which, however, defy easy counting, as they form
the transitional material from introduction to propositions). Then, from
proposition 5 onwards, no numerals are present. Heiberg dutifully notes
this fact but in a misleading fashion (analogous to his treatment of the title
‘corollary’): he goes on printing the numerals, noting in the critical appara-
tus to proposition 5 that from this point onwards the numerals are ‘omitted’
by the manuscripts.

This is not a unique case: the manuscripts for DC and Method never
contain numerals for proposition numbering; Heiberg introduces the num-
bering and then makes the apparatus report their ‘omission.

A similar pattern can be seen inside the introductory material. There,
Archimedes often includes material of substantive axiomatic import -
certain assumptions, or definitions, that he requires later on for his argu-
ment. Typically, Heiberg introduces titles to head such passages (that, in the
original, belong directly to the flow of the introduction), and then numbers
the individual claims made in such passages. Thus, Heiberg’s introduction
of SC 1 is divided (following Torelli) into three parts: a general discussion
proper (1 2-4), a§iwpara or ‘definitions, so headed and numbered 1-6 (1
6), hapBavopeva or ‘postulates, so headed and numbered 1-5 (1 8). Titles
and numbers are not in the original. Similar systematizations of the axio-
matic material take place in Method, SL (inside the later axiomatic passage,
11 44.16-46.21) and PE 1.

Heiberg’s position must have been that all such titles and numerals were
required and so would have been lost only through some textual corrup-
tion. Otherwise, he could at the very least have marked off such editions
by, say, pointed brackets, or, at the very least, commenting in the apparatus
add. for Tadded’ instead of om. for ‘the manuscripts omitted...” This posi-
tion blinded Heiberg to the serious textual question regarding the origins
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of such numerals in general. While the manuscripts do usually possess
numerals for proposition numbers, there seems to be some occasional dis-
agreement between the manuscripts as to which numerals to attach. This
disagreement is typically between the various copies of codex A, and so
carries little significance (aside from signalling to us that the scribes may
have felt a certain freedom changing those numbers). In the few cases (SL,
SC 1, SC 11) where Heiberg could compare the numbering reconstructed
for codex A with that reconstructed for codex C, the numbers were
indeed the same. However, it is interesting to observe that codex C has the
number 11 for what Heiberg titles (based on codex A) PE 11.10.”” Heiberg
almost certainly was unable to read this number but, once this evidence is
considered, we find a remarkable fact: the two early Byzantine manuscripts
for PE 11 numbered their propositions differently. This of course raises
the possibility that such numbers are indeed not part of the original text
but are rather (as their marginal position suggests) a late edition by Late
Ancient or Byzantine readers. Here, remarkably, Heiberg may have failed
to be critical enough. The possibility that the numbering was not authorial
apparently did not even cross his mind.

This phenomenon of systematization by titles and numerals is quite out
of keeping with Heiberg’s overall character as an editor. There must have
been a major reason for Heiberg to intervene in the text so radically, and so
blindly. This fact complements the evidence we have seen for Heibergs treat-
ment of Archimedes’ verbal style. Just as Heiberg considered Archimedes
indifferent to his verbal style, so we see Heiberg imputing to Archimedes
meticulous attention to mathematical style. And this, even though such
an imputation flies in the face of the evidence. Whereas Archimedes’ text
shows a great variety of forms of presentation, a gradation between more
or less formal, more or less general, and a merely discursive arrangement,
Heiberg produces a text marked by the dichotomies of introductory and
formal, general and particular, throughout producing a neatly signposted
text. This is a consistent Archimedes — and a consistently formal one.

A close-up on the Method

Archimedes” Method forms a special case. First, Heiberg faced here a task
somewhat different from elsewhere: he needed not only to judge a text,
but also, to a certain extent, to formulate it himself. Much of the text of the
Palimpsest was illegible to him and so much had to be supplied. Second,

*7 The Archimedes Palimpsest 14r col. 1, margins of line 11.
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here we can test Heiberg’s judgement. Heiberg’s decisions elsewhere — that
this or that was by Archimedes himself, this or that was by an interpola-
tor — will probably never be verified or refuted. But whenever we can now
read passages of the Palimpsest that were illegible to Heiberg, we thereby
test a conjecture. The issue of course is not to see how good Heiberg was
as a philologer. He was a superb one and, indeed, the new readings of the
Palimpsest often corroborate Heiberg’s guesses to the letter. I shall now con-
centrate, however, on three false guesses — which together form a systematic
whole, characteristic of Heiberg’s overall approach to the text of Archimedes.

This is also a good example of the enormous sway Heiberg’s edition had
over Archimedes’ destiny through the twentieth century. Heiberg’s edition
was careful and prudent: pointed brackets surrounding passages that he
fully guessed, dots to mark lacunae that he could not read at all (often
with remarks in the apparatus asserting the length of such lacunae), dots
underneath doubtful characters. It is true that today we find that a number
of characters Heiberg printed with confidence were wrong, but this is a
natural phenomenon in a palimpsest where the overlaying text occasion-
ally creates the illusion of false characters. All of this was accompanied by
a Latin translation — as was Heiberg’s practice elsewhere — where doubtful
passages were carefully marked by being printed in italics. In short, any
careful reader could tell which part of the text was Heiberg’s, and which
was Archimedes’. And yet, Heiberg’s influence was such that all later editors,
translators and readers operated, as it were, on the basis of Heiberg’s Latin
translation, largely speaking ignoring the difference between the Latin
printed in Roman characters (which Heiberg read confidently) and the
Latin printed in italics (which Heiberg merely guessed or supplied). Here,
more than anywhere else, Heiberg’s text supplanted that of Archimedes.
This had real consequences, subtle but consistent — so as to change the
overall texture of the treatise.

(1) The first case is the most clear-cut. We now recognize Method propo-
sition 14 (to follow Heibergs misleading numerals) as one of the
most important proofs ever written by Archimedes, but this is on the
strength of a new reading, illegible to Heiberg. As read by Heiberg, this
proposition is a mere variation on themes developed elsewhere in the
Method, of little deep value.

The Method typically operates by the combination of two principles:
a method of indivisibles (conceiving an n+1-dimensional object as
constituted by a continuity of n-dimensional objects), and the appli-
cation of results from geometrical mechanics for the derivation of
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results in pure geometry. This is often done by obtaining a common
centre of gravity to all pairs, suitably defined, of the n-dimensional
objects; assuming that the centre of gravity is then inherited by a pair
of n+1-dimensional objects constituted by the n-dimensional objects;
and finally applying the results that follow from the geometrical
proportions inherent in the Law of the Balance. This is illustrated by
Archimedes through a variety of results arranged by Heiberg as propo-
sitions 1-11. As Archimedes clarifies in the introduction, his intent
is to provide also ‘classical’ or purely geometrical proofs for a couple
of new results, measuring the volumes of (a) the intersection of a cyl-
inder and a triangular prism, (b) the intersection of two orthogonally
inclined cylinders. Nothing survives of the proofs for (b), but we have
considerable evidence for no fewer than three proofs for (a). The first,
arranged by Heiberg as the two propositions 12-13, is a proof based
on both a method of indivisibles as well as geometrical mechanics. The
second is proposition 14, on which more below; the third - called by
Heiberg ‘proposition 15° - survives in fragmentary form, but it is clear
beyond reasonable doubt that this forms, indeed, a ‘classical’ proof
based on standard geometrical principles applied elsewhere. This is in
fact a proof based on the method of exhaustion.

Proposition 14 therefore occupies a middle ground between the
special procedures of the Method, and the standard geometrical princi-
ples applied elsewhere. Indeed, it uses only one part of the procedures
of the Method. It makes no use of geometrical mechanics, based instead
on indivisibles alone. Archimedes considers a certain proportion
obtained for any arbitrary slice in the solid figures — so that a certain
triangle A is to another triangle B as a certain line segment C is to
another line segment D. The set of all triangles A constitutes the trian-
gular prism; the set of all triangles B constitutes the intersection of cyl-
inder and triangular prism that Archimedes sets out to measure; the set
of all line segments C constitutes a certain rectangle; the set of all line
segments D constitutes a parabolic segment enclosed by that rectangle.

Heiberg’s readings reached this point, and then Heiberg hit what
was, for him, a lacuna in his readings. He picked up the thread of
the argument as follows. It is assumed that, since the proportion
holds between all n-dimensional figures, it will also hold between all
n+1-dimensional figures. We therefore have the proportion: a trian-
gular prism to the intersection of a cylinder and a triangular prism,
as rectangle to parabolic segment. Since the ratio of a rectangle to the
parabolic segment it contains is known, and since the triangular prism
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is measurable, the intersection of the triangular prism and the cylinder
is measured as well.

All this makes sense and we can therefore even understand why
Heiberg was content: his reading, though lacunose, was mathemati-
cally sound. He did remark on the lacuna ‘Quid in tanta lacuna fuerit
dictum, non exputo?® - I do not guess what were to be written in such
a long lacuna’ This comment may be prudent, but it accompanies a text
that, otherwise, is meant to be read as mathematically meaningful. In
other words, the implication would be that the missing lacuna was no
more than ornament that does not impinge on the mathematical con-
tents of proposition 14, and it was certainly in this way that proposition
14 was read through the twentieth century.”

The upshot of this reading is indeed to make the proposition less
important, because it contains nothing new. It applies the method of
indivisibles — previously applied in the Method - by assuming that a
certain property obtained for n-dimensional objects is inherited by the
n+1-dimensional objects they constitute. It differs from the previous
propositions in a merely negative way - it does not apply geometrical
mechanics — and therefore it makes no contribution to our understand-
ing of Archimedes’ mathematical procedures.

This understanding of proposition 14 was revolutionized by the
readings of Netz et al. (2001-2), where the lacuna was finally read. It is
clear that this lacuna adds much more than ornament. Indeed, it forms
the mathematical heart of the proof. Archimedes applies certain results
concerning the summation of sets of proportions developed elsewhere,
results that call for counting the number of objects in the sets involved,
with the number of objects in this set equal to the number of objects
in that set. And this — even though the sets involved are infinite! Thus,
Archimedes does no less than count (by the statement of numeri-
cal equality) infinite sets. The proof is therefore not a mere negative
variation on the previous proofs; to the contrary, it opens up a unique
avenue, completely unlike anything else extant from Greek math-
ematics. Heiberg’s minimal interpretation of the text is thus refuted.
Though, of course, this is not to blame Heiberg: what else could he do?
The next example comes from the final, fragmentary proposition 15.
The first page of this proposition survives on fos. 158-9 of the

8 Heiberg 1913: 499, n. 1.

# See in particular Sato 1986, Knorr 1996, texts rare for paying any attention to proposition

14, both assuming that the text extant in Heiberg can be taken to represent Archimedes’ own

reasoning.
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Palimpsest, in a form which was mostly illegible to Heiberg. There
follows a gap in the text extant in the Palimpsest, followed by four
considerable fragments extant on fo. 165 of the Palimpsest. Two of
those fragments were nearly fully read by Heiberg, and they formed
a basis for an interpretation of the proof as a whole, one which the
much fuller reading we possess today corroborates on the whole.
Its main feature is the following. In this, purely geometrical proof,
Heiberg makes Archimedes follow a route comparable to that used in
the measurement of conoids of revolution in CS. A sequence of prisms
is inscribed inside the curvilinear object; the difference between the
sequence of prisms and the curvilinear object is made smaller than
any stated magnitude; and the assumption that the curvilinear figure is
not of the volume stated then leads to contradiction. All of this is well
known from elsewhere in Archimedes and Heiberg had many patterns
to follow - especially from CS itself - in his reconstruction of the text
of fos. 158-9 beginning the proof.

In contrast to proposition 14, where the lacuna unread by Heiberg —
no more than about half a column of writing - proved to be much
richer in mathematical meaning than Heiberg imagined, here, fos.
158-9 contain three and a half columns of writing, mostly unread by
Heiberg, and they contain practically no mathematical significance.
Here the surprise is the opposite to that of proposition 14. Heiberg in his
reconstruction rather quickly establishes the geometrical construction
required for inscribing prisms inside the curvilinear object. Archimedes
himself, however, went through what may have been the most detailed
construction in his entire corpus. The construction is much slower
than that of the analogous proofs in CS. At the end of these three and
a half columns of writing, Archimedes had not yet reached the explicit
conclusion that the difference between the curvilinear object and the
inscribed prisms is smaller than any given magnitude. It appears that
in making the transition from the unorthodox procedures of proposi-
tions 1-14, to the ‘classical’ procedure of proposition 15, Archimedes
made a deliberate effort to make proposition 15 as ‘classical’ as possi-
ble - as explicit and precise as possible. (One of course is reminded of
how Heiberg tends, elsewhere, to doubt passages where Archimedes is
especially explicit and transparent. Would he have excised a good deal
of proposition 15, had he been able to read more of it?)

Archimedes’ motives are difficult to judge but the effect most cer-
tainly was to emphasize the gap between the two parts of the treatise,
the unorthodox and the orthodox. This gap was somewhat smoothed
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over in Heiberg’s reconstruction though, once again, let this not be
construed as a criticism of Heiberg: for, once again, there was no way
for him to guess how different Archimedes’ construction here was from
that of Heiberg’s models in CS.

A final example is from proposition 6. Here Archimedes determines
the centre of gravity of a hemisphere - as it appears from the beginning
of the proposition, the relatively legible verso side of fo. 163. Heiberg
thus knew what this proposition was about. The text then moves on to
the recto side of fo. 163, which was barely legible to Heiberg, fo. 170 —
mostly illegible in 1906 and one of the three leaves to have disappeared
since — and the recto of 157, completely unread by Heiberg. As men-
tioned, we have meanwhile lost fo. 170 but, at the same time, through
modern technologies, we have recovered practically the entire text of
fos. 163 (recto) and 157 (recto) As a result, we now know that Heiberg’s
reconstruction of the parts he could not read was wrong.

Heiberg’s modus operandi here was straightforward. While propos-
ition 6 was mostly illegible, proposition 9 was mostly easy to read,
especially in the well preserved (then) fos. 166-7 and 48-41. This
proposition 9 dealt with finding the centre of gravity of any segment of
the sphere, i.e. proposition 6 can be seen as a special case of proposi-
tion 9. What Heiberg did, then, was to reconstruct proposition 6 on
the basis of proposition 9. In proposition 9, Archimedes constructs
an auxiliary cylinder MN, whose various centres of gravity balance
with certain cones related to the segments of the sphere. This cylinder
is then imported by Heiberg into proposition 6 itself. But there is no
need of such an auxiliary construction in proposition 6. Indeed, the
finding of the centre of gravity of a hemisphere is much simpler than
that of finding the centre of gravity of a general segment (which is not
all that surprising as this happens often: a special case may have prop-
erties that make it easier to accomplish). The position of the centre of
gravity along the axis is found, in an elegant manner, by considering
just the cone which is already contained by the hemisphere. Heiberg’s
reconstruction of proposition 6 made it appear as if it were a precise
copy of proposition 9, merely plugging in the special properties of the
hemisphere. But it appears that Archimedes took two different routes,
a more direct and elegant one for finding the centre of gravity of the
hemisphere, and an indirect one for finding the centre of gravity of a
general segment.

Once again, we can hardly blame Heiberg. He played it safe,
reconstructing a passage difficult to read on the basis of a closely
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related passage that was easier to read - just as he reconstructed
proposition 15 on the basis of CS, and proposition 14 on the basis
of propositions 1-11. How else would you reconstruct, if not on the
basis of what you have available? But this immediately suggests that
the act of reconstruction has, automatically, a significant consequence:
if reconstruction is necessarily based on what one has available,
reconstruction necessarily tends to homogenize the text. Hence 14
appears like 1-11; 15 appears like CS; 6 appears like 9. The Method as a
whole loses something of its internal variety and of its difference from
other parts of the corpus.

In truth, of course, the Method is all about difference. It is different
from the rest of the corpus; it highlights internal variety, where the
original procedure contrasts with ‘classical, geometrical approaches.
After all, what is the point of supplying three separate proofs of the
same result (propositions 12-13, proposition 14, proposition 15) if not
to highlight the difference between all of them? This can be seen at all
levels. I have concentrated on the global forms of marking difference,
but one can find such forms at a more local level. We may return to
proposition 14 to take a closer look at its unfolding. The proposition
falls into three parts: (a) a geometrical passage showing that a certain
proportion holds, (b) a proportion theory passage showing that this
proportion may be summed up for sets of infinite multitude and (c)
an arithmetical passage calculating the numerical value of the segment
of the cylinder measured. Heiberg did not read (b) at all, and had to
reconstruct large parts of (a). The only part he could read in full was (c),
which is indeed surprisingly careful and detailed. Heiberg’s reconstruc-
tion ignored (b), and produced a careful and detailed development of
(a). In Heibergs reading, therefore, the proposition unfolded in an
uninterrupted progression of careful geometrical argument, followed
by a transition based directly on the method of indivisibles (and thus
merely reduplicating propositions 1-11) leading to another careful,
arithmetical argument.

Following Netz et al. (2001-2), we now know that the structure
of the proof is much more unwieldy. Remarkably, passage (a) hardly
possesses any argument. The difficult and remarkable geometrical con-
clusion required by Archimedes is thrust upon the reader as a given.
This is then followed by the subtle and difficult argument of (b), leading
finally to the much simpler passage (c) which now, in context, is truly
startling in its slow development of such an obvious claim. Archimedes
first states a difficult result as obvious, then outlines the most difficult
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claim imaginable, and then finally develops in full a sequence of mere
arithmetical equivalences. This proposition 14 forms a microcosm of
the Method as a whole: its fundamental principle of composition is
sharp difference. Heiberg could hardly have guessed this, staring as he
did at the nearly illegible pages of the Palimpsest. Perhaps he should
have been more forthcoming in revealing his ignorance. Perhaps it
would have been best to avoid all those passages translated in Latin
printed in italics, so as to broadcast in all clarity the lacunose nature of
Heiberg’s own reading. But then again, the temptation to reproduce, in
full, the mathematical contents of the Method was irresistible and the
remarkable fact, after all, is that Heiberg came so close to achieving this
reproduction. Where he erred, that was in the spirit of the text more
than in its mathematical contents. And so he did reconstruct, mostly,
the mathematical contents of the Method - transforming along the way
the texture of Archimedes’ writings.

The texture of Archimedes’ writings: summary

We have seen several ways in which Heiberg manipulated the evidence of
the manuscripts, transforming it to produce his text of Archimedes and,
through that transformation, projecting his image of Archimedes. The
manuscripts’ diagrams were ignored, producing an image of Archimedes
whose arguments were textually explicit. The bracketing of suspected inter-
polations produced an image of Archimedes whose arguments were less
immediately accessible. As for Heiberg’s overall conventions of presentation,
these would serve to make the argument appear more consistent than it
really was — visible most clearly in Heiberg’s reconstruction of the Method.
There, obviously, Archimedes used a wide variety of approaches — which
Heiberg tended to narrow down. This drive towards consistency marked
Heiberg’s project as a whole.

All in all, then, Heiberg’s interventions make Archimedes to be textually
explicit, non-accessible and consistent. Now, it is not as if Heiberg, through-
out, adopted this editorial policy. The practices adopted for the edition
of Archimedes display Heiberg’s assumptions concerning Archimedes
himself. Thus, Vitrac shows, in his analysis of Heiberg’s edition of Euclid,
that, with the latter, Heiberg’s policies were quite different, emphasizing
transparency — nearly the opposite of those of Archimedes.

Very likely, this editorial policy reveals, therefore, a certain image of
mathematical genius. Heiberg could well make his Euclid transparent and
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accessible; Archimedes had to be difficult. While perfectly explicit and
consistent, the mathematical genius is also remote and difficult. This, of
course, is no more than guesswork, ascribing to Heiberg motives he may
never have formulated explicitly for himself. I shall not linger on such
possibilities. And, indeed, let us not forget: Heiberg could well be right.
There are probably grounds for saying that Euclid was easier to read than
Archimedes, that on the whole Euclid took more pains to make his text
accessible.

The one point I would like to stress, finally — and the one which Heiberg
almost inevitably would tend to obscure - is the variety of Archimedes’
writings. Heiberg’s editorial policy is in itself consistent, and it can't help
reflecting a single image Heiberg entertained of the texture of Archimedes’
writings. But in truth, the major feature of the corpus is that so many
of its constituent works are unlike the others. Some are extant in Doric,
some in Koine. Is this an artefact of the transmission alone? Perhaps. But
the argument for that is yet to be made. The Arenarius stands apart: it is
written in discursive prose. The Cattle Problem stands apart — it is written
in poetic form. The Method stands apart - it deals with questions of pro-
cedure, putting side by side various approaches. Even Sphere and Cylinder
11 stands apart — it is the only work dedicated to problems alone. Many
works diverge from the imaginary norm of pure geometry. Some works
are heavily invested in numerical values - not only the Measurement
of the Circle, but also the Arenarius and (in part) Spiral Lines, Planes in
Equilibrium 1 and Quadrature of Parabola (as well as the no longer extant
treatise on semi-regular solids and, likely, the Stomachion). Some works are
heavily invested in physical considerations, such as Planes in Equilibrium
1-11, Floating Bodies 1-11 and Quadrature of Parabola. Even a book with
the straightforward theme and methods of Sphere and Cylinder 1 becomes
marked by the very striking format of presentation, with the polygons rep-
resented by series of curved lines (surely one of the most striking features
to arrest the attention of the original treatise - if indeed this convention is
due to Archimedes himself). Which work by Archimedes remains ‘typical’?
Perhaps Conoids and Spheroids. ..

Inside many works, again, Archimedes plays throughout with variety:
with putting side by side the physical and the geometrical, twice, in
Quadrature of Parabola as well as Method; with putting side by side the
numerical and the geometrical, in Spiral Lines, Planes in Equilibrium,
Quadrature of Parabola, Semi-Regular Solids and Stomachion.

And so, is it so unlikely, finally, that Archimedes should, on occasion,
be more explicit, on occasion, more opaque? If the answer is positive, then
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much of the argument for Heiberg’s excisions - his major editorial inter-
vention in the text of Archimedes - disappears.

Perhaps the answer should be negative; perhaps Heiberg was right in
his reconfiguration of the Archimedean text. But this article serves as a
note of caution: authors possess complex individual styles, and it is always
hazardous to revise them on the basis of any single editorial policy. Which,
once again, reminds us that we should not blame Heiberg: is it fair to ask
anyone to make himself, deliberately, inconsistent? Such is the editor’s
plight: forever limping upon his crutches of a single method - gasping, out
of breath, as he tries to catch up with an author who flies upon the wings of
a creative mind.
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of mathematical proofs to Aristotelian
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One of the central issues in contemporary studies of Aristotle’s Posterior
Analytics is the conformity of mathematical proofs to Aristotle’s theory of
demonstration. The question, it seems, immediately arises when one com-
pares Aristotle’s demonstrative proofs with the proofs in Euclid’s Elements.
According to Aristotle, demonstrative proofs are syllogistic inferences of the
form ‘All A is B, all B is C, therefore all A is C, whereas Euclid’s mathemati-
cal proofs do not have this logical form. Although the discrepancy between
mathematical proofs and Aristotelian demonstrations seems evident, it is
only during the Renaissance that the conformity of mathematical proofs
to Aristotelian demonstrations emerges as a controversial issue.! The
absence of explicit discussions of the conformity of mathematical proofs
to Aristotelian demonstrations in the earlier tradition seems puzzling from
the perspective of contemporary studies of Aristotle’s theory of demonstra-
tion. The formal discrepancies between Aristotelian demonstrations and
mathematical proofs seem so obvious to us that it is difficult to understand
how the conformity between mathematical proofs and Aristotelian dem-
onstrations was ever taken for granted. In this chapter I attempt to bring to
light the presuppositions that led ancient thinkers to regard the conformity
of mathematical proofs to Aristotelian demonstrations as self-evident.
Neither an outright rejection nor an explicit approval of the conform-
ity of mathematical proofs to Aristotelian demonstrations is found in
the extant sources from late antiquity; however, two approaches to this
issue can be detected. According to one approach, found in Proclus’
commentary on the first book of Euclid’s Elements, the conformity of

! The first Renaissance thinker to reject the conformity of mathematical proofs to Aristotelian
demonstrations is Alessandro Piccolomini. His treatise Commentarium de certitudine
mathematicarum disciplinarum, published in 1547, initiated the debate known as the Quaestio
de certitudine mathematicarum, in which other Renaissance thinkers, such as Catena and
Pereyra, sided with Piccolomini in stressing the incompatibility between mathematical proofs
and Aristotelian demonstrations, whereas other thinkers, such as Barozzi, Biancani, and
Tomitano, attempted to reinstate mathematics in the Aristotelian model. I discuss this debate
and its ancient origins in the conclusions.



Philoponus and Aristotelian demonstrations

certain mathematical proofs to Aristotelian demonstrations is questioned.’
According to the other approach, found in Philoponus’ commentary on
Aristotle’s Posterior Analytics, the conformity of mathematical proofs
to Aristotelian demonstrations is taken for granted.’ Nevertheless, these
thinkers did not address the same question that Aristotle’s contemporary
interpreters discuss. Whereas contemporary studies focus on the discrep-
ancy between the formal requirements of Aristotelian demonstrations
and mathematical proofs, the ancient thinkers focused on the non-formal
requirements of the theory of demonstration — namely, the requirements
that demonstrations should establish essential relations and ground their
conclusions in the cause.

In view of this account, I attempt to explain why the question whether
mathematical proofs meet these non-formal requirements does not arise
within the context of Philoponus’ interpretation of Aristotle’s theory of dem-
onstration. Regarding the requirement that demonstrative proofs should
establish essential relations, I show that Philoponus considers it non-
problematic in the case of all immaterial entities including mathematical
objects. I show further that Philoponus’ assumption that mathematical
objects are immaterial renders the requirement that the middle term should
serve as a cause irrelevant for mathematical demonstrations, since accord-
ing to Philoponus causes are required only to explain the realization of
form in matter. Accordingly, the dependence of mathematical proofs on
definitions is sufficient, in Philoponus’ view, to guarantee their conformity
to Aristotelian demonstrations. In substantiating this conclusion, I then
discuss Proclus’ argument to the effect that certain mathematical proofs do
not conform to Aristotelian demonstrations. I show that within the context
of Proclus’ philosophy of mathematics, in which geometrical objects are con-
ceived of as realized in matter, consideration of the question whether math-
ematical proofs meet the two non-formal requirements — a question which
Philoponus ignores with regard to mathematical demonstrations - led
Proclus to argue for the non-conformity of certain mathematical proofs to

2 Proclus’ commentary on the first book of Euclid’s Elements was translated into Latin in 1560 by
Barozzi and it played an instrumental role in the debate over the certainty of mathematics. For
the reception of Proclus’ commentary on the Elements in the Renaissance, see Helbing 2000:
177-93.

Philoponus’ commentary on the Posterior Analytics has been hardly studied; hence it is
difficult to assess its direct or indirect influence on the later tradition. Nevertheless, it seems
that the several traits of Philoponus’ interpretation of the Posterior Analytics are found in the
medieval interpretations of Aristotle’s theory of demonstrations, such as the association of
demonstrations of the fact with demonstrations from signs which is found in Averroes (see

n. 38) and the identification of the middle term of demonstration with real causes (see n. 27).

w
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Aristotelian demonstrations. As a corollary to this discussion, I conclude my
chapter with an attempt to trace the origins of contemporary discussions of
the conformity of mathematical proofs to Aristotelian demonstrations to the
presuppositions underlying Philoponus’ and Proclus’ accounts of this issue.
I thereby outline a possible explanation for how concerns regarding the
ontological status of mathematical objects and the applicability of Aristotle’s
non-formal requirements to mathematical proofs evolved into concerns
regarding the logical form of mathematical and demonstrative proofs.

Philoponus on mathematical demonstrations

In the Posterior Analytics 1.9, Aristotle states that if the conclusion of a dem-
onstration All A is Cis an essential predication, it is necessary that the middle
term B from which the conclusion is derived will belong to the same family
(sungeneia) as the extreme terms A and C (76a4-9). This requirement is
tantamount to the requirement that the two propositions ‘All A is B and ‘All
B is C; from which the conclusion ‘All A is C’ is derived, will also be essential
predications. The example that Aristotle presents in this passage for an essen-
tial predication is “The sum of the interior angles of a triangle is equal to two
right angles’ In his comments on this discussion Philoponus tries to show
that the attribute ‘having the sum of its interior angles equal to two right
angles’ is indeed an essential attribute of triangles. He does so by arguing
that Euclid’s proof meets the requirements of Aristotelian demonstrations:

For having [its angles] equal to two right angles holds for a triangle in itself (kath’
auto). And [Euclid] proves this [theorem] not from certain common principles, but
from the proper principles of the knowable subject matter. For instance, he proves
that the three angles of a triangle are equal to two right angles, by producing one
of the sides and showing that the two right angles, the interior one and its adjacent
exterior angle, are equal to the three interior angles,* so that such a syllogism is
produced: the three angles of a triangle, given that one of its sides is produced, are
equal to the two adjacent angles. The two adjacent angles are equal to two right
angles. Therefore the angles of a triangle are equal to two right angles. And that
the two adjacent angles are equal to two right angles is proved from the [theorem]
that two adjacent angles are either equal to two right angles or are two right angles.
Whence [do we know] that adjacent angles are either equal to two right angles or

* The proof that Philoponus describes is not identical to Euclid’s proof. Philoponus’ reference
to ‘two right angles’ implies that he envisages a right-angled triangle, whose base is extended
s0 as to create two adjacent right angles. Euclid’s proof refers to an arbitrary triangle. This
discrepancy does not affect Philoponus’ reasoning, as he states in the sequel that two adjacent
angles are either equal to two right angles or are two right angles.
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are two right angles? We know it from the definition of right angles, [stating] that
when a straight line set up on a straight line makes the adjacent angles equal to each
other, the two equal angles are right. Well, having brought [the conclusion] back to
the definition and the principles of geometry, we no longer inquire further, but we
have the triangle proved from geometrical principles.®

In showing that Euclid’s proof conforms to the Aristotelian model of dem-
onstration, Philoponus focuses on two issues: (1) he presents Euclid’s proofs
in a syllogistic form, and (2) he grounds the proved proposition in the
definition of right angle. The notion of first principles, on which Philoponus’
account is based, includes only one of the characteristics of Aristotelian first
principles — namely, their being proper to the discipline. In Philoponus’
view, the dependence of Euclid’s geometrical proof on geometrical first
principles, rather than on principles common to or proper to other disci-
plines, is sufficient to establish that this proof conforms to the Aristotelian
model. Two other characteristics of Aristotelian first principles are not taken
into account in this passage. First, Philoponus does not raise the question
whether the middle term employed in this proof is related essentially to the
subject of this proof; that is, he does not consider the question whether a
proposition regarding an essential attribute of adjacent angles can by any
means serve to establish the conclusion that this attribute holds essentially
for triangles.® Nor does he express any reservations concerning the auxiliary
construction, in which the base is extended and two adjacent angles are
produced. Second, Philoponus does not mention Aristotle’s requirement
that the first principles should be explanatory or causal; he does not raise
the question whether the middle term in his syllogistic reformulation of
Euclid’s proof has a causal or explanatory relation to the conclusion. Thus
Philoponus’ account of the conformity of Euclids proofs to Aristotelian
demonstrations raises two questions: (1) why Philoponus ignores the ques-
tion whether mathematical propositions state essential relations; and (2)
why the causal role of the principles of demonstration is not taken into
account. The following two sections answer these questions respectively.

Essential predications

Philoponus addresses the question whether mathematical proofs establish
essential predications in his comments on the Posterior Analytics 1.22. He

5 116. 7-22, Wallies. All translations are mine.

¢ For Philoponus’ syllogistic reformulation to be a genuine Aristotelian demonstration, one has
to assume that adjacent angles and triangles are related to each other as genera and species.
This assumption is patently false.
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formulates this question in response to Aristotle’s contention that sentences
whose subject is an attribute, such as ‘the white (to leukon) is walking’ or
‘the white is a log’ cannot feature in demonstrations, because they are not
predicative in the strict sense (Posterior Analytics 83a1-21). This conten-
tion jeopardizes, in Philoponus’ view, the status of geometrical proofs. The
subject matter of geometry, according to Philoponus, is shapes and their
attributes. Hence, Aristotle’s narrow conception of predication may imply
that proofs that establish that certain attributes belong to shapes are not
demonstrative because they prove that certain attributes, such as having the
sum of the interior angles equal to two right angles, belong to other attrib-
utes, such as triangles (239.11-14).” Philoponus dismisses this implication
saying:

Even if these [attributes] belong to shapes accidentally, they are completive [attrib-
utes] of their being (sympleérotika tés ousias) and like differentiae that make up the
species they are [the attributes] by which [shapes] are distinguished from other
things.® ... Just as ‘being capable of intellect and knowledge’ or ‘mortal’ or any of the
[components] in its definition do not belong to ‘man’ as one thing in another, but
[man] is completed from them, so the circle is also contemplated (theoreitai) from
all the attributes which are observed in it. Similarly, also the triangle would not be
something for which ‘having three angles equal to two right angles’ or ‘having the
sum of two sides greater than the third’ do not hold, but if one of these [attributes]
should be separated, immediately the being of a triangle would be abolished too.”

This account does not answer Philoponus’ original query; it does not tackle
the question whether proofs that establish predicative relations between
two attributes are demonstrative. Instead, Philoponus focuses here on the
question whether the attributes that geometry proves to hold for shapes
are essential, arguing that mathematical attributes like differentiae are
parts of the definitions of mathematical entities. However, the analogy
between the differentiae of man and mathematical propositions is not as
obvious as Philoponus formulates it. The attributes ‘capable of knowledge’
and ‘mortal’ distinguish men from other living creatures; the former dis-
tinguishes human beings from other animals and the latter distinguishes

7 Philoponus presupposes here Aristotle’s categorical scheme, in which terms belonging to the
nine non-substance categories are attributes of terms belonging to the category of substance.
According to Aristotle’s Categories the term ‘shape’ belongs to the category of quality. Hence,
Philoponus claims that geometry studies attributes of attributes.

¥ The term ‘completive attributes’ (symplérotikos) refers in the neo-Platonic tradition to
attributes without which a certain subject cannot exist. On these attributes and their relation to
differentiae, see De Haas 1997: 201 and Lloyd 1990: 86-8.

¥ 239.14-25, Wallies.
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them from divine entities, which are also capable of knowledge but are not
mortal. By contrast, the geometrical attributes that Philoponus mentions
in this passage do not distinguish triangles or circles from other shapes.
Admittedly, the attribute ‘having the sum of the interior angles equal to
two right angles’ holds only for triangles, yet, unlike ‘having three sides, it
is not the feature that distinguishes triangles from other shapes. It seems,
then, that in accounting for the essentiality of mathematical attributes,
Philoponus expands the notion of differentia, so as to include all the attrib-
utes of mathematical entities. He does not distinguish between attributes
that enter into the definition of an entity and necessary attributes; he con-
cludes from the statement that a triangle will cease to be a triangle if one
of its attributes were separated from it that these attributes are essential.
Thus, rather than explaining why mathematical attributes are essential in
Philoponus’ view, this passage reflects his assumption that the essentiality
of mathematical attributes is evident. This assumption, I surmise, can be
understood in light of Philoponus’ interpretation of the principles of
demonstration.

In his comments on the Posterior Analytics 11.2,'° Philoponus accounts
for the distinction between indemonstrable premises and demonstrable
conclusions in terms of the distinction between composite and incomposite
entities. Incomposite entities, according to this discussion, are simple or
intelligible substances such as the intellect or the soul, which are considered
(theoroumenon) without matter.!' In the case of such entities, Philoponus
argues, the defining attribute is not different from the definable object
and therefore propositions concerning such entities are indemonstrable
or immediate. Another characterization of indemonstrable premises is
found in Philoponus’ interpretation of Aristotle’s discussion of the relation-
ship between definitions and demonstrations in the Posterior Analytics
11.2-10. In addressing the question whether it is possible to demonstrate a
definition, Philoponus draws a distinction between two types of definition:
formal and material. Formal definitions are the indemonstrable principles
of demonstration that define incomposite entities; they include, accord-
ing to Philoponus, the essential attributes (ousiodos) of the defined object.
Material definitions, by contrast, serve as demonstrative conclusions and

10" The editor of Philoponus’ commentary on the Posterior Analytics, M. Wallies, doubted the
attribution of the commentary on the second book of the Posterior Analytics to Philoponus
(v-vi). The authenticity of the commentary on the second book does not affect my argument,
because all the references I make here to the commentary on the second book accord with
views expressed in Philoponus’ other commentaries.

11339. 6-7, Wallies.
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include the attributes that are present in matter.!? In this interpretation,
then, the ontological distinction between incomposite and composite
entities accounts for two characteristics of the principles of demonstra-
tion: their indemonstrability and their essentiality. The question whether
certain propositions meet Aristotle’s requirements is not answered by an
examination of their logical characteristics, but by the ontological status of
their subjects.

It follows from this discussion that from Philoponus’ viewpoint the
immateriality of the subject of predication is sufficient to guarantee the
essential relation between a subject and its attributes.’* This assumption
may explain Philoponus’ approach to the issue of the essentiality of math-
ematical propositions. Mathematical objects, according to Philoponus, are
abstractions from matter'* - that is, they belong to the class of incomposite
objects that serve as the subjects of formal definitions. Thus, in light of
Philoponus’ characterization of these definitions, it plausible to regard all
attributes of mathematical objects as essential, because the immateriality of
these objects seems to entail, in Philoponus’ view, the essentiality of their
attributes. In what follows, I show that the ontological distinction between
incomposite and composite entities also explains why the causal role of
the middle term is not taken into account in Philoponus’ discussion of the
conformity of Euclid’s proofs to Aristotelian demonstrations.

Causal demonstrations

In his commentary on Aristotle’s Physics 11.2, Philoponus examines the
tenability of Aristotle’s criticism of the theory of Forms, which involves,
according to Aristotle, separation from matter of the objects of physics,
although they are less separable than mathematical objects. In so doing,
Philoponus draws a distinction between separability in thought and sepa-
rability in existence, claiming that he agrees with Aristotle that the forms

12364.16-18, Wallies.

13 Two reasons may explain why Philoponus does not consider the possibility that immaterial
entities have accidental attributes. First, it is commonly held in the ancient tradition that only
individuals have accidental attributes, which belong to their matter. Second, Philoponus’
notion of essential predication is more formal than Aristotle’s. In characterizing essential
predications Philoponus appeals to extensional, rather than intensional, considerations. In his
view, attributes that belong to all members of a species and only to them are essential (e.g., In
An. Post. 63.14-20, Wallies; In DA 29.13-30.1, Hayduck; In Cat. 64.9, Busse).

For Philoponus’ conception of mathematical objects, see (e.g.) In Phys. 219.10; In DA, 3.7-11.
For a discussion of this view, see Mueller 1990: 465-7.
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of natural things cannot be separated in existence from matter, but he disa-
grees with Aristotle’s view if it implies that these forms cannot be separated
by reason and in thought.'® Although Philoponus’ account of the indemon-
strability of the principles of demonstration presupposes the possibility
of separating the definitions of both mathematical and physical entities,
the ontological difference between these classes of objects is nevertheless
maintained. In his commentary on Aristotle’s De anima, Philoponus draws
a distinction between physical and mathematical definitions, arguing that
physical definitions should refer to the matter of physical substance, their
form and the cause by virtue of which the form is realized in matter.'®
Mathematical definitions, by contrast, refer only to the form:

The mathematician gives the definitions of abstracted forms in themselves, without
taking matter into account, but he gives these [definitions] in themselves. For this
reason he does not mention the cause in the definition; for if he defined the cause,
clearly he would also have taken the matter into account. Thus, since he does not
discuss the matter he does not mention the cause. For example, what is a triangle?
A shape contained by three lines; what is a circle? A shape contained by one line.
In these [definitions] the matter is not mentioned and hence neither is the cause
through which this form is in this matter. Unless perhaps he gives the cause of those
characteristics holding in themselves for shapes, for instance, why a triangle has its
angles equal to two right angles."”

Philoponus’ distinction between physical and mathematical definitions
has two related consequences for the methods employed in physics and
mathematics. First, although both physical and mathematical demonstra-
tions are based on indemonstrable formal definitions, these definitions
adequately capture the nature of mathematical objects but they fail to
exhaust the nature of physical objects. In the case of physical demonstra-
tions, the formal definition captures only one aspect of the object: its
form. Full-fledged knowledge of physical objects requires reference also
to the matter of this object and the cause of the realization of the form
in matter. Indeed, in both the commentary on Aristotle’s De anima and
the commentary on the Posterior Analytics, Philoponus considers formal
definitions of physical objects deficient. In the commentary on De anima,
Philoponus argues that definitions that do not include all the attributes

15 225.4-11, Vitelli. For the relationship between Philoponus’ discussion of separability in

thought of physical definitions and his analysis of demonstrations in the natural sciences, see
De Groot 1991: 95-111.

16 55.31-56.2, Hayduck.

17 57.35-58.6, Hayduck.
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of an object are not physical definitions, but are dialectical or empty. His
example of such an empty definition is the formal definition of anger:
‘anger is a desire for revenge. The adequate definition of anger, according
to Philoponus, is ‘anger is boiling of the blood around the heart caused by
a desire for revenge’'® This definition refers to the form, the matter and the
cause. Similarly, in the commentary on the Posterior Analytics, Philoponus
claims that neither the formal nor the material definition is a definition in
the strict sense; only the combination of these two yields an adequate defi-
nition.” This conception of definition is evidently inapplicable to math-
ematics. Mathematical objects are defined without reference to matter or
to their cause, hence formal definitions provide an exhaustive account of
these objects.

The second consequence of Philoponus™ distinction between physical
and mathematical definitions concerns the explanatory or causal rela-
tions in demonstrative proofs. Although in the above-quoted passage
Philoponus contends that the cause is also studied in mathematics when a
relation between a mathematical object and its attributes is proved, it seems
that this cause is different from the one studied in physics. According to
the above passage, physics studies the cause of the realization of form in
matter, but since mathematics does not deal with the matter of its objects,
its explanations do not seem to be based on this type of cause. Furthermore,
Philoponus’ analysis of physical demonstrations in terms of the distinction
between formal and material definitions gives rise to a problem that has
no relevance for mathematical demonstrations. This interpretation gives
rise to the question of how the material aspect of a physical entity, which is
a composite of form and matter, can be demonstratively derived from the
formal definition, given that this definition does not exhaust the nature of
the composite entity. Stating this question differently, how, in Philoponus’
view, can a proposition regarding a substance taken with matter be
demonstratively derived from a proposition regarding its form, which is
considered in separation from matter? Evidently this question does not
arise in the mathematical context. Mathematical definitions do not refer to
matter; hence, they give an exhaustive account of mathematical objects. In
what follows, I show that Philoponus answers this question by appealing to
extra-logical considerations. More specifically, I show that the causal role
of the middle term in demonstrations provides Philoponus with the means
of bridging the gap between formal definitions and material definitions.

18 43.28-44.8, Hayduck.
19 365.1-13, Wallies.
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In his comments on the Posterior Analytics 1.2, Philoponus presents the
following explanation for Aristotle’s remark that the questions ‘what it is’
(ti esti) and ‘why it is’ (dia ti) are the same:

For if the ‘what it is’ and the ‘why it is’ are different, it is insofar as the former is
sought with regard to simple [entities] and the latter with regard to composite [enti-
ties]. Yet these [questions] are the same in substrate, but different in their mode of
employment. Both the ‘what it is’ and the ‘why it is’ are studied in the case of the
eclipse being an affection of the moon. And we use these, the ‘what it is’ and the
‘why it is, differently. But if we take an eclipse itself by itself, we seek what is the
cause of an eclipse, and we say that it is a privation of the moon’s light due to screen-
ing by the earth. But if we seek whether an eclipse exists (hyparkhei) in the moon,
namely why it exists, we take the ‘what it is’ as a middle term, namely privation of
the moon’s light coming about as a result of screening by the earth.”

Although this passage is presented to account for the identity between the
questions ‘what it is’ and ‘why it is, Philoponus dissociates these two ques-
tions. The distinction he draws here is based on the ontological distinction
between simple and composite entities. The question ‘what it is’ is asked
with regard to simple entities, whereas the question ‘why it is’ is asked with
regard to composite entities. In the case of composite entities, Philoponus
argues, ‘what it is’ and ‘why it is’ are different questions. The definition
of an eclipse and the cause of its occurrence are not identical. The exact
significance of Philoponus’ distinction between these questions is not clear
from this passage. The examples presented by Philoponus seem to blur his
distinction between an eclipse considered in the moon and an eclipse con-
sidered in separation from the moon, as the accounts given for both cases
are identical - ‘privation of the moon’s light due to screening by the earth.
This difficulty in understanding Philoponus’ distinction between ‘what
it is’ and ‘why it is’ may stem from his attempt to accommodate his view,
which dissociates these questions, with Aristotle’s claim that these ques-
tions are identical. As a result, Philoponus follows Aristotle in exemplify-
ing the answers to these questions by one and the same account. However,
according to Philoponus’ other discussions of the definitions of entities,
which are considered in separation from matter, the account for the eclipse
taken in separation from the moon should be the formal definition ‘screen-
ing by the earth, whereas ‘privation of the moons light due to screening by
the earth’ is the full definition, resulting from a demonstration that relates
the formal definition to the material definition.”! Despite the difficulty in

200 339.20-9, Wallies.
21 371.19-25, Wallies.
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understanding the distinction made in this passage, Philoponus clearly
does not follow Aristotle here in assimilating definitions with explanations.
This conclusion finds further support in Philoponus’ comments on the
Posterior Analytics 1.4.

In the Posterior Analytics 1.4, Aristotle presents four senses in which
one thing is said to hold for another ‘in itself’ The first two senses are
predicative and they constitute Aristotle’s account for the predicative
relations that the premises of demonstration should express. According
to the first sense, a predicate holds for a subject in itself if it is a part of
the definition of the subject. According to the second sense, a predicate
holds for a subject in itself if the subject is a part of the definition of the
predicate. The third sense distinguishes substances that exist in themselves
from attributes, which depend on substances, by virtue of their being
said of them. The fourth sense distinguishes a causal relation between
events from an incidental relation between events. In his comments on
this fourfold distinction Philoponus argues that only the first two senses
of ‘in itself” contribute to the demonstrative method,* yet he also regards
the fourth sense (i.e. the causal sense) as relevant to the theory of demon-
stration. According to Philoponus, the causal sense of ‘in itself’, though it
does not contribute to the formation of the premises of demonstration,
contributes to the ‘production of the whole syllogism’>> More precisely,
Philoponus argues that the causal sense of ‘in itself” expresses the rela-
tion between the cause, taken as the middle term of demonstration, and
the conclusion. The example Philoponus presents of this contention is
the following syllogism: The moon is screened by the earth. The screened
thing is eclipsed. Therefore, the moon is eclipsed. Commenting on this
syllogism, Philoponus remarks that the fact that screening by the earth
is the cause of the eclipse of the moon is not expressed in the premises
of this demonstration, but its causal force becomes evident from its role
as a middle term.* In this discussion, then, Philoponus employs two dif-
ferent senses of ‘in itself’ in accounting for the relations expressed in the
premises of demonstration and the relation between the middle term and
the conclusion. The premises of demonstration, according to Philoponus,
are ‘in itself’ in one of the two first senses delineated by Aristotle. That
is, their predicate is either a part of the definition of the subject or their
subject is a part of the definition of the predicate. By contrast, the middle

~
®

2 65.10-11, Wallies.
23 65.15, Wallies.
24 65.16-19, 65.20-3, Wallies.
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term and the conclusion of a demonstration are related according to the
fourth sense of ‘in itself” - that is, they are related as cause and effect.”* So,
according to Philoponus, the derivation of the demonstrative conclusion
is not solely based on the transitivity of the predicative relation stated in
the premises. In addition to the transitivity of the predicative relation, the
demonstrative derivation is based on causal relations between the middle
term and the conclusion. Such a distinction between logical relations and
extra-logical or causal relations is explicitly drawn at the beginning of
Philoponus’ introduction to his commentary on the second book of the
Posterior Analytics:

In the first book of the Apodeiktike (i.e. the Posterior Analytics), he showed how
there is a demonstration and what is a demonstration and through what premises it
has come about, and he showed further how a demonstrative syllogism differs from
other syllogisms and that in other syllogisms the middle term is the cause of the
conclusion and not of the thing and in demonstrative syllogism the middle term is
the cause both of the conclusion and of the thing.*®

It follows from this discussion that Philoponus’ ontological distinction
between physical and mathematical entities yields different accounts for
physical and mathematical demonstrations. The distinction between the
three facets of physical entities - i.e. the form, the matter and the cause for
the realization of form in matter - is reflected in Philoponus’ interpreta-
tion of the theory of demonstration. In this interpretation, demonstrations,
like physical entities, have three components: indemonstrable premises,
regarded as formal definitions, demonstrative conclusions, which are
material definitions, and the middle term, which serves as the cause that
relates the formal definition to the material definition. Philoponus’ distinc-
tion between the form of a physical entity and the cause of the realization
of form in matter finds expression in the distinction he draws between
the formal definition considered in itself and that formal definition in its
role as the middle term in demonstration. This distinction implies that

> The analysis of demonstrative derivation in causal terms is widespread in Philoponus’
commentary on the Posterior Analytics (e.g., 24.22-4; 26.9-13; 119.19-21; 173.14-20;
371. 4-19). The causal analysis of demonstrative derivation underlies Philoponus’ introduction
of a second type of demonstration, called ‘tekmeriodic demonstration, in which causes are
deduced from effects (In An. Post. 33.11; 49.12; 169.8; 424.13, Wallies; In Phys. 9.9-10.21,
Vitelli). On Philoponus’ notion of tekmeriodic proofs and its reception in the Renaissance, see
Morrison 1997: 1-22.

%0 334.1-8, Wallies. The distinction between the middle term as the cause of the thing and the
middle term as the cause of the conclusion is also found in the Latin medieval tradition of
interpreting the Posterior Analytics. See De Rijk 1990.
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demonstrative derivation rests on two relations: the transitivity of the pre-
dicative relation that the premises state and the causal relation between the
middle term and the conclusion. This distinction is applicable to physical
demonstrations, for which the cause of the realization of form in matter is
sought. The demonstrative derivation in these demonstrations is based not
only on logical relations but also on causal relations. Mathematical enti-
ties, by contrast, have only one facet: the form. Accordingly, Philoponus’
account of the conformity of mathematical demonstrations to Aristotelian
demonstrations focuses only on the formal requirements of the theory
of demonstration. The conformity of mathematical demonstrations to
Aristotelian demonstrations is guaranteed if the conclusions can be shown
to depend on the definitions of mathematical entities. Since mathematical
objects have no matter, mathematical demonstrations can be based only
on logical derivation; the question whether the middle term is the cause of
the conclusion does not arise in this context, as the separation from matter
renders superfluous questions concerning causes.”’

The analysis of Philoponus’ interpretation of Aristotle’s theory of dem-
onstration reveals the importance of the ontological distinction between
simple and composite entities for his account of conformity of mathemati-
cal proofs to Aristotelian demonstrations. The assumption that mathemati-
cal objects are analogous to simple entities by being separated in thought
from matter does not give rise to two questions that may undermine the
conformity of mathematical proofs to Aristotelian demonstrations. The
first question is whether mathematical predications are essential; the
second is whether the middle term in mathematical proofs is the cause of
the conclusion. The first question does not arise because the separation
from matter implies that only the essential attributes of entities are taken
into consideration. The second does not arise because causal considerations
are relevant only with regard to composite entities, as it is only in their case
that the cause of the realization of form in matter can be sought. Hence,
given the assumption that mathematical entities are separated in thought
from matter, the question whether mathematical proofs conform to the
non-formal requirements of Aristotle’s theory of demonstration does not
arise. This conclusion gains further support from Proclus’ discussion of the
conformity of mathematical proofs to Aristotelian demonstrations.

7 This conclusion may explain Proclus’ otherwise curious remark that the view in which
geometry does not investigate causes is originated in Aristotle (In Eucl. 202.11, Friedlein). If
this explanation is correct, Philoponus’ conception of mathematical demonstrations seems to
reflect a widespread view in late antiquity.
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Proclus on the conformity between mathematical
proofs and Aristotelian demonstrations

Proclus’ philosophy of geometry is formulated as an alternative to a con-
ception whereby mathematical objects are abstractions from material or
sensible objects.”® According to Proclus, mathematical objects do not differ
from sensible objects in their being immaterial, but in their matter. Sensible
objects, in Proclus’ view, are realized in sensible matter, whereas math-
ematical objects are realized in imagined matter. In Proclus’ philosophy of
geometry, then, mathematical objects are analogous to Philoponus’ physi-
cal objects; they are composites of form and matter. Proclus’ philosophy
of mathematics is at variance not only with Philoponus’ views regarding
the ontological status of geometrical objects but also with Philoponus’
views regarding the conformity of Euclid’s proofs to Aristotelian demon-
strations.”” In his discussion of the first proof of Euclid’s Elements in the
commentary on the first book of Euclid’s Elements, Proclus questions the
conformity of certain mathematical proofs to the Aristotelian model:

We shall find sometimes that what is called ‘proof” has the properties of demon-
stration, in proving the sought through definitions as middle terms - and this is a
perfect demonstration — but sometimes it attempts to prove from signs. This should
not be overlooked. For, although geometrical arguments always have their necessity
through the underlying matter, they do not always draw their conclusions through
demonstrative methods. For when it is proved that the interior angles of a triangle
are equal to two right angles from the fact that the exterior angle of a triangle is
equal to the two opposite interior angles, how can this demonstration be from the
cause? How can the middle term be other than a sign? For the interior angles are
equal to two right angles even if there are no exterior angles, for there is a triangle
even if its side is not extended.*

In this passage, Proclus claims that Euclid’s proof that the sum of the inte-
rior angles of a triangle is equal to two right angles (Elements 1.32) does
not conform to Aristotle’s model of demonstrative proofs. In so doing,
he focuses on the causal role of the middle term in Aristotelian dem-
onstrations. Proclus argues that Euclid’s proof does not conform to the
Aristotelian model because it grounds the equality of the sum of the inte-
rior angles of a triangle to two right angles in a sign rather than in a cause.

28 In Eucl. 50.16-56.22, Friedlein.

#" A discussion of the relationship between Proclus’ philosophy of geometry and his analysis of
mathematical proofs is beyond the scope of this paper. For this issue, see Harari 2006.

%0 206.12-26, Friedlein.
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Proclus’ reason for regarding this Euclidean proof as based on signs rather
than on causes concerns the relationship between the auxiliary construc-
tion employed in this proof and the triangle. According to Proclus, the
extension of the triangle’s base is merely a sign and not a cause of the equal-
ity of the triangle’s angles to two right angles because ‘there is a triangle
even if its side is not extended’ The exact force of this statement is clarified
in Proclus’ discussion of the employment of this auxiliary construction in
another Euclidean proof - the proof that the sum of any two interior angles
of a triangle is less than two right angles (Elements 1.17). In this discussion,
Proclus claims that the extension of the triangle’s base cannot be considered
the cause of the conclusion since it is contingent: the base of a triangle may
be extended or not, whereas the conclusion that the sum of any two inte-
rior angles of a triangle is less than two right angles is necessary.’! Hence,
in questioning the conformity of certain Euclidean proofs to Aristotelian
demonstrations, Proclus raises the two questions that Philoponus ignores
in the case of mathematical demonstrations. Unlike Philoponus, Proclus
asks whether the middle term in Euclid’s proofs is the cause of the conclu-
sion and whether it is essentially related to the triangle.

Furthermore, Proclus’ attempt to accommodate Euclid’s proofs of the
equality of the sum of the interior angle of a triangle to two right angles
with Aristotle’s requirement that demonstrations should establish essential
relations indicates that he shares with Philoponus the assumption that
demonstrations regarding material entities require an appeal to causal con-
siderations. In concluding his lengthy discussion of Euclid’s proof that the
sum of the interior angles of a triangle is equal to two right angles, Proclus
says:

We should also say with regard to this proof that the attribute of having its interior
angles equal to two right angles holds for a triangle as such and in itself. For this
reason, Aristotle in his treatise on demonstration uses it as an example in discuss-
ing essential attributes ... For if we think of a straight line and of lines standing in
right angles at its extremities, then if they incline so that they generate a triangle we
would see that in proportion to their inclination, so they reduce the right angles,
which they made with the straight line; the same amount that they subtracted from
these [angles] is added through the inclination to the angle at the vertex, so of
necessity they make the three angles equal to two right angles.*

The procedure described in the passage, in which a triangle is generated

from two perpendiculars to a straight line that rotate towards each other

31 311.15-21, Friedlein.
32 384.5-21, Friedlein.
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up to their intersection point, is also presented by Proclus in his comments
on propositions 1.16 and 1.17 of the Elements. In both cases, he regards this
procedure - and not Euclid’s auxiliary construction in which the triangle’s
base is extended - as the true cause of the conclusion.*® Proclus’ appeal to
this procedure in searching for the true cause of these conclusions indicates
that in attempting to accommodate Euclid’s proofs with Aristotle’s require-
ment that demonstrations should establish essential relations, he grounds
mathematical conclusions in causal relations rather than in logical rela-
tions. Proclus considers the proposition that the sum of the interior angles
of a triangle is equal to two right angles essential not because it is derived
from the definition of a triangle, as Aristotle’s theory of demonstration
requires, but because the proposition is derived from the triangle’s mode
of generation. Viewed in light of Philoponus’ interpretation of Aristotle’s
theory of demonstration, Proclus’ attempt to accommodate Euclid’s proof
with Aristotelian demonstrations seems analogous to Philoponus’ account
of physical demonstrations. In both cases, causal considerations are
employed in rendering proofs concerning material objects compatible with
Aristotelian demonstrations.

This examination of the presupposition underlying Philoponus and
Proclus’ views regarding the conformity of mathematical proofs to
Aristotelian demonstrations has led to the following conclusions.

(1) The pre-modern formulation of the question of the conformity of
mathematical proofs to Aristotelian demonstrations concerns the
applicability of the non-formal requirements of the theory of dem-
onstration to mathematical proofs. More specifically, this formulation
concerns the questions whether mathematical attributes are proved
to belong essentially to their subjects and whether the middle term in
mathematical proofs serves as the cause of the conclusion.

(2) The emergence or non-emergence of the question of the conformity
of mathematical proofs to Aristotelian demonstration is related to
assumptions concerning the ontological status of mathematical objects.
This question does not arise in a philosophical context in which math-
ematical objects are conceived of as separated in thought from matter,
whereas it does arise when mathematical objects are conceived of as
realized in matter.

(3) Demonstrations concerning composites of form and matter were
understood in late antiquity as based on causal relations, viewed as
additional to the logical necessitation of conclusions by premises.

3 310.5-8, 315.15, Friedlein.
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Causal considerations are employed with regard to mathematical dem-
onstrations, when mathematical objects are considered material; they
are not employed when mathematical objects are considered separated
in thought from matter.

Conclusions

In concluding this chapter, I examine the relationship between the modern
formulation of the question of the conformity of mathematical proofs
to Aristotelian demonstrations and its formulation in late antiquity. The
modern discussions of the relationship between Aristotle’s theory of dem-
onstration and mathematical proofs focus on Aristotle’s formal requirement
that demonstrations should be syllogistic inferences from two universal
predicative propositions, which relate the subject and predicate of the con-
clusion to a third term, called the ‘middle term’

The disagreement among Aristotle’s modern commentators concerns
whether mathematical proofs can be cast in this logical form. For instance,
Tan Mueller, who says they cannot, argues that in a syllogistic reformulation
of Euclidean proofs the requirement that the inference should have only
three terms is not always met, because the mathematical proofs depend
on the relations between mathematical entities and not on their properties
taken in isolation from other entities.** The possibility of expressing mathe-
matical relations in syllogistic inferences is also central in modern attempts
to render Aristotle’s theory of demonstration compatible with mathemati-
cal proofs. Henry Mendell, for instance, shows that Aristotle’s theory of
syllogism does have the formal means that make possible syllogistic for-
mulations of mathematical proofs. In so doing, he argues that the relation
of predication, which is formulated by Aristotle as ‘x belongs to ), can be
read flexibly so that it also accommodates two-place predicates, such as ‘x
equals ¥, or ‘x is parallel to y’** Mendell’s argument, like Mueller’s, focuses
on the possibility of expressing relations within the formal constraints of
the theory of syllogism. The extra-logical consequences of the expansion
of the theory of syllogism to relational terms and their compatibility with
Aristotle’s theory of demonstration are not at the centre of either Mendell’s
or Mueller’s argument. More specifically, they do not address the question
of whether relational terms or mathematical properties can be proved to

** Mueller 1975: 42.
3 Mendell 1998.
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be essential predicates of their subjects.’® This question, as I showed, was
central in the discussions of the conformity of mathematical proofs to
Aristotelian demonstrations in late antiquity.

The non-formal requirements of the theory of demonstration were also
central in the Renaissance debate over the certainty of mathematics.”
Piccolomini’s objective in his Commentarium de certitudine mathemati-
carum disciplinarum was to refute what he presents as a long-standing
conviction that mathematical proofs conform to the most perfect type
of Aristotelian demonstration, called in the Renaissance demonstratio
potissima. The classification of types of demonstrations that underlies
Piccolomini’s argument is based on Aristotle’s distinction between dem-
onstrations of the fact (hoti) and explanatory demonstrations or dem-
onstration of the reasoned fact (dioti). This distinction has been further
elaborated by Aristotle’s medieval commentators and it appears in the
Proemium of Averroes’ commentary on Aristotle’s Physics as a tripartite
classification of demonstrations into demonstratio simpliciter, demon-
stratio propter quid and demonstratio quid est. It is in this context that
Averroes claims that mathematical proofs conform to the perfect type of
demonstration, in his terminology demonstratio simpliciter.*® According to
this classification, the different types of demonstration differ in the epis-
temic characteristics of their premises, hence in the epistemic worth of the
knowledge attained through them. Following this tradition, Piccolomini’s
argument for the inconformity of mathematical proofs to Aristotelian
demonstrations focuses on these characteristics. According to Piccolomini
potissima demonstrations are demonstrations in which knowledge of the
cause and of its effects is attained simultaneously; the premises of such
demonstrations are prior and better known than the conclusion; their
middle term is a definition, it is unique and it serves as the proximate
cause of the conclusion. Mathematical demonstrations, so Piccolomini
and his followers argue, fail to meet these requirements. The importance
of the non-formal requirements of the theory of demonstration for the
Renaissance debate over the certainty of mathematics comes to the fore
in the following passage from Pereyras De communibus omnium rerum
naturalium principiis et affectionibus:

*¢ This question is not utterly ignored in modern interpretations of the Posterior Analytics. See
McKirahan 1992; Goldin 1996; Harari 2004.

%7 Por a general discussion of the Quaestio de certitudine mathematicarum, see Jardine 1998. For
the influence of this debate on seventeenth-century mathematics, see Mancosu 1992 and 1996.

3% Aristotelis opera cum Averrois commentariis, vol. 1v, 4.
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Demonstration (I speak of the most perfect type of demonstration) must depend
upon those things which are per se and proper to that which is demonstrated;
indeed, those things which are accidental and in common are excluded from
perfect demonstrations ... The geometer proves that the triangle has three angles
equal to two right ones on account of the fact that the external angle which results
from extending the side of that triangle is equal to two angles of the same triangle
which are opposed to it. Who does not see that this medium is not the cause of the
property which is demonstrated? . . . Besides, such a medium is related in an alto-
gether accidental way to that property. Indeed, whether the side is produced and
the external angle is formed or not, or rather even if we imagine that the production
of the one side and the bringing about of the external angle is impossible, nonethe-
less that property will belong to the triangle; but what else is the definition of an
accident than what may belong or not belong to the thing without its corruption?*

Pereyra’s argument for the inconformity of mathematical proofs to
Aristotelian demonstrations is similar to Proclus’ argument. Like Proclus,
Pereyra focuses on the question whether mathematical proofs meet the
non-formal requirements of the theory of demonstration. More specifically,
he raises the two questions that were at the centre of Proclus’ discussion of
this issue: (1) Do the premises of mathematical proofs state essential or
accidental relations? (2) Are Euclid’s proofs, which are based on auxiliary
constructions, explanatory? These questions are viewed in this passage as
interrelated; real explanations are provided when the relation between a
mathematical entity and its property is proved to be essential. This require-
ment is met if the premises on which the mathematical proofis based state
essential relations. The only allusion to the syllogistic form of inference
made in this passage is to the middle term in syllogistic demonstrations.
However, like Proclus, Pereyra considers the middle term only in its role
as the cause of the conclusion. Its formal characteristics, such as its posi-
tion, are not discussed here. Thus, pre-modern and modern discussions
of the conformity of mathematical proofs to Aristotelian demonstrations
concern different facets of the theory of demonstration. Whereas the
modern discussions focus on the formal structure of Aristotelian demon-
strations, pre-modern discussions concern its non-formal requirements.
Accordingly, the questions asked in these discussions are different. The
modern question is whether syllogistic inferences can accommodate rela-
tional terms whereas the pre-modern question is whether mathematical
proofs establish essential relations.

# The translation is based on Mancosu 1996: 13. The complete Latin text appears on p. 214, n. 12
of Mancosu’s book.
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Nevertheless, when the pre-modern discussion of the conformity of
mathematical proofs to Aristotelian demonstrations is viewed in light of its
underlying ontological presuppositions, a conceptual development leading
to the modern formulation of this question may be traced. Discussions of
the conformity of mathematical proofs to Aristotelian demonstrations in
late antiquity were associated with discussions of whether mathematical
objects are immaterial or material;*’ that is, whether they are conceptual or
real entities. This ontological distinction is reflected in different accounts
of the relation of derivation, on which demonstrations are based. Whereas
demonstrations concerning immaterial objects are based on definitions
and rules of inference alone, demonstrations concerning material objects
require the introduction of extra-logical considerations, such as the causal
relations between form and matter. Thus, the question of the ontologi-
cal status of mathematical objects reflects the epistemological question:
whether extra-logical considerations have to be taken into account in
mathematics. When discussions of the conformity of mathematical proofs
to Aristotelian demonstrations in late antiquity are viewed in isolation
from ontological commitments, they seem to be conceptually related to
modern discussions of the nature of mathematical knowledge. The need to
take into account extra-logical considerations when mathematical objects
are considered material is equivalent to Kant’s statement that mathematical
propositions are synthetic a priori judgements. Developments in modern
logic led to a reformulation of Kant’s statement in terms of logical forms.
Kant’s contention that mathematical knowledge cannot be based on defi-
nitions and rules of inference alone was regarded by Bertrand Russell as
true for Kant’s time. According to Russell, had Kant known other forms
of logical inference than the syllogistic form, he would not have claimed
that mathematical propositions cannot be deduced from definitions and
rules of inference alone.*! In light of this account, the modern discussions
of the conformity of mathematical proofs to Aristotelian demonstrations,
which focus on whether syllogistic inferences can accommodate relational
terms, may be understood as evolving from the pre-modern discussions
of whether mathematical proofs establish essential relations, and to estab-
lish this conclusion, two conceptual developments have to be traced: the
process by which the question whether mathematical propositions are

0" This assumption seems to underlie the Renaissance discussions of this issue as well. In the
eleventh chapter of his treatise Piccolomini attempts to reinstate the status of mathematics
as a science by claiming that mathematical objects are conceptual entities, existing in the
human mind.

4 Russell 1992: 4-5.
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essential has become dissociated from questions concerning the ontologi-
cal status of mathematical objects, and the process leading to the develop-
ment of modern logic.
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5 Contextualizing Playfair and Colebrooke
on proof and demonstration in the Indian
mathematical tradition (1780-1820)

DHRUV RAINA

The social shaping of representations of so called non-Western astronomy
and mathematics in eighteenth- and nineteenth-century European scholar-
ship has been of recent scholarly interest from the perspective of the politics
of knowledge.! A principal concern has been the changing estimation of
non-Western mathematical traditions by European mathematicians and
historians of mathematics between the end of the last decades of the eight-
eenth century and the early decades of the nineteenth century; that is from
the heyday of the Enlightenment to the post-Enlightenment period. While
these studies have been informed by Said’s Orientalism,* they have sought
to examine the question whether the history of mathematics (the least likely
case) is also inscribed within the frame of European colonial adventure and
enterprise, as happened in the arts, literature and social sciences.’

It has been suggested that the European scholarship on the sciences of
India reveals fractures along national lines, which in turn reflected the
diversity of educational and institutional contexts of the world of learn-
ing.* This chapter examines the relationship between the histories of Indian
astronomy and mathematics produced by French astronomers and the
translation from the Sanskrit of works on Indian algebra undertaken by a
colonial administrator and British Indologist, Henry Thomas Colebrooke.
The contrast revealed the divergent disciplinary orientations of the inter-
preters themselves. Second, in elaborating upon the canonization of a very
important translation of Indian mathematical works by Colebrooke,’ I shall
argue that the standard European depiction of the Indian mathematical

Charette 1995; Raina 1999.

Said 1978.

Assayag et al. 1997.

Raina 1999.

Sir Henry Thomas Colebrooke was the son of the Chairman of the East India Company
Directors, and arrived in India as an official of the Company in 1782-3. In India he acquired
a proficiency in Sanskrit literature and commenced writing on Hindu law, the origins of
caste, etc. As a result he was appointed Professor of Hindu Law and Sanskrit at the College
of Fort William, Calcutta (Buckland 1908: 87-8). His translation of texts of Bhaskara and
Brahmagupta became classics of nineteenth-century history of Indian mathematics.
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tradition as devoid of proof went contrary to the spirit of Colebrooke’s
translation and the large number of proofs and demonstrations therein
contained. In other words, this chapter elaborates upon how the Indian
tradition of mathematics came to be constructed as one that was devoid
of the idea of proof. While this characterization acquired stability in the
nineteenth century, the construction itself was prefigured in the eight-
eenth century. However, in the second half of the nineteenth century there
were historians of mathematics who held that specific kinds of proof were
encountered in Indian mathematical texts.

It could be suggested that the concerns possibly giving the several con-
tributions in the present volume a thematic unity is the focus upon the
empirical reality of mathematical practices, which perhaps suggests that
mathematical traditions the world over, in the past as in the present, were
and are characterized by several cultures of proof. Furthermore, studies on
the culture(s) of proving among contemporary mathematicians, pure and
applied, appear to indicate that rather than there being a unique criterion of
what constitutes a proof there exist several mathematical subcultures.® This
view pushes in the direction of a sociological view of proof, amounting to
a consensus theory of proof. Clearly this runs contrary to the formal verifi-
cationist idea that proofs are pinioned on their ‘intrinsic epistemic quality’’
This naturally raises the question as to how and when will these issues
surface in the efforts of historians of mathematics. For if, as is suggested, it
was not until the middle of the nineteenth century that proof became the
sole criterion of validating mathematical statements,® then its reflection is
to be found in the constructions of histories of mathematics as well.

In order to look at the more technical mathematical writing it is first
necessary to briefly describe the optic through which Europeans turned
their gaze on India during this period and the tropes that defined their liter-
ary production on India during these decades. The eighteenth century has
been considered the formative period for the emergence of the discourse
on colonialism, but this discourse was not yet ‘monolithic or univocal’
European writing on India comprised a network of intersecting and con-
tending representations.” The representations of India in this writing are
naturally very ‘diverse, shifting, historically contingent, complex and com-
petitive. The texts themselves are shaped often by ‘national and religious
rivalries, domestic concerns, and the cognitive or intellectual cultures of

¢ Heinz 2000; MacKenzie 2001; Heinz 2003.
7 Heinz 2003: 234-5.

8 Heinz 2003: 938.

° Teltscher 1995: 2.
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the respective interlocutors.'® Critical studies on oriental scholarship have
sought to situate these texts in national and religious contexts and to iden-
tify the elements they share.! It has been argued that until the eighteenth
century it was possible to speak of a European tradition of writing about
India that differentiated into several national traditions by the middle of
the eighteenth century. The birth of a specifically British tradition is put
around 1765 when the East India Company was granted rights to collect
land revenues and administer civil justice in Bengal.'> With the founding
of the Asiatic Society, British writing on India especially from the 1780s
onwards was marked by the impulse of British writers to foreground the
textual nature of their activity, in other words to anchor their writings on
India in the specific study of classical texts produced in India."

The French missionaries who came to India in the late seventeenth
century were the first to have spoken of India’s scientific past. French
Indology, according to Jean Filliozat, emerged in the early decades of the
eighteenth century, when the King’s librarian requested Etienne Fourmont,
of the College Royal, to draw up a list of works of note from India and
Indo-China, to be purchased for the King’s library. By 1739, a catalogue of
Sanskrit works had been prepared, and copies of Vedas, epics, philosophical
and linguistic texts and dictionaries had been procured.'* Curiously enough
there were very few, if any, scientific texts that were included in the cargo to
the Kings library."” The Jesuit astronomers were the first to study the Indian
astronomical systems that Filliozat considers ‘the first scientific or even cul-
tural achievements of India studied by Europeans’'® Kejariwal goes so far as
to suggest that the ‘history of French Orientalism is also the history of the
rediscovery of ancient Indian astronomy in the modern period’'”

A fruitful approach into this archive of scientific texts and not just liter-
ary or religious texts is to pay attention to moments where the standard
cultural descriptions characterizing the early European writing on India are
challenged or unsettled through the textual analysis of similar and different
forms of reasoning.'® In examining these mathematical texts, it is thereby
essential for our purpose to be alert to those moments and descriptions of

=

Teltscher 1995: 2; Raina 1999; Jami 1995.
Inden 1990; Zupanov 1993.

Teltscher 1995: 3.

Teltscher 1995: 6.

Filliozat 1955: 1-3.

Raina 1999.

Filliozat 1957.

Kejariwal 1988: 17.

Teltscher 1995: 14.
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mathematical results and procedures encountered within Sanskrit texts that
were not accompanied by demonstrations or proof or exegesis. The British
mathematician and geologist John Playfair (1748-1819) in introducing the
Indian astronomy broadly speaking to an English speaking audience was
to write:

The astronomy of India is confined to one branch of the science. It gives no theory,
nor even any description of the celestial phenomena, but satisfies itself with the
calculation of certain changes in the heavens . .. The Brahmin . . . obtains his result
with wonderful certainty and expedition; but having little knowledge of the prin-
ciples on which his rules are founded, and no anxiety to be better informed, he is
perfectly satisfied, if, as it usually happens, the commencement and duration of the
eclipse answer, within a few minutes, to his prediction."

There are four ideas that are evident in this passage, and that run con-
stantly throughout the construction of Indian astronomy and mathematics.
Inasmuch as Indian astronomy is a science it differs from modern astron-
omy in that (a) it lacks a theoretical basis, (b) it does not provide a descrip-
tion of celestial phenomena, and (c) it is not methodologically reflective
(‘little knowledge of the principles on which his rules are founded’), which
in turn amounts to the idea that (d) the Indian astronomer computes but
does so blindly. In other words these computations were performed blindly
by the Indian astronomers. On account of the predictive accuracy of the
astronomy it merited the stature of a science, and the Indian astronomers
were concerned no more with it than in this instrumental context.

The origins of British Indology: different starting points,
different concerns

British studies on Indian astronomy and mathematics may be said to lie
at the conjuncture of two different historiographies: French and British.
One of the earliest British Indologists to speak of the distinctive tradition
of Indian algebra was Reuben Burrow (1747-92), a mathematician and
a one-time assistant to Maskelyne, the Astronomer Royal in Greenwich.
The prior French tradition of the history of science had been preoccupied
with the origins of Indian astronomy. Burrow centred the question about
the origins of Indian mathematics. This will become evident further ahead.
That Burrow had a different optic from the French is evident in his ‘Hints
concerning the Observatory at Benaras™:

1 Playfair 1790 (1971): 51.
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Notwithstanding the prejudices of the Europeans of the last century in favour of
their own abilities, some of the first members of the royal society were sufficiently
enlightened to consider the East Indies and China & ¢, as new worlds of science that
remained undiscovered . . . had they not too hastily concluded that to be lost, which
nothing but the prejudice of ignorance and obstinacy, had prevented being found,
we might at this time [be] in possession of the most finished productions of Asia
as well as Europe; the sciences might, in consequence, have been carried to a much
higher degree of perfection with us than they are at present; and the elegance and
superiority of the Asiatic models might have prevented the neglect and depravity
of geometry, and that inundation of Algebraic barbarism which has ever since the
time of Descartes, both vitiated taste, and overrun the publications, of most of the
philosophical societies in Europe.”’

The encounter with other non-European scientific traditions was encour-
aged by the ideological impulse to advance the frontiers of knowledge.
In that sense Burrow’s philosophy of science resonated with that of the
Enlightenment thinkers. The most striking feature of the above passage is
that the Indian tradition for Burrow is still not characterized as algebraic
or geometric. In fact, at this point the characterization is the very reverse
of the late nineteenth century where Indian mathematics is constituted as
one that is algebraic in spirit at the expense of geometry. This nineteenth-
century portraiture of Indian mathematics depicted the traditions as alge-
braic or algorithmic, and as one where the geometric side of mathematics
was underdeveloped. Modern European mathematics since Descartes, in
Burrow’s words, had been overwhelmed by algebraic barbarism’. An expo-
sure to Asiatic models would then have prevented the neglect of geometry
that marked contemporary sciences. I do not know if one could interpose
the suggestion that there may have been some Anglo-French rivalry at
stake. But then that is not immediately germane to the construction. The
relevant concern here is that until the end of the eighteenth century some
British Indologists still entertained the hope that they would discover Indian
geometrical texts that would unveil to them the foundations of an Indian
geometrical tradition. Thus Playfair would in 1792 pose six questions to
the researchers of the Asiatic Society, the first of which was: ‘Are any books
to be found among the Hindus, which treat professedly of Geometry?’!
Playfair was thus asking if it were possible to identify elements of a corpus
of knowledge albeit in a different disguise that could be considered geom-
etry in the sense in which it was conceived in Europe. For one it could be

20 Burrow 1783 (1971): 94-5.
21 Playfair 1792: 151.
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said that the question that the geometry of the Hindus could have a differ-
ent basis from the Greek ones is implied by the ‘professedly’ in the question.
That this is what Playfair meant might be inferred from his elaboration
upon the question he posed:

Iam led to propose this question, by having observed, not only that the whole of the
Indian Astronomy is a system constructed with great geometrical skill, but that the
trigonometrical rules given in the translation from the Surya Siddhanta, with which
Mr. Davis? has obliged the world, point out some very curious theorems, which
must have been known to the author of that ancient book.*

According to Playfair, as he engages with Davis’ translation of the Surya
Siddhanta the ‘trigonometrical canon’ of Indian astronomy is constructed
on the basis of a theorem. The theorem is stated as:

If there be three arches of a circle in arithmetical progression, the sum of the sines
of the two extremes arches is to twice the sine of the middle arch as the cosine of
common difference of the arches to the radius of the circle.”

Though the theorem was not known to Europe before Viete, Playfair
continues, the method was employed by the Indian astronomers for con-
structing trigonometrical tables, and was based on the simpler procedure
of calculating sines and arcs than through the use of methods that were
based on extracting square roots.”® The immediate task for Playfair appears
to have been to identify those mathematical works where the theorem on
which the trigonometrical rule employed in astronomy is first laid out.
This brings us back to Burrow’s concern with the origins of Indian math-
ematics.

Contrasting approaches: sifting the mathematical from the
astronomical rexts

In the late eighteenth century it would have been possible to differen-
tiate between the efforts of the British Indologists and those of their
French counterparts studying Indian astronomy and mathematics on two
counts. Methodologically speaking, while the British Indologists were busy

2 Samuel Davis (1760-1819) was a judge in Bengal and produced one of the first translations of
the Surya Siddhanta.

* Playfair 1792: 151.

2 An ‘arc of a circle’ is what is meant here. I have kept the original spelling.

> Playfair 1792: 152.

% Playfair 1792: 152.

~
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underlining the textual nature of their enterprise, the French astronomer-
savants relied a great deal on proto-ethnographic descriptions of the
mathematical and astronomical practices of India. Secondly, the histories
of Indian astronomy of Bailly and Le Gentil are preoccupied with the
astronomy of India and the origins of Indian astronomy.?” Even Montucla’s
history of mathematics relies extensively upon the proto-ethnographic
sources employed by Le Gentil and Bailly and draws inferences concerning
Indian mathematics from them.?® The British Indological tradition, on the
other hand, engaged with specific texts and from the astronomical rules
presented there made a claim that these rules must be based on a math-
ematical system, and proceeded to discover mathematical texts. Their focus
thus shifts from the origins of astronomy to the origins of Indian math-
ematics, in particular Indian algebra and arithmetic. What were the rules
encountered and what were the claims made? The shift was precipitated by
the desire to craft a history of mathematics independently of the history
of astronomy. As scholars approached the corpus of Indian astronomical
texts, they encountered a corpus of knowledge recognizable to them as
algebra and arithmetic. Consequently, John Playfair was later to insist upon
the need to search for a geometrical tradition.

Reuben Burrow was probably amongst the earliest of the British
Indologists to engage with the textual tradition of Indian mathematics,
although this search was prompted through his exposure to and study of
astronomy, including Indian astronomy. This does not mean that these
texts did not relate in any way to the histories of Le Gentil and Bailly.
Actually, the texts of the former provided an initial frame for approaching
the differences between the Indian and Modern traditions. For Burrow
the study of the procedures employed by Indian astronomers in calculat-
ing eclipses would advance the progress of modern astronomy as well:
‘and the more so as our methods of calculation are excessively tedious
and intricate’” The sentiment echoes that of Le Gentil and Bailly; and it
is certain that he was acquainted with the work of Le Gentil,* though it
is not possible to say the same of Bailly’s Traité de lastronomie indienne et
orientale. This fascination with the computational procedures employed
in astronomy led Burrow to infer in 1783 the existence of an advanced
algebraic tradition:

N

7 Bailly 1775; Le Gentil 1781.
8 Montucla 1799.

2% Burrow 1783 (1971): 101.
30 Burrow 1783 (1971): 116.
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It is also generally reported that the Brahmins calculate their eclipses, not by astro-
nomical tables as we do, but by rules . . . If they (the rules) be as exact as ours, . . . it
is a proof that they must have carried algebraic computation to a very extraordinary
pitch, and have well understood the doctrine of ‘continued fractions, in order to
have found those periodical approximations . . .’

The rules for computing eclipses employed by the Brahmins were not only
different, but their complexity varied with the requisite degree of exactness:

... which entirely agrees with the approximation deduced from algebraic formulae
and implies an intimate acquaintance with the Newtonian doctrine of series . .. and
therefore it is not impossible for the Brahmins to have understood Algebra better
than we do.*?

This was to become the central point from which in subsequent papers
Burrow would build his argument for the existence of an advanced algebra
among the Indians. The problem was taken up again by Colebrooke dis-
cussed below, and in a paper published slightly later by Edward Strachey,
‘On the early history of algebra®> The paper emphasized the originality
and importance of algebra among the Hindus and contained extracts that
were translated from the Bija-Ganita and Lilavati** These extracts were
translations into English from Persian translations of the original Sanskrit
texts.” But Burrow admits that these extracts were translated in 1784, but
he deferred publishing them till a full text was obtained.’® But he prizes
the moment: ‘when no European but myself . . . even suspected that the
Hindoos had any algebra’®” The rationale provided for the existence of
treatises on algebra in India in Burrow’s 1790 paper on the knowledge of
the binomial theorem among the Indians is the same as that suggested in
the earlier one (1783). Many of the approximations used in astronomy were
‘deduced from infinite series; or at least have the appearance of it*® These
included finding the sine from the arc and determining the angles of a

31 Burrow 1783 (1971): 101.

32 Burrow 1783 (1971): 101.

3% Strachey 1818.

These works were authored by the twelfth-century mathematician Bhaskara II, and while the
first of these deals with problems in algebra and the solution of equations, the latter focuses
more on arithmetic.

Strachey’s paper will not be discussed here, since the focus will be on the translation of versions
of Sanskrit texts into English and not the manner in which these Sanskrit texts were reported
in translations of Persian and Arab mathematical works.

% Burrow 1790.

7 Burrow 1790: 115.

8 Ibid.
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right-angled triangle given the hypotenuse and sides without recourse to a
table of sines, etc.

The urgency of the moment was then to discover those texts before they
perished. Burrow thus emphasized the need for the collection of available
astronomical and mathematical texts that till then had not been the
focus of attention of the French Académiciens. The idea that the existing
tradition was probably algebraic was being insinuated: “That many of their
books are depraved and lost is evident, because there is now not a single
book of geometrical elements to be met and yet that they had elements not
long ago, and apparently more extensive than those of Euclid is obvious
from some of their works of no great antiquity.*” At this liminal moment it
appears as if the issue whether the geometric tradition prevailed over the
algebraic or vice versa in India had not been settled. It cannot be decisively
be said that Burrow had a fixed view on the subject. But certainly the texts
he encountered were not of a ‘geometric’ nature. But the trigonometrical
calculations gave cause for belief that the semblance of such a system
was in existence. And while Burrow promised to publish translations
of Lilavati and the Bija-Ganita, the promise was not fulfilled during his
life. Inspired by Burrow's research, Colebrooke embarked on a study of
Sanskrit in order to probe some of the issues raised by Burrow more
deeply.

It was left to Samuel Davis to publish the first translation and analysis of
an Indian scientific work from the Sanskrit into a European language, this
being a translation of the Surya Siddhanta.** This translation was based
on the reading of an original version of the text procured by Sir Robert
Chambers in 1788. Davis encountered a number of obscure technical
terms and had to rely upon a teeka or commentary procured by Jonathan
Duncan.* In fact, if you examine the structure of Davis’ paper, it appears as
a teeka on the Surya Siddhanta, with passages translated from the text and
Davis’ explanation intercalated between the translated passages.

Davis begins by contesting the portrait of Indian astronomy and astrono-
mers projected by Le Gentil and Bailly,** without naming either of them.

¥ Ibid.

10" Davis 1789.

1 Ibid.

2 More than Bailly and Le Gentil, Davis was refuting Sonnerat’s constructions of Indian
astronomy:

... my present intention, which is to give a general account only of the method by which
the Hindus compute eclipses, and thereby to show, that a late French author was too hasty
in asserting generally that they determine by set forms couched in enigmatical verses &c. So
far are they from deserving the reproach of ignorance, which Mons. Sonnerat has implied,
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The first idea that he rejected was that this astronomical tradition was dis-
figured over the years by idolatry and that the gems of Indian astronomy
had been irretrievably lost over the centuries, in the absence of a textual
tradition. The second idea was that the Brahmins had shrouded their
astronomy in mystery such that it was impossible to arrive at a cogent
account of it. Further, they loathed sharing their ideas with others. Davis
set out to show that:

. numerous treatises in Sanskrit on astronomy are procurable, and that the
Brahmins are willing to explain them . .. I can farther venture to declare, from the
experience I have had, that Sanskrit books in this science are more easily translated
than almost any others, when once the technical terms are understood: the subject
of them admitting neither of metaphysical reasoning nor of metaphor, but being

delivered in plain terms and generally illustrated with examples in practice, . . .

The British Indologists were departing from the reading of Académiciens
grounded in Jesuit proto-ethnography, by textually locating their work.
This textual grounding would revise the portrait of the French savants.
A hundred years later in a review of the history of the history of Indian
astronomy Burgess was to write: ‘Mr. Davis’ paper, however, was the first
analysis of an original Hindu astronomical treatise, and was a model of
what such an essay ought to be** It appears then, as has been argued else-
where, that the French savants in India were unable to establish trust with
their Indian interlocutors, in total contrast to the first generation of British
Indologists such as William Jones,*” and if one takes Davis’ account liter-
ally then Davis himself. Two papers of William Jones followed closely on
the heels of Davis’ papers and a cursory glance at them reveals that they
mutually respected and supported each other’s enterprise.*® And yet they
both were in agreement with Bailly’s thesis of the independent origins of the
Indian zodiac, differing very strongly with Montucla on this count:

that on inquiry, I believe the Hindu science of astronomy will be found as well known
now as it ever was among them, although perhaps, not so generally, by reason of the little
encouragement men of science at present meet with . .. (Davis 1789: 177).

Evidently, Sonnerat unlike Davis could not enter the world of the Hindu astronomers on
account of his inability to abandon a hermeneutic of suspicion. Pierre Sonnerat was a French
naval official who travelled to India towards the last decades of the eighteenth century and
published a book Voyages aux Indes Orientales et a la Chine in 1782 which discussed the
history, religion, languages, manners, arts and science of the regions he visited.

4 Davis 1790: 175 (emphasis added).

' Burgess 1893: 730-1.

%5 Raj 2001.

" An eighteenth-century Indian scholar who worked closely both with Jones and along with his
associates with Colebrooke was Radhakanta Tarkavagisa (Rocher 1989).
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I engage to support an opinion (which the learned and industrious M Montucla
seems to treat with extreme contempt) that the Indian division of the zodiac was
not borrowed from the Greeks or Arabs, but having been known in this country
from time immemorial and being the same in part with other nations of the old
Hindu race ...

But then they were also gradually transforming and refining the portrait
Bailly had left behind. Thus Jones recognized that in Davis’ translation
resided the hope that it would ‘convince M. Bailly that it is very possible for
an European to translate and explain the Surya Siddhanta’*

Playfair’s programme and Colebrooke’s recovery
of Indian algebraic texts

In order to recapitulate a point made earlier, the French Jesuits of the seven-
teenth and eighteenth centuries were the inaugurators of a tradition, which
was to inspire the histories of Le Gentil and Jean-Sylvain Bailly.*’ Bailly’s
history inspired the work of the British mathematician John Playfair and
provided a stimulus to subsequent generations of British Indologists writing
on Indian mathematics; though they were to disagree with the details of
Bailly’s Histoire, adding some nuance here and digressing from it in another
context.”® The antediluvian hypothesis proposed by Bailly was the source
of both fascination and controversy, and was the outcome of his attempt
to juxtapose observations of ancient Indian astronomy with astronomi-
cal theory of his day;’! from which he went on to draw the inference that
ancient Indian astronomy was the source of Greek astronomy.”> However,
this reading was located within Jesuit historiography which sought to
accommodate Indian history within the Christian conception of time.*?
Bailly’s work was introduced to English-speaking readers through an
article authored by John Playfair entitled ‘Remarks on the Astronomy of the
Brahmins’ published in the Transactions of the Royal Society of Edinburgh.>

47 Jones 1790a.

8 Jones 1790b.

Raina 1999.

Raina 2001a.

According to this hypothesis astronomy originated among the Indians, but the Indians in turn
had received it from an even more ancient people. The traces of this exchange had been lost in
antiquity.

Bailly 1775.

Raina 2003.

Playfair 1790.
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Contextualizing Playfair and Colebrooke

The article draws extensively, need I say almost exclusively, upon the
Meémoirs of Le Gentil published by the Académie des Sciences, Paris and
Bailly’s Astronomie Indienne.> This article of Playfair’s was of prime impor-
tance for Indologists working on the history of Indian astronomy for the
next four decades.

Playfair’s central contribution resided in re-appropriating Bailly’s Traité
in the light of the contributions of Davis and Burrow and proposing a
set of tasks that could well be considered a research programme for the
Asiatic Society. These included: (a) to search for and publish works on
Hindu geometry, (b) to procure any books on arithmetic and to ascertain
those arithmetical concerns whose trace is not to be found among the
Greeks, (c) to complete the translation of the Surya Siddhanta as initi-
ated by Samuel Davis, (d) to compile a catalogue raisonné, with a scholarly
account of books on Indian astronomy, (e) to examine the heavens with
a Hindu astronomer in order to determine their stars and constellations,
(f) to obtain descriptions and drawings of astronomical buildings and
instruments found in India.*®

If Bailly had stirred a hornet’s nest in his time by suggesting that the
origins of astronomy were in India, albeit that this astronomy was inher-
ited by the Indians from an even more ancient people, Burrow’s paper did
the same with the origins of algebra. It is at this time difficult to separate
the discussion on the history of astronomy from the history of algebra;
for both the Académiciens and the Indologists often turn to the history of
astronomy to evoke computational procedures that were analysed math-
ematically. This programme of the recovery of the mathematical literature
from the astronomical literature was taken up by Colebrooke, who may be
seen as providing translations from the Sanskrit into English of the first
texts supposedly dedicated solely to algebra and arithmetic. I say suppos-
edly because portions of some of the texts Colebrooke discovered for the
English-speaking world were essentially the mathematical sections of larger
astronomical canons of the Indian tradition.

We come now to Colebrooke’s translation practices. In order to describe
them we need to understand how Colebrooke identified an authenticated
version of the texts that he set out to translate. It needs to be pointed out
that at the very outset no final version of the three texts, from which only
portions were translated, was readily available to him. Consequently,
he worked with his Brahmin interlocutors and collected and collated

** Le Gentil 1789; Bailly 1787.
*¢ Playfair 1792: 152-5.
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fragments of the works of Bhaskara and Brahmagupta before proceeding to
finalize versions of the three texts translated. But the enormous task was to
finalize and authenticate a version as the version of these texts. The central
question then was: how were the fragments of the texts to be ordered into
a sequence or other fragments spliced into appropriate sections of the
sequence of fragments in order to complete the collation of the text. His
native interlocutors were thus assigned the task of providing him with an
exhaustive commentary(ies) on these texts and most certainly worked with
him through the process of translation. The larger the set of commentaries
available on a given text, say the Lilavati, the greater the importance of the
text within the canon. The commentaries themselves served two exceed-
ingly important functions. In the first instance the commentaries were
employed to identify the missing portions of the fragments available, and
to fix the sequence of chapters. In other words it is through the commen-
taries that the text was finalized. Second, the commentaries were employed
to illustrate and explain semantically and technically obscure portions and
procedures expounded in the main text.

A typical page of Colebrooke’s translation thus comprises an upper half
or two-thirds that are translations from the Sanskrit of finalized versions
of the texts of Bhaskara and Brahmagupta, while the lower half or third
comprises: (1) Colebrooke’s explication of the text when need be, with ref-
erences to other texts, which is done with footnotes, (2) translations from
one or several commentaries that clarify the meaning of a term or terms
or procedures mentioned in the portion of the text on the upper portion
of the page, but at no point in Colebrooke’s text is the entire commentary
translated. In fact the text comprises translations from portions of several
commentaries, and it is Colebrooke who decided which part of one of
several commentaries or portions of several commentaries best elaborates
or clarifies a portion of the master text being translated. But the com-
mentaries are internally paired off against each other in order to arrange
chronologically the commentaries and thus provide a diachronic relation
between them.

Colebrooke drew upon a rich commentarial tradition while working
on his translation of the Lilavati. The first of these was a commentary by
Gangadhara dated ap 1420. The commentary was limited to the Lilavati,
but as Colebrooke informs us, it authenticated an important chapter from
the Bija-Ganita.”” Further, Suryadasa’s Ganitdmrita dated Ap 1538 was
a commentary on the Lilavati and the Surya-pracasa was a commentary

57 C1817: xxv.
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on the Bija-Ganita that contained a clear interpretation of the text with a
concise explication of the arithmetical rules.”® The other important com-
position was Ganesa’s Buddhivilasini (c. AD 1545), comprising a copious
exposition of the text with demonstration of the rules. However, Ganesa
had not written a commentary on the Bija-Ganita and Colebrooke drew on
the work of Krishna which explained the rules with a number of demon-
strations. In addition to which two other commentaries were used, namely
that of Ramakrishna Deva entitled Manoranjana, a text of uncertain date,
and finally the Ganitakaumud, which was known through the works of
Suryadasa and Ranganatha.”

A brief recapitulation is required before we proceed to the translations
of Colebrooke, for his work certainly marks a departure in the study of the
history of Indian mathematics. Two main historiographic currents in the
eighteenth century oriented the study of the history of the mathematics
and astronomy of India. The first approach was that pursued by the Jesuit
savants in India, who were observing the astronomical and computational
procedures circulating among Indian astronomers. Their audience did not
merely comprise the devout back in France, but the Académiciens and
astronomers, two of whom transcribed these proto-ethnographic accounts
into a history of Indian astronomy. Administrator-scholars, who studied
texts, collated fragments of texts and published translations with critical
editions and commentaries, while indebted to the first, pursued another
approach. In the late eighteenth century, Sanskrit commentaries and can-
onized astronomical or mathematical works were considered the key to
obscure technical terms and texts. What needs to be examined is whether
by the late nineteenth century commentaries shared the same destiny as
some of the Vedic texts. For it has been pointed out that by the second half
of the nineteenth century some Sanskritists belittled, marginalized and
removed ‘explicit references to the intermediary process of transmission
and exegesis of texts without which they would not have had access to
them’®® The status of proofs in the Indian tradition is related to how these
commentaries on mathematical texts were read.

%% C1817: xxvi. The term explication involves two different tasks when applied to literary texts
and scientific texts. In the case of literary texts explication means to unfold; or to offer a
detailed explanation of a story. In the case of a scientific text or procedure, explication involves
the transformation of the explicandum by the explicatum. However, explication in Colebrooke
does not possibly conform to the notion that the explicandum is pre-scientific and inexact,
while the explicatum is exact. The explicandum and explicatum are related to each other in
their difference and not in a hierarchy of exact/inexact.

C1817: xxvii—xxviii.

0 Vidal 1997: 25.
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The point needs some reaffirmation since both Colebrooke and Davis,
who worked with commentaries of canonized astronomical and math-
ematical texts respectively, do mention the existence of demonstrations,
and rules in the texts they discuss. In Colebrooke’s introduction to his
Algebra with Arithmetic and Mensuration, from the Sanscrit of Brahmegupta
and Bhascara, there are four terms of concern to us here, namely demon-
stration, rule, proof and analysis, that come up often, but it is only the last
of these that Colebrooke clarifies. Further, as will be noticed in the next
section the terms demonstration and proof are used interchangeably by
Colebrooke. Noted by its absence in the title is the term ‘geometry, as a
systematized science; on the contrary, the translation does allude to men-
suration as discussed in the books he translates. The crucial problematic for
Colebrooke was, as with Burrow before him, to determine the origins of
Indian algebra. Inspired, as it were, by the textual exemplars of Davis and
Burrow, and guided by the research programme John Playfair had drawn
up for the researchers of the Asiatic Society, Colebrooke highlighted the
pathway to his own work:

In the history of mathematical science, it has long been a question to whom the
invention of algebraic analysis is due, among what people, in what region was
it devised, by whom was it cultivated and promoted, or by whose labours was it
reduced to form and system.®!

The subsequent narrative focuses upon establishing that ‘the imperfect
algebra of the Greeks, that had through the efforts of Diophantus advanced
no further than solving equations with one unknown, was transmitted
to India. The Indian algebraists, through their ingenuity, advanced this
‘slender idea’ to the state of a ‘well arranged science’®” In his reading,
Colebrooke shares a fundamental historiographic principle, disputed by
current scholarship, with Burrow, one that enjoyed currency among his-
torians of mathematics into the twentieth century. In this historiographic
frame: * . . the Arabs themselves scarcely pretend to the discovery of
Algebra. They were not in general inventors but scholars, during the short
period of their successful culture of the sciences®’

The science of ‘algebraic analysis, a term Colebrooke would later
expand upon, existed in India before the Arabs transmitted it to modern
Europe.®* The evidence for these claims resided in the translations of

1 C1817: ii (emphasis added).
02 C1817: xxiv.

3 C1817: ii (emphasis added).
4 Ibid.
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the Bija-Ganita and Lilavati of Bhaskara,®® as well as Brahmagupta’s
(Colebrooke: ‘Brahmegupta’) Ganitadhyaya and Kuttakadhyaya (the
chapter entitled “The pulveriser’) (Colebrooke: Cuttacadhyaya), the last two
as their name suggests being the mathematical sections of Brahmagupta’s
Brahmasphutasiddhanta. Without focusing too much on the antiquity of
these texts, Colebrooke saw his oeuvre as disclosing that the:

modes of analysis, and in particular, general methods for the solution of indetermi-
nate problems both of the first and second degrees, are taught in the Vija-Ganita,
and those for the first degree repeated in the Lilavati, which were unknown to the
mathematicians of the west until invented anew in the last two centuries by algebra-
ists of France and England.*

The terrain of historical studies on Indian mathematics was being trans-
formed into a polemical one, with Colebrooke surreptitiously introducing
categories that the French Indologists had denied the Indian tradition:
typically for the first time he speaks of ‘modes of analysis, or the ‘general
methods for the solution of indeterminate problems’. The historians of
astronomy had previously advanced the idea that the Indians had no idea
of the generalizability of the methods they employed. In the absence of
such generalizability, how could it have been possible to extend the idea
of generalized methods dedicated to solving classes of problems in order
to extract the different ‘modes of analysis’? The intention here is not to
paint Colebrooke’s construction as the diametrical opposite of that of the
French historians of science that provided a context to his effort. On the
contrary, Colebrooke’s project is naturally marked by a deep ambivalence.
The ambivalence arises from the fact that he attempted to draw the char-
acterization of Indian mathematics away from the binary typologies of
the history of science that were already set in place. According to these
typologies Indian mathematics was characterized as algebraic and prag-
matic while European mathematics was geometric and theoretical (deduc-
tive). Since the British Indologists were not mathematicians by profession
they lacked mathematical legitimacy amongst the network of historians
of mathematics and deterred his ability to create a new vocabulary. This
also explains why Playfair was so important to the Indological enterprise.
He was a mathematician of repute who endowed the Indological accounts
with authority.

% Thave given here the contemporary English spellings of the names of Sanskrit books and
scholars and removed the diacritics. Colebrooke himself spelled the Bija-Ganita as Vija-Ganita
and Bhaskaracharya as Bhascara Acharya.

% C1817: iv (emphasis added).
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Colebrooke begins by pointing out that Aryabhata was the first of the
Indian authors known to have treated of algebra. As he was possibly a con-
temporary of Diophantus, the issue was important for drawing an arrow of
transmission from Alexandria to India or vice versa. Colebrooke leaves the
issue of the invention of algebra open by suggesting that it was Aryabhata
who developed it to the high level that it attained in India;*” this science he
called an ‘analysis.®® It is here for the first time that a portion of the Indian
mathematical tradition is referred to as analysis, and it is important to get
to the sense in which he employs the term.

It is noticed that the use of a notation and algorithms is crucial to this
algebraic practice; which Colebrooke then proceeds to elaborate upon, sub-
sequently stating the procedures not merely for denoting positive or negative
quantities, or the unknowns but of manipulating the symbols employed.®
An important feature of this algebra is that all the terms of an equation do
not have to be set up as positive quantities, there being no rule requiring that
all the negative quantities be restored to the positive state. The procedure
is to operate an equal subtraction (samasodhana) for the difference of like
terms. This operation is compared with the muqabalah employed by the
Arab algebraists.”” The presence of this ‘analytic art’ among the Indians was
apparent from the mathematical procedures evident in the variety of math-
ematical texts that were becoming available to the Indologists.

The analytic art comprised procedures that included, according to
Colebrooke, the arithmetic of surd roots, the cognizance that when a finite
quantity was divided by zero the quotient was infinite, an acquaintance
with the procedure for solving second degree equations and ‘touching
upon’ higher orders, solving some of these equations by reducing them
to the quadratic form, of possessing a general solution of indetermi-
nate equations in the first degree. And finally, Colebrooke finds in the
Brahmasphutasiddhanta (§18:29-49) and Bija-Ganita (§75-99) a method
for obtaining a ‘multitude’ of integral solutions to indeterminate second-
degree equations starting from a single solution that is plugged in. It was
left to Lagrange to show that problems of this class would have solutions
that are whole numbers.”" The analytic art of the Indians or algebraic

7 The high level of attainment was ascribed to the ability of the Indian algebraists to solve
equations involving several unknowns; and of possessing a general method of solving
indeterminate equations of the first degree (C1817: x).

% C1817: ix.

© C1817: x—xi.

70 C1817: xiv.

71 C1817: xiv-xv.
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analysis is then for Colebrooke: ‘calculation attended with the manifestation
of its principles. This is manifest in the Indian mathematical texts being
discussed since they intimate to the reader a ‘method aided by devices,
among which symbols and literal signs are conspicuous.’? In this sense
Indian algebra bears an affinity with D’Alemberts conception of analysis
as the ‘method of resolving mathematical problems by reducing them to
equations.”? Delambre and Biot would subject these views of Colebrooke
to trenchant criticism, but that is another subject.”* The issue at stake here
is that Colebrooke had insinuated the idea that Indian mathematics was
not lacking in methodological reflection or generality, a feature that had
hitherto been denied.

Did Colebrookes view of algebraic analysis provide for demonstra-
tions or proofs of its rules or procedures? Citing specific sutras from the
Brahmasphutasiddhanta, the Bija-Ganita and the Lilavati, Colebrooke
moves to a characterization of Indian algebra, just as Diophantus is evoked
to characterize early Greek algebra. Thus, we are informed that these Indian
algebraists applied algebraic methods both in astronomy and geometry, and
in turn, geometric methods were applied to ‘the demonstration of algebraic
rules. Obviously, Colebrooke was construing the visual demonstrative
procedures employed by Bhaskara to which we come as exemplifying geo-
metrical demonstration. Further, he goes on to state that:

In short, they cultivated Algebra much more, and with greater success than geom-
etry; as is evident in the comparatively low state of their knowledge in the one, and
the high pitch of their attainments in the other.”

This passage came to be quoted ever so often in subsequent histories of
science, and in the writings of mathematicians as evidence of the algebraic
nature of Indian mathematics.”® The power of its imagery resides in its
ability to draw the boundary between different civilizational styles of math-
ematics. In this contrast between Western and Indian mathematics it could
be suggested that Colebrooke’s qualification concerning the ‘comparatively

72 C1817: XiX-XX.

73 Ibid.

74 Raina 1999.

7> C1817: xv.

The nineteenth-century British mathematician Augustus De Morgan, a self-proclaimed
aficionado of Indian mathematics, wrote a preface to the book of an Indian mathematician
punctuated with apergus from Colebrooke’s introduction. The introduction in fact provides
him the ground to legitimate the work of the Indian mathematician for a British readership
(Raina and Habib 1990).
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low” state of one and ‘high pitch’ of the other was lost sight of and the con-
trast between the two traditions came to be subsequently accentuated.

This leads me to conjecture that Colebrooke’s translation is a watershed
in the occidental understanding of the history of Indian mathematics on a
second count as well, this being that it inadvertently certified the bound-
ary line drawn between Indian algebra and Greek geometry. This was not
Colebrooke’s intention at all, but a consequence of the comparative method
he had adopted. Colebrooke’s particular comparative method consisted in
displaying where India’s specific contributions to mathematics resided, and
he always contrasted these contributions with the Greek and Arab tradi-
tions of mathematics.”” This attempt to accentuate the contrast certainly
revealed the differences, but with the loss of the context of the contrast, it
was first transformed into a caricature and then stabilized as a characteriza-
tion. The boundary lines had however been marked out before Colebrooke’s
time. This passage is crucial because it is followed by a discussion of some
procedures of demonstration in Indian algebra that I shall briefly lay out.

Thus the specific areas in which ‘Hindu Algebra appears particularly
distinguished from the Greek' are four.”® Some of these have been men-
tioned above. The additional one that has not been mentioned concerns
the application of algebra to ‘astronomical investigation and geometrical
demonstration, in other words algebra is applied to the resolution of geo-
metrical questions. In the process the Indian algebraists, Colebrooke sug-
gests, developed portions of mathematics that were reinvented recently.
This last statement of his prompted a very severe reaction. He then takes up
three instances, which he considers ‘anticipations of modern discoveries’
from the texts he discusses and lays out their procedures of demonstration.
There is nothing in the subsequent portion of the introduction to suggest
that he did not consider these as demonstrations.

Proofs and demonstrations in Colebrooke’s translations
of Indian algebraic work

Colebrookes Algebra with Arithmetic and Mensuration was completed
shortly after his departure from India for England in 1814. The volume
comprises the translation of four Sanskrit mathematical texts, namely
the Bija-Ganita and Lilavati of Bhaskara, and the Ganitadhyaya and
Kuttakadhyaya of Brahmagupta. These translations were undertaken during

7" Going by his text alone, he appears to have been totally oblivious of Chinese mathematics.
78 C1817: xvi.
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his homeward voyage — we are informed of this through the biography of
Colebrooke written by his son.”” Further, Colebrooke’s interest, as pointed
out earlier, in the subject was aroused by Reuben Burrow’s paper that
appeared in the second volume of the Asiatic Researches. Colebrooke’s son,
Sir T.E. Colebrooke, writes:

It must be admitted that the utmost learning which may be employed on this
abstruse subject leaves the question open to some doubt, and resembles in this
respect, one of those indeterminate problems which admit a variety of solutions.
The treatises which have come down to us are variants of arithmetical and algebrai-
cal science, of whose antiquity few would venture to suggest a doubt. They exhibit
the science in a state of advance which European nations did not attain till a com-
paratively recent epoch. But they contain mere rules for practice, and not a work on
the path by which they are arrived at. There is nothing of the rigour . . .%

This biography of Colebrooke was published more than half a century after
Colebrooke’s work had appeared, by which time the standard representation
of Indian mathematics was more or less in place as evident from the empha-
sis in the quotation.®’ However, as I shall argue below, this understanding
was quite at variance with the spirit and content of Colebrooke’s translation,
which, not without ambivalence, made a strong case for the idea of analysis
and demonstration in the Indian mathematical tradition. A point to be noted
here is that when Colebrooke the son comments on the Indian mathematical
tradition in the 1870s the historiographical context has totally changed and
he writes about Indian mathematics and the absence of proof in a spirit quite
at variance with his father who wrote in the early decades of the nineteenth
century. The change in the historiographical context is evident in Haran
Chandra Banerji’s publication of the first edition of Colebrooke’s translation
of the Lilavati in 1892 and in the second edition that appeared in 1927.5?

7% Colebrooke, T.E. 1873: 303.

80 Colebrooke, T.E. 1873: 309.

81 Colebrooke’s son also raises the question of the reception of Colebrooke’s Algebra with
Arithmetic and Mensuration by Delambre. In his work on the history of astronomy of the
middle ages Delambre based his remarks on Colebrooke based on a review of the work by
Playfair (Colebrooke, T.E. 1873: 310). Delambre’s critique of Colebrooke’s work has been
discussed in Raina 2001b. Re J. S. Mill who wrote the manual of imperial history of India,
Colebrooke the son notes, * . . in his laboured pleading against the claims of the Hindus to
be regarded as a civilized race, devotes some space to an examination of Mr. Colebrooke’s
work, and then does little more than repeat the doubts of Delambre whose criticisms on the
weakness of the external proof he repeats almost verbatim’ (Colebrooke, T.E. 1873: 311).
Evidently Colebrooke the son wishes to disabuse his readers of the prejudiced criticism of
Colebrooke the father’s work.

%2 Banerji 1927.
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The really interesting feature is the convergence in the reading of
Colebrooke the son and Banerji concerning the mathematical style of
Bhaskara. In the introduction to this translation Banerji was to write about
Bhaskara: “The author does not state the reasons for the various rules given
by him. I have tried to supply the reasons as simply and shortly as they
occurred to me; but still some cases . . . and shorter demonstrations may
possibly be given’®® Banerji proceeded to edit Colebrooke’s translation of
these mathematical works by keeping those demonstrations given chiefly
by Ganesa and Suryadasa ‘which are satisfactory and instructive’ and omit-
ting those which ‘are obscure and unsatisfactory’®* In other words Banerji
exercises his editorial prerogative and omits some proofs or demonstra-
tions, insisting that the omitted geometrical proofs for these formulas were
given in Euclid 1.5 and 9. The reason he offers for omitting the ‘proofs’ of
Ganesa is because Banerji clarified that he had introduced these proofs to
facilitate calculations required in §134 of the Lilavati®*> Whatever may be
the reason, it is obvious that Banerji’s reading of these texts is located within
the ‘historiography of the absence of proof’.

Colebrooke’s magnum opus was published in 1817 and the introduc-
tion to the work is hereafter referred to as the ‘dissertation, which is what
it is titled in any case. Very briefly, I shall just mention the chapterization
of this work. The first chapter consists of the definitions of technical terms.
Drawing upon these definitions the second chapter deals with numeration
and the eight operations of arithmetic, which included rules of addition and
subtraction, multiplication, division, obtaining the square of a quantity and
its square root, the cube and the cube root. The discussion up to Chapter 6
comprises the statement and exemplification of arithmetical rules for
manipulating integers, and fractions. The examples provided illustrate
the different operations. It is in Chapter 6 that we come to the plane
figures and it is here that §134 states the equivalent of the Pythagorean
Theorem.®’

The discussion below will centre around rule §135 of the Lilavati in
Colebrooke’s translation, where Colebrooke suggests that Ganesa had

8

<

Banerji 1927: vi.

Banerji 1927: xv.

Banerji 1927: xvi.

An equally insightful exercise would be to see how and where Banerji’s text differs from

that of Colebrooke; on which portions of the text does Banerji find it necessary to comment
upon Colebrooke’s translation and interpretation; and at what points does he insert his own
commentary and replace that of Colebrooke. This would be a separate project, sufficient
though it be to point out that Banerji is more of a practising mathematician than Colebrooke.
C1817: 59.
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offered both algebraic and geometrical proofs. In a contemporary idiom
these rules are stated as:

2ab+ (a—b)*=a*+b? I
(a+b)(a—b)=a*>-1b? I

§134 of the Lilavati is translated from Sanskrit as:

The square root of the sum of the squares of those legs is the diagonal. The square
root, extracted from the difference of the squares of the diagonal and side is the
upright; and that extracted from the difference of the squares of the diagonal and
upright, is the side.®

§135 that follows is translated as:

Twice the product of two quantities, added to the square of their difference, will
be the sum of their squares. The product of their sum and difference will be the
difference of their squares: as must be everywhere understood by the intelligent
calculator.®

And this theorem came in for much discussion from the 1790s when
Playfair first wrote about it in his discussion of Davis’ translation of the
Surya-Siddhanta.

Now §135 is marked with two footnotes: the one indicates that §135 is a
stanza of six verses in the anustubh metre and the next importantly indi-
cates that Ganesa the commentator on Bhaskara’s Lilavati provides both
an ‘algebraic and geometrical proof” of the latter rule, the one marked as 11
above (my labelling), and an algebraic demonstration of the first marked as
1 above (my labelling). Colebrooke is not just translating from Bhaskara IT’s
Lilavati: in the footnotes he intercalates a translation of Ganesa’s commen-
tary. The latter demonstration is taken from the Bija-Ganita $148; and it is
in §147 that the first of the rules is given and demonstrated.”” Colebrooke
renders the term Cshetragatopapatti as geometrical demonstration and
Upapatti avyucta-criyaya as proof by algebra.”’ We come to one of the geo-
metrical demonstrations of rule labelled 11 as given in the Bija-Ganita §148
and §149 of Bhaskara to which Colebrooke refers as such.

§148: Example: Tell me friend, the side, upright and hypotenuse in a [triangular]
plane figure, in which the square-root of three less than the side, being lessened by
one, is the difference between the upright and the hypotenuse.”

8 Ibid.

8 Ibid.

0 C1817:222-3.
ol C1817: 59.

%2 C1817: 223.
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In modern language this could be translated as \/ﬁ — 1 =c— b, where
Bhaskara immediately suggests taking ¢—b as 2. In this demonstration
the difference between one of the sides (upright) and the hypotenuse is
assumed as 2.

(a) The square of that added to one to which 3 is added: (2+1)*+3=12 - this is the
side.

(b) 12%=144 - this is the difference between the squares of the hypotenuse and side
(upright).

By the rule the difference of the squares is equal to the product of the sum and
difference

Which means a?>—b*=(a+b)(a-b).

It is in this context that here Bhaskara includes a proof of the rule, to
which Colebrooke refers. This proof as is evident is based on a form of rea-
soning that draws upon figures with particular dimensions. The text then
gives the square of 7 as 49 represented as below (Figure 5.1):

Figure 5.1 'The square a*

From this square of 7 x 7 subtract a square of 5, which is 25.

This gives the following (Figure 5.2).

We are left with a remainder of 24.

a-b=2 and a+b=12 and the product consists of 24 equal cells
(Figure 5.3).
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5%x5

Figure 5.2 The square a® minus the square b?.

Figure 5.3 The rectangle of sides a+b and b—-a.

The text reads: ‘thus it is demonstrated that the difference of the squares
is equal to the product of the sum and the difference’’® The text then pro-
ceeds on the basis of this example to construct other Pythagorean triples.

Similarly, another visual demonstration follows for §149.

§149 Rule: The difference between the sum of the squares of two quantities what-
soever, and the square of their sum, is equal to twice their product; as in the case of
two unknown quantities.**

The demonstration is worked out on the basis of a particular case, and pro-
vides a procedure thus for any two sets of numbers. Colebrooke’s transla-
tion of Bhaskara’s demonstration reads: ‘For instance, let the quantities be
3 and 5. Their squares are 9 and 25. The square of their sum is 64. From this
taking away the sum of the squares the remainder is 30°° And then in the

% C1817: 223.
94 C1817: 224.
% C1817: 30.
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3%x3

Figure 5.4 'The square a.

5%5

Figure 5.5 The square b*

translation Bhaskara exhorts his reader to ‘See’ the illustration that follows
(see Figures 5.4-5.6). Thus (3+5)*=64.. ., (a+b)*

From this subtract 32+ 52. .. a*+b?

Which makes 64-34=30... (a+b)*-(a>+b?)

The left-over square cells are seen to be equal to twice the product
(Figure 5.7). After which Bhaskara concludes: ‘Here square compartments,
equal to twice the product are apparent, and (the proposition) is proved.”

We have here two cases of visual demonstration (Colebrooke calls
them geometrical demonstrations) though in his translations he vacil-
lates between the terms proofs and demonstrations. But clearly both are
demonstrations from particular cases formulated within the framework of
particular cases treated in a general way.

Furthermore, Colebrooke briefly discusses two different demonstrations
of the Pythagorean theorem in Bhaskara’s Bija-Ganita (§146). The first of

% C1817: 224.
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8x8

Figure 5.6 The square (a+b)*

In other words, from Figure 5.6, delete the sum of the squares: which is

3x3and 5x5.

3

5%3

3x5

Figure 5.7 'The area (a+b)? minus the squares a? and b? equals twice the product ab.

253



254

DHRUV RAINA

2
15 0

D

Figure 5.8 A right-angled triangle ABC and its height BD.

these demonstrations, we are reminded, is similar to Wallis’ demonstration
that appeared in the treatise on angular sections. Colebrooke sets Wallis’
and Bhaskara’s demonstrations side by side, such that Bhaskara’s method is
apprehended in Wallis’ idiom (Figure 5.8).%

Wallis Bhaskara
In a rectangular triangle, C and D Using the same symbols for the sides and

designate the sides and B the hypotenuse. segments, Bhaskara’s demonstration
The segments are x and 3.

B:C:C:x B:C:C:x

B:D:D:% B:D:D:%

Therefore Therefore

C?=By x=C*B

D?=B% 5=D?/B

Therefore Therefore

C?2+D?=(Bx+B8)=B(x+5)=B? B=x+&=C*B+D?*B
B*=C?*+D?

We shall now try to illustrate Bhaskara’s procedure above as it appears
in Colebrooke’s translation, but I shall adopt a contemporary form of the
argument. The problem that Bhaskara poses in §146 of the Bija-Ganita is:
‘Say what is the hypotenuse in a plane figure, in which the side and upright
are equal to 15 and 20? And show the demonstration of the received mode
of composition.”® So consider a right-angled triangle ABC whose sides are
15 and 20 and rotate the figure as above. Drop a perpendicular to the side
AC and let AD=y and DA =38. Now AC is the hypotenuse of the triangle
ABC and BC and AD of triangles BCD and DBA respectively.

97 C1817: xvi-xvii.
% C1817: 220.



Contextualizing Playfair and Colebrooke

Bhaskara then posits the ratios:

AC_BC 4ng AC_AB
BC CD  AB AD
(AB)?
AC

(BC)?* (AB)®
Now (X+ 5) :T + AC

Or (AC)?=(BC)?+ (AB)?

and 5 =

_(BOY?
X="aC

And thus the value of AC is computed, and from this the value of BD.”

Thus the procedure is reasoned again for a particular case with the sides
of 15 and 20, but clearly the procedure is applicable for any set of numbers
that constitute the sides of a right-angled triangle. It needs to be pointed out
here that Colebrooke highlights the fact that Bhaskara ‘gives both modes of
proof” when discussing the solution of indeterminate problems involving
two unknown quantities.

The instances Colebrooke has selected in his dissertation are ‘conspicu-
ous’ as he says, for as pointed out earlier his method is to accentuate the
contrast to destabilize as it were the then received picture within the binary
typologies of the history of mathematics mentioned earlier.'™ But the
task is undertaken with a great deal of caution. The next example chosen
is that of indeterminate equations of the second degree, wherein, accord-
ing to Colebrooke, Brahmagupta provided a general method, in addition
to which he proposes rules to resolve special cases. It is well known that
Bhaskara solved the equation ax?+ 1 = y? for specific values of the variable a.
But Colebrooke went on to suggest that Bhaskara proposed a method to
solve all indeterminate equations of the second degree that were ‘exactly
the same’ as the method developed by Brouncker. In effect, Colebrooke
appeared to be suggesting that Bhaskara’s method was generalizable, that he
was aware of the problem and its ‘general use; a feature for whose discovery
modern Europe had to await the arrival of Euler on the stage of European

mathematics.'!

% C1817: 220-1.

100" C1817: xviii.

101" A contemporary mathematical review of the solution of Pell’s equation indicates that the
‘Indian or English method of solving the Pell equation is found in Euler’s Algebra. However,
it is subsequently clarified that Euler, and his Indian or English predecessors, assumed that
the method always produced a solution, whereas the contemporary understanding is that if a
solution existed the method would find one. Further, Fermat had probably proved that there
was a solution for each value of @, and the first published proof was that of Lagrange (Lenstra
2002: 182).
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On reading of the early responses from a French savant to the work of
Colebrooke, it is possible to discern that Delambre for one uses a very fine
comb in rebutting several of the points taken up by Colebrooke. While
Colebrooke himself does not draw a very fine distinction between the use
of the terms ‘proof” and ‘demonstration’ in his reading, he does distinguish
between algebra and analysis; and as mentioned earlier he specifies wherein
the Indian tradition could be characterized as an algebraic analysis. A study
of the reception of Colebrooke’s translations of the works on Indian arith-
metic and algebra is a matter for a separate study. The curious question to
be examined by such a study is that despite its canonical status in Western
scholarship on the history of Indian mathematics and algebra, neither
Colebrooke nor Davis ever insinuated that it was a tradition devoid of
proof or demonstration. And yet, as the nineteenth-century historiography
of Oriental mathematics evolved, a theory of the absence of proof would
become one of its salient elements. The strong criticism of Colebrooke’s
work at the time was possibly provoked by Colebrooke’s method of taking
up those demonstrations from Indian mathematics for which equivalents
existed in eighteenth-century European mathematics. This would have viti-
ated both the claims of novelty and originality, both very important features
of the new sciences. Second, up to the end of the eighteenth century British
Indologists still believed that they could discover the origins of an Indian
geometry and the later work of the Indologist G. Thibaut may be seen to be
in continuity with that tradition. But by the end of the nineteenth century
the binary typologies of the history of mathematics, that portrayed the West
as geometric and the East as algebraic, were well in place in the standard
picture.
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6 Overlooking mathematical justifications
in the Sanskrit tradition: the nuanced case
of G.F. W. Thibaut

AGATHE KELLER

Introduction

Until the 1990s, the historiography of Indian mathematics largely held that
Indians did not use ‘proofs’ in their mathematical texts.! Dhruv Raina has
shown that this interpretation arose partly from the fact that during the
second half of the nineteenth century, the French mathematicians who
analysed Indian astronomical and mathematical texts considered geometry
to be the measure of mathematical activity.” The French mathematicians
relied on the work of the English philologers of the previous generation,
who considered the computational reasonings and algorithmic verifica-
tions merely ‘practical’ and devoid of the rigour and prestige of a real logical
and geometrical demonstration. Against this historiographical backdrop,
the German philologer Georg Friedrich Wilhelm Thibaut (1848-1914)
published the oldest known mathematical texts in Sanskrit, which are
devoted only to geometry.

These texts, Sulbasitras (sometimes called the sulvasiitras) contain
treatises by different authors (Baudhayana, Apastamba, Katyayana and
Manava) and consider the geometry of the Vedic altar.” These texts were
written in the style typical of aphoristic siitras between 600 and 200 BCE.
They were sometimes accompanied by later commentaries, the earliest
of which may be assigned to roughly the thirteenth century. In order
to understand the methods that he openly employed for this corpus of
texts, Thibaut must be situated as a scholar. This analysis will focus on
Thibaut’s historiography of mathematics, especially on his perception
of mathematical justifications.

! Srinivas 1990; H1995.

% See Raina 1999: chapter vI.

* I will adopt the usual transliteration of Sanskrit words, which will be marked in italics, except
for the word Veda, which is found in English dictionaries.
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Thibaut’s intellectual background

Thibaut’s approach to the sulbasiitras combines what half a century before
him had been two conflicting traditions. As described by Raina and by
Charette, Thibaut was equal parts acute philologer and scientist investigat-
ing the history of mathematics.

A philologer

Thibaut trained according to the German model of a Sanskritist.* Born in
1848 in Heidelberg, he studied Indology in Germany. His European career
culminated when he left for England in 1870 to work as an assistant for Max
Miuller’s edition of the Vedas. In 1875, he became Professor of Sanskrit at
Benares Sanskrit College. At this time, he produced his edition and studies
of the sulbasitras, the focus of the present article.® Afterwards, Thibaut
spent the following twenty years in India, teaching Sanskrit, publishing
translations and editing numerous texts. With P. Griffith, he was respon-
sible for the Benares Sanskrit Series, from 1880 onwards. As a specialist
in the study of the ritualistic mimamsa school of philosophy and Sanskrit
scholarly grammar, Thibaut made regular incursions into the history of
mathematics and astronomy.

Thibaut’s interest in mathematics and astronomy in part derives from his
interest in mimamsa. The authors of this school commented upon the ancil-
lary parts of the Vedas (vedarnga) devoted to ritual. The sulbasiitras can be
found in this auxiliary literature on the Vedas. As a result of having studied
these texts, between 1875 and 1878,° Thibaut published several articles
on Vedic mathematics and astronomy. These studies sparked his curios-
ity about the later traditions of astronomy and mathematics in the Indian
subcontinent and the first volume of the Benares Sanskrit Series, of which
Thibaut was the general scientific editor, was the Siddhantatattvaviveka of
Bhatta Kamalakara. This astronomical treatise written in the seventeenth
century in Benares attempts to synthesize the reworkings of theoretical
astronomy made by the astronomers under the patronage of Ulug Begh
with the traditional Hindu siddhantas.”

Thibaut’s next direct contribution to the history of mathematics and
astronomy in India was a study on the medieval astronomical treatise the

* The following paragraph rests mainly on Stache-Rosen 1990.

> See Thibaut 1874, Thibaut 1875, Thibaut 1877a, Thibaut 1877b.
¢ The last being a study of the jyotisavedarnga, in Thibaut 1878.

7 See Minkowski 2001 and CESS, vol. 2: 21.
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Paiicasiddhanta of Varahamihira. In 1888, he also edited and translated this
treatise with S. Dvivedi and consequently entered into a heated debate with
H. Jacobi on the latter’s attempt to date the Veda on the basis of descriptions
of heavenly bodies in ancient texts. At the end of his life, Thibaut published
several syntheses of ancient Indian mathematics and astronomy.® His main
oeuvre, was not in the field of history of science but a three-volume transla-
tion of one of the main mimamsa texts: Sankaracarya’s commentary on the
Vedantasiitras, published in the Sacred Books of the East, the series initiated
by his teacher Max Miiller.” Thibaut died in Berlin at the beginning of the
First World War, in October 1914.

Among the sulbasiitras, Thibaut focused on Baudhayana (c. 600 BCE)'"
and Apastamba’s texts, occasionally examining Katyayana’s sulbaparisista.
Thibaut noted the existence of the Manavasulbasiitra but seems not to have
had access to it."! For his discussion of the text, Thibaut used Dvarakanatha
Yajvan’s commentary on the Baudhayana sulbasiitra and Rama’s (f1. 1447/9)
commentary on Katyayanas text.'” Thibaut also occasionally quotes
Kapardisvamin’s (fI. before 1250) commentary of Apastamba.'® Thibaut’s
introductory study of these texts shows that he was familiar with the extant
philological and historical literature on the subject of Indian mathematics
and astronomy. However, Thibaut does not refer directly to any other schol-
ars. The only work he acknowledges directly is A. C. Burnell’s catalogue of
manuscripts.'* For instance, Thibaut quotes Colebrooke’s translation of
Lilavati but does not refer to the work explicitly.'® Thibaut also reveals some
general reading on the history of mathematics. For example, he implicitly
refers to a large history of attempts to square the circle, but his sources are
unknown.

His approach to the texts shows the importance he ascribed to acute
philological studies.'® Thibaut often emphasizes how important com-
mentaries are for reading the treatises: ‘the sitra-s themselves are of an

8 Thibaut 1899, Thibaut 1907.

Thibaut 1904.

Unless stated otherwise, all dates refer to the CESS. When no date is given, the CESS likewise
gives no date.

For general comments on these texts, see Bag and Sen 1983, in CESS, vol 1: 50; vol 2: 30;
vol 4: 252. For the portions of Dvarakanatha’s and Venkate$varas commentaries on
Baudhayana’s treatise, see Delire 2002.

Thibaut 1875: 3.

Thibaut 1877: 75.

Thibaut 1875: 3.

° Thibaut 1875: 61.

See for instance Thibaut 1874: 75-6 and his long discussions on the translations of vrddha.
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enigmatical shortness . . . but the commentaries leave no doubt about the
real meaning’'”

The importance of the commentary is also underlined in his introduc-
tion of the Paficasiddhanta: ‘Commentaries can be hardly done without in
the case of any Sanskrit astronomical work . . '8

However, Thibaut also remarks that because they were composed much
later than the treatises, such commentaries should be taken with critical
distance:

Trustworthy guides as they are in the greater number of cases, their tendency of
sacrificing geometrical constructions to numerical calculation, their excessive
fondness, as it might be styled, of doing sums renders them sometimes entirely
misleading."

Indeed, Thibaut illustrated some of the commentaries ‘mis-readings’
and devoted an entire paragraph of his 1875 article to this topic. Thibaut
explained that he had focused on commentaries to read the treatises but
disregarded what was evidently their own input into the texts. Thibaut’s
method of openly discarding the specific mathematical contents of com-
mentaries is crucial here. Indeed, according to the best evidence, the
tradition of ‘discussions on the validity of procedures’ appears in only the
medieval and modern commentaries.?’ True, the commentaries described
mathematics of a period different than the texts upon which they
commented. However, Thibaut valued his own reconstructions of the
Sulbasitras proofs more than the ones given by commentaries.

The quote given above shows how Thibaut implicitly values geometrical
reasoning over arithmetical arguments, a fact to which we will return later.
It is also possible that the omission of mathematical justifications from the
narrative of the history of mathematics in India concerns not only the con-
ception of what counts as proof but also concerns the conception of what
counts as a mathematical text. For Thibaut, the only real mathematical text
was the treatise, and consequently commentaries were read for clarification
but not considered for the mathematics they put forward.

In contradiction to what has been underlined here, the same 1875
article sometimes included commentators’ procedures, precisely because
the method they give is ‘purely geometrical and perfectly satisfactory’.?!

17 Thibaut 1874: 18.

18 Thibaut 1888: v.

19 Thibaut 1875: 61-2.

20 These are discussed, in a specific case, in the other chapter in this volume I have written; see
Chapter 14.

This concludes a description of how to transform a square into a rectangle as described by
Dvarakantha in Thibaut 1875: 27-8.
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Thus there was a discrepancy between Thibaut’s statements concerning his
methodology and his philological practice.

Thibaut’s conception of the Sanskrit scholarly tradition and texts is also
contradictory. He alternates between a vision of a homogeneous and a
historical Indian society and culture and the subtleties demanded by the
philological study of Sanskrit texts.

In 1884, as Principal of Benares Sanskrit College (a position to which he
had been appointed in 1879), Thibaut entered a heated debate with Bapu
Pramadadas Mitra, one of the Sanskrit tutors of the college, on the ques-
tion of the methodology of scholarly Sanskrit pandits. Always respectful to
the pandits who helped him in his work, Thibaut always mentioned their
contributions in his publications. Nonetheless, Thibaut openly advocated a
‘Europeanization’ of Sanskrit studies in Benares and sparked a controversy
about the need for pandits to learn English and the history of linguistics
and literature. Thibaut despaired of an absence of historical perspective in
pandits’ reasonings — an absence which led them often to be too reverent
towards the past.”? Indeed, he often criticized commentators for reading
their own methods and practices into the text, regardless of the treatises’
original intentions. His concern for history then ought to have led him to
consider the different mathematical and astronomical texts as evidence of
an evolution.

However, although he was a promoter of history, this did not prevent him
from making his own sweeping generalizations on all the texts of the Hindu
tradition in astronomy and mathematics. He writes in the introduction of
the Paricasiddhanta:

these works [astronomical treatises by Brahmagupta and Bhaskaracarya] claim
for themselves direct or derived infallibility, propound their doctrines in a calmly
dogmatic tone, and either pay no attention whatever to views diverging from their
own or else refer to such only occasionally, and mostly in the tone of contemptuous
depreciation.”?

Through his belief in a contemptuous arrogance on the part of the
writers, Thibaut implicitly denies the treatises any claim for reasonable
mathematical justifications, as we will see later. Thibaut attributed part of
the clumsiness which he criticized to their old age:

> See Dalmia 1996: 328-30.

* Thibaut 1888: vii. I am setting aside here the fact that he argues in this introduction for a Greek
origin of Indian astronomy. The square brackets indicate the present author’s addenda for the
sake of clarity.
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Besides the quaint and clumsy terminology often employed for the expression of
very simple operations (. . .) is another proof for the high antiquity of these rules
of the cord, and separates them by a wide gulf from the products of later Indian
science with their abstract and refined terms.**

After claiming that the treatises had a dogmatic nature, Thibaut extends
this to the whole of ‘Hindu literature’:

The astronomical writers . . . therein only exemplify a general mental tendency
which displays itself in almost every department of Hindu Literature; but mere
dogmatic assertion appears more than ordinarily misplaced in an exact science like
astronomy . . .

Thibaut does not seem to struggle with definitions of science, mathemat-
ics or astronomy, nor does he discuss his competency as a philologer in
undertaking such a study. In fact, Thibaut clearly states that subtle philo-
logy is not required for mathematical texts. He thus writes at the beginning
of the Paricasiddhanta:

texts of purely mathematical or astronomical contents may, without great dis-
advantages, be submitted to a much rougher and bolder treatment than texts of
other kinds. What interests us in these works, is almost exclusively their matter,
not either their general style or the particular words employed, and the peculiar
nature of the subject often enables us to restore with nearly absolute certainty
the general meaning of passages the single words of which are past trustworthy
emendation.”

This ‘rougher and bolder treatment’ is evident, for instance, in his philo-
logically accurate but somewhat clumsy translation of technical vocabulary.
He thus translates dirghacaturasra (literally ‘oblong quadrilateral’) vari-
ously; it is at some times a ‘rectangular oblong), and at others an ‘oblong’*’
The expression ‘rectangular oblong’ is quite strange. Indeed, if the purpose
is to underline the fact that it is elongated, then why repeat the idea? The
first of Thibauts translations seems to aim at expressing the fact that a
dirghacaturasra has right angles, but the idea of orthogonality is never
explicit in the Sanskrit works used here, or even in later literature. Thibaut’s
translation, then, is not literal but coloured by his own idea of what a
dirghacaturasra is. Similarly, he calls the rules and verses of the treatises, the
Sanskrit sitras, ‘proposition(s); which gives a clue to what he expects of a

24 Thibaut 1875: 60.

%5 Thibaut 1888: vii.

26 Thibaut 1888: v.

27 See for instance Thibaut 1875: 6.
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scientific text, and thus also an inkling about what kind of scientific text he
suspected spawned the sulbasiitras.

Thibaut’s historiography of science

For Thibaut, ‘true science’ did not have a practical bent. In this sense, the
science embodied in the sulbas, which he considered motivated by a practi-
cal religious purpose, is ‘primitive’:

The way in which the sitrakara-s [those who compose treatises] found the cases
enumerated above, must of course be imagined as a very primitive one. Nothing
in the siitra-s [the aphorisms with which treatises are composed] would justify the
assumption that they were expert in long calculations.*®

However, he considered the knowledge worthwhile especially because it
was geometrical:

It certainly is a matter of some interest to see the old dcarya-s [masters] attempting
to solve this problem [squaring of the circle], which has since haunted so m[an]y
unquiet minds. It is true the motives leading them to the investigation were vastly
different from those of their followers in this arduous task. Theirs was not the disin-
terested love of research which distinguishes true science, nor the inordinate craving
of undisciplined minds for the solution of riddles which reason tells us cannot be
solved; theirs was simply the earnest desire to render their sacrifice in all its par-
ticulars acceptable to the gods, and to deserve the boons which the gods confer in
return upon the faithful and conscientious worshipper.?’

Or again:

... we must remember that they were interested in geometrical truths only as far as
they were of practical use, and that they accordingly gave to them the most practical
expression.™

Conversely, the practical aspect of these primitive mathematics explains
why the methods they used were geometrical:

It is true that the exclusively practical purpose of the Sulvasiitra-s necessitated

in some way the employment of practical, that means in this case, geometrical

terms, .. .%!

28 Thibaut 1875: 17.

2 Thibaut 1875: 33. The emphasis is mine.
30 Thibaut 1875: 9.

31 Thibaut 1875: 61.
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This geometrical basis distinguished the sulbasitras from medieval or
classical Indian mathematical treatises. Once again, Thibaut took this occa-
sion to show his preference for geometry over arithmetic:

Clumsy and ungainly as these old siitra-s undoubtedly are, they have at least the
advantage of dealing with geometrical operations in really geometrical terms, and
are in this point superior to the treatment of geometrical questions which we find
in the Lilavati and similar works.*?

As is made clear from the above quotation, Thibaut was a presentist his-
torian of science who possessed a set of criteria which enabled him to judge
the contents and the form of ancient texts. In another striking instance,
Thibaut gives us a clue that Euclid is one of his references. Commenting on
rules to make a new square of which the area is the sum or the difference of
two known squares, Thibaut states in the middle of his own translation of
Baudhayana’s sulbasiitras:

Concerning the methods, which the Sulvasitras teach for caturasrasamasa (sum of
squares) and caturasranirhdra (subtraction of squares), I will only remark that they
are perfectly legitimate; they are at the bottom the same which Euclid employs.*

Contemptuous as he may be of the state of Indian mathematics, Thibaut did
not believe that the Sulbasitras were influenced by Greek geometry.*

For Thibaut, history of mathematics ought to reconstruct the entire
deductive process from the origin of an idea to the way it was justified.
Although later commentaries may include some useful information, they
do not give us the key to understanding how these ideas were developed
at the time when the treatises were composed. This lack of information
provoked Thibaut to complain about Indian astronomical and mathe-
matical texts.

Thibaut clearly considered the texts to have been arranged haphazardly
because the order of the rules do not obey generative logic. He thus defined
his task: T shall extract and fully explain the most important sitra-s (. . .)
and so try to exhibit in some systematic order the knowledge embodied in
these ancient sacrificial tracts’*” Here, Thibaut assumed that these works —
not treatises but ‘tracts’ (presumably with derogatory connotations) — are
not clear and systematic. Further, Thibaut felt the need to disentangle
(‘extract’) the knowledge they contain.

% Thibaut 1875: 60.

** Thibaut 1877: 76. Translations within brackets are mine.

** Thibaut 1875: 4. This however was still being discussed as late as Staal 1999.
3 Thibaut 1875: 5.
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In his view, this knowledge might be quite remarkable but it was ill pre-
sented. Thus commenting a couple years later on the Vedarngajyotisa, he
remarked:

The first obstacle in our way is of course the style of the treatise itself with its enig-
matical shortness of expression, its strange archaic forms and its utter want of con-

nection between the single verses.*®

He thus sometimes remarked where the rules should have been placed
according to his logic. All the various texts of the Sulbasiitras start by
describing how to construct a square, particularly how to make a square
from a rectangle.

However, Thibaut objected: ‘their [the rules for making a square from a
rectangle] right place is here, after the general propositions about the diago-
nal of squares and oblongs, upon which they are founded’’” Consequently,
Thibaut considered the sulbasiitras as a single general body of text and
selected the scattered pieces of the process he hoped to reconstruct from
among all the siitras composed by various authors. At the same time, he dis-
tinguished the different authors of the sulbasiitras and repeatedly insisted
that Apastamba is more ‘practical’ than Baudhayana, whom he preferred.
For instance, an example of his method:

Baudhayana does not give the numbers expressing the length of the diagonals of
his oblongs or the hypotenuses of the rectangular triangles, and I subjoin therefore
some rules from Apastamba, which supply this want, while they show at the same
time the practical use, to which the knowledge embodied in Baudhayana’s sitra
could be turned.*

When alternating among several authors was insufficient for his purposes,
Thibaut supplied his own presuppositions.
Indeed, Thibaut peppered his text with such reconstructions:

The authors of the sitra-s do not give us any hint as to the way in which they found
their proposition regarding the diagonal of a square; but we may suppose . . . The
question arises: how did Baudhayana or Apastamba or whoever may have the merit
of the first investigation, find this value? . . . I suppose that they arrived at their
result by the following method which accounts for the exact degree of accuracy they
reached . .. Baudhayana does not state at the outset what the shape of his wheel will
be, but from the result of his rules we may conclude his intention . . .*

¢ Thibaut 1877: 411; the emphasis is mine.
37 Thibaut 1875: 28.

3 Thibaut 1875: 12.

3 Thibaut 1875: 11, 18, 49.
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Because he had an acute idea of what was logically necessary, Thibaut thus
had a clear idea of what was sufficient and insufficient for reconstructing
the processes. As a result, Thibaut did not deem the arithmetical reasoning
of Dvarakanatha adequate evidence of mathematical reasoning.

The misunderstandings on which Thibaut’s judgements rest are evident.
For him, astronomical and mathematical texts should be constructed
logically and clearly, with all propositions regularly demonstrated. This
presumption compelled him to overlook what he surely must have known
from his familiarity with Sanskrit scholarly texts: the elaborate character
of a siitra — marked by the diverse readings that one can extract from it -
enjoyed a long Sanskrit philological tradition. In other words, when a
commentator extracts a new reading from one or several sitras, he dem-
onstrates the fruitfulness of the siitras. The commentator does not aim to
retrieve a univocal singular meaning but on the contrary underline the
multiple readings the siitra can generate. Additionally, as Thibaut rightly
underlined, geometrical reasoning represented no special landmark of
correctness in reasoning to medieval Indian authors.

Because of these expectations and misunderstandings Thibaut was
unable to find the mathematical justifications that maybe were in these
texts. Let us thus look more closely at the type of reconstruction that
Thibaut employed, particularly in the case of proofs.

Practices and readings in the history of science

It is telling that the word ‘proof” is used more often by Thibaut in relation
to philological reasonings than in relation to mathematics. Thus, as we have
seen above, the word is used to indicate that the clumsiness of the vocab-
ulary establishes the Sulbasiitras’ antiquity.

No mathematical justifications in the sulbasiitras

However, for Thibaut, Baudhayana and probably other ‘abstractly bent’
treatise writers doubtlessly wanted to justify their procedures. More often
than not, these authors did not disclose their modes of justification. Thus,
when the authors are silent, Thibaut developed fictional historical proce-
dures. For instance:

The authors of the sitra-s do not give us any hint as to the way in which they
found their proposition regarding the diagonal of a square [e.g. the Pythagorean
proposition in a square]; but we may suppose that they, too, were observant of
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the fact that the square on the diagonal is divided by its own diagonals into four
triangles, one of which is equal to half the first square. This is at the same time an
immediately convincing proof of the Pythagorean proposition as far as squares
or equilateral rectangular triangles are concerned . . . But how did the siitrakara-s
[composers of treatises] satisfy themselves of the general truth of their second
proposition regarding the diagonal of rectangular oblongs? Here there was no such
simple diagram as that which demonstrates the truth of the proposition regarding
the diagonal of the square, and other means of proof had to be devised.*

Thibaut thus implied that diagrams were used to ‘show’ the reasoning
literally and thus ‘prove’ it. This method seems to hint that authors of the
medieval period of Sanskrit mathematics could have had some sort of geo-
metrical justification.”! Concerning Apastamba’s methods of constructing
fire altars, which was based on known Pythagorean triplets, Thibaut stated:

In this manner Apastamba turns the Pythagorean triangles known to him to practi-
cal use . .. but after all Baudhayana’s way of mentioning these triangles as proving
his proposition about the diagonal of an oblong is more judicious. It was no practi-
cal want which could have given the impulse to such a research [on how to measure
and construct the sides and diagonals of rectangles] — for right angles could be
drawn as soon as one of the vijieya [determined] oblongs (for instance that of 3,
4, 5) was known - but the want of some mathematical justifications which might
establish a firm conviction of the truth of the proposition.**

So, in both cases, Thibaut represented the existence and knowledge of
several Pythagorean triplets as the result of not having any mathematical
justification for the Pythagorean Theorem. Thibaut proceeded to use this
fact as a criterion by which to judge both Apastamba’s and Baudhayana’s
use of Pythagorean triplets. Thibaut’s search for an appropriate geometrical
mathematical justification in the sulbasiitras may have made him overlook
a striking phenomenon.

Two different rules for the same result

Indeed, Thibaut underlined that several algorithms are occasionally given
in order to obtain the same result. This redundancy puzzled him at times.

0 Thibaut 1875: 11-12.

1" See Keller 2005. Bhaskara’s commentary on the Aryabhatiya was not published during
Thibaut’s lifetime, but I sometimes suspect that either he or a pandit with whom he worked had
read it. The discussion on visamacaturasra and samacaturasra, in Thibaut 1875: 10, thus echoes
Bhaskara I's discussion on verse 3 of Chapter 2 of the Aryabhatiya. Thibaut’s conception of
geometrical proof is similar to Bhaskara’s as well.

2 Thibaut 1875: 17.
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For instance, Thibaut examined the many various caturasrakarana -
methods to construct a square - given by different authors.*> Apastamba,
Baudhayana and Katyayana each gave two methods to accomplish this
task. I will not expound these methods here; they have been explained
amply and clearly elsewhere.* Thibaut also remarked that in some cases,
Baudhayana gives a rule and its reverse, although the reverse cannot be
grounded in geometry. Such is the case with the procedure to turn a circle
into a square:

Considering this rule closer, we find that it is nothing but the reverse of the rule
for turning a square into a circle. It is clear, however, that the steps taken according
to this latter rule could not be traced back by means of a geometrical construction,
for if we have a circle given to us, nothing indicates what part of the diameter is to
be taken as the atisayatrtiya (i.e. the segment of the diameter which is outside of
the square).*

I am no specialist in sulba geometry and do not know if we should see the
doubling of procedures and inverting of procedures as some sort of ‘proofs,
but at the very least they can be considered efforts to convince the reader
that the procedures were correct. The necessity within the sulbasiitras to
convince and to verify has often been noted in the secondary literature, but
has never fully or precisely studied.*® Thibaut, although puzzled by the fact,
never addressed this topic. Similarly, later historians of mathematics have
noted that commentators on the sulbasitras sought to verify the procedures
while setting aside the idea of a regular demonstration in these texts. Thus
Delire notes that Dvarakanatha used arithmetical computations as an easy
method of verification (in this case of the Pythagorean Theorem).*” The use
of two separate procedures to arrive at the same result, as argued in another
chapter in this volume,*® could have been a way of mathematically verifying
the correctness of an algorithm - an interpretation that did not occur to
Thibaut.
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&

Thibaut 1875: 28-30.

Thibaut 1875: 28-30; Bag and Sen 1983 in CESS, vol. 1; Datta 1993: 55-62; and finally Delire
2002: 75-7.

Thibaut 1875: 35.

See for instance Datta 1993: 50-1.

Delire 2002: 129.

See Keller, Chapter 14, this volume.
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Conclusion

Thibaut, as we have thus seen, embodied contradictions. On the one hand,
he swept aside the Sanskrit literary tradition and criticized its concise
sitras as obscure, dogmatic and following no logic whatsoever. On the
other hand, as an acute philologer, he produced nuanced studies on the
differences among the approaches of different authors. Through his naive
assumption o