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SwBmi Sankartichya was a gifted scholar on many fronts 
of learning including science and humanities but his whole 

GENERAL EDITOR'S FOREWORD 
The work entitled VEDIC MATHEMATICS or 'Sixteerr 

Simple Mathematical Formule from the Vedas' was written by 

milieu wassomething of s much higher texture vis, that he was 
a Rai fulfilling the ideals and attainments of those Seers of 
ancient India who discovered the cosmic laws embodied in 
tlie Vedas. SwBmi Bhiirati Krgna Tirtha had the same reveren- 

i 

I 

tial approach towards the Vedas. The qucstion naturally 
arises as to whether the Stitras which form the basis of this 

His Holiness Jagadguru QalikarBcLya 8ri BhLrati Krgqa 
Tirthaji Mahiiriija of Govardhana Matha, Puri (1884-1960). 
It forms a class by itself not pragmatically conceived and worked 
out as in the caee of other scientific works, but the result of the 
intuitional visualisation of fundamental mathematical truths 
and principles during the course of eight years of highly concen- 
trated mental endeavour on the part of the author and therefore 
appropriately given the title of "mental" mathematics appearing 
more as miracle than the uaual approach of hard-baked science, 
as the author has himself stated in the Preface. 

treatise exist anywhere in the Vedic literature as known to us. 
But this criticism loses all its force if we inform ourselves of the 
definition of Veda given by Sri Sa~ikariciir~a himself as quoted 
below : 

1 
"The very word 'Veda' has this derivational meaning i.e. the fountain- 

head and illimitable store-home of all knowledge. This derivation, in effect, 
means, connotes and impliea that the Vedas e M  oontoin (~talics mine) within 
themwlvea all the knowledge needed by mankind relating pot only to the 60- 

called 'spiritual' (or other-worldly) matters but also to those usually dascnbed 
aa purely 'neonlar', 'temporal', or 'worldly' and also to the means required by 

I 
humaniay ae such for the aohievemsnt of all-round, complete and perfect succeas 
in all conoeivable directions and that there oan be no adjechval or restrictive 
epithet calcnlated (or tending) to limit that knowledge down in any ephere, 
any direction or any respect whatsoever. 



"In other words, it connotes and impliea that our pncient Indian Vedic 
lore shouL1 be (italics mine) all-round, complete and perfect and able to throw 
the fullest necessary light on all matters which any aspiring seeker after know- 
ledge can possibly seek to he enlightened on". 

I It is the n hole essence of his assessment of Vedic tradition 

1 that i t  is not to be approached from a factual standpoint but 
from the ideal standpoint viz, as the Vedas as traditionally 
accepted in India as the repository of all knowledge should be 
and not what they are in human possession. That approach 
entirely turns the tables on all critics, for the authorship of 
Vedic mathematics then need not be laboriously searched in the 

I 
texts as preserved from antiquity. The Vedas are well known 
as four in nunlher Rk, Yaju, SHma and Atharva but they have 
also the four Upavedas and the six VedHligas all of which form 
an indivisible corpus of divine knowledge as i t  once was and as 
it may be revealed. The four Upavedas are as follows :- 

Veda Upaveda 

Rgveda hyurveda 
Simaveda GLnd harvaveda 
Yajurveda Dhahurveda 
Atharvaveda SthLpathyaveda 

In this list the Upaveda of SthHpatya or engineering com- 
prises all kinds of architectural and structural human endeavour 
and all visual arts. Swamiji naturally regarded mathematics 
or the science of calculations and computations to fall under 
this category. 

In the light of the above definition and approach must be 
understood the author's statement that the sixteen Sfitms on 
which the present volume is based form part of a Pariiiista of 
the Atharvaveda. We are aware that each Veda has its subsi- 
diary apocryphal texts some of which remain in manu8cripts and 
others have been printed but that formulation has not closed. 
For example, some Paribistas of the Atharvaveda were edited 
by G. M. Rolling and J. Von Negelein, Liepzing, 1909-10. But 
this work of Sri SaiikarZo?oBryaji deserves to be regarded as a 
new Paribista by itself and it  is not surprising that the Sctras 

mentioned herein do not appear in the hitherto known P a d -  
istas. 

A list of these main 16 Siitras and of their sub-sutras or 
corollaries is prefixed in the beginning of the text and 
the style of language also points to their discovery by Sri 
SwZmiji himself. At any rate, i t  is needless to  dwell longer on 
this point of origin since the vast merit of these rules should be 
a matter of discovery for each intelligent reader. Whatever is 
written here by the author stands on its own merits and is 
presented as such to the mathematical world. 

Swamiji was a marvellous person with surpassing qualities 
and was a prolific writer and eloquent speaker. I had the 

good fortune of listening to  his discourses for weeks together on 
several occasions when he used to visit Lucknow and attracted 
large audiences. He could at a stretch speak for several ~ O I U S  

in Sanskrit and English with the same facility and the intonation 
of his musical voice left a lasting impression on the minds of 
hie hearers. He was an ardent admirer of Bhartrhari the great 
scientific thinker of the Golden Age of Indian history in a 
different field viz, that of philosophy of grammar. 

Swamiji had planned to  write 16 volumes on all aspects 
and branches of mathematical processes and problems and there 
is no doubt that his mental powers were certainly of that calibre, 
but what has been left to us is this introductory volume which 
in itself is of the highest merit for reason of presenting a new 
technique which the author styles as "mental" mathematics 
different from the orthodox methods of mathematicians all over 
the world. Arithmetical problems usually solved by 18, 28 or 
42 steps in case of such vulgar fractions as 1/19, 1/29, 1/49 are 
here solved in one simple line and that is possible to  be done 
even by young boys. The truth of these methods was demons- 
trated by this saintly teacher before many University audiences 
in India and in the U.S.A. including learned Professors and every 
one present was struck with their originality and simplicity. 

We are told in his Reface by SwHmi $alikariiclya that 
he contemplated to  cover all the different branches of mathe- 



matics such as arithmetic, algebra, geometry (plane and solid) 1 
trigonometry (plane and spherical) conics-geometrical and 
analytical, astronomy, calculus-differential and integral etc., 1 
with these basic Siitras. That comprehensive application of 8 , 

I the Siitras could not be left by him in writing but if some onc has 
the patience and the genius to pursue thc method and impli- a 
catlons of these formulae he may probably be ablc to bring 
these various branches within the orbit of this original style. 

A full flerlged course of his lecture-demonstrations was 
organised by the Nagpur University in 1952 and some lectures 
were delivered by Swamiji at  the B.H.U. in 1949. I t  is, thele- 
fore, in the fitness of things and a happy event for the B.H.U. 
to be given the opportunity of publi~hing this book by the 
courtesy of Srimati Manjula nevi Trivedi, disciple of Sri SwBmiji 
who agreed to make over this manuscript to us through the a 
efforts of Dr. Pt. Omkarhath Thakur. Thc work has been 
seen through the Press mainly by Dr. Prem Lata Sharma, Dean, 
Faculty of Music & Pine Arts in the University. To all of 
these our grateful thanks are due. Dr. Brij Mohan, Head of the 
Department of Mathematics, B.H.U., took the trouble, a t  my Q 
request, ot going through the manuscript and verifying the 
calculations for which I offer him my best tlvanks. I also 
express gratitude to Sri Lakshmidas, Manager, B.H.U. Press, 
for taking great pains in printing this difficult text. 

We wish to express our deepest gratitude to Sri Swimi 
PratyagBtmHnanda Saraswati for the valuable foreword that 
he has written for this work. Today he stands pre-eminent in 
the world of Tantrlc scholars and is a profound mathematician 
and scientific thinker himself. His inspiring words are like f 

fragrant flowers offered a t  the feet of the ancient Vedic Rbis 
whose spiritual lineage was revealed m the late 8ankariiciirya 
Sri Bhirati Krsna Tirtha. SwEmi PratyagEtmBnandaji has 
not only paid a tribute to Sri SankarEcHryaji but his ambrocial 6 

words have showered blessings on all those who are lovers 
of intuitional experiences in the domain of metaphysics and 
physics. Swamiji, by a fortunate chance, travelled from Calcutta 

to Varanasi to preside over the Tantric Sammelan of the Varana- 
seya Sanskrit University (8th to  11th March 1965) and although 
he is now 85 years of age, his innate generosity made him accept 
our request to  give his foreword. 

I am particularly happy that I am able to publish this 
work under the Nepal Endowment Hindu Vishvavidyalaya 
Publication Series, for I cntcrtained an ardcnt dcsire to do so 
since our late President Dr. Rajcndra Prasadji spoke to me about 
i ts existence when I once met him in New Delhi in the lifetime 
of 6rf Swiimiji. 

V. S. ACRAWALA, 
M.A., Ph.D., D.Litt. 

Ranaras Hindu University General Edttor, 
Varanasi-5 Hindu Vishwavidyalaya 

March 17, 1965. Nepal Rajya Sanskrit 
Granthamala Series. 



FOREWORD 
Vedic Mathematics by the late Sankar~ci i r~a (BhPrati 

Krsna Tirtha) of Govardhana Pitha is a monumental work. 
In his deep-layer explorations of cryptic Vedic mysteries relat- 
ing specially to their calculus of shorthand formulae and their 
neat and ready application to practical problems, the late 
$arikarLcLrya shews the rare combination of the probing insight 
and revealing intuition of a Yogi with the analytic acumen and 
synthetic talent of a mathematician. With the late $a6kar~- 
clrya we belong to a race, now fast becoming extinct, of die- 
hard believers who think that the Vedas represent an inexhaus- 
tible mine of profoundest,wisdom in matters both spiritual 
and temporal ; and that. this store of wisdom was not, as regards 
its assets of fundamental validity and value a t  lest, gathered 
by the laborious inductive and deductive methods of ordinary 
systematic enquiry, but was a direct gift of revelation to seers 
and sages who in their higher reaches of Yogic realization were 
competent to receive it from a Source, perfect and immaculate. 
But we admit, and the late $ankadc&rya has also practically 
admitted, that one cannot expect to convert or revert criticism, 
much less carry conviction, by merely asserting one's staunchest 
beliefs. To meet these ends, one must be prepared to go the 
whole length of testing and verification by accepted, accredited 
methods. The late $ a ~ i k a r ~ c ~ r ~ a  has, by his comparative 
and critical study of Vedic mathematics, made this essential 
requirement in Vedic studies abundantly clear. So let us agree 
to gauge Vedic mysteries not as we gauge the far-off nabulae 
with the poet's eye or with that of the seer, but with the alert, 
expert, scrutinizing eye of the physical astronomer, if we may 
put i t  as that. 

That there is a consolidated metaphysical background in the 
Vedas of the objective sciences including mathematics as regards 
their basic conceptions is a point that may be granted by a 
thinker who has looked broadly and deeply into both the realms. 

In our paper recently published-'The Metaphysics of 
Physics'-we attempted to look into the mysteries of creative 
enlergeuce as contained in the well-known cosmogenic Hymn 



(Rg. X.190) with a view to unveiling the metaphysical background 
where both ancient wisdom and modern physics may meet on 
a common basis of logical understanding, and compare notes, 
discovering, where possible, points of significant or suggestive 
parallelism between the two sets of concepts, ancient and modern. 
That metaphysical background includes mathematics also; 
because physics as ever pursued is the application of mathema- 

I tics to given or specified space-time-event situations. There we 
examined Tapas as a fundamental creative formula whereby 

I the Absolute emerges into the realms of measures, variations, 
limits, frame-works and relations. And this descent  follow^ 
a logical order which seems to lend itself, within a framework 
of conditions and specifications, to mathematical analysis. 
Rjtri in the Hymn represents the Principle of Limits, for exa- 
mple, Rtaiica Satyaiica stand for Becoming (Calana-kalana) and 
Being (vartana-kabna) a t  a stage where limits or conditions 
or conventions do not yet arise or apply. The former gives the 
unconditioned, unrestricted how or thw of cosmic process ; 
the latter, what or that of existence. Tapas, which corresponds to 
ArdharnitrZ in Tantric symbolism, negotiates, in its rolc specially 
of critical variation, between what is, ab-initio, unconditioned 
and unrestricted, and what appears otherwise, as for instance, 
in our own universe of logico-mathematical appreciation. 

This is, necessarily, abstruse metaphysics, but it IS, 
nevertheless, the starting backgronnd of both physics and 
mathematics. But for all practical purposes we must come down 
from mystic nabulae to the terrajrma of our actual apprehension 
and appreciation. That is to say, we must descend to our own 
pragmatic levels of time-space-event situations. Here we 
face actual problems, and one must meet and deal with these 

aquarely without evasion or mystification. The late SalikarB- 
cLya has done this masterly feat with an adroitness that 
compels admiration. 

It follows from the fundamental premises that the universe 
we live in must have a basic mathematical structure, and 
consequently, to  know a fact or obtain a result herein, to any 
required degree of precision, one must obey the rule of mathe- 

matical measures and relations. This, however, ore may do 

consciously or semi-consciously, systematically or haphazardly. 
Even some species of lower animals are by instinct gifted mathe- 
maticians ; for example, the migratory bird which flies t,housands 
of miles off f r m  its nest-home, and after a period, unerringly 
returns. This 'implies a subconscious mathematical talent that 
works wonder. We may cite the case of a horse who was a 
mathematical prodigy and could 'tell' the result of a cube root 
(requiring 32 operations. according to  M. Materlink in his 
'Unknown Quest') in a twinkle of the eye. This sounds like magic, 
but it is undeniable that the feat of mathematics does sometimes 
assume a magical look. Man, undoubtedly, has been given his 
share of this magical gift. And he can improve upon it  by 
practice and discipline, by Yoga and allied methods. This is 
undeniable also. Lztely, he has devised the 'automatic brain' 
for complicated calculations by science, that looks like magic. 

But apart from this 'magic', there is and has been, the 
'logic' of mathematics also. Man works from instinct, t,alent, 
or even genius. But ordinarily he works as a logical entity 
requiring specified data or premises to start from, and more 
or less elaborate steps of reasoning to  arrive at a conclusion. 
This is his normal process of induction and deduction. Here 
formulaj (Smras) and relations (e.g. equations) must obtain as 
in mathematics. The magic and logic of mathematics in some 
cases get mixed up ; but i t  is sane to keep them apart. You can 
get a result by magic, but when you are called upon to prove, 
you must have recourse to logic. 

Even in this latter case, your logic (your formule and 
applications) may be either simple a,nd elegant or complicated 
and cumbrous. The former is the ideal to aim at,. We have 

classical instances of master mathematicians whose methods of 
analysis and solution have been regarded as marvels of cogency, 
compactness and clcgancc. Some have bcen 'beautiful' as a 
poem (e.g. Lagrange's 'Analytical Mechanics.') 

The late Sa1ikar5c5rya has claimed, and rightly we may 
think, that the Vedic Sfitras and their applications possess these 



virtues to a degree of eminence that cannot be challenged. 
The outstanding merit of his work lies in his actual proving of 
this contention. 

Whether or not the Vedas be believed as repositories of 

I 
perfect wisdom, it is unquestionable that the Vedic race lived 
nd as merely pastoral folk possessing a half-or-quarter-developed ! 
culture and civilization. The Vedic seers were, again, not mere 
'navel-gazers' or 'nose-tip-gazers'. They proved themselves 
adepta in all levels and branches of knowledge, theoretical and I 
practical. For example, they had their varied objective science, 
both pure and applied. I 

I Let us take a concrete illustration. Suppose in a time of I 
drought we require rains by artificial means. The modern 
scientist has his own theory and art (tecbique) for producing 
the result. The old seer scientist had his both also, but 
different from these now avai1ir.g. He had his science and 
technique, called Yajiia, in which Mantra, Yantka and other 
factors must CO-operate with mathematical determinateness and I 
precision. For this purpose, he had developed the six auxiliaries 
of the Vedas in each of which mathematical skill and adroitness, 
occult or otherwise, play the decisive role. The Siitras lay 
down the shortest and surest lines. The correct intonation of 
the Mantra, the correct configuration of the Yantra (in the 
making of the Vedi eta., e.g. the quadrature of a circle), the 
correct time or astral conjugation factor, the correct rhythms 
etc., all had to be perfected so as to produce the desired result 
effectively and adequately. Each of these required the calculus 
of mathematics. The modern technician has his logarithmic 
tables and mechanics' manuals ; the old Yijfiika had his Saras. 
How were the Szitras obtained ?-by magic or logic or both ?-is 
a vital matter we do not dkcuss here. The late Sa l ikar ic~r~a  
has claimed for them cogency, compactness and simplicity. 
This is an even more vital point, and we think, he has reasonably 
made it good. 

A HUMBLE HOMAGE 

The late $ankaricirya's epoch-making work on Vcdic- 
Mathematics brings to the notice of the intelligentsia most 
strikingly a new theory and method, now almost unknown, 
of arriving at  the truth of things which in this particular case 
concerns the truth of numbers and magnitude, but might as well 
cover, as it undoubtedly did in a past age in India, all sciences 
and arts, with results which do not fail to evoke a sense of awe 
and amazement today. The method obviously is radically 
differnt from the one adopted by the modern mind. 

Music and not Mathematics is my field (although the 
philosophy of numbers, cosmic and metaphysical corres- 
pondences w ~ t h  musical numbers, the relation of numbers 
with consonant, dissonant and assonant tonal intervals etc., 
closely inter-relate music and mathematics), but study of the 
traditional literature on music and fine arts with which I have 
been concerned for the last few years has convinced me of one 
fundamental fact regarding the ancient Indian theory and 
method of knowledge and experience vis a vis the modern. 
While all great and true knowledge is born of intuition and 
not of any rational process or imagination. there is a radical 
difference between the ancient Indian method and the modem 
Western method concerning intuition. 

The divergence embraces everything other than the fact 
of intuition itself-the object and field of intuitive vision, the 
method of working out experience and rendering it to the 
intellect. The modern method is to get the intuition by sugges- 
tion from an appearance in life or nature or from a mental idea 
and even if the source of the intuition ie the soul, the method 
at  once relates it to a support external to the soul. The ancient 
Indian method of knowledge had for its business to disclose 
something of the Self, the Infinite or the Divine to the regard 
of the soul-the Self through its expressions, the infinite through 
its finite symbols and the Divine through his powers. The 

Varanasi, SWAMI PRATYAGATMANANDA 
22-3-1965 SARA SWAT^ 



process was one of Integral knowledge and in its subordinate 
ranges was instrumental in revealing the truths of cosmic 

I phenomena and these truths mere utilised for worldly ends. 

1 These two methods are based on different theories of 

I knowledge and experience, fundamentally divergent in outlook 
and approach. The world as yet knows very little of the 

I ancient lndian method, much less of its secret techniques. ~ Sri S a ~ i k a r ~ c k ~ a ' s  remarkably unique work of Vedic mathe- 
matics has brought to  popular notice demonstrably for the 
first time that the said method was usefully employed ill ancient 
India in solving problems of secular knowledge just as for solving 
those of the spiritual domain. 

I am happy that in the printing and publication of this 
monumental work and the preceding spade-work I had the 
privilege to render some little service. 

PREM LATA SHARMA 
Varamsi-5. Dean, Faculty of Music & Fine Arts, 
23-3-65. Banaras Hindu University. 

CONVENTIONAL TO UNCONVENTIONALLY ORIGINAL 

This book Vedic Mathematics deals mainly with various 
vedic mathematical formulae and their applications for carrying 
out tedious and cumbersome arithmetical operations, and to a 
very large extent, executing them mentally. In this field of mental 
arithmetical operations the works of the famous mathemati- 
cians Trachtenberg and Lester Meyers (High Speed Maths) are 
elementary compared to that of Jagadguruji. 

Some people may find it ditficult, at  first reading, to understand 
the arithmetical operations although they have been explained 
very lucidly by Jagadguruji. It is not because the explanations 
are lacking in any manner but because the methods are totally 
unconventional. Some people are so deeply rooted in the con- 
ventional methods that they, probably, subconsciously reject to 
see the logic in unconventional methods. 

An attempt has been made in this note to explain the un- 
conventional aspects of the methods. Once the reader gets 
used to the unconventional in the beginning itself, he would 
find no difficulty in the later chapters. Therefore the explanatory 
notes are given for the first few chapters only. 

C/iapter I 
Chapter I deals with a topic that has been dealt with compre- 

hensively in the chapter 26 viz. 'Recurring'Decimal'. Gurudeva has 
discussed the recurring decimals of 1/19, 1/29, etc. in chapter 
I to arouse curiosity and create interest. In conversion of 
vulgar fractions into their decimal equivalents Gurudeva has 
used very unconventional methods of multiplication and division. 

In calculation of decimal equivalent of 1/19, first method of the 
'Ekidhika SLitra' requires multiplication of 1 by 2 by a special and 
unconventional process. Inconventional method product of 1, the 
multiplicand, by 2 the multiplier, is 2 and that is the end of multi- 
plication process. It is not so in the unconventional 'Ekidhika' 
method. In this method, in the above example, 1 is the first multi- 
plicand and its product with multiplier '2' is 2 which in this special 
process becomes the second multiplicand. This when multiplied 
by the multiplier (which remains the same) 2 gives the product 
as 4 which becomes the third multiplicand. And the process of 



multiplication thus goes on till the digits start recurring. 
Similarly in the second method of the 'Ek~dhika Sctra' for 

calculating the decimal equivalent of 1/19,*it is required to 
divide I by 2 by an unconventional and special process. In the 
conventional method when 1, the dividend, is to be divided by 
the divisor 'T, the quotient is 0.5 and the process of division 
ends. In the special method of 'Ekfidhika Siitra' for calculating 
decimal equivalents, the process starts by putting zero as the 
first digit of the quotient, 1 as the first remainder. A decimal 
point is put after the first quotient digit which is zero. NOW, 
the first remainder digit '1' is prefixed to the first quotient digit 
'0' to form '10' as the second dividend. Division of 10 by the 
divisor 2 (which does not change) gives 5 as the second quotient 
digit which is put after the decimal point. The second remainder 
digit '0' is prefixed to the second quotient digit 5 to form 5 as 
the third dividend digit. Division of 5 by 2 gives 2 as the third 
quotient digit and 1 as the third remainder digit which when 
prefixed to the third quotient digit '2' gives 12 as the fourth 
dividend and so the process goes on till the digits start recurring. 
Chapter I t1  

Vinculum is an ingenious device to reduce single digits larger 
than 5, thereby facilitatingmultiplication specially for themental- 
one-line method. Vinculum method is based on the fact that 
18 is same as (20-2) and 76 as (100-24) or 576 as (600-24). Guru- 
deva has made this arithmetical fact a powerful device by writing 
18 as 22; 76 as 1 r 4  arid 576 as 6 2  This device is specially 
useful in vedic division method. 

A small note on 'al~quot' may facilitate the study for some. 
Aliquot part is the part contained by the whole an integral 
number of times, e.g. 12 is contained by the whole number 110, 
9 times. or in simple words it is the quotient of that fraction. 
Chapter I V 

In the division by the Nikhilam.method the dividend is divided 
into two portions by a vertical line. This vertical line should 
have as many digits to its right as there can be in the highest possi- 
ble remainder. In general the number of such digits are the same 
as in the figure which is one less than the divisor. Needless to  
state that the vertical and horizontal lines must be drawn neatly 
when using this method. 

WING. COM. VLSHVA MOHAN TLWARI 
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MY BELOVED GURUDEVA 

SMTI. MANJULA TRIVEDI 

[In the lines that follow the writer gives a short biographical 
sketch of llre illustrious author of Vedic Mathematics and a #hurt 

i 
account of the genesis of his work laow published, based on inti- 
mate personal ~ l u ~ u ~ e d g e - E ~ r ~ o ~ . ]  

I Very few persons can there be amongst the cultured people 
of India who have not heard about HIS HOLINESS JAGAD- 
GURU SHANKARACHARYA SRI BHARATI KRISHNA 
TIRTHAJI MAHARAJ, the magnificent and divine personality 
that gracefully adorned the famous Govardhan Math, Puri, 
his vast and vcrsatile learning, his spiritual and educational 
attainments, his wonderful research achievements in the field 
of Vedic Mathematics and his consecration of all these quali- 
fications to the service of humanity as such. 

His Holiness, better known among his disciples by the 
beloved name 'Jagadguruji' or 'Gurudeva' was born of highly 
learned and pious parents in March, 1884. His father, late 
fii P. Narasimha Shastri, was then in service as a Tahsildar a t  
Tinnivelly (Madras Presidency) who later retired as a Deputy 
Collector. His uncle, late Shri Chandrashekhar Shastri, was 
the Principal of the Maharaja's College, Vizianagaram and his 
great-grandfather was late Justice C. Ranganath Shastri of the 
Madras High Court. 

Jagadguruji, named as Venkatraman in his early days, 
was an exceptionally brilliant student and invariably won 
the first place in a11 the subjects in all the classes throughout his 
educational career. During his school days, he was a student 
of National College, Trichanapalli; Church Missionary Society 
College, Tinnevelli and Hindu College, Tinnevelli. Be passed 
his matriculation examination from the Madras University 
in January, 1899, topping the list as usual. 

He was extra-ordinarily proficient in Sanskrit and oratory 
and on account of this he was awarded the title of 'SARASWATI' 



by the Madras Sanskrit Association in July, 1899 when he was 
still in his 16th year. One cannot fail to mention at this stage 
the profound impremion left on him by his Sanskrit Guru 
Shri Vedam Venkatrai Shastri whom Jagadguruji always 
remembered with deepest love, reverence and gratitude, with 
tears in hia eyes. 

After e n i n g  the highest place in the B.A. Examinanon, 
Shri Venkatraman Saraswati appeared at the M.A. Examination 
of the American College of Sciences, Rochester, New York, from 
Bombay Centre in 1903 ; and in 1904 a t  the age of just twenty 
he passed M.A. Examination in further seven subjects simul- 
taneously securing the highest honours in all, which is perhaps 
the all-time world-record of academic brilliance. His subjects 
included Sanskrit, Philosophy, English, Mathematics, History 
and hience. 

As a etudent Venkatraman was marked for his splendid 
brilliince, superb retentive memory and ever-insatiablt curiosity. 
He would deluge his teachers with myriads of piercing questions 
which made them uneasy and forced them frequently to make 
a frank confession of ignorance on their part. In this respect, 
he was considered to be a terribly mischievous student. 

Even from his University days Shri Venkatraman Saras- 
wati had started contributing learned articles on religion, 
philosophy, sociology, history, politics, literature etc., to 
late W. T. Stead's "REVIEW OF REVIEWS" and he was 
specially interested in all the branches of modern science. In 
fact, study of the latest researches and discoveries in modern 
science continued t o  be Shri Jagadguruji's hobby till his very 
last days. 

Sri Venkatrarnan started his public life unde the guidance 
of late Hon'ble Shri Gopal Krishna Gokhale, C.I.E. in 1905 in 
connection with the National Fdncatlon Movement and the 
South African Indian issue. Although, however, on the one 
hand, Prof. Venkatribman Sa.raswati had acquired an endless 
fund of learning and his desire to learn ever more was still 
unquenchable and on the other hand the urge for selfless service 

of humanity swayed his heart mightily, yet the undoubtedly 
deepest attraction that Venkatraman Saraswati felt was that 
towards the study and practice of the science of sciences-the 
holy ancient Indian epiritual science or Adhyiitma-Vidyi. In 
1908, therefore, he proceeded to the Sringeri Math in Mysore 
to lay himself a t  the feet of the renowned late Jagadguru 
Shankaracharya Maharaj Shri Satchidiinanda Sivibhinava 
Nrisimha Bharati Swami: 

But he had not stayed there long, before he had to assume 
the post of the first Principal of the newly started National 
College at  Rajmahendri under a preesing and clamant call of 
duty from tthe nationalist leaders. Prof. Venkatraman Saras- 
wati continued there for three years but in 1911 he could not 
resist his burning desire for spiritual knowledge, practice and 
attainment any more and, therefore, tsaring himself off suddenly 
from the said college he went back to  Shri Satchidhanda 
Siviibhinava Nrisimha Bhkati Swami a t  Sringeri. 

The next eight years he spent in the profoundest study of 
the most adval~ced Vedanta Philosophy and practice of the 
Brahma-eadhnna. During these days Prof. Venkatraman 
used to study Vedanta at  the feet of Shri Nrisimha Bhiirati 
Swami, teach Sanskrit and Philosophy in schools there, and 
practise the highest and most vigorous Yoga-siidhiina in the 
nearby forests. Frequently, he was also invited by several 
institutions to deliver lcctures on philosophy; for example he 
delivered a series of sixteen lectures on Shankarachnrya's 
Philosophy a t  Shankar Institutc of Philosophy, Amalner (Khan- 
desh) and similar lectures at  several other places like Poona, 
Bombay etc. 

After several years of the most advanced studies, the deepest 
meditation, and the highest spiritual attainment Prof. Venkatra- 
man Saraswati was initiated into the holy order of SAMNYASA 
a t  Banaras (Varanasi) by his Holiness Jagadguru Shankara- 
charya Sri Trivikram Tirthaji Maharaj of Shgradgpeeth on the 
4th July 1919 and on this occasion he was given the new 
name, Swami Bharati Krishna Tirtha. 



This was the starting point of an effulgent manifestation 
of Swamiji's real greatness. Within two years of hisatay in-the 
holy order, he proved his unique suitability for being installed 
on the pontifical throne of Sharada Peetha Shankaracharya and 
accordingly in 1921, he was so installed with all the formal 
ceremonies despite all his reluctance and active resistance. 
Immediately, on assuming the pontificate Shri Jagadguruji 
started touring India from corner to corner and delivering 
lectures on SanEtana Dharma and by his scintillating intellectual 
brilliance, powerful oratory, magnetic personality, sincerity of 
purpose, indomitable will, purity of thought, and loftiness of 

he took the entire intellectual and religious clam of 
the nation by storm. 

Jagadguru Shankaracharya Shri Madhusudan Tirtha of 
Govardhan Math Puri was at  this stage greatly impressed by 
Jagadguruji and when the former was in failing health he 
requested. Jagadguruji to succeed him on Govardhan Math 
Gadi. Shri Jagadguruji continued to resist his importunate 
requests for a long time but a t  last when Jagadguru Shri hhdhu- 
sudan Tirtha's health took a serious turn in 1925 he virtually 
forced Jagadguru Shri Bharati Krishana Tirthaji to accept the 
Govardhan Matk{s Gadi and accordingly Jagadguruji installed 
Shri Swarupanandji on the Sharadapeeth Gadi and himself 
assumed the duties of the ecclesiastical and pontifical head of 
Sri Govardhan Math, Puri. 

In this capacity of Jagadguru Shankaracharya of Govar- 
dhan Math, Puri, he continued to disseminate the holy spiritual 
teachings of Ssnatana Dharma in their pristine purity all over 
the wortd the rest of his life for 35 years. Months after months 
and years after years he spent in teaching and preaching, talking 
and lecturing, discussing and convincing nlillions of people all 
over the country. He took upon himself the colossal task 
of the renaissance of Indian culture, spreading of Sanatena 
Dharma, revival of the highest human and moral values and 
enkindling of the loftiest spiritual enlightenment throughout 
the world and he dedicated his whole life to this lofty and 
noble mission. 

Prom his very early days Jagadguruji was aware of the 
need for the right interpretation of "Dharma" which he, defined 
8s "the sum total of all the means necessery for speedily making 
and permanently keeping all the people, individually as well 
as collectively superlatively comfortable, prosperous, happy, 
and joyous in all respects (including the physicel, mental, 
intellectual, educational, economic, social, political, paycllic, 
spritual etc. ad injEnitum)". He was painfully aware of the 
"escapism" of some from their duties under the garb of spiritua- 
lity and of the superficial modem educational varnish of the 
others, divorced from spiritual and moral standards. He, 
therefore, always laid great emphasis on the necessity of har- 
monising the 'spiritual' and the 'material' spheres of daily 
life. He also wanted to remove the falae ideas, on the one 
hand, of those persons who thiilk that Dharma can be practiced 
by exclusively individual spiritual SSBdhanZ coupled with more 
honest bread-earning, ignoring one's responsibility for rendering 
selfleas service to the society and on the other hand of those 
who think that the SiidhanZ can be complete by mere service 
of society even without learning or ~ractising any spirituality 
oneself. He wanted a happy blending of both. He stood for 
the omnilateral and all-round progress aimultenaously of both 
the individual sand society towards the speedy realisation 
of India's spiritual and cultural ideal, the lofty Yedantic ideal 
of 'Piirnatva' (perfection and harmony all-round). 

With these ideas agitating his mind for several decades 
he went on carrying on a laboriou8, elaborate, patient and day- 
and-night research to evolve 6nally a splendid and perfect scheme 
for all-round reconstruction first of India and through it of the 
world. Consequently Sri Jagadguruji founded in 1953 at  Nagpur 
an institution named Sri Vishwa Punarnirmana Sangha (World 
Reconstruction Association). The Adn~inistrative Board of the 
Sangha consisted of Jagadguruji's disoiples, devotees and admi- 
rers of his idealistic and spiritual ideals for humanihrian service 
and included a number of high court judges, ministers, educa- 
tionists, statesmen other personage of the highest calibre 



pleasure. To see him was a privilege. To speak to him was 
a real blessing and to be granted a specialinterview-Ah ! that 
was the acme of happiness which people coveted most in all 
earnestness. The magnetic force of his wonderful personality 
was such that one word, one smile, or even one look was quitc 
enough to convert even the most sceptic into his most ardent 
and obedient disciple. He belonged to all irrespective of caste 
or creed and he was a real Guru to the whole world. 

People of all nationalities, religions and climes, Brahmins 
and non-Brahmins, Hindus and Mahomedans, Parsis and Chris- 
tians, Europeans and Americans received equal treatment at  
the hands of Mis Holiness. That was the secret of the immense 
popularity of this great Mahatma. 

He was grand in his simplicity. People would give any- 
thing and everything to get his blessings and he would talk 
w6rds of wisdom as freely without fear or favour. He was 
most easily accessible to all. Thousands of people visited 
him and prayed for the relief of their miseries. He had a kind 
word to say to each, after attentively listening to his or her tale 
of woe and then give them some 'prasad' which would cure thcir 
malady whether physical or mental. He would actually 
shed tears when he found people suffering and would pray to 
God to relieve their suffering. 

He was mighty in hL learning and voracious in his reading. 
A sharp intellect, a retentive memory and a keen zest went to 
mark him as the most distinguished scholar of his day. His 
leisure moments he would never spend in vain. He was always 
reading something or repeating something. There was no branch 
of knowledge which he did not know and that also 'shastrically'. 
He was equally learned in Chandahsastra, Ayurveda and 
Jyotish Sastra. He was a poet of uncommon merit and wrote 
a number of poems in Sanskrit in the praise of his guru, gods 
and godesses with a charming flow of Bhakti so conspicuons in 
all his writings. 

I have got a collection of over three thousand slokas for- 
ming part of the various eulogistic poems composed by Gurudeva 

in adoration of various Devas and Devis. These Slokas have 
been edited and are being translated into Hindi. They are 
proposed to be published in three volumes along with Hindi 
translation. 

The book on "Sanatana Dharma" by H. H. Swami BhBrati 
Krisna T i h a  Mahiiriija has been published by Bharatiya 
Vidya Bhavan, Bombay. 

Above all, his Bhakti towards his VidyHguru was some- 
thing beyond description. He would tak for d a y ~  together 
about the greatness of his VidyHguru. He would be never 
tired of worshipping the Guru. His Guru also was equally 
attached to him and called our Swamiji as the own son of the 
Goddess of Learning, Shri Sarada. Everyday he would first 
worship hie guru's mndals. His "Gurup6dukii Stotra ' clearly 
indicates the qualities he attributed to the sandale of his guru. 

Shri BhZrati K$pa Tirtha was a great Yogin and a 
"Siddha" of a very high order. Nothing was impossible for him. 
Above all he was a true Samnyasin. He held the world but as 
a stage where every one had to play a part. In short, he was 
undoubtedly a very great Mahgtrnii but without any display of 
mysteries or occultisme. 

I have not been able to express here even one millionth 
part of what I feel. His epotless holiness, his deep piety, 
his endless wisdom, his childlike peacefulness, sportiveness 
and innocence and his univereal affection beggar all description. 
His Holiness has left us a noble example of eimplest living and 
highest thinking. May all the world benefit by the example 
of a life ao nobly and so simply, so spiritually and so lovingly 
lived. 

In.trJ* R ~ W C ~ S  on the Present Volume 
I now proceed to give a short account of the genesis 

of the work published herewith. Revered Guruji used to 
say that he had reconstructed the sixteen mathematical 
formulae (given in this text) from the Atharvaveds after 
assiduous rwarch and 'Tapas' for about eight years in the 



forests surrounding Sringeri. Obviously these formulae are 
not to be found in the present recensions of Atharvaveda ; they 
were actually reconstructed, on the basis of intuitive revelation, 
from materials scattered here and there in the Atharvaveda. 
Revered Gurudeva used to say that he had written sixteen 
volumes (one for each Siitra) on these Stitras and that the 
manuscripts of the said volumes were deposited at  the house 
of one of his disciples. Unfortunately, the mid manuscripts 
were lost irretrievably from the place of their deposit and this 
colossal loss was &ally confirmed in 1956. Revered Gurudeva 
was not much perturbed over this irretrievable loss and used to 
say that everythmg was there in his memory and that he could 
re-write the 16 volums ! 

My late husband Sri C. M. Trivedi, Hon. Gen. Secertary 
V. P. Sangh noticed that while Sri Jagadguru Maharaj was 
busy demonstratirig before learned people and societies 
Vedic Mathematics as discovered and propounded by him, 
some persons who had grasped a smattering of the new 
Siitras had already started to dazzle audiences as prodigies 
claiming occult powers without aknowledging indebtedness 
to the Sfitras of Jagadguruji. My husband, therefore, pleaded 
earnestly with Gurudeva and persuaded him to arrange for 
the publication of the Siitras in his own name. 

In 1957, when he had decided finally to undertake a 
tour of the U.S.A. he re-wrote from memory the present 
volume, giving an introductory account of the sixteen for- 
mulae reconstructed by him. This volume was written in 
his old age within one month and a half with his failing health 
and weak eyesight. He had planned to write subsequent volu- 
mes, but his failing health (and cataract developed in both 
eyes) did not allow the fulfilment of his plans. Now the present 
volume is the only work on Mathematics that has been left over 
by Revered Guruji ; all his other writings on Vedic Mathematics 
have, alas, been lost for ever. 

The typescript of the present volume was left over by 
Revered Gurudeva in U.S.A. in 1958 for publication. He 

had been given to understand that he would have to go to the 
U.S.A. for correction of proofs and personal supervision of 
printing. But his health deteriorated after his return to India 
and finally the typescript was brought back from the U.S.A. 
after his attainment of Mahasamadhi, in 1960. 
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AUTIIOR'S PREFACE 
A.-A DESCRIPTIVE PEEFAWRY MOTE 

ON 

THE ASTOUNDING WONDERS 
OF 

ANCIENT INDIAN VEDIC MATHEMATICS 
1. In the course of aur di8courses on manifold and 

multifarious subjects (spiritual, metaphysical, philosophical, 
psychic, psychological, ethical, educational, scientific, mathe- 
matical, historical, political, economic, social etc., etc., from 
time to time and from place to place during the last five decades 
and more, we have been repeatedly pointing out that the Vedas 
(the most ancient Indian scriptures, nay, the oldest "Religious" 
scriptures of the whole world) claim to deal with all branches 
of learning (spiritual and temporal) and to give the earnest 
seeker after knowledge all the requisite instructions and guidance 
in full detail and on scientifically-nay, mathematiqally- 
accurate lines in them all and so on. 

2. The very word "Veda" has this derivational meaning 
i.e. the fountain-head and illimitable store-house of all know- 
ledge. This derivation, in effect, mcans,condotes and implies that 
the Vedas should contain within themselves all the knowledge 
needed by mankind relating not only to the so-called 'spiritual' 
(or other-worldly) matters but also to those usually described 
a8 purely "secular", "temporal", or "wordly"; and also to 
the means required by humanity as such for the achievement 
of all-round, complete and perfect success in all conceivable 
directions and that there can be no adjectival or restrictive 
epithet calculated (or tending) to limit that knowledge down in 
any sphere, any direction or any respect whatsoever. 

3. In other words, it connotes and implies that our 
ancient Indian Vedic lore should be all-round complete and 
perfect and able to throw the fullest necessary light on all 
matters which any aspiring seeker after knowledge can possibly 
seek to be enlightened on. 
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4. I t  is thus in the fitness of things that the Vedas include 
(i) Ayurveda (anatomy, physiology, hygiene, sanitary science, 
medical science, surgery etc., etc.,) not far the purpose of achic- 
ving perfect health and strength in the after-death future but 

I in order to attain them here and now in our present physical 
bodies; (ii) Dhanurveda (archcry and other military sciences) 
not for fighting with one another after our transportation to 
heaven but in order to quell and subdue all invaders from 
abroad and all insurgents from within; (iii) GCndharva Veda 
(the science and art of music) and (iv) Sthcipatya Veda (engineer- 
ing, architecture etc.,antl alI branches of mathematics in general). 
All these subjects, be it noted, are inherent parts of the Vedas 

, i.e. arc reckoned as "spiritual" studies and catered for as 

I such therein. 
5. Similar is the case with regard to t)lle Vedciligas (i.e. 

grammar, prosody, astronomy, lexicography etc., etc.,) which, 
according to the Indian cultural conceptions, are also inherent 
parts and subjects of Vedic (i.e. Religious) study. 

6. As a direct and unshirkable consequence of this 
analytical and grammatical study of the real connotation 
and full implications of the word "Veda" and owing to various 
other historical causes of a personal character (into details of 
which we need not now enter), we have been from our very 
early childhood, most earnestly and actively striving to study 
the Vedas critically from this stand-point and to realise and 

I prove to ourselves (and to others) the correctness (or otherwise) 
of the derivative meaning in question. 

7. There were, too, certain personal historical reasons 
why in our quest for the discovering of all learning in all its 
departments, branches, sub-branches etc., in the Vedas, our 
gaze was riveted mainly on ethics, psychology and metaphysics 
on the one hand and on the "positive" sciences and especially 
mathematics on the other. 

8. And the contemptuous or, a t  best patronising attitude 
adopted by some so-called Orientalists, Indologists, anti- 
quarians, research-scholars etc., who condemned, or light- 

heartedly, nay; irresponsibly, frivolously and flippantly dis- 
missed, several abstruse-looking and recpndite parts of the 
Vedas as "sheer-nonsensem-or au "infant-humanity's prattle", 
ttnd so on, merely added fuel to  the fire (so to  speak) and further 
confirmed and strengthened our resolute determination to 
unravel the too-long hidden mysteries of philosophy and science 
contained in ancient India's Vedic lore, with the consequence 
that, after eigM years of concentrated eontemplation in forest- 
solitude, we were at  long last able to recover the long lost keya 
which alone could unlock the portals thereof. 

9. And we were agreeably astonished and intensely gra- 
tified to find that exceedingly tough mathematical problems 
(which the mathematically most advanced present day Wes- 
tern scientific world had spent huge lots of time, energy and 
money on and which even now it solves with the utmost difficulty 
and after vast labour involving large numbers of difficult, tedious 
and cumbeisome "steps" of working) can be easily and readily 
solved with the help of these ultra-easy Vedic Siitras (or mathe- 
matical aphorisms) contained in the Paribiata (the Appendix- 
portion) of the ATHARVAVEDA in a few simple steps and by 
mothods which can be conscientiously described as mere "mental 
a~ithmetic". 

10. Eversince (i.e. since several decades ago), we have 
been carrying on an incessant and strenuous campaign for 
the India-wide diffusion of all this scientific knowledge, by 
means of lectures, blackboard- demonstrations, regular classes 
and so on in schools, colleges, universities etc., all over the 
country and have been astounding our audiences everywhere 
with the wonders and marvels not to say, miracles of Indian 
Vedic mathematics. 

11. We were thus a t  last enabled to succeed in attracting 
the more than passing attention of the authorities of several 
Indian universities to this eubject. And, in 1962, the Namur 
University not me-ely had a few lectures and blackboard- 
demonstrations given but also arranged for our holding regular 
classes in Vedir mathematics (in the University's Convomtion 
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Hall) for the benefit of all in general and especially of the Uni- 
versity and college professors of mathematics, physics etc. 

12. And, consequently, the educationists and the cream 
of the English educated sect,ion of the people including the 
highest officials (e.g. the high-court judges, the ministers 
etc.,) and the general public as such were all highly impressed ; 
nay, thrilled, wonder-struck and flabbergasted! And not 
only the newspapers but even the University's official reports 
described the tremendous sensation caused thereby in superlati- 
vely eulogistic terms ; and the papers began to refer to us as 
"the Octogenarian Jagadguru Shankaracharya who hat1 taken 
Nagpur by storm with his Vedic mathematics", and so on ! 

13. I t  is manifestly impospible, in the course of a short 
note [in the nature of a "trailer"), to give a full, detailed, tho- 
rough-going, comprehensive and exhaustive tlescription of 
the unique features and stArtling characteristics of all the 
mathematical lore in question. Tllis call and will )Je done 
in the subsequent volumes of this series (dealing seriatim and 
in extenso with all the various portions of all the various branches 
of mathematics). 

14. We may, however, a t  this point, draw the earnest 
attention of every one concerned to the following salient items 
thereof :- 

(i) The Siitras (aphorisms) apply to and cover each 
and every part of each and every chapter of each 
and every branch of mathematics (including ari- 
thmetic, algebra. geometry-plane and solid, trigo- 
nometry-plane and spherical, conics-geometrical 
and analytical, astronomy, calculus-differential 
and integral etc., etc. In  fact, there is no part of 
~i~athematics, pure or applied, which is beyond their 
jurisdiction ; 

(ii) The S ~ t r a s  are easy to understand, easy to apply 
and easy to remember ; and the whole work can be 
truthfully summarised in one word "mental" ! 

(iii) Even as regards complex problems involving a good 
number of mathematical operations (consecutively 
or even simultaneously to be performed), the time 
taken by the Vedic method ~vill be a third, a fourth, 
a tenth or even a much smaller fraction of the time 
required according to modern (i.e. current) Western 
methods : 

(iv) And, in some very important and striking cases, 
sums requiring 30, 50, 100 or even more numerous 
and cumbrous "steps" of working (according to the 
current Western methods) car1 be answered in a 
single and simple step of work by the Vedic method ! 
And little children (of only 10 or 12 years of age) 
merely look a t  the sums written on the blackboard 
(on the platform) and immediately shout out and 
dictate the answers from the body of the convocation 
hall (or other vcnue of the demonstration). And - 
this is because, as a matter of fact, each digit automa- 
tically yields its predecessor and its successor ! and 
the children have merely to go on tossing off !or 
reeling off) the digits one after another (forwards or 
backwards) by mere ~nental  arithmetic (without 
needing pen or pencil, paper or slate etc) ! 

(v) On seeing this kind of work actually being performed 
by the little children, the doctors, professors and 
other "big-guns" of mat,liematics are wonder struck 
and exclaim :-"Is this mathematics or magic" ? hrld 

we invariably answer and suy : "It is both. I t  is 
magic until you understand it ; and i t  is mathematics 
thereafter" ; and then we proceed to substantiate 
and prove t,he correctness of t,his reply of ours ! And 

(vi) As regards the time required by the students for 
mastering the whole course of Vedic mathematics 
as applied to all its branches, we need merely state 
from our actual experience that 8 months (or 12 
months) a t  an average rate of 2 or 3 hours per day 



should s&ce for completing the whole course of 
mathematical studies on these Vedic lines instead of 
16 or 20 years required according to the existing 
systems of the Indian and also of foreign uni- 
versities. 

15. In thia connection, it  is a gatifping fact that unlike 
some so-called Indologists (of the type hereinabove referred to) 
there have been some great modern mathematicians and his- 
torians of mathematics (like Prof. G. P. Halstead, Professor 
Ginsburg, Prof. De Moregan, Prof. Hutton etc.,) who have, 
as truth-seekers and truth-lovers, evinced a truly scientific 
attitude and frankly expressed their intenee and whole-hearted 
appreciation of ancient India's grand and glorious contributions 
to the progress of mathematical knowledge (in the Western 
hemisphere and elsewhere). 

16. The following few excerpts from the published writings 
of some universally acknowledged authorities in the domain 
of the history of mathematics, will speak eloquently fw 
themselves :- 

(i) On page 20 of his book "On the Foundation and 
Technique of Arithmetic", we find Prof. G.P. Halstead 
saying "The importance of the creation of the 
ZERO mark can never be exaggerated. This giving 
of airy nothing not merely a local habitation and a 
name, a picture but helpful power is the characteristic 
of the Hindu race whence it  sprang. It is like 
coining the NirvBgB into dynamos. No single 
mathematical creation has been more potent for the 
general on-go of intelligence and power". 

(ii) In this connection, in his splendid treatise on "The 
present mode of expressing numbers" (the Indian 
Historical Quarterly Vol. 3, pages 630-540) B. B. 
Dutta says: "The Hindus adopted the decimal 
scale vary early. The nuinerical language of no 
other nation is so scientific and has attained as high 
a state of perfection as that of the ancient Hindus. 

In symbolism they succeeded with ten signs to express 
any number most elegantly and simply. I t  is this 
beauty of the Hindu numerical notation which attrac- 
ted the attention of all the civilised peoples of the 
world and charmed them to adopt it" 

(iii) In this very context, Prof. Ginsburg says:- 
"The Hindu notation was carried to Arabia about. 

770 A.D. by a Hindu scholar named K ~ K A  who 
was invited from Ujjain to the famous Court of Bagh- 
dad by the Abbaside Khalif Al- MANS^^. KalYra 
taught Hindu astronomy and mathematics to the 
Arabian scholars ; and, with his help, they translated 
into Arabic the Brahma-Sphuta-SiddhHnta of Brahma 
Gupta. The recent discovery by the French savant 
M.F. NAU proves that the Hindu numerals were well 
known and much appreciated in Syria about the middle 
of the 7th Century A-D". (GINSBURQ'S "NEW LIGHT 
on our numerals", Bulletin of the American Mathe- 
matical Society, Second series, Vol. 25, pages 366-3691. 

(iv) On this point, we find B. B. Dutta further saying : 
"From Arabia, the numerals slowly marched 

towards the West through Egypt and Northem 
Arabia; and they ha l ly  entered Europe in the 
11th Century. The Europeans called them the Arabic 
notations, because they received them from the 
Arabs. But the Arabs themselves, the Eastern a6 
weH as the Western, have unanimously called them 
the Hindu figures. (Al-Arqan-Al-Hindu".) 

17. The above-cited passages are, however, in connection 
with and in appreciation of India's invention of the "ZERO" 
mark and her contributions of the 7th century A.D. and later 
to world mathematical knowledge. 

In the light, however, of the hereinabove given detailed 
description of the unique merits and characteristic excellences 
of the still earlier Vedic Sfitras dealt with in the 16 volumes of 



this series1, the conscientious (truth-loving and truth-telling) 
historians ~f Mathematics (of the lofty eminence of Prof. De 
Morgan etc.) have not been guilty of even the least exaggeration 
in their randid admission that  "even the highest and farthest 
reaches of modern Western mathematics have not yet brought 
the Western world even to  the threshold of Ancient Indian Vedic 

18. It is our earnest aim and aspiration, in these 16 

volumesl, to  explain and expound the contents of the Vedic 
mathematical Siitras and bring them qithin the easy intellectual 
reach of every seeker after mathematical knowledge. 

B.-EXPLANATORY EXPOSITION 
OF 

SOME SALIENT, INSTRUCTIVE AND 
INTERESTING ILLUFTRATIVE SAMPLE SPECIMENS 

BY WAY OF 

COMPARISON AND CONTRAST 

Preliminary Note :- 
With regard to  every subject dealt with in the Vedic 

Mathematical Siitras, the rule generally holds good that  the 
Siitras have always provided for what may be termed the 
'General Case' (by means of simple processes which can be easily 
and readily-nay, instantaneously applied to any and every 
question which can possibly arise under any particular heading. 

2. But, a t  the same time, we often come across special 
cases which, although classifiable under the general heading 
In question, yet present certain additional and typical charac- 
terestics which render them still easier to  solve. And, therefore, 
special provision is found to  have been made for such special 
cases by means of special Siitras, sub-SEtras, corollaries etc., 
relating and applicable to  those  articular types alone. 

' Only one volume has been bequeathed by His Holiness to posterity 
cf p. x above-General Editor. 

3. i4rid all that  the student of these Siitras has to  do 
is to look for the special characteristics in question, recognisc 
the particular type before him and determi~le and npply the 
special formula prescribed therefor. 

4. And, generally speaking it is only in case no special 
case is involved, that the general formula has to be resorted to. 
And this process is naturally a little longer. But i t  nced 
hardly be pointed out that, even then, the longest of the methods 
according to  the Vedic system comes nowhere (in respect of 
length, cumbrousness and tediousness etc.,) near the correspol~d- 
irlg process according to the system now current everywhere. 

5. For instance, the conversion of a vulgar fraction 
(say & or Jv or 2v etc.,) to  its equivalent recurring decimal 
shape involves 18 or 28 or 42 or more steps of cumbrous work- 
ing (according to  the current system) but requires only one 
single and simple step of nlental working (nccording to 
the Vedic Sfitras) ! 

6. This is not all. There are still other methods and 
processes (in the latter system) whereby even that very small 
(mental) working can be rendered shorter still ! This nnd 
herein is the beatific beauty of t,he whole scheme. 

7. To start with, we should naturally have liked to  begin 
this explanatory and illustrative expositior~ wit11 a few pro- 
cesses in arithmetical corilputatior~s relating to multiplications 
and divisions of huge nu~nbers by big multipliers and big divisors 
respectively and then go on to ot,her branches of mathematical 
calculation. 

8. Rnt, as we have just hereinabove referred to a parti- 
culno hnt wonderful t3ype of mathematiral work wherein 18, 
28, 42 or even more steps of working can be condensed into a 
single-step answer which can be written dowl~ immediately 
(by means of what we have been describing as straight, singlc- 
line, mental arithmet,ic) ; nncl, as this statement 111ust naturally 
have aroused intense eagerness and curiosity in the minds of the 
students (and thc teachers too) and especially as the process is 



( d  (d) 

based on elementary and basic fundamental principles and 11. Division : 
no previous knowledge of anything in the nature (2) Express & in its full recurring decimal shape (18 digits) : 

of an indispensable and inmapable pre-requisite ohapter, BY the current method : The "Sanskrit (Formula) is ; 
subjeot and 80 on, we are beginning this exposition here with 
an may explanation and a aimple elucidation of that particular 

19) 1 '~('05263157894736842i 11 rpqj%&q Ipinlll 
95 

illustrative specimen. - By the Vedic mental one-line meth~d : 
50 (by the EkidhiL-P&va S u r a )  

9. And then we shall take up the other various parts, 38 (forwards or backwards), we merely 
one by one, of the various branches of mathematical computation write down the 18-dzgit-answer :- 
and hope to throw sufficient light thereon to enable the students 
to make their own comparison and contrast and arrive at  
correct conclusions on a11 the various points dealt with. 57 - 

30 -- 19 -- 
110 
95 - 

C. ILLUSTRATIVE SPECIMEN SAMPLES 150 
133 - 

(Comparison and Contra&) 170 

SAMPLE SPECIMENS 
152 - 
180 

OR 171 

ARITHMETICAL COMPUTATIONS 
- 
00 
76 

I .  Multiplication : The "Sanskrit Sfitra" (Formula) is- - . . 
ti) Multiply 87265 @/ 32117 

140 
II aimhwmy 11 133 

B~ : B y  Vedic mental one-line method : - 
70 

87265 87285 57 
32117 32117 - -- 

2802690005 
130 

610855 
@ 

114 
87285 -- 
87265 Note : Only the answer is writ- 160 

174530 ten automatically down 152 
-- 38 

261795 by Ordhwa Tiryak 80 20 -- 

2802690005 S a r a  (forwards or back- 76 -- 19 - wards). 40 1 ,  



Division continued : 
Note : Gg gives 42 reourring decimal places in the answer but 

these too are written down mechanically in thc same 1 

way (backwards or forwards). And thc same is the 
case with all such divisions (whatever the number of 
digits may be) : 

(3) Divide 7031985 by 823 : 
By the current method : By the mental Vedic one-line method : 

823)7031985(8544 8123)70319(85 
6584 675 

111. Divisibility : 
(6)  Find out whether 5293240096 is divisible by 739 : 

Ey t,he current method, nothing less than complete 
division will give a clue to the answer (Yes or No). 

But by the Vedic mental one-line method (by the 
Ekcidhika-Ptirva Siitra). we can a t  once say :- 

for) 5 2 9 3 2 4 0 0  
139) 139 89 36 131 28 131 19 51 9; '1 "' 

IV. Square Root : 
-- -- 

4479 8544(273 (7) Extract the square root of 738915489 : 
4115 - By the current method : By the Vedic mental one-line method: 

3648 
3292 - 1 

4)738915489 
3565 35613674 
3292 - 329 - 27183.000 -- Ans. 

273 - 541) 991 
541 (By the Ordhwa-Tiryak S c t ~ a )  :. Q=8544 

R= 273 
- 

5428) 45054 
( 4 )  Divide .0003147 by 814266321 (to 6 deoiml pha ) : 43424 

The current method is notoriously too long, tedious, cum- 54363) 163089 
brous and clumsy and entails the expenditure of enormous time 163089 
and toil. Only the Vedic mental one-line method is given here. - 
The truth-loving student can work it  out by the other method 

0 - 
and compare the two for himself. .'. The square root is 27183. 

8/1425632).00034147 
) 3295 (8) Eztract the square root of 19.706412814 to 6 decimal places : 

~0000419... The current method is too cumbrous and may be tried by 
the student himself. 

(5) Find the Reciprocal of 7246041 to eleven Decimal places : 
By the Vedic mental one-line-method. The Vedic mental one-line method (by Or&wa-Tiryak 

(by the Ordhwa-Tiryak Satra) SzZtra) is as follows :- 
71246041) ' 000001000000 

374610 
8)19.706412814 

- '351010151713 
~00000013800... --- ---- 4.439190 . . . 

N.B. :-The same method can be used for 200 or more places. ----- 

A 



( b )  

V. Cubing and Cube-Root : The "Sanskrit SSzitra" 
(Fo~muh) is :- 

(9) Find the cube of 9989. 11 ~IT$ d -s W. II 

The current method is too cumbrous. 
The Vedic mental one-line method (by the YBvadGnom- 

Tdv~danmn Siitra) is a8 follows :- 
9989~=9967/0363/~=9967/0362/8669 

(10) Extract the Cube-Rod of 355045312441: 
The current method is too cumbrous. 
The Vedic mental one-line method is as follows :- - - -- - - - 

7355045312441=7 . . 1=7081 

SAMPLE SPECIMENS FROM ALGEBRA 

I. Ssrnple Equations : The "Sanskrit Satra" 
(Formula) is :- 

(11) Solve : 3x+4 x+l  II ~i m@ II -- 
6x+7-2x+3 

By the current method : By the Vedic method (by the 
Stinyam-Samuccaya S a r a  

:. 6xa+17x+12= :. 4x+5=0 :. x=-14 
6xa+13x+7 

:. 4x= -5 
:. x= -14 

(12) 4 ~ + 2 1  5 ~ - 6 9  3 ~ - 5  Bx-41 -+--- 
x+5 x-14- x-2+x--7 

The current method is too cumbrous. 

The Vedic method simply says : 2x-9=0 : x=44 

I The current niethod is horribly cumbrous. 

The Vedic method simply says : 4x-24=0 . . x-6. 

11. Quadratic-Equations (and Calculus) : 

The same is the case here. 

(16) 7xa-llx-7=0 

By Vedic method (by "Cahm-kalana" Siitra ; Formula) 
i.e., by Calculus-Formula we sap : 14x-ll= f v=. 

N.B. :-Every quadratic can thus be broken down into two 
binomial-factors. And the same principle can be 
utilised for cubic, biquadratic, pentic etc., expressions. 

111. Summation of Series : 
The current methods are horribly cumbrous. The Vedic 

mental one-line methods are very simple and easy. 

(17) &+&+&+r:u=4/77 
(18) A+rfu+&r1g+a9'?u=irr"r"r 

SPECIMEN SAMPLES FROM GEOMETRY 

(19) Pythogoras Theorem is constantly required in all mathe- 
matical work, but the proof of i t  is ultra-notorious for its 
cumbrousness, clumsiness, etc. There are several Vedic proofs 
thereof (every one of them much simpler than E d d d ' ~ ) .  I 
give two of them below :- 

E, F, G and H are points 
on AB, BC, CD and DA such 
that AE=BF=CG=DH. Thus 
ABCD is split up into the 
square EFGH and 4 congruent 
triangles. 

Their total area =H'+4xi x mn 
+(HY-+ax# mn) 

=Ha+2mn 
But the area of ABCD is (m+n)' 
=mq2mn+na .; Ha+2mn=ma+2mn+na 
. . Ha=ma+na. Q.E.D. 



(20) Smnd Proof: 

Drew B D l  to AC. 

Then ABC, ADB end 
BDC are similar. 

I 

ADB- ABa and BDC- BC2 --- 
ABC AC"-AC~ 

ADB+BDC-ABB+BCP But ; ADB+BDC=ABC 
"' ABC AC2 -' 
:. ABPf BCB=AC2. Q.E.D. 

Note:-Apollonius Theorem, Ptolemy's Theorem, ctc., etc., 
are all similarly proved by very simple and easy 
methods. 

SIMPLE SPECIMENS FROM CONICS AND CALCULUS 

(21) Equation of the straight line joining two points : 

For finding the equation of the straight line passing through 
two points (whose GO-ordinates are given). 

Say (9, 17) and (7, -2). 

BY the CurrelEt Method : 

Let the equrttion be y =mx+o. 

:. 9m+c=17; and 7m+c=-2 
Solving this simultaneous-equation in m and c. 

We have 2m=19; :. m=94 :. C=-684 
Substituting ; these, values, we have y=94x-68* 

:. 2y=19x-137 :. I&-2?/=137. But this method is 
cumbrous. 

Second method using the formula y-yl=y?kll (X-X1) 
xll-xl 

is still more cumbrous (and confusing), 

But the Vedic mental one-line method by the Sanskrit 
Sfitra (Formulaj, 11 q ~ 4  &dq II ("Paravarlya-Sfitra") enables 
us to write dowr~ the answer by a mere look a t  the given 
co-ordinates. 

(22) When does a general-equation represent ttoo straight lines r 
Say, 12x2 + 7 ~ y - 1 ~ ~ + 1 3 ~ + 4 5 y - 3 5 = 0  

By the Current Method. 
Prof. S. L. Loney devotes about 15 lines (section 119, 

Ex. 1 on page 97 of his "Elements of Co-ordinate Geometry") 
to  hie. "model" solution of this problem as follows :- 

Here a=12, h=7/2, b=-10, g=13/2, f-4512 and 
c=-35. 

:. abc+2fgh -afe-bgZ-chZ turns out to be zero. 
2x45  13 7 12(45)' (13)2 

=12(~-]0) ( ~ - 3 5 ) f ~  X x X 2 - 7  -(-lo) 

The equation represents two straight lines. 
Solving it for x, we have :- 

:. The two straight lines are 3x=2y-7 and 4x=-5 y+5. 

By the Vedic method, however, we a t  once apply the "Adyam- 
cidyem" Siitra and (by merely looking at the quadratic) mnte 
down the answer : 

Yes; and the straight lines are 3x-2y=-7 and 
4x+5y.=5. 

(23) Dealing with the same principle and adopting the same 
procedure with regard to hyperbolas, conjugate hyperbolas and 
asymptotes, in articles 324 and 325 on pages 293 and 294 of his 
"Elements of Co-ordinate Geometry" Prof. S. L. Loney devotes 
27+14(=41 lines) to the problem and says:- 



As 3~~-5xy-2~~+5x-l ly-8==Q is the equation to 
the given hyperbola. 

.'. 3 (-2) c+2. 4. ;' (-$) - 3 (71% - ( -2 ) (;)a 
-c(-$)S=O. 

:. c= 112 .  
:. The equation to the asymptotes is 3x2 -5xy-2ya+ 

5~--1ly-12=0 
and the equation to the conjugate-hyperbola is 3xa-5xy-2ys+ 
5~+15y-16=0 

By the Vedic method, however, we use the same ('Adyam-dyena') 
Siitra and automatically write down the equation to the asymp- 
totes and the equation to the conjugate-hyperbola. 

The Vedic methods are so simple that their very simplicity 
is astounding, and, as Desmond Doig has aptly, remarked, 
it is di$icult for any one to believe it until one actwclly sees it. 

It will be our aim in this and the succeeding volumes' 
to bring this long-bidden treasure-trove of mnthemetical 
knowledge within easy reach of everyone who wishes to obtain i t  
and benefit by it. 

-- 
I This is the only'volume left by the author-Editor. 

T E X T  
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[Note-This list has been compiled from stray references 
in the t e x t - ~ ~ I ~ o R . ]  

PROLEGOMENA 

In our "Descriptive, Prefatory Note on the Astounding 
Wonders of Ancient Indian Vedic Mathematics", we have 
again and again, so often and at  such great length and with such 
wealth of detail, dwelt on the almost incredible simplicity 
of the Vedic Mathematical SCitras (aphorisms or formulae) 
and the indescribable ease with which they can be understood, 
remembered and applied (even by little children) for the solution 
of the wrongly-believed-to-be-"difficult" problems in the various 
branchesof Mathematics, that we need not, a t  this point, traverse 
the same ground and cover the same field once again here. 

Suffice it, for our present immediate purpose, to draw 
the earnest attention of every scientifically-inclined mind 
and researchward-attuned intellect, to the remarkably extra- 
ordinary and characteristic-nay, unique fact that the Vedic 
system does not academically countenance (or actually follow) 
any automatical or mechanical rule even in respect of the 
correct sequence or order to be observed with regard to the 
various subjects dealt with in the various branches of Mathe- 
mt ics  (pure and applied) but leaves it entirely to the con- 
venience and the inclination, the option, the temperamento1 
predilection and even the individual idiosynoracy of the teachere 
and even the students themselves (as to what particular order 
or sequence they should aotually adopt and follow) ! 

This manifestly out-of-the-common procedure must 
doubtless have been due to some special kind of historical 
back-ground, background which made such a consequence not 
only natural but also inevitable under the circumstances is 
question. 

Immemorial tradition has it and historical research 
confirms the orthodox belief that the Sages, Seers and Saints of 
ancient India (who are accredited with having observed, studied 



and meditated in the Aranya (i.e. in forest-solicitude)-on physi- 
cal Nature around them and deduced their grand Vedante'c 
Phihophy therefrom as the result not only of their theoretical 
reasonings but also of what may be more fittingly described as . 

I True Realisation by means of Actual VISUALISATION) seem 
to have similarly observed, studied and meditated on the 
mysterious workings of numbers, figures etc. of the mathematical 
world (to wit, Nature) around them and deduced their Mathe- 
ntatical Philosophy therefrom by a similar process of what one 
may, equally correctly, describe as processes of True-Realisation 
by means of Actual VISUALISATION. 

1 And, consequently, i t  naturally follows that, in-as-much 
as, unlike human beings who have their own personal prejudices, 
partialities, hatreds and other such subjective factors distorting 
their visions, warping their judgements and thereby contri- 
buting to their inconsistent or self-contradictory decisions and 
discriminatory attitudes, conducts etc.), numbers (in Mathe- 

I matics) labour under no such handicaps and disadvantages 
based on personal prejudices, partialities, hatreds etc. They 
are, on the contrary, strictly and purely impersoml and objective 
in their behaviour etc., follow the same rules uniformly, consis- 
tenly and invariatly (with no question of outlook, approach, 
personal psychology etc. involved therein) and are therefore 
absolutely reliable and dependable. 

This seems to have been the real historical reason why. 
barring a few unavoidable exceptions in the shape of elementary, 
basic and fundamental first principles (of a preliminary or pre- 
requisite character), almost all the subjects dealt with in the 
various branches of Vedic Mathematics are explicable and 
expoundable on the basis of those very 'basic principles' or 
'first principles', with the natural consequence that no particular 

I subject or eubjects (or chapter or chapters) need necessarily 
precede or follow some other particular subject or subjects 
(or chapter or chapters). 

Nevertheless, it is also undeniable that, although any 
particular sequence is quite possible, permissible and feasible 

yet, some particular sequence will actually have to be adopted 

by a teacher (and, much more therefore, by an author). And 
80, we find that subjects like analytical conics and even calculus 
(differential and integral) (which is usualIy the bugbear and 
terror of even the advanced students of mathematics under the 
present system all the world over) are found to figure and fit 
in at  a, very early stage in our Vedic Mathematics (because of 
their being expounded and worked out on basic first principles. 
And they help thereby to facilitate mathematical study 
especially for the small children). 

And, with our more-than-half-a-century's actual personal 
experience of the very young mathematics-students and their 
difficulties, we have found the Vedic sequence of subjects and 
chapters the most suitable for our purpose (namely, the elimina- 
ting from the children's minds of all fear and hatred of mathe- 
matics and the implanting therein of a positive feeling of 
exuberant love and enjoyment thereof) ! And we fervently 
hope and trust that other teachers too will have a similar 
experience and will find us justified in our ambitious description 
of this volume as "Mathematics without tears". 

From the herein-above described historical back-ground 
to our Vedic Mathematics, it is also obvious that, being based 
on basic and fundamental ~rinciples, this system of mathe- 
matical study cannot possibly come into conflict with any 
other branch, department or instrument of science and 
eoientitlo education. In fact, this is the exact reason why all 
the other sciences have different Theom'es to propound but 
Mathematics has only THOEREMS to expound ! 

And, above all, we have our Scriptures categroically 
hying down the wholesome dictum :- 

~ f ~ F h ? r r @ r n ~ l  
'@m q.qiT41~4 ?& y.w& 11 

(i.e. whatever is consistent with right reasoning should be 
accepted, even though it comes from a boy or even from a 
Parrot; and whatever is inconsistent therewith ought to be 



( lr 1 

rejected, although emanating from an old man or even from the 
great sage Shree Shuka himself. 

In other words, we are called upon to enter on such a 
scientific quest as this, by divesting our minds of all 

I pre-conceived notions, keeping our minds ever open and, in all 
humility (as humility alone behoves and befits the real seeker 
after truth), welcoming the light of knowledge from whatever 
direction it may be forthcoming. Nay, our scriptures go 80 far 
as to inculcate that even thir expositions should be looked upon 
by us not as "teachings" or even as advice, guidance etc. but 
as acts of "thinking &loud" by a fellow student. 

It is in this spirit and from this view-point that we now 
address ourselvee to the task before us, in this series of volumwl 
{i.e. a sincere exposition of the mathematical Siitraa under 
discussion, with what we may call our "running comments" 
(just as in a blackboard demonstration or a magic lantern 
lecture or a cricket match etc. etc.). 

In conclusion, we appeal to our readers (as we always, 
appeal to our hearers) to respond hereto from the same stand- 
point and in the same spirit as we have just hereinabove 
described. 

We may also add that, inasmuch as we have since long 
promised to make these volumesa "self-contained", we shall 
make our explanations and expositions as full and clear as 
possible. Brevity may be the soul of wit ; but certainly not at 
the expense of CLARITY (and especially in mathematical 
treatises like these). 

II a nq vq II 

i 

-- - 

i 
', Unfortunately, only one volume has been left over by His Holiness. 
-Editor. 

ACTUAE APPLICATIONS 
OF 

THE VEDIC SDTRAS 
TO 

CONCRETE MATHEMATICAL PROBLEMS 
CHAPTER I 

A SPECTACULAR ILLUSTRATION 
For the reasons just explained immediately hereinbefore 

let us take the question of the CONVERSION of Vulgar fractions 
into their equivalent decimal form. 
First Example : 
Case 1. And there, let us first deal with the case of a fraction 

1/19 I (say 1/19] whose denominator ends in 9. 

By the Current Method. By the Vedic one-line mental 
19)1.00(.0 5 2 6 3 1 5 7 8 method. 

95 (9 4 7 3 6 8 4 2 i I A. First method. -- 

B. Second method. 

57 76 152 A=. 6 5 2 6 3 1 5 7 8/94736842; -- -- -- 
I 1 1 1 1 1 1  1 1 1  30 140 

19 133 This is the whole working. 
--- -- And the modus operandi is 

110 70 40 explained in the next few pages. 
95 57 38 



It is thus apparent that the 18-digit recurring-decimal 
anwer requires 18 steps of working according to the current 
system but only one by $he Vedic Method. 

1 Explanation : 
I The relevant Sfitra reads : $h (Eksdhikena 
I p w e p a )  which, rendered into English, simply says : "BY 

nore than the previous one". Its application and modus 
I operandi are as follows :- 
I 

(i) The last digit of the denominator in this case being 
I and the previous one being 1, "one more than the 
previous one" evidently means 2. 

(ii) And the preposition "by" (in the Sfitra) indicates 
that the arithmetical operation prescribed is either 
multiplication or division. For, in the case of 
addition and subtraction, to and from (respectively) 
would have been the appropriate preposition to use. 
But "by" is the preposition actually found used in the 
Sfitra. The inference is therefore obvious that 
either multiplication or division must be enjoined. 
And, as both the meanings are perfectly correct and 
equally tenable (according to grammar and literary 
usage) and as there is no reason-in or from the text- 

1 for one of the meanings being accepted and the other 
one rejected, it  further follows that both the processes 
are actually meant. And, as a matter of fact, each 
of them actually serves the purpose of the Siitra and 
fits right into it (as we shall presently show, in the 
immediately following explanation of the modus 
opwandi which enables us to arrlve at  the right 
answer by either operation). 

A. The First method: 

The first method is by means of multiplication by 2 

(which is the "Ekidhika Pfirva" i.e. the number which is just 
one more than the penultimate digit in this case). 

Here, for reasons which will become clear presently, 
" .  

we can know beforehand that the last digif of Che answer is 
bound to be 1 ! For, the relevant rule hereon (which wc shall 
explain and dxpound at  a later stage) stipulates that the product 
of the last digit of the denomirrator and the last digit of the 
de~imal equivalent of the fraction in question must invariablv 
end in 9. Therefore, as the last digit of the denominator in this 
case is 9, it automabically follows that the last digit of the decimal 
equivalent is bound to be 1 (so that the product of the multi- 
plicand and the multiplier concerned may end in 9). 

We, therefore, start with 1 as the last (i.e. the right-hand- 
nio3t) digit of the answer and proceed leftward continuously 
multiplying by 2 (which is the EkSdhika Piirva i.e. one more 
than the penultimate digit of the denominator in this case) 
until a repetition of the whole operation stares us in the face 
and intimates to us that we are dealing with a Recurring Decimal 
and may therefore put up the usual recurring marks (dots) and 
stop further multiplication-work. 

Our modus-operandi-chart is thus as follows :- 
(i) We put down 1 as the right-hand most 

digit 1 

(ii) We multiply that last digit (1) by 2 and 
put the 2 down as the immediately 
preceding digit 2 1 

(iii) We multiply that 2 by 2 and put 4 down 
as the next previous digit 4 2 1  

(iv) We multiply that 4 by 2  and put it  
down, thus 8 4 2 1  

(v) We multiply that A by 2 and get 16 as 
the product. But this has two digits. 
We therefore put the 6 down imme- 
diately to the left of the 8  and keep the 
1 on hand to be carried over to the left 6 8 4 2 1 
at  the next step (as we always do in 1 
all multiplication e.g. of 69 X 2= 138 
and 80 on). 



(vi) We now multiply the 6 by 2, get 12 as 
the product, add thereto the 1 (kept 
to be carried over from the right a t  the 
last step), get 13 as the consolidated 
product, put the 3 down and keep the 1 
on hand for carrying over to the left 
at tho next step. 3 6 8 4 2 1  

1 1  

jvii) We then multiply the 3 by 2, add the 
one carried over from the right one, get 
7 as the consolidated product. But, 
as this is a single-digit number (with 
nothing to carry over to the left), we put 
it down as our next multiplicand. 7 3 6 8 4 2 1  

1 1  
(viii- We follow this procedure continually 

xviii) until we reach the 18th digit (counting 
leftwards from the right), when we find 
that the whole decimal has begun to 
repeat itself. We therefore put up the 
usual recurring marks (dots) on the &st 
and the last digits of the answer (for 
betokening that the whole of it  is a 
Recurring Decimal) and stop the mul- 
tiplication there. 

Our chart now reads as follows :- 

We thus find that this answer obtained by us with the 
aid of our Vedic one-line mental arit,hmetic is just exactly 
the same as we obtained by the current method (with its 18 
steps of Division-work). 

In  passing, we may a.lso just mention that tthe current 
process not only takes 18 steps of working for getting the 
18 digits of the answer not to talk of the time, the energy, 
the paper, the ink etc. consumed but also suffers under the 

additional and still more serious handicap that, a t  each step, 
a probable "trial" digit of the Quotient has to be taken on trial 
for multiplying the divisor which, is sometimes found to have 
played on us the scurvy trick of yielding a product larger than 
the divideadon hand and has thus-after trial-to be discarded 
in favour of another "trial" digit and so on. In the Vedic 
method just above propounded, however, there are no subtrac- 
tions at  all and no need for such trials, experiments etc., and no 
scope for any tricks, pranks and so on but only a straightforward 
multiplication of single-digit numbers ; and the multiplier 
is not merely a simple one but also the same throughout each 
particular operation. All this lightens, facilitates and expedites 
the work and turns the study of mathematics from a burden and 
a bore into a thing of beauty and a joy for ever (so far, a t  any 
rate, as the children are concerned). 

In this context, i t  must also be transparently clear that 
the long, tedious, cumbrous and clumsy methods of the current 
system tend to afford greater and greater scope for the children's 
making of mistakes (in the course of all the long multiplications, 
subtractions etc. involved therein) ; and once one figure goes 
wrong, the rest of the work must inevitably turn out to be an 
utter waste of time, energy and so on and engender feelings of 
fear, hatred and disgust in the children's minds. 
B. The Second method : 

As already indicated, the second method is of division 
(instead of multiplication) by .the self-same "EkHdhika Piirva", 
namely 2. And, as division is the exact opposite of 
multiplication, it  stands to reason that the operation of division 
should proceed, not from right to left (as in the case of multi- 
plioation as expounded hereinbefore) but in the exactly opposite 
direction (i.e. from left to right). And such is actually found to 
be the case. Its application and modus operandi are as follows :- 

(i) Dividing 1 (the first digit of the dividend) by 2, we 
see the quotient is zero and the remainder is 1. We, 
therefore, set 0 down as the &st digit of the quotient 
and prejis the Remainder (1) to that very digit of the 
Quotient (as a sort of reverse-procedure to the 



carrying-to-the-left process used in multiplication) 
and thus obtain 10 as our next Dividend . 0 

1 

(ii) Dividing this 10 by 2, we get 6 as the second digit 
of the quotient ; and, as there is no remainder (to be 
prefixed thereto), we take up that digit 5 itself as 
our next Dividend. 0 5 

1 

(iii) So, the next quotient--digit is 2 ; and the remainder 
is 1. We, therefore, put 2 down as the third digit 
of the quotient and prefix the remainder (I) to that 
quotient-digit (2) and thus have 12 as our next 
Dividend. . 0  5 2 

1 1  

(iv) This gives us 6 as quotient-digit and zero as 
Remainder. So, we set 6 down as the fourth digit 
of the quotient ; and as there is no remainder to 
be prefixed thereto, we take the 6 itself as our next 
digit for division. . 0 5 2 6 3 1  

1 1  1 

(v) That gives us 1 and 1 as Quotient and Remainder 
respectively. We therefore put 1 down as the 5th 
quotient-digit, prefix the 1 thereto and have 11 
as our next Dividend. 0 5 2 6 3 1 5  

1 1 1 1  

(vi-xvii) Carrying this process of straight, continuous division 
by 2, we get 2 as the 17th quotient-digit and 0 as 
remainder. 

(xviii) Dividing this 2 by 2, we get 1 as 0 5 2 6 3 1 5 7 8 
18th quotient digit and 0 as 1 1 1 1 1 1 
remainder. But this is exactly 9 4 7 3 6 8 4 2 1 
what we began with. This 1 1 1 
means that the decimal begins 
to repeat itself from here. 
So, we stop the mental- 
division process and put down 
the usual recurring symbols (dots 

on. the 1st and 18th digits) to 
show that the whole of it  is a 

I circulating decimal. 
I Note that, in the first method (i.e. of multiplication), each 

surplus digit is curried over to  the left and that, in the second 
, method (i.e, of division), each remainder is prejxed to the 
\ 

right (i.e. just immediately to  the left of the next dividend digit), 

G. A Further shmt-cut. : 
This is not all. As a matter of fact, even this much 

or rather, this little work (of mental multiplication or division) 
is not really necessary. This will be self-evident from sheer 
observation. 

Let us put down the first 9 digits of 0 5 2 6 3 1 5 7 8 
the answer in one horizontal row above 9 4 7 3 6 8 4 2 '1 
and the other 9 digits in another horizontal -------- 
row just below and observe the fun of it. 9 9 9 9 9 9 9 9 9 
We notice that each set of digits (in the 
dpper row and the lower row) totals 9. And this means that, 
when just half the work has been completed (by either of the 
Vedic one-line methods), the other half need not be obtained 
by the same process but is mechanically available to us by 
subtracting from 9 each of the digits already obtained ! And 
this nzeans a lightening of the work still fu~lher (by  50%). 

Yes; but how should one know that the task is exactly 
half-finished so that one may stop the work (of multiplication or 
division, as the case mcy be) and proceed to reel off the remain- 
ing half of the answer by subtracting from 9 each of the digits 
already obtained 1 And the answer is-as we shall demonstrate 
later on-that, in either method, if and as soon as we reach the 
difference between the numerator and the denominator (i.e. 
19-1=18), we shall have completed emctly halfthe work; and, 
with this knowledge, we know exactly when and where we may 
stop the multiplication or division work and when and where 
We can begin reeling off the complements from 9 (as the remain- 
ing digits of the answer) ! 



Thus both in the multiplication method and in the division 
method, we reach 18 when we have completed h4lf the work 
and can begin the mechanical-subtraction device (for the other 
half). 

I Details of these principles and processes and other allied 
matters, we shall go into, in due course, a t  the proper place. I n  

the meantime, the student will find it both interesting and pro- 
fitable to know this rule and turn it  into good account from time 
to time (as the occasion may demand or justify). 

Second Example : 

case I Let us now take another case of a similar type (say, 
1/29 1/29) where too the danominator ends in 9. 

By the Current method :- By the Vedic one-line 

2 9 ) 1 . 0 O C . O 3 4 4 8 2 7 5 8 6 2 0 6 8  
Mental method 

87 9  6 5  5  1 7  2 4 1  3  7 9  3 i A. First Method 

B. Second Method. 

This 'is the whole working 
(by both the processes). The 
procedures are explained on the 
next page. 

( 9 

A. Explanation of the First Method : 

Here too, the last digit of the denominator is 9 ;  but 
the penultimate one is 2  ; and one more than that means 3. 
So, 3 is our common4.e. unqorm--multiplier this time. And, 
following the samc procedure as in the case of 1/19, we put 
down, 1  as the last (i.e. the right-hand-most) digit of the answer 
and carry on the multiplication continually (leftward) by 
3  ("carrying" the left-hand extra side-digit-if any- over to 
the left) until the Recurring Decimal actually manifests itself 
as such. And we find that, by our mental one-line process, 
waget the same 28 digit-answer as we obtained by 28 steps of 
cumbrous and tedious working according to the current system, 
as shown on the left-hand side margin on the previous page. 

Our modus-operandi-chart herein reads as follows :- 

& = . 0 3 4 4 8 2 7 5 8 6 2 0 6 8  
1 1 1 2  1  

9 6 5 5 1 7 2 4 1 3 7 9 3 ;  
1 1 1  2  1  1 2 2  

1 B. Explanation of the Second Method : 

The Division-process to be adopted here is exactly 
the same as in the case of 1/19 ; but the Divisor (instead of the 
multiplier) is uniformly 3  all through. And the chart reads as 
follows :- 

C .  The Complements from Nine: 

Here too, we find that the two halves are all complements 
of each other (from 9). So, this fits in too. 

.'. & = 0 3 4 4 8 2 7 5 8 6 2 0 ~  
a 9 6 5 5 1 7 2 4 1 3 7 9 3 1  



Third Esample : 

Case 3  
1\49 1 By the currqnt system. 

( 11 

By the Vedic one-line Mental Method : 
Our multiplier or divisor (as the case may be) is now 5  

(i.e. one more than the penultimate digit). So, A. (By multi- 
plication leftward from the right) by 5, we have- 

& = . 0 2 0 4 0 8 1 6 3 2 6 5 3 0 6 1 2 2 4 4 8  

9 7 9 5 9 1 8 3 6 7 3 4 6 9 3 8 7 7 5 5 i  
3 4 2 4  4 1 3 3 1 2 3 4 1 4 3 3 2 2  

OR B. (By DIVISION rightward from the left) by 6 :- 

&=. 6 2 0 4 0 8 1 6 3 2 8 5 3 0 6  1 2 2 4 4 8  
1  2  4 3 1 1 3 2 1  3 1 1 2 2 4 4  

9 7 9 5 9 1 8 3 6 7 3 4 6 9 3 8 7 7 5 6 .  

Note:-At this point, in all the 3  processw, we find that 
we have reached 48 (the difference between the 
numerator and the denominator). This means that 
half the work (of multiplication or division, as the 
case may be) has been completed and that we may 
therefore stop that process and may begin the easy 
and mechanical process of obtaining the remaining 
digits of the answer (whose total number of digits is 
thus found to be 21+21=42). And yet, the remark- 
able thing is that the current system takes 42 steps 
of elaborate and cumbrou~ dividing (with a series of 
multiplications and subtractions and with the risk 
of the failure of one or more "trial digits" of the 
Quotient and so on) while a single, straight and 
continuous process--of multiplication or division-(by 
a single multiplier or divisor) is quite enough in the 
Vedic method. 

The complements from nine are also there. 

But this is not aI1. Our readers will doubtless be surprised 
$0 learn-but it  is an actual fact-that there are, in the Vedic 
system, still simpler and easier methods by which, without 
doing even the infinitely easy work explained hereinabove, we 
can put down digit after digit of the answer, right from the 

start to the very end. 



But, as these three examples (of ,1,, ,$, and &J) have been 
dealt with and explained at  this stage, not in the contemplated 

ARITHMETICAL COMPUTATIONS 

regular sequence but only by way of preliminary de~onstration CHAPTER I1 
for the satisfaction of a certain, natural and understandable, MULTIPLICATION (by 'Nikhilaml etc. SiLtra) 
nay, perfectly justifiable type of purely intellectual curiosity, 

Pass we now on to a systematic exposition of certain we do not propose to go-here and now-into a further detailed 
salient, interesting, important and necessary formulae of the 

and elaborate, comprehensive and exhaustive exposition of the 
utmost value and utility in connection with arithmetical 

other astounding processes found adumbrated in the Vedic 
calculations etc., beginning with the processes and methods mathematical Sctras on this particular subject. We shall 
described in the Vedic mathematical Sfitras. hold them over to be dealt with, a t  their own app~opriate place, 

in due course, in a later chapter. At this point, it will not be out of place for us to repeat 
that there is a GENERAL formula which is simple and easy 

a T T  and can be applied to all cases ; but there are also SPECIAL 
cases--or rather, types of cases-which are simpler still and 
which are, therefore, here first dealt with. 

We may also draw the attention of all students (and 
teachers) of mathematics to  the well-known and universal 
fact that, in respect of arithmetical multiplications, the usual 
present-day procedure everywhere (in schools, colleges and 
universities) is for the children (in the primary classes) to be 
told to cram up--or "get by heart"-the multiplication-tables 
(up to 16 times 16, 20x20 and so on). But, according to the 
Vedic system, the multiplication tables are not really reqllired 
above 6x 5. And a school-going pupil who knows simple 
addition and subtraction (of single-digit numbers) and the 
multiplication-table up to five times five, can improvise all 
the necessary multiplication-tables for himself a t  any time and 
om himself do all the requisite multiplications involving bigger 
multiplicands and multipliers, with the aid of the relevant 
simple Vedio formulae which enable him to get a t  the required 
products, very easily and speedily-nay, practically, imme- 
diately. The SCtras are very short ; but, once one understands 
them and the modus opeqandi inculcated therein for their 
practical application, the whole thing becomes a sort of 
children's play and ceases to be a "problem". 



1. Let us first take up a very easy and simple illustrative 
example (i.e. the multiplication of single-digit numbers above 5) 
and scc how this can be done without previous knowledge of the 
higher multiplications of the multiplication-tables. 

The Sirtra reads : f#& & m: (Nilihllam Nava- 
l takaramam Dakatah) which, literally translated, means ; 

"all from 9 and the last from 10" ! We shall give a detailed 
explanation, presently, of the meaning and applications of this 
cryptical-sounding formula. But just now, we state and 
explaln the actual procedure, step by step 

Suppose we have to multiply 9 by 7. (10) 
(i) We should take, as Base for our calcu- 9-1 

lations, that power of 10 which is nearest to  7-3 
the numbers to be multiplied. In this 613 
10 itself is that power ; -- 

(ii) Put the two numbers 9 and 7 above and below on the 
lefthand side (as shown in the working alongside 
here on the right-hand side margin) ; 

( i~i)  Subtract each of them from the base (10) and write 
down the remainders (1 and 3) on the right-hand 
side with a connecting minus sign (-) between them, 
to show that the numbers to be multiplied are both 
of them less than 10. 

(iv) The product will have two parts, one on the left side 
and one on the light. A vertical dividing line may be 
drawn for the purpose of demarcation of the two 
parts. 

(v) Now, the left-hand-side digit (or the answer) can be , , 

arrived at  ih one of 4 ways :-- 
(a) Subtract the base 10 from the sum of the given 

numbers (9 and 7 i.e. 16). And put (16-10) 
i.e. 6, as the left-hand part of 
the answer ; 9+7-10=6 

OR (b) Subtract the sum of the two defici- 
encies (1+3=4) from the base (10). 
You get the same answer (6) again ; 

10-1-3=6 

OR (c) Cross-subtract deficiency (3) on the 
second row from the original 
number (9) in the first row. 
And -you find that you have got 
(9-3) i.e. 6 again. 9-3=6 

OR (d) Cross-subtract in the converse 
way (i.e. 1 from 7). And you 
get 6 again as the left-hand side 
portion of the required answer. 7-1=6 

Note :-This availablity of the same result in several easy 
ways is a very common feature of the Vedic system 
and is of great advantage and help to the student 
(as it  enables him to test and verify the correctness 
of his answer, step by step). 

(vi) Now, vertically multiply the two deficit figures 
(1 and 3). The product is 3. And this is the right- 
hand-side portion of the answer. (10) 9-1 

(vii) Thus 9x7=63. 

This method holds good in all cases and is, therefore, 
capable of infinite application. In fact, old historical traditions 
describe this cross-subtraction process as having been res- 
ponsible for the acceptance of the x mark as the sign of 
multiplication. (10) 

6 1 3  
As further illustrations of the same rule,note the following 

examples :- 
9-1 9-1 9-1 9-1 8-2 8-2 8-2 7-3 
9-1 8-2 6-4 5-5 8-2 7-3 6-4 7-3 

, , -_-_-- -_-- - - - -  
811 712 514 415 614 516 418 419 - - - - - - - _ - - -_ - - - -  



This proves the correctness of the formula. The algebraical 
explanation for this is very simple :- 

(x-a) (x-b) = x (x-a-b)+ab. 

A slight difference, however, is noticeable when the 
vertical multiplication of the deficit digits (for obtaining the 
right-hand-side portion of the answer) yields a product con- 
sisting of more than one digit. For example, if and when we 
have to multiply 6 by 7, and write i t  down as usual :- 

7-3 
6-4 

3/12 
we notice that the required vertical multiplication (of 3 and 
4) gives us the product 12 (which consists of 2 dlgits; but, as 
our base is 10 and the right-hand-most digit is obviously of 
units, we are entitled only to one digit (on the right-hand side). 

This difficulty, however, is easily surmounted with the 
usual multiplicational rule that the surplus portion on the 
left should always be "carried" over to the left. Therefore, 
in the present case, we keep the 2 of the 12 on tjhe right hand 
side and "cairy" the 1 over to the left and change the 3 into 
4. We thus obtain 42 as the actual product of 7 and 6. 

7-3 
6-4 

A similar procedure will naturally be required in respect 
of other similar multiplications :- 

This rule of lnultiplication (by means of cross-subtraction 
for the left-hand portion and of vertical nlultiplication for the 
right-hand half), being an actual application of the absolute 
algebraic identity :-(x-Fa) (x+b)= x(x-1-a+b)+ab, can be 

extended furtJher without any limitation. Thus, as regards 
numbersof two digits each, we may nobice the following specimen 
examples :- 

N.B. The base now required is 100. 
91-9 93-7 93-7 93-7 89-11 91-9 93-7 
91-9 92-8 93-7 94-6 95- 5 96-4 97-3 

82/81 85/56 86/49 87/42 84/66 87/36 90121 

92--8 88-12 78-22 88-12 56-44 67-33 25-75 
98- 2 98- 2 97- 3 96- 4 98- 2 97- 3 99- I 

----------------------------- 
90116 86/24 75/66 84/48 64/88 64/99 24/75 

Note 1 :-In all these cases, note that both the cross-sub- 
tractions always give the same remainder (for t,lle 
left-hand-side portioq of the-answer). 

Note 2 :--,Here too, note that the vertical multiplication (for 
the right-hand side portion of the product) may, in 
some cases, yield a more-than-two-digit product ; 
but, with 100 as our base, we can have only two 
digits on the right-hand side. We should therefore 
adopt the same method as before (i.e. keep the 
*errnissible two digits on the right-hand side and 
"carry" the surplus or extra digit over to the left) 
(as in the case of ordinary addition, compound 
addition etc.) Thus- 

88-12 88-12 25-75 
88-12 91- 9 98- 2 ..................... 
76/,44=77/44 79/,08=80/08 23/,50-24/50 --------- 

Note :-Also, how the meaning of the Slitra comes out in all 
the exaruples just above dealt with and tells us how 
to write down immediately the deficit figures on the 

side. The rule is that 2111 the other digits 
(of the given original nunlbers) are to be subtracted 
from 9 but the last (i.e. the right hand-rr~ost one) 

3 



should be deducted from 10. Thus, if 63 be the 
given number, the deficit (from the base)' is 37 ; and 
so on. This process helps us in the work of ready 
on-sight subtraction and enables us to put the deficiency 
down immediately. 

A new point has now to be taken into consideration i.e. 
that, just as the process of Gertical muftiplication may yield 
a larger number of digits in the product than is permissible 
(and this contingency has been provided for), so, i t  may similarly 
yield a product consisting of a smaller number of digits than we 
are entitled to. What is the remedy herefore '2 Well, this 
colltingency too has been provided for. And the remedy is-as 
in the case of decimal multiplications-merely the filling up of 
all such vacancies with Zeroes. Thus, 

99-1 98-2 96-4 97-3 
97-3 99-1 98-2 97-3 

With these 3 procedures (for meeting the 3 possible 
contingencies in question i.e. of normal, abnormal and sub- 
normal number of digits in the vertical-multiplication-products) 
and with the aid of the subtraction-rule (i.e. of all the digits from 
9 and the last one from 10, for writing down the amount of the 
deficiency from the base), we can extend this multiplication-rule 
to numbers consisting of a larger number of digits, thus- 

888-112 879-121 697-303 598-402 
998-002 999-001 997-003 998-002 

I Yes; but, in all these cases, the multiplicand and the 
multiplier are just a little below a certain power of ten (taken 
as the base). What about numbers which are above it  P 

3 And the answer is that the sa.me procedure will hold good 
there too, except that, instead of cross-subtracting, we shall have 
to cross-add. And all the other rules (regarding digit-surplus, 
digit-deficit etc.,) will be exactly the same as before. Thus, 

12+2 13+3 11+1 16+6 18+8 108+8 111+11 
11+1 12+2 15+5 11+1 11+1 108+8 109+9 

I In  passing, the algebraical principle involved may be 
explained as follows :-- 

( ~ + a )  (x+b)=x(x+a+b)+ab. 

I Yes; but if one of the numbers is above and the other 
is below a power of 10 (the base taken), what then ? 

The answer is that the plus and the niinus will. on multi- 
plication, behave as they always do and produce a nunua-product 
and that the right-hand portion (obtained by vertical multi- 



I plication) will therefore have to be subtracted. A vinculum 

I 
may be used for making this clear. Thus, 
12+2 108+8 107+7 l02+2 
8-2 97-3 93-7 98-2 
-- --- --- --- 

I 10fi=96 105/==104/76 100/T9=99/51 100/F4=99/96 

Note:-Note that even the subtraction of the vinculum- 
portion may be easily done with the aid of the Slitra 
under discussion (i.e. all from 9 and tho last from 10). 

I Multiples and sub-multiples : 
Yes ; but, in all these cases, we find both the multiplicand 

and the multiplier, or a t  least one of them, very near the base 
taken (in each case) ; and this gives us a small mnltiplier and 
thus renclers the multiplication very easy. What about the 

I multiplication of two numbers, neither of which is near a con- 
venient base ? 

Thc needed solution for this purpose is furnished by a 
small 'Upaslitra' (or sub-formula) which is so-called because 
of its practically axiomatic character. 

This sub-shtra consists of only one word 
(Anurtpyena) which simply means "Proportionately". In 
actual application, i t  connotes that, in,all cases where there 
is a rational ratio-wise relationship, the ratio should be taken 
into account and should lead to a proportionate multiplication 
or division as the case may be. 

In other words, when neither the multiplicand nor the 
multiplier is bufficiently near a convenient power of 10 (which 
can suitably serve us as a base), we can take a convenient mul- 

tiple or sub-multiple of a suitable base, as our "Working Base", 
perform the necessary operation with its aid and then multiply 
or divide the result proportionately (i.e. in the same proportion 
as the original base may bear to the working base actually used 
by us). A concrete illustration will make the modus operandi 
clear. 

Suppose we have to multiply 41 by 41. Both these numbers 
are so far away from the base 100 that by our adopting that 
as our actual base, we shall get 59 and 59 as the deficiency from 
the base. And thus the consequent vertical multiplication 
of 59 by 59 would prove too cumbrous a process to be per- 
missible under the Vedic system and will be positively inad- 
missible. 

We therefore, accept 100 merely as a theoretical base and 
take sub-multiple 50 (which is conveniently near 41 and 41) 
as our working basis, work the sum up accordingly and then 
do the proportionate multiplication or division, for getting 
the correct answer. 

Our chart will then take this shape :- 
- loo 2 = 50 

(i) We take 50 as our working base. 41-9 . . 
(ii) By cross-subtraction, we get 32 on 41-9 

the left-hand side. --- 
2)32/81 

(iii) As 50 is a half of 100, we therekre 
divide 32 by 2 and put 16 down as the 
real left-hand-side portion of the 
answer. 

(iv) The right-hand-side portion (81) 
remains un-affected. 

(v) The answer therefore is 1681. 

OR, secondly, instead of taking 100 
as our theoretical base and its half (50) 



I as our working base (and dividing 10X5=50 
32 by 2), we may take 10, as our -- 
theoretical base and its multiple 50 as 41-9 
our working base and ultimately 41-9 
multiply 32 by 5 and get 160 for the - 
left-hand side. And as 10 was our 32 / 

X 518 theoretical base and we are therefore 
entitled to only one digit on the right l60/ 1-1681 

8 -  
hand side, we retain 1 (of the 81) on 
the right hand side, "carry" the 8 (of the 81) over 
to the left, add it to the 160 already there and thus 
obtain 168 as our left-hand-side portion of the answer. 
The product of 41 and 41 is thus found to be 1681 
(the same as we got by the first method). 

OR, thirdly, instead of taking 100 or 10 as our theoretical 
base and 50 (a sub-multiple or multiple thereof) as 
our working base, we may take 10 and 40 as the bases 
respectively and work at  the multiplication as shorn 
(on the margin) here. And we find lOx4=40 
that the product is 1681 (the same as 41+1 
we obtained by the first and the second 4l+ l  
methods). 

16811 

Thus, as we get the same answer (1681) by all the three 
methods ; we have option to decide-according to our own 
convenience-what theoretical base and what working base 
we shall select for ourselves. 

As regards the principle underlying and the reason behind 
the vertical-multiplication operation (on the right-hand-side) 
remaining unaffected and not having to bc multiplied or 
divided "proportionately" a very simple' illustration will suffice 
to make this clear. 

Suppose we have to divide 66 successively by 2, 4, 8, 16, 
32 and 64 (which bear a certain internal ratio or ratios among 
themselves). We may write down our table of answers as 
follows :- 

and 

66 1 
=2L 32 ; and 64= - 1- 64 R is mstattt. 

I We notice that, as the denominator 6.e. the divisor) goes 
on increasing in a certain ratio, the quotient goes on decreasmng, 

I proportionately ; but the reminder remains constant. And this 
is why it is rightly called the reminder (M m: 11). 

The following additional examples will serve to illustrate 
the principle and process of ailp6~ (i.e. the selecting of a 
multiple or sub-multiple as our working base and doing the 
multiplication work in this way). 

(2) OR 49 x 49 

Workiwg Base 100/2=60 Working Base 10 x 5=50 
49-1 49- 1 
48-1 49- 1 

-- 
48 / I  

-- x 5 1  
-- 
240 / 1 
--- 

(4) OR 46x 46 

Working Base 100/2=50 Workiwg Base 10 ~ 5 = 5 0  
40-4 46-4 
48-4 46-4 -- -- 

42 116 
--- x E l  

210 / 16=211/6 



(6) 46 X44 
Working Base 10 x 5=50 

46-4 
44-6 
-- 

I 40 / 24 
x 5  / 
200 / ,4 

= 202 / 4 -- -- 
(7) 59 x 5 9  

Worki~lg Base 10 x 6=60 

- 
(9)  OR 59 x 59 

Working Base 100/2=50 
69+9 
59+9 

-- -- 

(11) 54x46  
Working Base 1 0 ~  5=50 

54+4 
46-4 

(6) OR 46x44 
Working Base 100/2=50 

46-4 
44-6 

- 
(8) OR 59 x 59 

Working Base 10 x 5=50 

348 / 1 
-- - 
(10) 23x23 

Working Base lox 2=20 
23+3 
23+3 
-- 

26 / 9  
x 2 

52 / 9  ------------- 
(12) OR 5 4 x  46 

Working Base 100/2=50 
54+4 
46-4 

(13) 19X 19 
Working Base lox 2=20 

19-1 
19-1 

(14) OR 19x19 
Working Base lox 1 

19+9 
19+9 

I (15) 62x  48 (16) OR 62x48 
Working: Base 10 x 4=40 Workiw Base lox 6=60 

(17) OR 62x48 
Working Base lox 5=50 

62+12 
48- 2 

601- 24 
X 5 

3001-24 
-291 76 

(18) OR 62 X 48 
Working Base 100/2=50 

62+12 
48- 2 -- 

2) 601-24 -- 
301-24 

= 291 76 

- -------- -- 
(19) 23x21  (20) OR 23x21  

Working Base lox 3=30 Working Baee lox 2=20 
23-7 23+3 
21 -9 21+1 

14/63 24 / 3 
X 3 -- x 2  / -- 



Worki~g'Base 1000/4=260 Working Base lox 5=50 

(23) OR 48 x 49 

Working Baee 100/2=60 
48-2 

I 
49-1 

I Note:-Here 47 being odd, its division by 2 gives us a 
fractional quotient 234 and that, just as half a rupee 
or half a pound or half a dollar is taken over to the 
right-hand-side (as 8 annas or 10 shillings or 60 cents), 
so the half here (in the 234) is taken over to the right- 
hand-side (as 60). So, the answer is 23/62. 

The following additional (worked out) examples will serve 
to further elucidate the principle and process of multiplication 
according to the Vedic Siitra ('Nikhilad etc) and facilitate the 
student's practiceond application thereof :- 

-------- -- 
(24) a49 x 24s (25) 229 x 230 -894 / 01 ---- --____-_ 

Working Base 1000/4=260 Workin@( Base 1000/4=260 
229-21 249-1 

(8) 128 X 672 
W. B. 100X 7=700 W. B. 100X7=700 

246-4 230-20 687-13 128- 672 
699- 1 672- 28 

4)246 1004 4)209 / 420 -- 
l o o /  16 

61&/004 621 / 420 -- x 7  1 ,,, 
=ti11264 =a21670 -4802 / 13 

700 l ~ a o l e  
No& :-In the above two cases, the f on the left hand side ie -- 

carried over to the right hand (as 250). =860 / 16 



=251 / 104 
___.__----------- 

202-1276 

(16) 3998 X 4998 
=ZOO / 724 

(15) 235x247 --_-____- 
w. B. 1000/4=250 W. B. 10000/2=5000 

3998-1002 Note :-Most of these examples are quite easy, in fact much 
235- 16 
247- 3 4998- 2 easier-by the 3;df?r&nrrq ( U ~ d 1 ~ v a - T i r ~ a ~ b I ~ ~ c i r n )  Stitra 
--- ----- which is to be expounded in the next chapter. They 
4) 232 1 045 2) 3996 1 2004 - have been included here, merely for demonstrating 

=I998 / 2004 that they too can be solved by the 'Nikhilarit' Szltra 
~ 5 8  / 045 _ _ _ _ _ _ _ _ _ _  _____-------- expounded in this chapter. 



But before we actually take up the 'Ordhva-Tir~aF 

formula and explain its modus oparandi for multiplication, we 
shall just now explain a few corollaxies which arise out of the 
'Nikhilah' Siitra which is the subject-matter of this chapter. 

The Pirst Corollary : 
The first corollary naturally arising out of the 

'Nikhi1a7n1 Siitra reads as follows :- 5- * 
M. II which means :-"whatever the extent of its deficiency, 
lessen it  still further to that very extent ; and also set up the 
square (of that deficiency)". 

This evidently deals with tho squaring of numbers. A 
few elementary examples will suffice to make its meaning and 
application clear :- 

Suppose we have to find the square of 9. The following 
will be the successive stages in our (mental) working :- 

(i) We should take up the nearest power of 10 (i. e. 10 
itself) as our base. 

(ii) As 9 is 1 less than 10, we should decrease it still 
further by 1 and sct it (the 8) down as our left-side 
portion of the answer. 81 

(iii) And, on the right hand, we put down 
the square of that deficiency (la) 811 

(iv) Thus Q4=81 9-1 
9-1 - 
8 1 1  - 

Now, let us take up the case of 88  AS 
8 is 2 less than lo, we lessen it still 
further by 2 and get 8-2 (i. e. 6) for the 6/ 

left-hand and putting 22 (=4) on the 614 
8-2 

right-hand side, we say 8%=64 8-2 - 

In exactly the same manner, we say 
6 1 4  

7-3 
72=(7--3) / 32-4/9 7-3 
62=(6-4) and 42=2/16=3/6 

- 

4 1 9  
52-(5-8) and 5%-0/,5=25; and so on 

Yes ; but what about numbers above 10 ? We work 
exactly as before ; but, instead of reducing still further by the 
deficit, we increase the number still further by the surplus 
and say :- 

112=(11+1) /12=12/1 11+1 
11+1 

la2=(12+2) /2'=14/4 12 / 1 - 
132=(13+3) /3'=16/9 
142=(14+4) /42=18/16=19/6 
1b2=(15+5) /52=20/25=225 10+9 

19+9 
192=(19+9) /g2=28/,1=361 ; and so on. 28/,1=361. 

And then, extending the same rule to numbers of two or 
more digits, we proceed further and say :- 

1 The Algebraical Explanation for this is as follows :- 
(a+ b)2=a2~2ab+b2 
.~.97"(loo-3)z=loooo-600+9=94/09 ; 
922=(100-8)2=10000-1600+64=84/64 ; 
1082=(100f 8)"100OOf 1600+64=116/64; and so on 

A Second Algebraical Explanation is as follows :- 

aa-bz=(a+ b) (a-b) 
.-.ae=(a+b) (a-b)+ba 

So, if we have to obtain the square of any number (a), 
we can add any number (b) to it, subtract the same number 
(b) from it and multiply the two and finally add the square 
of that number (b) (on the right hand side). Thus, if 97 has 



to be squared, we should select such a number (b) as will, by 
addition or by subtraction, give us a number ending in a zero 
(or zeros) and thereby lightcn the multi-multiplication work. 
In the present case, if our (b) be 3, a+b will become 100 and 

I 
a-b will become 94. Their product is 9400 ; and bZ=9 

I :.972=94/09. This proves the Corollary. 

Similarly, 92a=(92+ 8) (92-8)f 64=84/64 ; 
93'=(93+7) (93-7)$-49=86/49 ; 
9882=(988+12) (988-12)+144-=976/144 ; 
1082=(108+8) (108-8)+ 64=116/64 ; aqd so on. 

I The Third Algebraieal Explanation is based on the Nikhilavi 
Sctra and has been indicated already. 

The following additional sample-exalnples will further 
serve to enlighten the student (on this Corollary) :- 

(1) 1g2 OR (2) 1gZ (3) 2g2 
19+9 19-1 29+9 
19+9 19-1 
--- --- 29+9 --- 
28/81 181 1 --- 38 181 

x 2 x 2 
=36 / 1 --- --- 

=36 / 1 =84 / 1 

Note :--All the cases dealt with hereinabove are doubtless of 
numbers just a little below or just a little above a 
power of ten or of a multiple or sub-multiple thereof. 
This corollary is specially suited for the squaring of 
such numbers. Seemingly more complex and "diffi- 
cult" cases will be taken up in the next chapter 
(relating to the Ordhva-15iryak Sntra) ; and still 
most "difficult" will be explained in a still later 
chapter (dealing with the squaring, cubing etc., of 
bigger numbers). 

The Second Cwollary. 

The second corollary is applicable only to a special case 
under the first corollary (i. e. the squaring of numbers ending 
in 6 and other cognate numbers). Its wording is exactly the 
same as that of the Sfitra which we used at  the outset for the 
conversion of vulgar fractions into their recurring decimal 
equivalents (i. e. @). The Siitra now takes a totally 
different meaning altogether and, in fact, relates to a wholly 
different set-up and context altogether. 

8 



I ( 34 1 

Its literal meaning is the same as before (i. e. "by one 
more than the previous one") ; but it now relates to the 
squaring of numbers ending in 5 (e. g. say, 15). 

11 5 
Here, the last digit is 5 ; and the "previous" one -- 
is 1. 80, one more than that is 2. Now, the Sfitra 2/25 
in this context tells us to multiply the previous - 

i &it (1) by one more than itself (i. by 2), So the 
left-hand side digit is 1 x 2 ; and the right-hand 
ade is the vertical-multiplication-product (i. e. 
86) as usual. 

'thus 15'=1 X 2/25=2/25. 

Similarly, 2 5 ' = 2 ~  3/25=6/25 ; 
352=3~4/25=12/25 ; 
4 5 * = 4 ~  5/25=20/25 ; 
55'=5 X 6/25=30/25 ; 
65a=6 x 7/25=42/25 ; 
75a=7 ,: 8/25=56/25 ; 
852=8X 9/25=72/25 ; 
952=9 X 10/25=90/25 ; 

1 0 5 2 = 1 0 ~  11/25=110/25 ; 
1152=11 X 12/25=132/25 ; 
1252=156/25 ; 135'=182/25 ; 1458=210/25 ; 
1552=240/25 ; 16ba=272/25 ; 1752=306/% ; 
185'=342/25 ; 195'=380/25 ; and so on. 

The Algebraical Explamtion is quite simple and follows 
straight-away from the Nikhilad S a r a  and still more so from 
the Ordhva-Tiyak formula to be explained in the next 
chapter (q.v.). 

A sub-corollary to this Corollay (relating to the squaring 
of numbers ending in 5) reads : awmX+fi (Antyayw- 
Daiake'pi) and tells us that the above rule is applicable 
riot only to the squaring of a number ending in 5 but also to the 
multiplication of two numbers whose last digits together total 
10 and whose previous part is exactly the same. 

For example, if the numbers to be multiplied are not 25 
and 25, but, say 27 and 23 [whose last digits i.e. 7 & 3 together 
total 10 and whose previous part is the same namely 21, even 
then the same rule will apply (i. e, that the 2 should be multi- 
plied by 3 the next higher number. Thus we have F as our 
left-hand part of the answer ; and the right-hand one is, by 
vertical multiplication (as usual) 

7X3=21. Andso27~23=6/21.  27 
23 - 

=6/2l  -- 
We can proceed further on the same lines and say :- 
9 6 ~  94=90/24 ; 97X93=90/21 ; 9 8 ~  92=90/16 ; 
99~91=90 /09  ; 37X33=12/21 ; 7 9 ~ 7 1 = 5 6 / 0 9  ; 
87~83=72 /21  ; 114x116=132/24 ; and so on 

This sub-corollary too is based on the same Nikhilam Sfitra ; 
and harder examples thereof will more appropriately come under 
the Ordhva-Tiryak formula of the next chapter (or the still later 
chapter on more difficult squarings and cubings). 

At this point, however, it may just be polnted out that 
the above rulc is capable of further application and come in 
handy, for the multiplication of numbers whose last digits (in 
sets of 2,3 and so on) together total 100, 1000 etc. For 

example- 
191 x 109=20/819 
7 9 3 ~  707=560/651 

884 X 816=720/,344=721/344. 

N .  B.--Note the added zero at  the end of the left-hand-side of 
the answer. 

The Third Corollary : 

Then comes a Third Corollary to the Nikhila* Sfitra, 
which relates to a very special type of multiplication and which 
is not frequently in renuisition elsewhere but is often required 
in mathematical astronomy etc. The wording of the sub- 
stbra (corollary) y e  $JI (Ekanyanena Pi i rvm) sounds as 



if it were the converse of the Ekidhika Sfitra . It actually is ; 
and it relates to and provides foi. multiplications wherein the 
multiplier-digits consist entirely of nines. I t  comes up under 
three different headings as follows :- 

The F'irst case . 
The annexed table of products produced by the single- 

digit multiplier 9 gives us the necessary clue to an under- 
standing of the Sttra :- 

/ I We observe that the left-hand-side is invariably 
1 one less than the multiplicand and that the 

g X  2=1 1 I right-sidedigit is merely the complement of the 
:," 1 1 left-handside d i ~ i t  from 9.  And this tells us 
9X 5=4 5 1 whhat to do to g e t  both the portions of the 
9 X  6=5 4 
g X 7=6 3 1 product. 
9 X  8=7 2 The word 'Ptirza' in this context has another 
9 x  9=8 i l l  technico-termint logical usage and simply means 

the "multip~cand" (wh'ile the word 'A~ara' 

The meaning of the sub-corollary thus fits in smoothly 
into its context i. e. that the multiplicand has to be 
decreased by 1 ; and as for the right-hand side, that is 
mechanically available by the subtraction of the left-hand- 
side from 9 (which is practically a direct application 6f the 
N i k h i h h  Fiitra). 

As regards multiplicands and multipliers of 2 digits each, 
we have the following table of products :- 

11 X99=10 89 =(11-1)/99-(11-1)=1089 
12X99=l l  88 
13X99=12 87 
14X99=13 86 
15X99=14 85 
16X99=15 84 
17X99=16 83 
18X99=17 82 
lOX99=18 81 
20X99=19 80 

And this table shows that the rule holds good here too. 
And by similar continued observation, we find that it is 
uniformly applicable to all cases, where the multiplicand and 
the multiplier consist of the same number of digits. In fact, 
it is a simple application of the Nikhilah Stitra and is bound 
to apply. 

7- 3  77- 23 979-021 
9-1 1 99- 1 1 999- 1 1 
6 13  76 / 23 978 / 021 

We are thus enabled to apply the rule to all such cases 
and say, for example :- 

1203579 
9999999 -- 

Such multiplications (involving multipliers of this special 
type) come up in advanced astronomy etc ; and this sub- 
formula (EkanyCnem Ptirveva) is of immense utility therein. 

The Second Case : 

The second case falling under this category is one wherein 
the multiplicand consists of a smaller number of digits than the 
mulbiplier. This, however, is easy enough to handle ; and all 
that is necessarv is to fill the blank (on the left) in with the 
required number of zeroes and proceed exactly as before and 
then leave the zeroes out. Thus- 

7 79 

- --_- ______---- 



The Third Case : 
(To be omitted during a first reading) . 

The third case coming under this heading is one where 1 the multiplier contains a smaller number of digits than the 
I multiplicand. Careful observation and study of the relevant 

table of products gives us the necessary clue and helps US to 
I '  understand the correct application of the Siitra to this kind of 

examples. 

Column 1 
I1 x 9 =  9 9 
12X9=10 8 
1 3 X 9 = l l  7 
14x9=12 6 
1 5 ~ 9 = 1 3  5 
10x9=14 4 
1 7 ~ 9 = 1 5  3 
18X9=16 2 
19x9=17 1 
20x9=18 0 

Column 2 
21X9=18 9 
22x9=19 8 
23X9=20 7 
2 4 ~ 9 = 2 1  6 
25x9-22 5 
26X9=23 4 
27x9=24 3 
28x9=25 2 
29X9=26 1 
30X9=27 0 

Column 3 
3 7 x  9=33/3 
46x9=41/4 
55 x9=49/5 
a4 x 9=57le 
73 X 9=65/7 
82X 9=73/R 
91 ~ 9 = = 8 1 / 9  
and so on 

We note here that, in the first column of products where 
the multiplicand starts with 1 as its first digit the left-hand- 
side part (of the product) is uniformly 2 less than the multi- 
I,licand ; that, in the second column (where the multiplicand 
begins with 2,) the left-hand side part of the product is exactly 
3 less ; and that, in the third column (of miscellaneous &st- 
digits) the difference between the multiplicand and the left- 
hand portion of the product is invariable one more than the 
excess portion to the extreme left of the dividend. 

The procedure applicable in this case is therefore evidently 
as follows :- 

(i) Divide the multiplicand off by a vertical line-into 
a right-hand portion consisting of as many digib as 
the multiplier ; and subtract from the lnultiplicand 
one more than the whole excess portion (on the left). 
This gives us the left-hand-side portion of the product. 

OR take the Ekanyam and subtract therefrom the 
previous (i. e. the excess) portion on the left ; and 

(ii) Subtract the right-hand-side part of the multiplicand 
by the Nikhilarit rule. This will give you the right- 
hand-side of the product. 

The following examples will make the procese clear :- 
(1) 43 X 9  (2) 63 X 9  (3) 122 x 9 

4 :  3 :  6 :  3 :  1 2 : 2 :  
: - 5 : 3  : - 7 : 3  - 1 : 3 : 2  

-- p- ---- 



MULTIPLICATION 

(by ordhva-Ti ?ak Sfitra) 

Having dealt in fairly sufficient detail with the application 
of the NikhilatriL Satra etc., to special cases of multiplication, we 
now proceed to deal with the Mmcir*mq: (Drdhua Tiryagbhycimj 
Sutra which is the General Formula applicable to all cases of 
multiplication (and will also be found very useful, later on, 
in the division of a large number by another large number). 

The formula itself is very short and terse, consisting of 
only one compound word and means "vcrtically and cross- 
wise". The applications of this brief and terse SCltra are 
nlarlifola (as will be seen again and again, later on). First we 
take it up in its most elementary application (namely, to Multi- 
plication in general). 

A silnple example will suffice to clarify the modus 
operandi thereof. Suppose we have to multiply 12 by 13. 

(i) We multiply the left-hand-most 12 
digit (1) of the multiplicand verti- 13 
cally by the left-hand-most digit -- 
(1) of the multiplier, get their i : 3+2 : 6=166 
product (1) and set it down as the -- 
left-hand-most part of the answer. 

(ii) We then multiply 1  and 3, and 1 and 2  cross-wise, 
add the two, get 5 as the sumland set it dow~i as the 
middle part of the answer ; and 

(iii) We multiply 2 and 3  vertically, gct 6  as their product 
and put it  down as the last (the right-hand-most,) 
part of the answer. 

Thus l2X13=166. 

A few other examples may also be tested and will be 
found to be correct :- 

-- 
1 : 1 + 2 : 2  1 : 1 + 6 : 6  2 : 8 + 1 : 4  
=I32 =I76 =294 .- 

(4)  23 (5) 41 
21 41 
- --- 
4 : 2 + 6 : 3  1 6 : 4 + 4 : 1  
=483 =I681 

_ _ _ I - -  

Note :-When one of the results contains more than 1  digit, 
the right-hand-most digit thereof is to be put down 
there and the preceding (i. e. left-hand-side) digit (or 
digits) should be carried over to the left and placed 
under the previous digit (or digits) of the upper row 
until sufficient practice has been achieved for this 
operation to be performed mentally. The digits carried 
over may be shown in the working (as illustrated 
below) :- 

The Algebraical ptinciple involved is as follows :- 
Suppose we have to multiply (ax+b) by (cx+d). The 

product is acxa+x (ad+bc)+bd. I n  other words, the first term 
(i. e. the coefficient of xy is got by vertical multiplication of a 
and c ; the middle term (i. e. the coefficient of x) is obtained 
by the cross-wise multiplication of a and d and of b and e and 
the addition of the two products ; and the independent term 
is arrived at  by vertical multiplication of the absolute terms. 
And, as all arithmetical numbers are merely algebraic expres- 



( 42 ) 

sions in x (with ~ = 1 0 ) ,  the algebraic principle explained above 

is readily applicable to arithmetical numbers too. Now, if our 
multiplicand and multiplier be of 3 digits each, it merely 
means that we are multiplying (axa+bx+c) by (dxa+ex+f) 
(where x=10) :- 

axa+bx+c 
dxa+ex+f 

adx4+x3 (ae+bd)+xa (af+be+cd)+x (bf+ce)+cf 

We observe here the following facts :- 

(i) that the coefficient of x4 is got by the vertical multi- 
plication of the first digit (from the left side) ; 

(ii) that the coefficient of x3is got by the cross-wise 
multiplication of the first two digits and by the 
addition of the two products ; 

(iii) that the coefficient of xa is obtained by the multi- 
plication of the first digit of the multiplicand by the 
last digit of the multiplier, of the middle one by the 
middle one and of the last one by the first one and by 
the addition of all the 3 products ; 

(iv) that the coefficient of x is' obtained by the cross- 
wise multiplication of the second digit by the third 
one and conversely and by the addition of the two 
products ; and 

(v) that the independent term results from the vertical 
multiplication of the last digit by the last digit. 

We thus follow a process of ascent and of descent (going 
forward with the digits on the upper row and coming rearward 
with the digits on the lower row). If and when this principle 
(of ordinag Algebraic multiplication) is properly understood 
and carefiilly applied to the Arithmetical multiplication on 
hand (where x stands for lo ) ,  the Ordhva Tiryak SGtra may be 
deemed to have been successfully mastered in actual practice. 

A few illustrations will serve to illustrate this Urdhm- 
Tiryak process of vertical and cross-wise multiplications :- 
(1) 111 (2) 108 (3) 109 

111 108 111 
--- --A - ---- 
12321 10 60 4 11 099 

1 6  1 

1 3 2 2 4  13 45 6 13 4 4 42 
- -_-__- __ __-___-__ __-- --___-- 
(7) 532 (8)  785 (9) 321 

472 362 52 
----- ------ --- 
20 7 9 04 2 1 6 7 6 0  0 5 692 

4 3 2 6 7 4 1  1 1  
----- ---- --- 

25 1 1 04 2 8 4 1 7 0  1 6 692 
___-_____ ----- 
( lo )  795 (11) 1021 (12) 621 

362 2103 547 ----- ------ 
2 1 9 3 8 0  2147163 30 4 5 87 

6 8 4 1  3 5 1 
---- ---- 
2 8 7 7 9 0  33 9 6 87 

---- 
(13) 6471 (14) 8 7 2 6 5 

6212 3 2 1 1 7  
- -------- 

36 6 6 6 752 2 4 7 8 7 2 7 5 7 5  
3 5 3 1 1  3 2 3 9 6 2 4 3  

--- ---- - ---- ---- --- 
40 1 9 7 852 

. . - - - - 
2 8 0 2 6 9 0 0 0 5  - -- 

N.B.-It need hardly be mentioned that we can carry out this 
(Urdhva-Tzryak) process of multiplication from left to 
right or from right to left (as we prefer). All the diffe- 



rence will be that, in the former case, two-line multip- 
lication will be necessary (at least mentally) while, in 
the latter case, one-line multiplication will suffice., (but 
careful practice is necessary). 

Owing to their relevancy k~ this context, a few Algebraic 
examples (of the Ordhva-Tkryak type) are being given. 

(1) a+b 
a+9b 

Note :-If and when a power of x is absent, it should be 
given a zero coefficient ; and the work should be 
proceeded with exactly as before. For example, for 
( 7 ~ ~ + 5 ~ + 1 ) ( 3 ~ ~ + ~ ~ + 3 ) ,  we work as follows :- 
7xa+0+5x+1 
3x8+x8+O+3 

The use of the Vi'inculum : 
It may, in general, be stated that multiplicatiom by digits 

higher than 5 may some times be facilitated by the use of the 
vincuh~m. The follbwing example will illustrate this :- 
(1) 576 (2) OR 6 z  : But the vinculum process is 

214 214 : one which the student must 
-- : very carefully ~ractise, before 
109944 122g6 : he resorts to it and relies 

1332 4111 : on it. - 
123264 123264 : - 

Mi,~cellaneous Examples : 
There being so many methods of multiplication one of them 

(the Ordhva-Tiryak one) being perfectly general and therefore 
applicable to all cases and the others (the Nikhilam one, the 
YcivadC~rn etc.) being of use in certain special cases only, it is 
for the student to think of and weigh all the possible alternative 
processes available, make up his mind as to the simplest method 
in each particular case and apply the formula prescribed therefor. 

We now conclude this chapter with a number of misce- 
llaneous examples and with our own "running comments" 
thereon giving the students the necessary experience for making 
the best possible selection from amongst the various alternative 
method, in question :- 
(1) 73x37 

(i) By urdhua-Tiryak rule, 73 
37 

or (ii) by the same method but with 1 5 s  
the use of the vinculum. 0 4 5  

Evidentlw, the fomner as better. = 2 7 0 1 



(2) 94x81  
(i) By urdhava-Tiryak, 94 (ii) Or 114 

81 131 -- -- 
7214=7614 18754=7614 

I 4 --- - 
i (ii) By ibid (with the -- 

use of the Vinculum) 
Evidently the former is better ; but Or 

(iii) The Nikhilam Method is still better :-81-19 
94- 6 

(3) 123x89 

(i) 123 Or (ii) 123 - Or (iii) 123 f 23 
089 111 89-11 1 

Therefore, the Ordhva (general) process is obviously the 
best (in this case). 
(5) 123x112 (Nikhilawij 

(i) 123 (if) As all the digists (iii) 123+23 
112 are within 5, the 112+12 --- Vinculum method ---- 

13276 is manifestly out 135 /,76 
6 of place. =I37 176 -- ---- 

=I3776 

Both the first and the third methods seem equally good. 
-- 

(6) 99 x 9 9  (ii) 15i - 
(i) 99 101 

99 -- 
-- 1050 1 
8121 ~ 9 8 0 1  
168 
- 

v- =9801 

242 =. 10947 

= 10947 --- -- --- -- 
---------------+------------- 

20026 20646 62002 67373 

(4) 652 x43  --- --- --- --- 
(i) 652 (ii) The Vinculnm method is manifestly =32226 =31746 =a4102 =68373 

043 cumbrous in this case and need not 
be worked out. 

I 
04836 (11) 889X 898 

I 
232 ( 1 5 2  (i) 889 Or (ii) 1 5  o r  (in) 889- 111 *111+11 

I --- X 0043) 
--- 898 1102 898- 102 102+ 2 

28036 --- ---- ---- 
(iii) The Nikhilam method may be uscd and will he cluite 646852 1202322 787 / ,,322 113 / 22 

I 
13047 ---- 

I 
easy; but we will have to take a multiple of 43 which will bring 
it very near 1000. Such a multiple is 43 x23=989 ; --- 
and we can work with ~t and finally 652-348 =798/322 =798 1322 

divide the whole thing out by 23. =798322 
989-011 

This gives us the same answer (231036). ---- Note ;-Here in (iiil Nikhilam method, the vertioal multlplic- 
ation of 111 and 102 is also performed in the same 
manner (as shown in the *marked margin). 

b - 



I (12) (i) 576 Or (ii) Vinculum Or (iii) 
x 328 method 576-424 N.B. 984 being 

inappro- 984- 16 3x328, we 
priate ------ have made 

3)560 18784 use of it & 
then divi- 

I 
I =I88928 =188 / 928 ded out by3 

@') 817x332 
(i) 817 (ii) Vinculum Or (iii) :. 332X 3=996 
. 332 method may :. 817-183 

also be used. 9 9 6 4  
247034 
2421 3)813/732 

=271244 

(14) 989x989 
(i) 989 

989 - 
814641 
14248 

Or (ii) 
Vinculum method 
also useful- 

101 1 

21 - 
=978121 

(15) 8989 X 8898 
(i) 8989 

8898 

-271 1244 
. -- 

Or (iii) Or (iv) (Yd- 
989- 11 wadCnam). 
989- 11 989'=978/ 
--- 121 This is 

=978 / 121 the best. 

Or (ii) Or (iii) 
i i o i i  8989-1011 
i i i o 2  8898-1102 

1 2 0 0 2 4 1 2 2  7887 /4122* ------ i i r  I 

1113/,122 

- -A - =1114/ 122 

(16) 213 x213 Or (ii) Or 213+ 13 
(i) 213 Vincul~i~n 213+ 13 

213 method not 
-- suitable. 226 /,69 
44369 x 2  1 

N. B. The di- 
gits being 
small, the 

?2E$ is 
---- always 
452 1 ,69 best. 

=453 / 69 

PRACTICAL APPLICATION 

"COMPOUND MtTLTIPLICATION 

A. Square Measure, Cubic Measure Ete. 

This is not a separate subject, all by itself. But it is often 
of practical interest and importance, even to lay people and 
deserves oar attention on that score. We therefore deal with it  
briefly. 

Areas of Rectangles. 
Suppose we have to know the area of a Rectangular piece 

of land whose length and breadth are 7' 8" and 6' 11" respec- 
tively. , 

According to the conventional method, we put both these 
measurements into uniform ahape (either as inches or as vulgar 
fractions~of feet-preferably the latter) and eay :- 

36) 1633 (45 sq. ft 
144 - 
193 1 
180 I - 

- 

:.Area=45 sq. ft. 52 sq. in. 
13 

X 144 

36) 1872 (62 sq. in. 
36 

72 
72 - 

In the Vedic method, however, we make use of the 
Algebraical multiplication and the Adyam Szltra and say :- 

Area=5x+ll 
X7x+8 1 =36~'+117x+88 



Splitting the middle term (by dividing by 12), we get 9 
and 9 as Q and R 

~ E = 3 6  xa+(9 ~ 1 2 + 9 ) x  +88 
=44 xe+(9 X 12) x+88 
=44 sq. ft.+l96 sq. in. 

I =46 sq. ft.+62 sq. in. 
And the whole work can be done mentally : 

(2) Similarly 3' 7" =I6 xa+66 xf 70 
~ 5 ' 1 0 ~ '  ) =20 x1+(6x 12)+7? 

=20 sq. ft.+130 sq. in. 

and(3)7x+11 =36xa+l l lx$88  
x 6  x +8 1 -44 sq. ft.+124 sq. in. 

Volumes of Parallelepipeds : 
I 

We can extend the same method to sums relating to 3 
dimensions also. Suppose we have to find the volume of a 
parallelepiped whose dimensions are 3' 7", 6' 10" and 7' 2". 

I By the customary method, we will say :-- 
43 70 86 (with all the big multiplication and c.c=-x -x- 
12 12 12 divisions involved). But, by the Vedic 

process, we have :- 

3x+7 =20 xa+10 x+10 
6x+lOl 7 x +2 

------ 
140x8+1 10xa+90x+20 
=149x8+9x2+7x+ 8 
=I49 cub. ft and 1388 cub. in. 

I Thus, even in these small computations, the customary 
method seems to have a natural or ingrained bias in favour of 

I needlessly big multiplications, divisions, vulgar fractions etc., 
etc., for their own sake. The Vedic Sctras, however, help us 
to avoid these and make the work a pleasure and not an 
infliction. 

PRACTICE AND PROPORTION 
IN 

COMPOUND MULTIPLICATION. 

The same procedure under the (Urdhva-Tiyak 
Satra) is readily applicable to most questions which come 
under the headings "Simple Practice" and "Compound 
Practice", wherein "ALIQUOT" parts are taken and many stepa 
of working are resorted to under the current system but wherein 
according to the Vedic method, all of it is mental Arithmetic, 

I For example, suppose the question is :- 

I "In a certain investment, each rupee invested bringa 
Rupees two and five annas to the investor. How much will an 
outlay of Rs. 4 and annas nine therein yield 2"  

I THE FIRST CONVENTIONAL METHOD. 

By Means of AZGuot Parts. 

Rs. As. Pa. 
For One Rupee 2-6-0 ---- 
For 4 Rupees 9-4-0 
8 As.=+ of Re. 1 1-2-6 
1 a=) of 8 As. 0-2-38 -- 

Total 10-8-94 
for Rs. 4 and 
annas 9. ------ ----- 

S& Current Method. 

(By Simple Proportion) 

336.2-6-0=Pf ; 
and Rs. 4-9-O=Rs. f #  
'.'On Re 1, the yield is Rs. f f  :. On Re. '$8, the yield is Rs. Q% x f $ =Rs. at i f  



1 

1 
I 

( 52 ) 

266) 2701 (10-8-98 
256 - 
141 

X 16 

266) =( 8 
2304 - 
208 

X 12 
256) 2496 ( 9 

2304 - 
192 - =3/4 

- 256 

By the Vedic one-line method : 
2x + 5 
Ix+ 9 

axa 1 aaxl46 

Splitting the middle term (or by simple division from 
right to left) : 

10xa+6x+2)% 
=Rs. 10 and 8 i 4  annas 

A few more instances may be taken :- 

(1) Rs. 215 XRS. 215 
9-5 
2-5 

( 53 

(4) Rs. 4/13 x Rs. 4/13 

(i) By the current 'Practice' method 
Rs.-as 

For Re. 1 4-13 I 

For Rs. 4 19- 4 
8 annas=& of Re I 2- 6: 
4 annas=p of 8 As. 1- 33 
1 a=% of 4 annas 0- 4f; ------- 

Total 23- 2& 
-- 

(ii) By the current 'Proportion' method. 

Rs. 4/13 = Rs. - 77 
16 

..-X-=- .77  77 6929 
16 16 256 

256) 5929 (23-2& 
612 - - 809 
768 - 
41 

X 16 - 
256) 656 (2 

512 - 
144 - 

4/20/26=Rs. 5/5& annas 

(2) RE. 419 x Rs. 419 
4-9 
4-9 

16/72/81 =Rs. 20/13& annas 

(3) Rs. 1619 xRs. 16/9 
16-9 
16-9 -- 

256/288/81=Rs. 2741 annas S& 

-- 

266 =9/16 

(iii) By the one-line Vedic Method. 
4-13 
4-13 

16/104/169=Rs. 23/5& annas 

N.B.-Questions relating to paving, carpeting, ornamenting etc., 
eto. (which are-under the current system usually dealt 
with by the 'Practice' method or by the 'Proportion' 
process) can all be readily answered by the Urdhva- 
Tiyak method. 

2 
---i 



For example, suppose the question is :- 
At the rate of 7 amas 9 pies per foot, what will be the 

ost for 8 yards 1 foot 3 inches ? 
26-3 
7-9 

176/246/27 
=.I96 annas 83 pies 
=RE. 12/3/83 

DIVISION (bg the Nikhilam Method). 
Having dealt with Multiplication a t  fairly considerable 

length, we now go on to Division ; and there we start with 
the Nikhikcm method (which is a special one). 

Suppose we have to divide a number of dividends (pf two 
digits each) successively by the same Divisor 9 we make a 
chart therefor as follows :- 

Let us first split each dividend into a left-hand part 
for the Quotient and a right-hand part for the Remainder and 
divide them by a vertical line. 

In all these particular cases, we observe that the fist 
d@t of the Dividend becomes the Quotient and the sum of 
the two digits becomes the Remainder. This means that we 
can mechanically take the &st digit down for the Quotient- 
column and that, by adding the quotient to the wcond digit, 
we can get the Remainder. 

Next, we take as Dividends, another set of bigger num- 
bers of 3 digits each and make a chart of them as follows :- 



In these cases, we note that the Remainder and the sum 
of the digits are still the same and that, by taking the Grst 
digit of the Dividend down meohanically and adding it to the 
second digit of the dividend, we get the second digit of the 
quotient and that by adding it to the third digit of the dividend, 
we obtain the remainder. 

And then, by extending this procedure to still bigger 
numbers (consisting of still more digits), we are able to get 
the quotient and remainder correctly. For example, 

(1) 9 ) 120311 (2) 9 )  123011 (3) 9) 120021/2 
13316 13616 1333516 

--- 
133617 136617 13335618 

And, thereafter, we takeafew more oases as follows :- 

25/12 

But in all these cases, we find that the Remainder is the 
same as or greater than the Divisor. As this is not permissible, 
we re-divide the Remainder by 9, carry the quotient over to 
the Quotient column and rctain the final Remainder in the 
Remainder clouma, as follows :- 

We also notice that, when the Remainder is greater than the 
Divisor, we can do the consequent final Division by the same 
method, as follows :- 

(1) 9) 1316 
114 

14/l/O 

11 
111 -- 

151 1 

We next take up the next lower numbers (8,7 etc.) as our Divisors 
and note the results, as follows :- 

Here we observe that, on taking the first digit of the Dividend 
down mechanically, we do not get the Remainder by adding 
that digit of the quotient to the second digit of the dividend 
but have to add to it  twice. thrice or 4 times the quotient- 
digit already taken down. In other words, we have to multiply 
the quotient-d+jt by 2 in the case of 8, by 3 in the case of 7, 
by 4 in the case of 6 and so on. And this again means that 
we have to multiply the quotient-digit by the Divisor's comple- 
ment from 10. 

And this suggests that the NikhiZa?h rule (about the sub- 
traction of all from 9 and of the last from 10) is a t  work ; and, 
to make sure of it, we try with bigger divisions, as follows: 



In all the above examples, we have deliberately taken as 
Divisiors, numbers containing big digits. The reason therefor 
is as follows :- 

(i) It is in such division (by big divisions) that the 
student b d s  his chief difficulty, because he has to 
multiply long big numbers by the "trial" digit of 
the quotient a t  every step and subtract that result 
from each dividend a t  each step ; but, in our method 
(of the Ndkhilam formula), the bigger the digits, 
the smaller will be the required complement (from 
9 or 10 as the case may be) ; and the multiplication- 
task is lightened thereby. 

(ii) There is no subtraction to be done a t  all 1 
(iii) And, even as regards the multiplication, we have 

no multiplication of numbers by numbers as such 
but only of a single digit by a single digit, with the 
pleasant consequence that, a t  no stage, is a student 
called upon to multiply more than 9 by more than 
9. In other words, 9x9=81, ie the utmost multi- 
plication he has to perform. 

A single sample example will suffice to prove this : 
(24) 9819) 2 01 37 

02162 

Note :-In this case, the product of 8 and 9 is written down in 
its proper-plaoe, as 16 (with no ''oarryhg" over to the 
left) and so on. 

Thus, in our "division"-pmees (by the Nilchilam 
formula), we perform only small eingle-digit multiplications ; 
we do ru, subtraction and ru, division a t  all ; and yet we readily 
obtain the required quotient and the required Remainder. 
In fact, we have accomplished our division-work in full, without 

I actually doing any division at  all ! 



As for divisors consisting of small digits, another simple 
formula will serve our purpose and is to be dealt with in the 
next chapter. Just a t  present (in this chapter), we deal only 
with big divisors and explain how simple and easy such difficult 
multiplications can be made (with the aid of the Nikhilam 
Sfha). 

And herein, we take up a few more illustrative examples 
relating to the cases (already referred to) wherein the Remainder 
exceeds the Divisor and explain the process, by which this 
difficulty can be easily surmounted (by further application of 
the same Nikhilam method) :- 

The Remainder here (110) being greater than the Divisor (88) 
we have to divide 110 by 88 and get the quotient and the final 
remainder and carry the former over and add it to the quotient 
already obtained. Thus, we say :- 

88) - 1 10 
la 1 2 .  - 

1 22 

so, we add the newly obtained 1 to the previously obtained 1 ; 
and put down 2 as the quotient and 22 as the Remainder. 

This double process can be combined into one a6 follows :- 
88) 1 98 
+ 

12 12 ---- 
1 1/10 

112 
1 1/22 

A few more illustrations will serve to help the student in 
practising this method :- 

Thus, even the whole lengthy operation (of division of 11199171 
by 99979) involves no division and no subtraction and consists 
of a few multiplications of single digits by single digits and a 
little addition (of an equally easy character). 

Yea ; this is all good enough so far as it go&; but it  
provides only for a particular type (namely, of divisions in- 
volving large-digit numbers). Can it  help us in other divisions 
(i.e. those which involve small-digit divisors) ? 

The answer is a candidly emphatic and unequivocal No. 
An actual sample specimen will prove this :- 



( 62 I ( 8 9 )  

Suppose we have to divide 1011 by 23. By the Nikhdlatn In such a case, we osn use a multiple of the divieor and 
method, the working will be as follows :- finally multiply again (by the A n u w a  rule). Thus, 

But even this is too long and cumbrous ; and this is a suitable 
case for the applioation of the RFA (Par6wrtya) method. 
This we proceed to exphin in the next chapter. 

3 8 1 3 7  
7 7 

3 9 1 1 4  

4 -9 2 (4 timet! the divisor) 
43 2 2 

This is manifestly not only too long and cumbrous but much 
more so than the current system (which, in this particular 
case, is indisputably shorter and easier). 

U 



CHAPTER V 
DIVISION (by the PQrciwrtyu method) 

We have thus found that, although admirably suited for 
application in the special or particular cases wherein the divimr- 
digits are big ones, yct the Nikhilam method does not help 
US in the other cases (namely, those wherein the divisor consists 
of small digits). The last example (with 23 as divisor) a t  the end 
of the last chapter has made this perfectly clear. Hence the 
need for a formula which will cover the other cases. And this is 
found provided for in the Paraivartya Sara,  which is a special- 
case formula, which reads "Paraivartya Yojuyet" and which 
means "Transpose and apply". 

The well-known rule relating to transposition enjoins 
invariable change of sign with every change of side. Thus+ 
becomes-and conversely ; and x becomes + and conversely. In 
the current system, this law is known but only in its application 
to the transposition of terms from left to right and conversely 
and from numerator to denominator and conversely (in 
connection with the solution of equations, the proving of 
Identities etc., etc ; and also with regard to the Remainder 
Theorem, Horner's process of Synthetic Division etc. etc.) 
According to the Vedic system, however, it has a number of 
applications, one of which is discussed in the present chapter. 

At this point, we may make a reference to the Remainder 
Theorem and Hornefs process and then pass on to the other 
most interesting applications of the Parcivartya Sara. 

The Remainder Theorem : 

We m y  begin this part of this exposition with a simple 
proof of the Remainder Theorem, as follows: 

If E, D, Q & R be the Dividend, the Divisor, the 
Quotient and the Remainder in a case of division and if 
the divisor is (x-p), we may put this relationship 
down algebraically as follows :- 

E-D Q+R i.e. E=Q (x-p)+R. 

And if we put x=p, x-p becomes zero; and the 
Identity takes the shape, E=R. In other words, the 
given expression E itself (with p substituted for x) 
will be the Remainder. 

Thus, the given expression E (i.e. the Dividend itself) 
(with p substituted for x) automaticaily becomes the remainder. 
And p is automatically available by putting x-p=O i.e. by 
merely reversing the sign of the-p (which is the absolute term 
in the binomial divisor). In general terms, this means that, 
if c be a ~ ~ + b x " - ~ + c x " - ~ + d x ~ ~  etc. and if D be X-p, the 
remainder is ap"+bpn"+cpn-2+dpeS and so on (i.e. E with 
p substituted for x). This is the Remainder Theorem. 

Horner's process of Synthetic Division carries this still 
further and tells us the quotient too. It is, however, only a 
very small part of the Parcivartya formula (which goes much 
farther and is capable of numerous applications in other 
directions also). 

Now, suppose we have to divide 
(12x2-8x-32) by (x-2). X-2 12x2-8x-32 

7 24+32 

We put x-2 (the Divsior) down on the left (as usual) ; just 
below it, we put down the-2 with its sign changed ; and we 
do the multiplication work just exactly as we did in the 
previous chapter. 

A few more algebraic examples may also be taken :- 
(1) Divide 7x2+5x+3 by x-1 x-1 7xP+5x + 3 -- 1 ----- 

7 +12 

:.The quotient is 7x+12 ; and the Remainder i 16. 



- 

(6) X-6 xa-3x2+l0x -7 - 
5 6 $10 100 

xa+2 +20 +93 --- 
At this stage, the student should practise the whole 

process as a MENTAL exercise (in respect of binomial divisors 
a t  any rate). For example, with regard to the division of 
(12xZ-8x-32) by the binomial (x-2), one should be able 
to say :- 

12xa-8,-32 --- -12x+16 ; and R=O 
x-2 

I The procedure is as follows :- 
12x" 

(i) - glves 12 as the f is t  coefficient in the quotient ; 
X 

I and we put it down; 

(ii) multiply 12 by -2, reve-se the sign and add to the 
next coefficient on the top (numerator). Thus 
12 x-2=-24, Reversed, it is 24. Add-8 and 
obtain 16 as the next coefficient of the Quotient. 

(iii) multiply 16 by-2 ; reverse the sign and add to the 
next coefficient on top. Thus 16x-2=-32; 
Reversed, it  is 32; add-32 and obtain 0 a8 the 
Remainder. 

7x2+5x+3 ;.&=7x+12 ; and R=15 Similarly, (1) x-l 

(2) 7xa+5x+3 .-.Q=7x-2 ; and R=6 
x t l  

and R=53 
xs-x"7x+3 

(4) x-3 .'.Q=x8+2x+13 ; 
and R=42 

This direct and straight application 
of the Parcivartya 8iika should be so 
well practised as to become very 
simple MENTAL arithmetic. And 
the student should be able to say 
at  Once :- 

and (7) x4-3x8+7xZ+5x+7 :. Q=x3+x2 x-4 
+11x+49 ; and R=203. 

Extending this process to the case of divisors containing 
three terms, we should follow the same method, but should also 
take care to reverse the signs of the coefficient in all the other 
terms (except the first) :- 

6x2+25 +I43 -b548+1338 -- 
...&=6xa+25x+143 ; and R=548x+1332 

(3) x2+1 2x4-3xS+O -3~-2 
0-1 0-2 Note the zero xa 

0 +3 and the zero x 
0 +2 carefully. 

2 - 3 -2 o +O :.&=2~2-3x-2and R=O 



(6) x8-xs+2x-3 x6+0+xS -7x2+0+9 Note the 
1-2+3 1-2 +3 zero x4 and 

1 -2 $3 the zero x 
0 +Of0 carefully. 

I 
I .'.&=xa+x ; and R= -6x2+3x+9 

1 (7) xa-x+l x4+O+xa +0+1 Note the zero xa and 
1 - 1 1-1 zero x carefully. 

1 -1 
1-1 

t- --- 
1+1+1 0+0 :.Q=x2+x+l; and R-0 

(8) xa -2x2+l -2x6-7x4+2x8 +18xa -3x- 8 Note 
2+0-1 -4 +o + 2 the zero 

-22 + O  + l l  xinthe 
-40 + 0+20 Divisor 

carefully 
-2 -11 -20 -20 + 8+12 
---- 

:,Q= -2xa- llx-20 ; and R= -d0xa+8x+12 

I In all the above oases, the first coefficient in the divisor 
happened to be 1 ; and therefore there was no risk of fractional 
coefficients coming in. But what about the cases wherein, 
the fir& coefficient not being unity, fractions will have to be 
reckoned with 1 

( 69 

The answer is that all the work mey be done as before, 
with a simple addition to the effect thst  .euery ooefficient in 
the answer must be divided by the first cooffioient of the Divisor. 
Thus, 2x-4 - -4xs-7xa+9x - 12 

4 -8 -30 -42 
-- -2 -1512-21/2-64 

- 
... ~=-2~s-7)~-10)  ; and R=-64 

This, however, means a halving of each coefficient (at every 
step) ; and this is not only more cumbrous but also likely to 
lead to confusion, reduplication etc. 

The better method therefore would be to divide the Divisor 
itself a t  the very outset by its first coefficient, complete the 
working and divide it all off again, once for all a t  the 
end. Thus :- - 2x-4 -4xa-7xa+9x -12 N.B.-Note 

x-2 -8 -30 -42 that the R - always 
2)-4 -15 -21 -54 remains 

-2 -76 -21/2-54 constant. 

Two more illustrative examples may be taken :- 
(1) 3)3x-7 3~'-x - 6 

x z t  7 $14 

2f 3)3x+6 9 :.Q==x+2 ; and REO 

x+2 9 

.: Q=xS-3xsxlf-;+5$ ; and R=3fx+30f 

N.B. :-Note that R ia constant in every case. 



Arithmetical Applications (Misdlawous)  : 

We shall now take up a number of Arithmetical applications 
and get a clue as to the utility and jurisdiction of the Nikhilah 
formula and why and where we have to apply the Parivartya 
S W a .  

(1)  Divide 1234 by 112 
112 1 234 

888 

But this is too cumbrous. The Parivartya formula will 
be more suitable. Thuu- 
J 112 1 2 3+ 4 - 

-1 -2 -1 -2 
-1-2 

1 1 02 :.&=11; andR=2 
This is ever so much simpler. 

(2)  Divide 1241 by 112. 
(i) 112 1 - 241 (ii) This too is too long. 

888 888 Therefore use Pariwartya 

017 
-1-2 -1-2 

-1-2 . = Q = l l ;  
888 and R=9 

3 
11 09 

905 

(3) Divide 1234 by 160 
(i) N i k h i h  method k manifestly unsuitable. We 

ahodd therefore use the Parciuavtya formula. 
(ii) 160 1 2 3 4 But this is a caee where 

-8+0 -6 0 (Vilokrrwnaiva) i. e. by 
240 simple inspection or observa- 

tion, we can put the 
274 answer down. 

1 -160 

7 114 

In all these cases (where the digits in the divisor are 
small) the NiklriZh method ie generally unsuitable : and the 
Parivartya one ia always to be preferred. 

(6 )  Divide 13466 by 1123 
1123 13 4 6 6 

Here, as the Remainder portion ia a negative quantity, we 
should follow the device used in subtractions of larger numbers 
from smaller ones (in ooimge etc). 

Rs. as. pa. L a d  
7 6 3  7 6 3  

9 9 9 9 

6 11 6 6 16 6 



In other words, take 1 over from the quotient coIumn 
to the remainder column i.e. take 1123 over to the right side, 
subtract 20 therefrom and say, Q=l l  and R=IIO3 

(7) Divide 13905 by 113 (similar) 
113 1 3 9  0 6  

z 3  -1-3 
-2 -6 

-4 - 12 

N.B. :-Always remember that just as one Rupee=16 annas, 
One Pound=20 shillings and one Dollar=100 centa 
and so on, so one taken over from the quotient to the 
Remainder--column stands, in concrete value, for the 
Divisor. 

10 1019 

(10) Divide 13999 by 112 
112 1 3 9  9 9  

-1-2 -1-2 
-2 -4 

-6-10 

(11) 1132 11 3 2 9 Alsoby Vibkanam (i.e. mere 
-1-3-2 -1 -3-2 observation). 

0 0 0  

10 0 0 9  

(12) 82 1 0 3 Also by Vibkalamrs (i.e. by 
1-2+2 2-2 mere observation) 

2-a 1 21 

(13) (i) 819 2 3 4 1 - 
181 2 16 2 This is by the Ndihikmi method 

But 18 can be counted as 10+8 or as 20-2. 80, put 
181 down as 2-2+1. We can thus ovoid multiplication by 
big digits i.e. by more than five. 

(q 819 2 3 4 1 
181 4 -4+2 

2-2+1 703 

(14) Divide 39999 by 9819 or (ii) (by Vinculum and Parzvartya) 

(i) 9819 3 9 9 9  9 9819 
P 

3 9 9 9 9  
Olsi 0 324 3 10221 0 6-6 3 - 

3 1 0542 of2-2+1 3 1 0642 
0181 02-2+1 

4 0723 3 0723 

(16) Divide 1111 by 839. 
(i) 839 1 111 or (ii) But 839=134!; and (iii) 8 3  1 11 1 - 

161 161 161=241 161 2zl - - 839 1 1 1 1 2fi ~~s 
1 272 " 

- - 161 2 i 1  -- 
I= 

1 3 3 2  1 272 
2--4--1 -- 

=1 272 



(16) 8 2  5 0 1 2 (by simple subtraction of the 
182 6 40 10 Divisor as in the case of 16 

annas, 20 shillings, 100 cents 
6 922 etc. ) 

=6 104 

(19) (i) 828 43 9 9 9 or (ii) 828 43 9 9 9 
T?i 4 2 8 8  172 8-12 8 

7 4 9 1 4  i52iT5 22-33+22 

(20) Divide 1771 by 828 
(i) 828 1 771 (ii) 828 1 7 7 1 

E 2  172 172 2-3+2 

(21) Divide 2671 by 828 
(i) 828 2 6 7 1 or (ii) 828 2 6 7 1 

172 2 14 4 172 4-6+4 -- - 
2 1 015 2-"2 2 1 0  1 5  

172 2-3$2 

3 187 3 1 8 7  

or (iii) Subtract 828 straight off (in both cases) from 1015. 

(22) Divide 39893 by 829 
(i) 829 39 8 9 3 0 r  (ii) 829 39 8 9 3 - 

171 3 21 3 171 6-9+3 
12 84 12 2-3+1 30-&+I5 

42 5 0 7 5  4 5 2  6 8 8 
5 3 6 6  4-6-2 

47 9 3 0  47 9 3 0  
-8 2 9 -8 2 9 

48 1 0 1  48 1 0 1  

(23) Divide 21011 by 799 (24) Divide 13046 by 988 
799 21 0 1 1 - 988 13 0 4 5 
201 4 0 2 

- 
012 0 1 2 

10 0 5 0 3 6 

25 1 036 13 2 0 1 

- 20 1 

26 237 
I 

(25) Divide 21999 by 8819 

(i) 8819 2 1 9 9 9 or (ii) 8819 2 1 9 9 9 
1181 . 2+4-4+2 1118 2 216 2 

1+2-2+1 2 4 3 6 1 2 4 3 6 1  
-- 

(26) Divide 1356 by 182 Even this is toocumbrous. dnu-ya 
and Parivartya willbe more suitable. 

(i) 2 13 5 6 (ii) 182 13 6 6 
-8-2 -8 -2 2) 2-2+2 1-1 

40 10 1-1+1 4-4 

5 4  4 6 1-1 2114 8 2 
N.B. R is 

-32 -8 
constant. 

7 8 2  
-28 -2 -- 

9 +364 
(27) 882 3 1 2 8 

-2 118 3+6-6 

7 82 1+2-2 3 4 8 2 



(29) Divide 4009 by 882 

882 (i) - - -  
4 0 0 9 (ii) 882 4 0 0 9 

1-1-2+2 4+8-8 - 118 4f8-8  -- 
1f2-2 4 4  8 1 1 $ 2 - 2 4 4  8 1 

--- 
Note:-In both these methods, the working is exactly the 

same. - 
(31) 

-1-2 -4-8 R is ' 2)24 l1 constant -- 

(33) Divide 7685 by 672 
672 7 6  8 5 
328 214-21 -14 

3+3-2 7 2 9 8 1 
6  $6 -4 

9 1 6 3 7  
3 +3 -2 

This work can be curtailed+r at  least rendered a bit 
easier-by the Anzlriipyma SBtra. We can take 168 (which is 
one-fourth of 672) or 84 (which is one-eighth of it) or, better 

( 77 ) 

still, 112 (which is one-sixth thereof) ; and work i t  out with 
that Divisor and finally divide the quotient p~qortioncltely. 

The diviaian (with 112 as Divisor) works out as follows : 
':672=6X112 7 0 8 5 

It will thus be seen that, in all such cases, a fairly easy 
method is for us to take the nearest multiple (or sub-multiple) 
to a power of 10 as our temporary divisor, use the Nikhilah or 
the Parcimrtya process and then multiply (or divide) the 
Quotient p~oportionately. A few more examples are given 
below, in illustration hereof :- 

(1) Divide 1400 by 199 OR (ii) Since 5 x 199=995 
(i) 199 1 4 0 0  9 9 5  1 4 0 0  

2)20-1 0 B- . . o x  0 0 5 
0+2 -- 

l + O - a  1 4 0  5 
o+f 2)14 44-2 X 5  -3 9 8 

7 #+2=7/7 7 7 

(2) Divide 1699 by 223. (3) Divide 1334 by 439 



I (4) Divide 1234 by 511. (5) Divide 1177 by 616 

a: 2x511=1022 .: 2 X516=1032 

x 2  X2 

2 2 1 2  2 1 4 5  

Note :-The Remainder is constant in all the cases. 

ARQUMENTAL DIVISION 

1 (By simple argument per the Drdhva Tiryak Szitra) 

In addition to the NikhiM method and the Pariivartya 
method (which are of use only in certain special oases) there is 
a third method of division which is one of simple argumentation 
(based od the 'Ordhva Tiryak' Szitra and practically amounts 
to a converse thereof). 

The following examples will explain and illustrate it :- 

(1) Suppose we have to divide (xa+2x+l) by (x+I), we 

make a chart, as in the case of an ordinary multipli- x +I  
cation (by the 'urdhva Tiryak' process) and x 4-1 
jot down the dividend and the divisor. Then the <= 
argumentation is as follows :- -- 

(i) xs and x being the first terms of the dividend and the 
divisor (or the product and the multiplier respectively), 
the first term of the quotient (or the multiplicand) 
mwt be x. 

(ii) As for the coefficient of x in the product, it must come 
up as thesum of the cross-wise-multiplication-products 
of these. We have already got x by the cross- 
multiplication of the x in the upper row and the 
1 in the lower row; but the coefficient of x in the 
product is 2. The other x must therefore be the 
product of the x in the lower row and the absolute 
term in the upper row. :. The latter is 1. And thus 
the Quotient is x+l. 

(2) Divide (12x8-8x-32) by (x-2). 
12xa-8,-32 = 12x+18 

x-2 
(i) 12xs divided by x gives us 12s. 



(ii) The twelve multiplied by -2 gives Q=12x-16 

us -24 ; but the actual coefficient of 
x in the product (or the dividend) is 

-8 :. We must get the remaining 16x by multiplying 
the x of the divisor by 16. :. The absolute term 

in the Divisor mmt be 16 :. Q=12x+16. And 
as -2x 16= -32, :. R=O. 

(3) Divide (x3+7x2+6x+5) by (x-2) 

(i) x3 divided by x gives us x2 x3+7x2+6x+5 
which is therefore the first term x-2 

of the quotient. :. Q=x2+9x+24 

(ii) x% -2= -2x2 ; but we have 7x2 in the Dividend. 
This means that we have to get 9x2 more. This 
must result from the multiplication of x by 9x. IIence 
the second term of the divisor must be 9x. 

xS+7x2+6x+ 5 
x-2 .'. Q=x2+9x+ ... 

(iii) As for the third term, we already have -2X9x= 
-18x. But we have 6x in the dividend. We must 
therefore get an additional 24x. This can only come 
in by the multiplication of x by 24. :. This is the 
third term of the quotient. :. Q=x2+9x+24 

(iv) Now this last term of the quotient multiplied by 
-2 gives us -48.) 13ut the absolute term in the 
dividend is 5. We have therefore to get an additional 
53 from somewhere. But there is no further term left 
in the Dividend. This means that the 53 will remain 
as the Remainder. :. Q=x2+9x+24 ; and R=53 

Note :-All the work explained in detail above can be 
easily performed by means of the 'Parcivartya' 
Sfi tm (as already explained in the 'Pardvartya' 
chapter, in connection with Mental division by 
Binomial divisors). 

1 The procedure is very simple ; and the following examples 
will throw further light thereon and give the necessary practice 

I 
to the student :- 

I 
x3+7xz+9x+11 

(1) -- 
x-2 :. Q=x2+9x+27 ; and R=65 

Q=x2+2x-1 ; and R=O 

Q=-2x2+#x+5# ; and R=10 

3x2-x-5 
(5) 3 x ~ 7  - .. Q=x+2 ; and R=9 

16x2+8x+1 
(" 7 4 x f - -  :. Q=4x+1 ; and R-0 

x4-4x2s 12x - 9 
(7) ---;2xyxq- N.B. :-Put zero coefficients for 

absent powels. 
:. Q=xa+2x-3 ; and R=O 

x3t 2x2+3x+5 .. Q=x+3 ; and R=7x+8 (8) X2-X-1 

x4+4x3+ax2+4x+1 ,., Q=x2+2x+l ; and n = 0  (9) - --- 
x2+2x+i-- 

x4+2x3+3x=+2x+1 ( 1 0) -- - -. . 
x2+x+1 . . Q=x2+x+l ; and R=O 

x4-x3-tx2+5x+5 
(11) -7-~_1- :. Q=x2+4 ; and R=9x+9 

6x4+13xS+39x2+37x+45 (12) -- - :. ($=tix2+25x+143 ; and 
x2-2x-9 

R=548x+1332 
12x4-3x3-3x-12 

(13) - .. Q=12x2-3x-12 ; and R=O x2+1 

(14) 1 2 ~ ~ + 4 1 ~ ~ + 8 1 ~ ~ + 7 9 ~ + 4 2  3x2+5x+7 . . Q=4x2+7x+6 ; & R=O 



12x'-3x~-3x-12 
=x2+1; and R=O 

(I6) 12x2-3x-12 

12x4+41xs+ 81xa+ 79x+42=3x'+5x+7 ; a n d ~ = O  
(17) ----- 4x2+7x+6 

x4-4x'+12x-9 =x2+2x-3 and R=O 
(I8) x 2 - 2 x + 3  

2x3+9x2+18x+20 
9 - =xa+2~+4 ; and R=O 

2x3+9x2 +18x+20 
(20) --- x2+2x+4 

=x+5 ; and R=O 

6x4+13x3+39x'+37x+45 
(21) -- 3xa+2x+9 

=2xa+3x+5 ; and R=O 

(22) 
6x4+13x3+39x2+37x+45 =3x2+2x+9 and R=O 

2x2+3x+5 

16x4+36x~+81 
(23) 4xa+6x+ 9 

=4x2-6x+9 ; and R=O 

16x4+36x2+81 =4x2+6x+ 9 ; and R=O 
(24) 4x2-6x+9 

16x4+36x2+16x+9 (25) ----------- - =4x2 -2x+9 ; and R=O 
4x2+ 2x+ 1 

16x4+36x2+16x+9 
(26) 7 2 x 9 -  =4x2+2x+l; and R=O 

x6+x3-7x2+9 =x"2x+3 ; and R=-2xa+18 
(27) x3-2x2+2x-3 

l'x4+36x2+6x+86 =kxa-Gx+9 ; R=Gx+5 
(28) 4x2+6x+9 

I (33) 
21x6+7x6+16x4+29xs+xa+15x+3 

7x8+5x+1 = 3x3+x2+3 

21x6+7x6+15x'+29x~+x2+15x+3 
(34) - 3xS+x2+3 = 7x8+5x+1 

(35) 

7x10+26x0+53x8+66x7+43x6+40x6+4lx4+38x8+19x2+8x+5 
x6+3x4+5xS+3x=+x+1 

=7x5+5x4+3x3+x2+3x+5 

(36) (Same dividend as above) 
7x5+5x4+3x~+x~+3x+5 

= x6+3x"5x~+3xa+x+1 

-2~6-7x4+2x3+18xs-3~-8 
(29) x3-2~a+1 =-2xs-1ix-20 ; 

and R=-20x2+8x+12 

x4+3xa-16xa+3x+1 
(30) x2+6x+1 =xs-3x+l ; and R=O 

x 4 + 3 ~ ~ - 1 6 ~ ~ + 3 ~ + 1  
(31) x2-3x+l =x'+6x+1; and R=O 

2 ~ ~ - 9 ~ ~ + 5 ~ ~ + 1 6 ~ ' - 1 6 ~ + 3 6  =x8-3xa-2+x+54 : (3p) 
xa-3x+l 

and R=3$~+30& 

- 



LINKING NOTE 

RECAPITULATION & CONCLUSION 

OF 

(Elementary) DIVISION SECTION 

In these three chaptcrs (IV, V and VI) relating to Division, 
we have dealt with a large number and variety of instructive I 

examples and wc now feel justified in postulating the following 
conclusions :- 

i 
(1) The three methods expounded and explained are, no 

doubt, free from the big handicap which thc current system 
labours under, namely, (i) the multiplication, of large numbers 
(the Divisors) by "trial digits9'.of the quotient at  every step 
(with the chance of the product being found too big for the ! 
Dividend and so on), (ii) the subtraction of large numbers from 
large numbers, (iii) the length, cumbrousness, clumsiness etc, 
of the whole procedure, (iv) the consequent liability of the 
student to get disgusted with and sick of it all, (v) the resultant 
greater risk of errors being committed and so on ; 

(2) And yet, although comparatively superior to the 
process now in vogue everywhere, yet, they too suffer, in some 
mses, from these disadvantages. At any rate, they do not, 
in such cases, conform to the Vedic system's Ideal of "Short and 
Sweet" ; 

(3) And, besides, all the three of them are suitable only for 
some special and particular type (or types) of cases ; and none 
of them is suitable for general application to all cases :- 

(i) The 'Nikhilam' method is generally unsnitable for 
Algebraic divisions ; and almost invariably, the 'Parci- 
vartya' process suits them better ; 

(ii) and, even as regards Arithmetical con~putations, the 
'Nikhi la~ '  method is serviceable only when the 
Divisor-digits are large numbers (i.e., 6, 7, 8 or 9) 
and not at  a11 helpful when the divisor digits are 
small ones (i.e. 1, 2, 3. 4 and 5) ; and it  is only the 

'Parcivartya' method that can be applied in the 
latter kind of cases ! 

(iii) Even when a convenient multiple (or sub-multiple) 
is made use of, even then there is room for a choice 
having to  be mnde-by the pupil-as to whether the 
'NikhLh' method or the 'Parcivartya' one should 
be preferred ; 

(iv) and there is no exception-less criterion by which 
the student tan be enabled to  make the requisite final 
choice between the two alternative methods ; 

(v) and, as, for the third method (i.e. by the reversed 
'Ordhva-Tiryalak' Siitra), the Algebraic utility there- 
of is plain enough ; but i t  is difficult in respect of 
Arithmetical calculations to say when, where and 
why it  should be resorted to (as against the other 
two methods). 

All these considerations (arising from our detailed- 
comparative-study of a large number of examples) add up, in 
effect, to the simple conclusion that none of these methods car1 
be of general utility in all cases, that the selection of the most 
suitable method in each particular case may (owing to  want of 
uniformity) be confusing to  the student and that this element 
of uncertainty is bound to cause confusion. And the question 
therefore naturally-my, unavoidably arises as to whether 
the Vedic SGtras can give 11s a General Formula applicable 
to all cases. 

And the answer is :-Yes, most certainly YES ! There 
is a splendid and beautiful and very easy method which conforms 
with the Vedic ideal of ideal simplicity all-round and whirh 
in fact gives us what we have been describing as "Vedic one line- 
mental answers" ! 

This astounding method wc shall, however, expound in 
a later chapter under the captior, "Straight-Division"-which 
is one of the Crowning Beauties of the Vedic mathematics 
Sctras. (Chapter XXVII. q.v.). 



CHAPTER VII 

I. FACTORISATION (of Simple Quadratics) 

Facttarisation wmes in naturally at  this point, as a form 
of whst we have called "Reversed multiplication" and as a 
particular application of division. There is a lot of strikingly 
good material in the Vedic Siitras on this subject too, which is 
new to the modern mathematical world but which comes in at  
a very early stage in our Vedic 'Mathematics. 

We do not, however, propose to go into a detailed and 
exhaustive exposition of the subject but shall content ourselves 
with a few simple sample examples which will serve to throw 
light thereon and especially on the Sfitraic technique by which 
a Siitra consisting of only one or two simple words, makes 
comprehensive provision for explaining and elucidating a pro- 
cedure yhereby a 80-called "difficult" mathematical problem 
(which, in the other system puzzles the students' brains) ceases 
to do so any longer, nay, is actually laughed at  by them as 
being worth rejoicing over and not worrying over ! 

For instance, let us take the question of factorisation 
of a quadratic expression ints its component binomial factors. 

I 

When the coefficient of xa is 1, it is easy enough, even according 1 
to the current system wherein you are asked to think out and 
find two numbers whose algebraic total is the middle coeffi- 
cient and whose product is the absolute term. For example, 
let thc quadratic expression in question be x2+7x+10, we 
mentally do the lllultiplication of the two factors ,+2 
(xf2) and (x+5) whore product is xa+7x+10 ; x+5 
nd (by a mental procpss of reverting thereof), <2+7x+10 

we think of 2 and 5 whose sum is 7 and whose -------- 
product is 10: and we thus factorise (x2+7x+10) into (x+2) and 
(x+5 . And the actual working out thereof is as follows :- 

x2+7x+10 
=x2+2x+5x+10 

=x(x f 2)+5 ( ~ $ 2 )  

The procedure is, no doubt, mathematically correct; but the 
process ie needlessly long and cumbrous. However, as the 
mental process actually employed is as explained above, there 
is no great harm done. 

In  respect, however, of Quadratic expressions whose fist 
coefficient is not unity (e.g. 2x2+5x+2), the students do not 
follow the mental process in question but helplessly depend on 
the 4-step mcthod shown above and work it out as follows: - 

2x2+5x+2 
=2xa+4x+x+2 
=2x(x+2)+1 (xf2) 
=(x+2) (2xSl )  

As the pupils are never taught to apply the mental process 
which can give us this result immediately, it means a real 
injury. The Vedic system, however, prevcnts this kind of harm, 
with the aid of two small sub-Siitras which say ( i)  v h  
(Anurfipyena) and (i) amrq&,~+,~& (Adyamcidyencintya- 
nacsntyelaa) and which mean 'proportionately' and 'the first 
by the first and the last by the last'. 

The former has been explained already (in connection 
with the use of multiples and sub-multiples, in multlpllcation 
and division) ; but, alongside of the latter sub-Siitra, ~t acquires 
a new and beautiful double application and significance and 
works out as follows :- 

(i) Split the middle coefficient into two such parts that 
the ratio of the first coefficient to that first part is 
the same as the ratio of that second part to the last 
coefficient. Thus, in the qundratic 2xa+5x+2, the 
middle term (5) is split into two such parts (4 and 1) 
that the ratio of the first coefficient, to the first part of 
the middle coefficient (i.e. 2 : 4) and the ratio of 
the second part to the last coefficient (i.e. 1 : 2) 
are the same. Now, this ratio (i.e. ~ $ 2 )  is one 
factor. 

And the second factor is obtained by dividing the first 
coefficient of the Quadratic by the first coefficient of the factor 
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already found and the last coeffic~ent of the Quadratic by the last 
coefficient of that factor. In other words the second Binomial 

2x2 2 faebor is obtained thus: -+- - 2x+1. 
x 2 -  

Thus we say : 2x2+5x+2=(x+2) (2x+1). 
I 

Note :-The middle coefficient (which we split-up above 
into (4+1) may also be split up into (i+4), that the 
ratio in that case is (2x+l) and that the othcr 
Binomial factor (according to the abo-e-explained 
method) is (x+2). Thus, the change of SEQUENCE 
(in thc splitting up of the middle term) makos no 
difference to the factors themselves ! 

This sub-Stitra has actually been used already (in the 
chapters on dixision) ; and it will be coming up again and again, 
later on .(i.e. in Co-ordinate Geometry etc., in connection 
with straight lines, Hyperbolas, Conjugate Hyperbolas, Asymp- 
totes etc.) 

But, just now, we make use of it in connection with the 
factorisation of Quadratics into their Binomial factors. The 
following additional examples will be found useful :- 

An additional sub-sfitra is of immense ultility in this 
context, for the purpose of vmifying the correctness of our 
answers in multiplications, divisions and factorisations. I t  
reads : @ ~ 4 ' :  t m t m ~ f b m :  and means :- 

"The product of the sum of the coe#cietlts in the 
factors is equal to the sum of the coe$cients in the 
proauct3y. 

In  symbols, we may put this principle down thus :-- 
So of the product=Product of the So (in the factors). 

For example, (x+7) (x+9)=(x2+16x+63) ; 
and we observe that (l+7) (1+9)=1+16+63=80 

Similarly, inthe case of Cubics, Bi-quadratics etc., t6e 
same rule holds good. For example : 

(x+l)  (x+ 2) (x+3)=x3+6x2+11x+0 ; 
and we observe that 2 x 3  x 4=1+6+11+6=24. 

Thus, if and when some factors are known, this rule 
helps us to fill in the gaps. 

I t  will be found useful in the factorisation of cubics, 
biquadratics etc., and will be adverted to (in that context and 
in some other such contexts) later on. 



CHAPTER VIII 

FACTORISBTlON (of "Harder" Quadratics) 

There is a class of Quadratic expressions known as 
Homogeneous Expressions of the second degree, wherein 
several letters (x, y, z etc.) figure andwhich are generally fought 
shy of by students (and teachers too) as being too "difficult" 
but which can be very easily tackled by means of the Adyamci- 
dyena Sctra (just explained) and another sub-Siitra whicl~ 
consists of only one (compound) word, which reads = r s r  
and means :-"by (alternate) Elimination and Retention" 

Suppose we have to factorise the Homogeneous quadratic 
(2xa+6ya+3z2+7xy+llyz+7zx). This is obviously a case 
in which the ratios of the coefficients of the various powels of 
the various letters are difficult to find out ; and the reluctance 
of students (and even of teachers) to go into a troublesome 
thing like this, is quite understandable. 

The 'Lopam-Sthipam' sub-Siitra, however, removes 
the whole difficulty and makes thc factorisat~on of a Quadratic 
of this type as easy and simple as that of the ordlnary quadratic 
(already explaiced). The procedure is as follows :- 

Suppose we have to factorise the following long Quadratic : 
2x~+6y~+3z~+7xy+llyz+7zx. 

(i) We first eliminate z (by putting z=0) and retain only 
x and y and factorise the resulting ordinary quadratic (in 
x and y) (with the Adyam Sfitra) ; 

(ii) We then similarly eliminate y and retain only x and a 

and factorise the simple quadratic (in x and z) ; 

(iii) with these two sets of factors before us, we fill in the 
gaps caused bv our own deliberate elimination of z and y 
respectively. And that gives us the real factors of the given 
long expression. The procedure is an argumentative one 
and is as follows :-- 

If e=O, then E (the given expression)=2xa+7xy+6y2 

=(x+2yl (2x+3y). 

Similarly, if y=o, then E=2xa+7xy+-~z~(x+~z)(~x+z) 

:. Filling in the gaps which we ourselves had created by 
leaving out z and y, we say : E=(x+2y+3z) (2x+3y+z) 

The following additional examples will be found useful :- 

(1) 3xZ+y~-2za--4xy+y~-zx 
E=jx-y) (3x-y) and also (x-z) (3x+2z) 
:. E=(x-y- z) (3x-y+2z) 

(2) 3xa+xy -2ya+19xz+ 28z2+9xy-30wa-yz+19wy 
+46zw. 

By eliminating two letters at a time, we get : 
E=(x+y) (3x-2y), (3x+4z) (~$72)  and also 

(x-2y) (3x+15w) 
:. E=(x+y+4z-2w) (3~-2y+4z+15w) 

(3) 2x2+2y"5xy+2x-5y-12L(xS3) (ax-4) and 
also ( 2 ~ + 3 )  (y-4) 

:. E=(x+zp+3) (2x+y-4) 

(4) 3 ~ ~ - 8 x y + 4 ~ ~ + 4 ~ - 3 = ( x - l )  (3x+3) and also 
(2~-1)  (2y-1-3) 

:. E-(x+2y-I) (3xt2y-3) 

(5) 6~~-8y~-6za+2xy+ l6yz-~XZ 
=(2x-2y) ( 3 ~ 1 4 ~ )  and also (2x + 32) (3x-22) 
:. E=(2~-2y+3z) (4x+4y-22) 

Note .-We could have eliminated x also and retained 
only y and z and factori~ed the resultant simple 
quadratic. That would not, however, have given us 
any additional meterla1 but' would have only confir- 
med and verified the answer we had already 
obtained. Thus, when 3 letters (x, y and z) are there, 
only two eliminations \vi11 generally suffice. The 
following exceptions to t h ~ s  rule should be noted :- 

(1) x%+xy-2y2+2xz-5yz-3z2 
=(x-y) (x+2y) and (x-z) (~$32)  
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But x is to be found in all the terms ; and there is 
no means for deciding the proper combinations. 

In this case, therefore, x too may be eliminated ; 
and y and z retained. By so doing, we have :- 

E= -2y2-5~~-3~2=(-y-z)(2y+3~) 
:. E=(x-y-z) (x+Zy+3z). 
OB, avoid the xP (which gives the same co-efficient) 
and take only ye or z2. And then, the confusion 
caused by the oneness of the coefficient (in all the 
4 factors) is avoided ; and we get, 
E=(x-y-z) (x+2y+3z) (as before). 

(2) xa+2yz+3xy+2xz+3yz+z2. 
(i) By eliminating z, y and x one after another, 

we have E=(x+y+z) (x+ay+z) 
OR (11) By y or z both times, we get the same answer. 

(3) xa+3ya+2z2+4xy+3xz+7yz 
Both the methods yield the same result : 

E=(x+y+2z) (x+3y+z) 

(4) 3x2+7xy+ 2ys+ llxz+7yz+ 6z2+14x+ 8Y+14z+8. 
Here too, we can eliminate two letters at a time 

and thus keep only one letter and the independent 
term, each time. 

Thus, E= 3x2f l4xf 8=(x+ 4) (3x4- 2) ; 
2 ~ ~ + 8 y + 8 = ( 2 ~ + 4 )  (y+2) ; and also 
6z2+14z+ 8=(3z+4) (22+2) 

E = ( x + ~ Y + ~ z + ~ )  (3x+y+2a+2) 
Note :-This "LopamTSth/ipana" method (of alternate eli- 

mination and retention) will be found highly ussfill, 
later on in H.C.F., in Solid Geometry and in Co- 
ordinate Geometry of the straight line, the Hyper- 
bola, the Conjugate Hyperbola, the dsymptotes etc. 

FACTORISATION OF CUBICS ETC. 

(By Simple Argumentation e. t. c.) 

We have already seen how, when a polynomial is divided 
by a Binomial, a Trinomial etc., the remainder can be found 
by means of the Remainder Theorem and how both the Quotient 
and the Remainder can be easily found by one or other method 
of division explained already. 

From this it follows that, if, in this process, the remainder 
is found to be zero, it means that the given dividend is divisible 
by the given divisor, i.e. the divisor is a factor of the Dividend. 

And this means that, if, by some such method, we are 
able to find out a certain factor of a given expression, the 
remaining factor (or the product of a11 the remaining factors) 
can be obtained by simile division of the expression in question 
by the factor already found out by some method of division. 
(In this context, the student need hardly be reminded that, 
in all Algebraic divisions, the 'Pardvartya' method is always to 
be preferred to the 'Nzkhilam' method). 

Applying this prinripIe to the case of a cubic, we may 
say that, if, by the Remainder Theorem or otherwise, we know 
onc Binomial factor of a cubic, simple division by that factor 
will suffice to enabIe us to find out the Quadratic (wliich is the 
product of the remaining two binomial factors). And these two 
can be obtained by the 'Adyamddyena' method of factorisation 
already explained. 

A simpler and easier device for performing this operation 
will be to write down the first and the last terms by the 'Adyarni- 
dyena' method and the middle term with the aid of the Gupita- 
Samuccaya rule (i.e. the principle-already explained with 
regard to the So of the product being the same as the Product 
of the So of the factors). 



Let us take a concrete example and see how this method 
can be made use of. Suppose we have to factorise xS+6x2+ 
l lx+6 and that, by some method, we know (x+l) to be a 
factor. We first use the Adyamdyena formula and thus 

1 mechanically put down x2 and 6 as the first and the last coeffi- 
i. cients in the quotient (i.e. the product of the remaining two 

binomial factors). But we know alreddy that the So of the 
given expression is 24 ; and, as the So of (x-l)=2 we therefore 
know that the So of the quotient must ba 12. And as the 
fist and last digits thereof are already known to be I and 6, 
their total is 7. And therefore the middle term must 
be 12-7=5. So, the quotient is xz+5x+6. 

This is a very simple and easy but absolutely certain 
and effective process. 

The student will remember that the ordinary rule for 
divisibility of a dividend by a divisor (as has been explained 
already in the section dealing with the "Remainder-Theorem") 
is as follows :- 

If E=DQ+R, if D=x-p and if x=p, then E=R. 

COROLLARIES 

(i) So, if, in the dividend, we substitute 1 for x, the 
result will be that, as all the powers of 1 are unity itself, thc 
dividend will now consist of the sum of all the coefficients. 

Thus, if D is x-1, R=a+b+c+d+(where a, b, c, d etc., 
are the successive coefficients) ; and then, if a+b+c etc.,=o, 
it will mean that a8 R=O, E is divisible by D. In other words, 

, x-1 is a factor. 

(ii) If, however, D=x+l and if we substitute -1 for x in 
E, then, inasmuch as the odd powers of -1 will all be -1 and 
the even powers thereof will all be 1, therefore it  will follow that, 
in this case, R=a-b+c-d etc. 

So, if R=o i.e. if a-bfc-d etc., =0, i.e. if a-b+c-d etc., 

2 0 ,  i.8. a+c+ ... =b+d+ .... 

i.e. if the sum of the coefficients of the odd powers of x and 
the sum of the coefficients of the even powers be equal, then 
x+l  will be a factor. 

The following few illustrations will elucidate the actual 
application of the principle mainly by what may be called 
the Argumentation method, based on the simple multiplication- 
formula to the effect that- 

(x+a) (x+b) ( x + ~ ) = x ~ + x ~  (a+b+c)+x(ab+ac+b~) 
+abc, as follow8 :- 

(1) Factorise x8+6xa+11xf 6. 
(i) Here, S0=24 ; and tl (the last term) is 6 whose 

factors are 1, 2, 3 or 1, 1, 6. But their total should be 

6 (the coefficient of xa). So we must reject the 1, 1, 6 
group and accept the 1, 2, 3 group. And, testing 
for the third coefficient, we find ab+bc+ca=ll 
:. E=(x+l) ( ~ $ 2 )  (x+3). 

or (ii) So (the sum of the coefficients of the odd powers) 
=1+11=12 ; and Se (the sum of the coefficients of 
the even powers)=6$6=12. And as So=S, 
:. x+l  is a factor. 
:. Dividing E by that factor, we f is t  use the 'Adya- 
m6dyem' SCtra and put down I and 6 as the first 
and the last coefficients. :. The middle coefficient 
is .12-(1+,$)=5 :. The Q=xa+5x+6 which (by 
~dya&yem) = ( ~ + 2 )  ( ~ + 3 ) .  
Thus E=(x+l )  (~4-2) (xi-3). 

(2) Factorise xS - 6x2+11x-6 
Here S,=0 :. x-1 is a factor. But as+is an inde- 
k i t e  figure, we cannot use the Gu~ita-Samuccaya 
method here for the middle term but must divide out 
(by mental 'Parcivartya') and get the quotient as 
xz-~x+6 which (by the Adpmidya' rule) 
=(x-2) (x-3) :. E=(x-1) (x-2) (x-3). 

or (ii) argue about -1, -2 and -3 having -6 as the total 
and -6 as the product ; and test out and verify the 11. 
And therefore say, E=(x-1) (x-2) (x-3). 



(3) Factorise x3+12x2+44x+48. 

(i) Here So=105 whose factors are 1, 3, 5, 7, 15, 21, 35 
and 105. And tl is 48 whose factors are, 1,2, 3, 4, 6,s 
12, 16, 24 and 48. :. x+: and x-1 are out of court. 
And the only possible factors are x+2, x+4 and 
x+6 (verify). 

(ii) or, argue that 2+4+6=12 and 2 ~ 4 ~ 6 = 4 8 ;  and 
test for and verify 44 :. E=(x+2) (x+4) (x+-6) 

(4) Factorise xa-2x2-23x+60 

(i) Here Sc=36 (with factors 1, 2, 3,4, 6, 9, 12, 18 and 36 ; 
tl=6O (whichis 1 ~ 2 ~ 2 ~ 3 x 5 . )  
:. Possible factors are 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 
30 and 60. But the sum of the coefficients in each 
factor must be a factor of the total So. (Le. 105). 
Therefore, all the italiclzcd numbers go out, and 
so do x-1, x+4, x+6 and xC10. 
Now, the only possible numbers here (which when 
added, total -2) are -3, -4 and 5. Now, test for 
and verify x-3 

(ii) or take the possibilities x-10, x-5, x+5, x-4, 
x+3, x-3, x+2 and x-2. 

:. x-2 is not a factor. 
But if x-3, R=O :. x-3 i s  a factor. 
Then, argue as in the first method. 

(6) Factorise x3-2x2-5x+6=Here S.=O 
(i) :. x- 1 is a factor ; and the other part (by Division) 

is x2-X-6 which =(x+2) (x-3) 
:. E=(x-1) (x+2) (x-3) 

(ii) t1=6 (whose factors are 1, 2 and 3). And the only 
combination which gives us the total -2, is -1, 2 
and -3. Test and verify for -5. And put down the 
answer. 

(6) Factorise x3-k3x2- 17x-88 
Now So=-51 (wlth factors & 1, A 3 ,  + 17 and +51 

And -38 has the factors & 1, f 2, f 19 and f 38. 
:. - + 1, i 19 and k38 are not possible. 

And only f 2  lspowihle And if x=-2, RL0 
I :. x+2 is a factor :. E=(x+2) (x2+x-19) 
I which has no further factors. 

(7) Factorise x3+8xa+19x+12. 
I (i) Here S,=8 ; and L,=l2 :. 1 +3+4 are the proper 

numbers. Now test for and verify 19. 
i ... E = ( x + ~ )  ( x ~ + ~ x + ~ ~ )  = ( x + I )  ( x + ~ )  ( x + ~ )  

OR (ii) .: 1+19=8+12 :. x+l  is a factor. Then the 
quotient is obtainable by the 'Adyamidy~na' and 
'Xarnuccaya' Siitras. And that again can be factorised 

I 
with the aid of t,hc formcr. 
:. E=(x+l )  (x+3) ( ~ $ 4 )  

(8) Pactorise x3-7x+6 
(i) .: Sc=O, :. x-1 is a factor. 

1 :. By .Parcivartya' method of division (mental). 
E =(x-1) (x-X-6)=(~-1) (x-2) (x+3) 

O R  (ii) (by a different kind of application of A d y a n ~ d y e n a  

I x3-7~+6= ( ~ ~ - 1 ) - 7 ~ + 7 = ( ~ - 1 ) ( x ~ + x + 1 7 )  
i - ( ~ - - l )  (x-2) ( ~ $ 3 )  

xote: ( 1 )  This method is always applicable when x2 is 
absent; and this means that the 3 independent 
terms together total zero. 

(2) Note the note on this and other allied points (in 
the section relating t,o cubic equations) in a later 
chapter. 

(3) Note that this method of factorisation by h g u -  
lilentation is equally applicable to Biquadratics also. 

(4) The relationship between the Binomial factols 
of a polynomial and its difierentials (finlt, second 
alld so 011) is an interetiting and intriguing subject 
which will be dealt with in a later chapter. 

(5) The use of diEerenti-is for finding out repeated 
factors will also be dealt with later. 



HIGHEST COMMON FACTOR 

In the current system of mathematics, we have two 
methods which are used for finding the H.C.F. of two (or more) 
given expressions. 

The first is by means of factorisation (which is not always 
easy) ; and the second is by a process of continuous division 
(like the method used in the G.C.M. chapter of Arithmetic). 
The latter is a mechanical process and can therefore be applied 
in all cases. But it is rather too mechanical and, consequently, 
long and cumbrous. 

The Vedic method provides a third method which is 
applicable to all cases and is, at the same time, free from this 
disadvantage. 

It is, mainly, an application of the 'Lopanu-Sthipanu' 
Siitra, the 'Saqkalalza- Vyavalcalan' process and thc 'Adyam6dya' 
rule. The procedure adopted is one of alternate destruction of 
the highest and the lowest powers (by a suitable multiplication 
of the coefficients and the addition or subtraction of the multi- 
ples). A concrete example will elucidate the process :--- 

(I) Suppose we have to find the H.C.F. of (x2+7x+6) & 
(x2-6~-6) 
(i) x2+7x+6=(x+1) (x+6) ; and x2-5x-G= 

=(x+l) (x-6) :. The H.C.F. is (x+l). 
(ii) The 2nd method (the G.C.M. one) is well-known and 

nee not be put down here. 
(iii) The third process of 'Lopanu-SthcFpana' (i.e. of 

Elimination and Retention, or Alternate destructioil 
of the highest and the lowest powers) is explained 
below : 

Let El and E, be the two expressions. 
Then, for destroying the highest power, 
we should subtract E2 from El ; and for 

destroying the lowest one, we should add the 
two. The chart is as follows : 

x2-5~-6 xz-5x-6 [ Addition x2+7x+6 Subtraction x2+7x+6 

We then remove the common factor (if any) from each ; 
and we find (x+l)  staring us in the face. 

:. x--1 is the H.C.F. 

The Algebraical principle or Proof hereof is as follows :- 
Let P and Q be the two expressions; H their H.C.F. and 

A and B the quotients (after their division by the H.C.P.) 

. P . . n=A; and S=B H :. P=HA and Q=HB 

:. Pf Q=H (AfB) ; and MPf NQ=H(MAfNB) 
:. The H.C.F. of P and Q is also the H.C.P. of Pf Q, 

2 P f  Q, P f  2Q and MPfNQ 

1 All that we have therefore to do is to select our M and 
N in such a way that the highest and the lowest powers are 
removed and the H.C.F. appears and slwws itself before us. 

A few more illustrative examples may be seen below :- 

(I)  (i) x3-3x2-4x+12 = (x+2) (x-2) (x-3) ; 
and x 3 - 7 ~ ~ + 1 6 ~ - 1 2 = ( ~ - 2 ) ~  (x-3) 
:. the H.C.F. i6: (x-2) (x-3)=xa-5x+6 

But the factorisatioli of the two expre&ions will 
be required. 

or (ii) The G.C.M. method. 

or (iii) The 'Lopana-Sth6pana' method :- 
~ ~ - 3 ~ ~ - 4 ~ + 1 2  ~ ~ - 7 ~ ~ + 1 6 ~ - 1 2  

-(xS-7xZ+16x-12) +(x3-3xa-4x+12) 

4 ) 4xz-20x+24 2x ) 2xS-10xa+12x 
- 

x2-5~+6 xa-5~+6 

:. The H.C.F. is (x2-5x+6) 



.. The H.C.F. is x2+3x+4 
. 

But the factorisation of t,he two c~lhics will he I 

c~imbrou~. 

,, (ii) The G.C.M. method. 

or (iii) The Vedic method :-- 
4x3+13x2+19x+4 2x3+5x2+5x-4 

-(4x3+10xz+10x-8) + ( 4 ~ 3 + 1 3 ~ ~ + 1 9 ~ + 4 )  

3 ) 3x2+9x+12 6x ) 6x3 + 18xa+ 24x 
- --- 

x2+3x+4 x8+3x+4 

:.The H.C.F. is (x2+3x+4) 1 
I 

(3) (i) x"x3-5x2-~x+~---(x+I) (x-2) (x2+2x-1) ; I 
and x4-3x3+x2+3x-2=(x+1) (x-2) (x-l)a 1 
:. The H.C.P. is x2--x-2 1 

But this factorisation of the two biquadratics LA 

bound to be a (comparatively) laborlous process. 

(ii) The eumbrocts G.C.M. method. 

(iii) The Vedic method :-- 
x4+ x3-5x2-3x+2 x4-3x3+x2+3x-2 

-(x4-3x3+x2 $-3x-2) x4+ x3-5x2-3x+2 

2 ) 4x3-6x2-6x+4 2x2 ) 2x4-2x3-4x2 
- 

2x3-3x2-3x +2 x2-x-2 
-(2x3-ax2-4x) (N.B.-multiply this by - 2x & take it over 

-I(-x2+x+2) to the left for 

xa-x-2 subtraction). 

:. The H.C.F. is x2-x-2 

(4) (i) The Vedic method :- 
6x4- 7x8-5xa+14x+7 3xa-5x8+7 

-(6x4-lox3 +14x) (N.B.-multiply this by 
2x & subtract from 

3x5-5x2 +7 - L.H.S.) 

(ii) The factorisation of the big Biquadratic will be 
"harder'?. 

(iii) The G.C.M. method is, in this case, easy. But how 
should one know this beforehand and start tnonkeying 
or experimenting with it ? 

( 5 )  (i) The Vedic method :- 
6x4-11x~+16x2-22x+8 6 x * - 1 1 ~ ~ - 8 ~ ~ + 2 2 ~ - 8  

- (6~4-11~3-8~~+22~-8)  +(6~~-11~~+16x~-22x+8)  
-- 

4) 24x2-44x+16 2x9  12x4-22x3+8x2 

6x2-11~$4 6xa-llx+4 

:. The H.C.F. is 6x2--llx+4 

(ii) 6x4-11x3+16x2-22x+8=(2x-1) (3x-4) (x8+2); & 
6x4-11x3-8xa+22x-8=(2x-1) (3~-4)  (x2-2) 
:. The H.C.F. is (2x-1) (3x-4)=6x2-11x+4 

(iii) The cumbersome G.C.M. method. 

(6) (i) 2x3+x2-9 =(2x-3) (x2+2x+ 3) ; 
and x4+2x2+9 =(x2+2x+3) (xa-2x4- 3) 
:. Thy H.C.F. is x2+2x+3 

But the factorisation-work (especially of the 
former expression) will be a toughish job. 

(ii) The G.C.M. method will be cumbrous (as usual). 

(iii) The Vedic method- 
2x8+xa-9 2x4+4x2+18 

x4+2xx+9 2x4+xa-9x 

xa ) x'+2x3+3x2 x8-4x2-9x-18 
x3+2x"3x 

xa+2x+3 
-6 ) - 6 ~ ~ - 1 2 ~ - 1 8  

N.B.-Aa this hab no 
further factors, it xa+ 2x+3 

r!!g biu2pl;: :. The H.C.P. is r8+2r+3 

by x and take i t  
oier to the right for 
subtraction. 



(7) (i) 4x4+11xS+27x2+17x+ 5 and 3 x ' + 7 ~ ~ + 1 8 ~ ~ +  7x+5 
i (ii) :. 12x4+33xS+81x2+51x+15 4 ~ ~ + 1 1 ~ ~ + 2 7 ~ ~ + 1 7 x + 5  

12x4+28x3+72x2+28x+20 3x4+ 7x3+18x2+ 7x4 5 
-- - 
5x3+ 9x2+23x-5 x) x4 + 4x3+9x2+10x 

t 5x3+20x2+45x+50 
xS+ 4x2+ 9x +id 

I -11 ) llx2-22x-55 1 0 ~ ~ + 1 8 ~ ~ + 4 6 x - 1 0  

I xa+2x+5 l l x )  11x3+22x2+55x 
- 

i xa+2x+5 
-- 

(ii) The G.C.M. method will be cumbrous (as usual). 

(i) 4x4+11x3+27x2+17x+B=(x2+2x+5) (4x2+3x+1) & 
3x4+7xS+18x2+7x+5=(x2~2x+5) (3x2+x+ 1) 

But the factorisation of the two big biquadratics 
into two further factorless quadratics each, will entail 

t greater waste of time and energy. 

1 So, the position may be analysed thus :- 

1 (i) The G.C.M. method is mechanical and rcliable but too 

I cumbrous ; 

I (ii) The Factorisation method is more intelleclual hut 

I harder to work out and therefore less dependable ; 

t (iii) The Vedic method is free from all these defects and 
is not only intellectual but also simple, easy and 
reliable. And the bcauty of it is that the H.C.F. 
places itself before our eyes and seems to stare us in 
the face ! 

SIMPLE EQUATIONS (FIRST PRINCIPLES) 

As regards the solution of equations of various types, 
the Vedic sub-SCitras give us some First Principles which are 
theoretically not unknown to the western world but are not 
(in actual practice) utilised as basic and fundamental first 
principles of a practically Axiomatic character (in mathe- 
matical computations). 

In order to solve such equations, the students do not 
generally use these basic sub-SCtras as such but (almost invari- 
ably) go through the whole tedious work of practically proving 
the formula in question instead of taking it for granted and 
applying it ! Just as if on every occasion when the expression 
a8+b3-+c3-3abc. comes up ; one should not take it for granted 
that its factors are (a+b+c) and (aa+b8+ca-ab-bc-ca) 
but should go through the long process of multiplying these two, 
showing the product and then applying it to the case on hand, 
similarly for Pythagoras Theorem etc. ! 

The Vedic method gives us these sub-formulae in a con- 
densed form (like Parivartya etc.,) and enables us to perform 
the necessary operation by mere application thereof. The 
underlying principle behind all of them 1s & 
(Parduartya Yojayet) which means : "Transpose and adjust" 
The applications, however, are numerous and splendidly use- 
ful. A few examples of this kind are cited hereunder, as 
illustrations thereof :- 

(1) 2x+7=x+9 :. 2x-x=9-7 :. x=2. The student 
has to perform hundreds of such transposttion-operations in 
the course of his work ; but he should by practice obtain 
such familiarity with and such master over it as to assimi- 
late and assume the general form a that if axfb=cx+d, 

d-b x=- and apply it by w t a l  arithmetic automatically 
a-C 



to the particular mse actually before him and say :- 
9-7 2 2 ~ + 7 = x + 9  :. x=--=-=2 ; and 
2-1 1 

the whole process should be a short, and simple mental 
process. 

Second Gelzeral Type  
(2) The above is the comnlonest kind (of transpositions). 

The second common type is one in which each side (t,he L.FI.S. 
and the R.H.8.) contains two Rinomia,l factors. - 

In  general terms, let (x+a) (x$b)=(x+c) (x+d). The 
usual method is to work out the two n~ultiplicatior;s and do the 
transpositions and say :- 

( ~ + a )  (x+b) = ( ~ + e l  (x+d) 
:. x2+ax+hx+ab = xz+cx+dx+cd 
:. ax+bx-cx-dx=cd-ah 
:. x(a+b-c-d) =cd-ab 

It must be possible for the student, by practice, to 
assimilate and assume the whole of this operation say 

cd-ab 
immediately : x = - - 

a + b - c a  
As examples, the following may be take11 :- 

(1) (Xf1) (x+2)=(x-3) (x-4) :. x - 2 - 2 -  _ l o = ,  
l+2$3+4 10 

This gives rise to a general corollary to the effect that ,  
if cd-ab=O i.e. if cd=aF i.e. if the product of the absolute 
terms be the same on bot,ll the sides, t'he numerator becomes 
zero ; ant1 :. x=O. 

Third Geuberul Type 

The third type is one whirh may be put into the general 
a x L b  p ; and, after doing all the cross-niultiplication fornl : - --=- 
cx+d q and transposition etc.. lie get : x,bq-dp 

The student should (by practice) be able to assimi- aq-cp 
late and assume this also and do it all mentally as a single 
operation. 

Noto : -The only rule to  remember (for facilitating this 
process) is that  all the terms involving x should be 
conserved on to the left side and that all the inde- 
pendent terms should be gathered together on the 
right side and that  every transposition for this 
purpose niust invariably prodi~re a change of sign 
(1.e. from+to-and conTersely ; and from x into 
+ and conversely). 

Fourth General Type 
m n 

The fourth type is of the form :- +- - 0  
x f a  x+b 

After all the L.C.M's, the cross-multiplications and 
the transpositions etc., are over, we get. -mh-na 

X =  . This 
is simple enough and easy enough for m+n 
the student to assimildte ; and i t  should be assimilated and 
readily applied mentally to  any case before us. 

In  fact, the application of this Iwocess may, in clue course, 
Ily means of practice, be extended so as to cover carjes i nvo lv i l~~  
i~ larger number of ternis. For instance, 

' n - + L + - P -  = o  
x+a x+b x+n 



:. m[x~+x(b+c)+bc]+n[x2+x(c~-a)+ca]$ 
-+-p[x2 +x(a+b)+ab] =0 

:. x2(m+n+p)+x[rn(b+o)+n(c+a)+p(a+b)]-t 
(mbofnca +pab)=0 

If  m+n+p=O, then 

Rut if m+n+pf 0, then it will bc a Quadratic equat~on 
and will have to be solved as such (as explained in a later chapter). 

And this nlethod can bt: exterlded to any numbcr of tcrrus 
(on the same lines as explained above). 

LINKING NOTE 

Special Types of Bpuationx 

The above types niay be described as General types. But 

there are, as in the cave of mulltiplications, divisions etc,, 
particular types which possess certain specific characteristics 
of a SPECIAL character which can be more easily tackled (than 
the ordinary ones) with the aid of certain very short SPECIAL 
processes what one may describe as mental one-linc 
methods). 

As already explained in a pevious context, all that the 
student has to do is to look for certain characteristics. spot 
them out, identify the particular type and apply the formula 
which is applicable thereto. 

These SPECIAL types of equations, we now go on to, in  
the next few chapters. 

STMPLE EQUATIONS (by S c t ~ a  Szinyuqn etc.,) 

We begih this section with an exposition of several special 
types of ~quat~ions which can be solved practically at sight- 

with t,he aid of a beautiful special Siitra which reads : ?@ 

('8.linyam S6~riyasamucw.ye') a.nd which, in cryptic 
language (which renders it applicable to a large number of 
differelit eases) merely says : ' when the Samuccaya is the same, 
that Sum~tccaya is zero" i.e. it should be equxted to zero. 

'Sun~uccayu' is a technical term which has several mean- 
ings (under different contexts) ; and we shdl explain them, 
one by one : 

FIRST MEANINC AND APPLICATION 

'Xamuccaya' first nicans a tern1 which occurs as a common 
factor in all thc terms concei~l~rd. 

Thus 12x+3x=4x+5x :. I ~ x + ~ x - ~ x - ~ x = o  
:. Bx=O :. r = O  

A11 these detailed steps are unnecessary; and, in fact,, 
?to one works it out in this way. The mere fact t,hat x occurs as 
a common factor in all the tenns on both sides [or on tbe 
L.H.S. (wit,h zero on the R.H.S.)] is sufficient for the inference 
that x is zero ; and no inter~nediate step i~ necessary for arriving 
at  this concluruon. This is practically axiomatic. 

And this is applicable not only to x or other such "unknown 
quantity" but to every such case. Thus, if 9 (x+1)=7(~+1), 
we need not say: R(x+l)=7(x+ 1) 
:. 9x3-9=7~+7 :. 9 ~ - 7 ~ = 7 - 9  ... sx=--e :. x=-1. 
On the contrary, we can straightaway say : 9 ( ~ + 1 ) = 7 ( ~ + 1 )  
:. x+1=0 :. x=-1 

SECOND MEANING AND APPLICATION 

The word 'Samuccaya' has, as its second meaning, the 
product of the independent terms. Thus, (x+7)(x+O)=(x+3) 
(x+21) :. Here 7 x 9=3 it 21. Therefore x=O. 



This ifi also practically axiomatic, has been dealt with in a 
previous section (of this very subject of equations) and need not 
1)e gone into again. 

THIRD MEANING AND APPLICATION 

'Saniuccaya' thirdly meails the sum of the Denonlinators 
of twi, fiactionb Lav~ng the same (numerical) numerator. Thus 

1 ' 1 + . - = 0  ... 5x-2=0 
2 Z l  3x-1 
This is axiom.zt,ie too and ilccds no elaboration. 

FOURTH ~IIz .~NIN(:  AND APPLICATION 

Fourthly, 'S<w,auccaw7 means coinbination (or total). 
In  this sense, it is usotl in several different contexts; and they 
are oxplaincd bclow :- 

( i )  I f  thc sum of thc nnmcrators and the sum of the 
denotninntom bc thc same, t.hen t.hat sum-zero. 
Thus : 

This is the current method. But the "Stinyam Srirnya- 
Samuccaye" formula tells us that, inasmuch as N,+N2=4x+16 
and Dl+D, is also 4x+l6 :. 4x+16=0 :. x=-4. In  fact, 
as soon as this eharacteriat~c is noted and the type rccogn~sed, 
the student can a t  once mentally say : x=-4. 

Note:  -IF in the algebraical total, there bc a nnmerical 
favtor that sllould be romovcd. Thus: 

3x4 4- x+1 
6 5 7  -2xfy 

Here N,+N, = 4x+5 ; and Dl+D2 = 8x+lO. Removing 
the numerical factor, we have 4x+5 on both sides here too. 

( 109 ) 

No laborious cross-multiplications of N, by D, and 
N2 by Dl and transpositions etc., are necessary (in the T7edic 
method). 

At sight, we can a t  once say 4x+5=0 and be done with it.. 
PIPTH MEANING AND APPLICATION (for Quadratics) 

With the same meaning (i.e. total) of the word % +  
'Samuccaya', t,here is a fifth kind of application possible or 
this Sfitra. And this has to do with Quadratic equations. 
None need, however, go into a panic over this. It is as simple 
and as easy as the fourth application : and even little children 
can understand and readiiy apply this S t t r a  in this context, 
as explained below. 

In thc two instances given above, i t  will be observcd 
that the cross-multiplications of the coeficients of x gives us the 
same coefficient for x2. In  the first case, we had 4xa on both 
sides ; and in the second example, i t  was 6x2 on both sides. 
The two cancelling out, we had simple eq~iations to deal wit,h. 

But there are other cases where the coefficients of x2 are 
not the same on the two sides ; ancl this means that we have a 
cl~~adratic equation before us. 

But i t  does not matter. For, the same Sfitra applies 
(alt,llougll in a different direction) here too a.nd gives us also 
the second root of the quadratic equation. The only difference 
is that inasmuch as Algebraic: 'Sa,vr~uccaya' includes sub- 
traction too, we therefore now take into account, not only 
the sum of N, and N2 and the sum of Dl and D, but also the 
differences between the numerator and the denominator on each 
side ; and, if they be equal, we a t  once eqnate that difference 
to Zr~o.  

Let us take a concrete exanlplc and suppose we have to 
3x+4 - 5x+6 solve the equation - -- ----- 
Gx+7 2x+3 

(i) We note that Nl+N,=8x+10 and Dl+D, is also 
8x+10; we therefore use the method described in 
the fourth application given above and equate 
8x3- 10 to zero and say : x=-514. 



(ii) But lnelital cross-multiplication reveals that the 
x2 coefficients (on the L.H.S. and the R.H.S.) are 
6 and 30 respectively and not the same. So, we 

I 
decide that it is a quadratic equation ; and we observe 
that N,-D,=3x+3 and that N,-D, is also 3x+3. 
And so, according to the present application of the 1 I 
aame Siitra, we at once Hay: 3x+3=0 :. x=-1. I 

Thus the two roots arc -514 and -1 ; and we have solved 
a quadratic equation at mere sight (without the usual parapher- 
nalia of cross-multiplication. transposition ctc.). We shall revert 
to this a t  a later stage (when dealing with quadratic equations 
themselves, as such). 

With the same sense 'total' of the word 'rSa~,cuemya' 
but in a different application, we have the same Siitra coming 
straight to our rescue, in the sol~ltion of what the various 
text-books everywhere describe as "Harder Eq~~atioris", and 
deal with in a very late chapter 'thereof under that caption. 
In  fact, the labcl "Harder" has stuck to this type of equations 
to such an extent that they devote a separate section thereto 
and the Matriculation examiners everywhere would almost 
seem to have made it :in invariable rule of practice to include one 
question of this type in their examination-papers ! 

Now, suppose the equation before us is :- 

In all the text-books, we are told to transpose two of the 
terms (so that each sidc may have a plus term and a minus term), 
take the L.C.M. of the dcl~ominators, cross-multiply, equate 
the denominators, expand tliern, transpose and so on and so 
forth. And, after 10 or nlore steps of working, they tell you 
that 8 is the answer. 

The Vedic Siitra, however, tells us that, if (other elements 
being equal), the sum-total of the denominators on the L.H.S. 
and the total on the R.H.S. be the same, then that total is zero ! 

In this instance, as D,+D, s d  D,+D, both total 2x-1G. 
:. 2x-16=0 :. x=8 ! And that is all there is to it ! 
A few more instances may be noted :- 

The above werc plain, simple cases which could bc readily 
~+ccognised as belong~ng to the type under consideration. There, 
however, are several cases which really belong to this type but 
come under various kmds of disguises (thin, th~ck  or ultra-thick)! 
But, however thick the disguise nlay be, thcrc axe simple devices 
by which we oan penetrate and see through the disguises and 
apply the 'Stinya Samuocaye' formula :- 

Here, we nhould transpose the minuses, so that all the 
4 terms are plus ones :- 

The transposition-process here is very easy and can 
be done mentally (in less than the trice). 

1 ( 4 ) l  - 1 ---- l :. x=)(b+e) 
(x-b) x-b-d x-c+d X-c 



Note :-lf the last two examples (with so many literal 
coefficients involved) were to  be done according to 
the current svstem, the labour entailed (over the 
L.C.M.'s, the niultiplicat,ions etc.,) would ltavc beerr 
terrific ; arid the i5me hlten would have been pro- 
portionate too ! Rut, by Lllis (Vedic) metl~od, the 
ecluatlon is solved ut scght ! 

The above were cases of thin disguisei;, where illere 
transposition was sufficient for enabling us to penetrate them. 
We now turn to cases of disguises of inedium thickness :- 

By dividing the Numerators out by the Denonlinators, 
we have : 

Cancelling out the two ones from both sides, we have the 
Equation bcforc us in its uiidisguised shape a l ~ d  can a t  olicc 
say, :. x = 3 t .  

Now, this process of division can be mentally performed 
very easily, thus :- 

(i) "+'fz++_X .: (1+1=1+1) 
X X X X  

(ii) Applying the Parcivartya method (mentally) and 
trarisfer~ing the independent tern1 of the denominator 
(with its sign changed) to  the Numerator, we get 1 as t h ~  
result in each of the 4 cases. 

With the help of these two TESTS, we know that "thc 
other elements are the same" ; and, as D,+D,=D,+D,, we 
therefore identify the case before us as conling completely 
within the j~irisdiction of the "Stinyane Sto~~trccayc~" formula 

. . . 21-7=0 .'. ~ = 3 )  

Here, -. 1 +-= 1 1 +- I ; 
1 1 1 1  

I 
Secondly, by Parzvartga, 

2 -- -=- 2 2 - -  2 
X-2 X-7 X-1 X-6 

We transpose the minus terms and find that all the TESTS 
have been satisfactorily passed. (All this argumentation cull 
of course, be done mentally). 

So, we say : 2x-8 = 0  :. x = 4  

Here :+ f = f ++ ; the Numerators all become 1 ; and 
D,+D2=l),+D4=2~-9=0 :. x=44 

1 Here, +-I-': = f +$ ; and the other 2 tests are all 

1 right too. :. x=6 

All the TESTS are found satisfactorily passed. 
:. 2x-14=0 :. x=7 

All the TESTS are all right :. 2x-9=0 

Either by simple division or by slnlple factorisntiou 
(both of them, mental). we note :- 

(i) (x+l)+(x+4)=(x-l-2)+(+3) 
(ii) the numerators are all unity;  and ... 

(111) Dl t D z ~ D ,  +D4=2x-2=0 :. x=l 
15 



(i) At first sight, this does not seem to be of the type 
which we have been dealing with in this section. 
But we note that the coefficient of x i3 the four de- 
nominators is not the same. So, by suitable multi- 
plication of the numerator and the denominator in 
each term, we get 6 (the L.C.M. of the four coefficients) 
uniformly as the coefficient of x in all of them. Thus. 
we have :- 

Now, we can readily recognise the type and say :- 
- 13 12X+13=0 :.x=---- 

12 

But we cannot gamble on the possible chance 
of its being of this type and go through all the laborious 
work of L.C.M., the necessary multiplications etc , 
(and perhaps find at the end of i t  all, we have drawn 
a blank) ! There must therefore be some valid and 
convincing test whereby we can satisfy ourselves 
beforehan(1 on this point (antl, if convi~iced, then and 
then only slionld we go tl~rough all t l ~ c  toil itlvolved). 

And that test is quite simple and easy :- 
8+3 = $= 8 .  But even then, only the possi- 

bility or the probability (and not the certainty) of i t  
follows therefrom. 

(ii) A second kind of TEST-with guarantee of certainty- 
is available too. And this is by CROSS-multipli- 
cation of N, by D, and of N, by D, on the one hand 
and of N, by D, and of N, by D, on the other. (And 
this too can be done mentally). 

Thus, in the case dealt with, we get from each 
side-the same 12x+13 as the total :. 12x+13=0 

-13 :. X =-- 
12 

(i) We transpose (mentally) and note : 
:+4=#+$ So, we rn-ay try the L.C.M. method. 

6 6 - 6 +--- 6 +-- 6-2 6x+3 6xf l  6xi-4-O 

(ii) Even here, after the preliminary testing of i+f 
being equal to #++, we may straight :lway CROSS- 
n~ultiply and say : :. 1"+5=0 . . x=-5/12 

:. By either of the two niethods, u-c get 12x-I=O 

-4 :. By either method, G X + S = ~  :. x =  -- 
3 

(5) 2x+ l l  9x+9 4x+13 15x-47 
x+5 3 ~ - 4  ~ $ 3  3x-10 

Hrre $-j=+-y :. YES. 

By simple division, we pot this into proper shape, 
;Is follows :- 

1 3 - 1 3 .-+ ----- 
x+5 3x-10 % +x-4 
Here $-I$=++$ :. YES. 

:. By eithcr method, 6x+5 = 0  :. x = I3 
6 

:. Ky either method, Gx+8 = 0  :. x =  I.? 
3 



FU~TEER APPLICATIONS OF THE FORMULA I 

( 1 )  In the case of a special type of seeming "cubics" :- 

There i s  a cr~ta in  type of equations which look like r~ibic 
equations hut, which (after wasting a huge lot of our t l m ~  and 
energy) turn out to  be simple equations of the first degree and 
which come within the range of the "Sihyam Samuccccye" I 

formula. Thus, for instance- 
(~-3)~+(x-g)a=2(x-s)a 

We need hardly ~ ~ o i n t  out that the expansions, multi- 
plications, additions, transpositions, factorisations in each 
pitrticillar case of this type nrt~vt necessarily involve the ex- 
p e n d ~ t u ~ e  of t remrndo~~s time an11 energy wh11~ the Ved~c 
foirnola glves us the answer ut sight ' 

Three more illustrations may be taken :- 

(i) (~-149)3+(x-51)~=2(x-100)3 

The very prospect of the squaring. cubing etc., of these 
numbers must nppal the st11Qn:. Hut, by the present Siilra 
we cnn st once say . 2x-200=0 .. x=- 100 

( ~ i )  (x-249)' t ( x  f '247)3=2(x-1)8 

The current syst.em works this out a t  enormous length 
(by expanding all tshe three cubes, multiplying, transpoing 
etc..) and finally gives us the hnswer x = 6  

2 

The Vedic LlGtra now under tliscussion is, however, appli- I 
cable t o  this kind of case too and says :-- I 

(x-3)+(x--8) = ax-12. Taking away the numerical 
factor, we have s-6. And 1-6 is t'he fact,or under the cube 1 
on R.H.S. :. x-6--0 :. x=G 

The dlgebrccicol proof of it is .as follonrs : 
( ~ - 2 a ) ~ + ( x - 2 b ) ~ ~ 2 ( x - a - b ) ~  ! 

x"6x2bt12xa2-8a3+x3-tix2b+12xb2-8b3= . . I 

=2(x"3r2a--3x3h +3xa2+3xb2+6xab -a3--3aPb-3ab2-1+) 
==2x3-6x2a-6x2h+~ixa?-+8p2h+l2xxb-2a~6~zk)--6~b2-2b7 
Csncrlling out t l ~  conlnloll t e r m  from bot,h ~idcs ,  we have : 
12~a.~.+12xb2.-8a~--fil)s~~xa~+6xb2f- 12xab-2n3-tia2h 

-Gab2-2bs 
6xa2+6xb2--l2xah =6a3-6a2h- 6~b?./-PIb= 

:. 6x(a-11)~==0(~-? b) (a -b)2 
:. x-=a+I~ 

Obviously this p:\rticrtlnr oomhination was not thought, 
of ant1 worked out by t,he mathe~nxtioinns working under the 
avrell t  ?stern. At any rate, it is not focnnd listed in their 

b 

1. 
books (under any known formula or ilti a conditional identity" 
and sn on). The Vedic mathematicians, howevor, seem to  have 

4 
worlcc<l it; all out and given us the benefit thereof (by the appli- 
cation of t,his formula to examplts of this type). 

-- 

This i s r~ i l l  Irlore terrific. R I B~ ,  with the aid ol' t,his Siitrn, 
we call ;LL oncc2 say : x=l  ; and 

( ~ i i )  ( x t - x j - b  - c )3 f - ( s+h+r- - : i )~ -2 (x -~ - l~ )~  

The literal coeflic~cnts mnke thla stdl worse. B I I ~  t h ~ :  

Vrtllr one-llne mrl~te l  anhwev ih : x=-t). 

(2) Irl Ar CCGSI' of n special tfyps cf sesn~in,q ''B~iyrlurlratics" : 

There is illso siniilarly, a specinl t,ypr of s~nnlrr2gl?g "l~icluic- 
tiratit," ~quatinns which III'P really of t h ~  first degl.er; and ~ v l ~ i c l ~  
the same Sfitra t;olv(?s for US, :lt sight. Than. for rxnllrplc9 : 

Acc~)rtl~ng to the ~ u t ' l e ~ l t  method, we cross-multiply and 
\'I,. . (x-I 7) (xi-:i).: =(x+1) (x+5):' 

Expanding t l ~ e  lwo sides (tvit,h t,hr aid of the 11sl1n1 ft~rrnula 
[("+:~)(x + b)(x 1-r)(x-+--ti) -=-x4+x3(a/-b-tc4-d) 

+x2(a,b-titc+nd -lbc+1~l+ud){-x 
x(aLc+abd+accl+hccl)+abcd)] (twicp over), 
we will next ~ a y  :- 

x"-tlRs3-kHOs2 + 2 l 6 ~ + 1 Q 9 = ~ ~ _ ( - l c j x ~ + 9 x ~ ~ - 2 1 ) 0 ? ( - ~  126 

('nocelling out t,he coullllorl ternis and tiiansposing. we i hen sny : 
:. lCx---  -ti4 :. ?(--4 



Aooording to the Vedic formula, howevr, we do not cross- 
multiply the binomial factors and so on but simply observe 
that N,+D,* and N,+D, are both 2x +8 and :. 2x+8=0 

:. x=-4 

The Algebraic proof hereof is as follows :- 

, .  . , 

:. By the usual process of cross-mnltiplications, 
(x+a+3d)3(x+a+d)=(~+a)(x+a+2d)~ 

:. (By expansion of both sides) 

:. (Cancelling common terms out), we have :- 
x(10d3)+10ad3+3d4=;x(8d3)+8ad3. 

:. 2d3x'+2ad3+3d4=0 
:. (Cutting d3 ont), we have 2x+2a+3d=0 :. x=-&(Pa+Sd) 

At this point, the student will note t.hat Nl+Dl (under the cubes) 
and N,+D, are both (2x+2a+3d). And this gives us the 
required clue to t,he particular characterist,ic which characterises 
this type of equations. i. e. that Nl+Dl (under the cube) 
and N,+De must be the same ; and, obviously, therefore, the 
'&Inyam Sant~cccaye' Sfitra applies to this type. And, while 
the current system has evidently not t,ried, experienced and 
listed it, the Vedic seers had doubtless experimented on, 
observed and listed this particular combination also and listett 
i t  under the present Satra. 

Note :-(1) Tlie cmiclition noted above (about the 4 Binomials) 
is interesting. The sum of the first + t,he second 
must be the same as the sum of the 3rd and 4th. 

(2) The most obvious and readily utiderstantlable 
condition fulfilling this requirement is that t h ~  
absolute terms in N,, N,, Dl and D2 Binomial8 
should be in Arithmetical Progressios. 

*(witliin~lie cubes) 

(3) This may nlao be postulated in this way, i.e. that 
the difference between the two Binomials on the 
R.H.S. must he equal to thrice the difference 
between those on the L.H.S. This, however, is 
only a coroilary-result arising from the A.P. 
relationship amidst the four Binomials (namely, 
that if F,, Nl, Dl and Dg are in A.P. i t  is obvious 
that D,-N,=3(D1-N,). 

(4) In any case, the formula (in this special type) may 
be enunciated-in general terms-thus :--if N+D 
on both sides be the same, N+D should bc equated 

Two more exanlples of this type may be taken :- 

Working all this out (which all the literal coefficients and 
with cross-multiplicatons, expansions, cancellations, trans- 
positions etc., galore) would be a horrid task (for even the most 
laborious labourer). The Vedic formula, however, tells us 
that (x-a)+(x-b) and (x-2a-b)+(x+a+Zb) both total 

Note :-In all the above examples, i t  will be observed that the 
4 binomials are not merely in Arithmetical Progression 
but &re also so related that their cross totals are also 
the same. 

Thus, in the first example worked out above, by Cross- 
multiplication, we have (~+7) (x+3)~=(x+l ) (x+5)~  ; and 
the Cross-ADDITION of these factors gives us 4x+ 16 as 
the total on both sides ; and this tallies with the value x=-4 
(obtained above). 

In the second example :- 
(x+a+3d) (x+a+d)8=(x+a)(x+a+2dj3. 

And here too, Cross-ADDITION gives us 4x+4a t 6 d  as the total 
oli both sides. And this too gives us  the same answer as before. 



~ In the third example, we have :- I 
(X-Q)(X-~)~=(X-~)(X-~)~. 

And here t,oo the Cross-ADDITION Process gives us 4x-24 as 
t,he tot,itl on both sides. And we get the sa.me a.nswer as before-. 

111 the fourth case, we halve :- 1 (~+a+2b)(x-a)~=(x-2a-b)(x+b)~. 

Ant1 cross-4UUITION again gives us  the total 4x-2a+2b on 
both sides and, therefore, the same value of x as before. 

The student should not, however, fall into the error of 
I illlagining that this is an  additiorsal TEST (or suficient condition) 

for the applicat,ion of the formula. This really comes in as a 

corollary-consequence of the A.P. relationship between the 
Bi~lomial factors. But i t  is not a su&cient condition (by itself) 
for the applicability of the present fornlula. The Rule about 
N,-tD, N,+D, being the same, is t l ~ c  only condit,ion 
~uff i~ . ient  for this pllTposcs. 

An instance in point is given below :- 

I (x+S)"-x+2 

I (x+5) x+8 
1 Here, Cross-ADlIITION gives 4x+lp us the total un 110th 
1 sides, and the condition D2-N,=3(D1-N,) is also satisfied 

1 (as 6=.2 >( 3). But 3 Jr5+2+ 8 ; anti. rts t,his esscntin~ condition 
I is lacking, this l>a.rticular equation ~loau not come within the 

purview of t,his SRtm. 

On actual cross-lnnltiplicatioll and expansion etc., we 
find :- 

x4+f17~3+10jx+fs7jxf 2j0=x4 + 1 7 ~ " + 9 9 ~ ~ + 2 4 3 ~  f 2 1 G  

1 :. (is2+32x+34=0, which is a Quadratio equation ( ~ ~ i t h  the 
- 

-I6* \/52, and not simple cquatlon a t  t w o  1rr;itional Roots ----- 1 6 

al l .  of the t v p ~  wr are here drallllg with. 

~ l l d  this is in confior~nit~ with tlle lack of the basic 
iu question i.e. that  N,+D, ;uul N2+D2 sllould be 

the wme. 

(3) In the! case of another special type ?f serming "Biquadratics" 

There is also another special type of seeming "Biqua- 
dratic~" which are really simple equations of the first degree. 
which the ''L?&tyam Samuccaye" Sfitra is applicable to and 
which we now go on to. (This section may. however, be held 

L 
over for a later reading). 

We first note that cross-ADDITION gives us the same 
total (4x f 22) on both sides. This gives us the assurance 
that, on cross-multiplication, expansion etc. the x4 and the x8 
coefficients will cancel out. Rut what about the x' coefficients ? 

For them too to  vanish, i t  is necessary that the sum of 
the products of the independent terms taken two a t  a time 

C ,  
should be the same on both the sides. And this is the case when 
if (x+a) (x+b) (x+c) (x+d)=(x+e) (x+g) (x+h), we 
have not merely a+b+c+d=e+f+g+h but also two other 

' #  
conditions Fulfilled F 

(i) that the sum of any 2 binomials on the one side is 
ual to the sum of some two binomials on the other : 

and (ii) ab+cd on the left=ef+gh on the right. 

In  the example actually now before us. we find all these 
conditions fulfilled :- 

(1) (x+l)+(x+9)=(x+4)+(x+~);  (x+l)+(x+ 5)=(x+ 21-k 
(x+4) : (x+l)+(x+7)=(x+2)+ (xi-6) ; (x+9)+(xf5)= 
(x+4)+(x+10) : (x+9)+(x+7) = (x+G)+(x+lO) ; and 
(x+5)+(x+7) = (x+2)+(x+10) : and (ii) (5+63) and 

I (8+60) are both equal to 68. 

So, by this test, at, sight, we know the equation comes 
lmder the range of this Siitra . 4x+22=0 . x =  -54 

1 Similar is the case with regard to the equation :- 

(2)  -- ( ~ $ 2 )  fx+4)- ( ~ 1 )  ( ~ $ 7 )  
(x+l)-(+3)-(~-2) (x+6) 

16 
i 

i 



;, (,-2) (x+2) ( ~ $ 4 )  (x+6)=(~-1) (x+l) (x+3) 
(x+7 ) ; and 

(i) B~ cross-addition, thetotal on both sides is 4x+10 

(ii) ~h~ sum of each pair of Binomials on the one side is 
equal to the sum of some pair thereof on the other ; 

and 
(iii) ab+cd=eff gh i.e. -4+24=-11-21 ( ~ 2 0 )  

:. The Siitra applies ; and 4x+10 = 0 x =  -24 

Such however is not the case with the equation :-- 
(3)  (x-1) (x-6) (x+ 6) (x+5) =(x-4) (x-2) (x+3) (x+7) 

Here, we observe :- 

(i) The total on both ides  is 4x+4; 

but (ii) the totals of pairs of Binonlials (on the two sides) 
do not tally ; 

and (ii) ab +cd+ef+gh 

This equation is therefore a quadratic (and not within 
the scope of the present Siitra). 

The Algebraical Explanation (for this type of equations) 
18 :- 

( ~ + a )  (x+b) ( ~ + G I  (x+d)=(x+e) (x+f) (x+g) (x+h) 
The data are :- 

(i) a+b+c+d=e+f+g+h ; 

(ii) The sum of any pair of binomials on the one side 
must be the same as the sum of some pair of binomials 
on the other. Suppose that a+b=e+f ; and c+d 
=g+h ; and 

( iii) ab+cd=ef+gh 

.'. x4+x3 (a+b+c+d)+x2 (ab+ac+ad+bc+bd+cd) 
4-x(abc.4-abd+acd+bcd) f abcd 
=x4+ xS (ef f+g+h)+x2 (ef+eg+~h+fg+fl~+gl~) 

x(efg+efh+egh+fgh)+efgh 

:. The x4 and xScancel out ; and, owing to the data in 
the case, the xz coefficients are the same on both sides ; and 

i thercforc they too cancel out,. And there is no quadratic 
equation (left for us to solve herein) 

Proof: The xe coefficients are :- I 
t L.H.S. ab+ac+ad+bc+bd+cd 

R .HA. ef+eg+eh+fg+fh. kgh 
i.e. (ab+cd)+a(c+d) b(c+d)=ah+cd+(a+b)(c+d) 
and (-f+gh)+e(g+h)+f(g+h)=ef+gh+(e+f)(g+h) 
But (ab+cd)=(ef+gh) ; a.nd a+b=e+f ; and c+d 
=g+h 

:. t,he L.H.S.=the R.H.S. ; and x2 vanishes ! 

FURTHER EXTENSION OF THE SOTRA 

In'the beginning of this very chapter, it was noted that 
if a function (containing the unknown x, y etc.,) occurs as a 
common factor in all the terms on both sides (or on the L.H.S. 

1 (with zero OII the R.H S.) that function can be removed therefrom 
and equated to Zero. We now proceed to deal with certain 
types of cases which do not seem to be of this kind but ale k 
really so. All that we have to do is to re-arrange the terms in 
such a manner as to unmask the rnasked terms, so tosay and make 
the position transparently clear on the surface. For example- 

(1) x+a + x+b $ x+c - - 3  
b+c c f a  a+b 

Taking -3 over from the R.H.S. to the L.H.S. distributing 
it amongst the 3 terms there, we have : 

X + " + l + x - t b + , + x + c + ,  -=-0 
b+n c + a  n+h 

:. By virtue of the Samuccaya rule, 
x-+a+b+c = 0 .: x=-(a+b+c) 

This whole working can be done, a t  sight i.e. mentally. 
(2) x L a  $ x+b + x+c- x+2a x+2b x+2c +-+- b+c c+a a+b b+c-a ~ + a- b  a+b-c 
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Add unity to each of the 6 terms ; and observe :- 

. ~ + a - t b k c  + ~ + a + h + c + x + a t b + c  . . -- 
1'1 u,- I), 

6 - x+a+l, 1 - ( .  'i+,t+b+; +x+a-kb+o 
I 

-- 
I ) .  +' L,, 1'6 

Sobtract unity from each of the (i tcrn~r; ; arid we have : 
x-a-b-c=0 :. x=(a+b+c) 

- x-be - x-c~.  x-ab 
- i(b+q-b(cS-a)+r(a+b) 

f Subtracting 1 from each of the 6 terms, we have : 
x-ab-ac -bc - 0 :. x = (ub+bc+ca) 

(-5) X-bc I x-(;a +x-aL 
b+c c+a s + b  

Subtracting a from the first terms, b from the second 
terms and c from the third terms (on both sides), we have : 

X-ab-be-ca = 0 :. x =ab+bc-kca 

As (b-c)+(c -u) I (a-b) = 0, we add b-c, c-a and 
a-b to the first, second and t h ~ r d  terms respctively ; and we 
have : 

(7) ax+a(i12+dbc) - - + bx+b(h2+ -- -- 2ca) +cx+c(c2+2ab) = 0  
b-c c -a a-b 

A We add a(b-c) to the first term, b(c-a) to the second 
and c(a-b) to the last ; and we have : 

- ax+a(a2+2bc)+a(b-c)' 
- -- -- 

b-c 

b Similarly, t2 = - {x+(aa+ba+c2)l 
r-8 

and t, = 2 ix+(a2+b2+c2)] =: 0 
a-b 

.= x+a2+b2+ca =0 :. x=-(a2+ba+c2) 

(8) x+as+2b3 . - ---. - x+b32cS+x+c3+2a3 + 
b-c C-a a-b 

Splitting the R.1I.S. into (ba+bc+ca)+(c2+ca+a2)+(a2+ab 
+ba), transposing the three parts to the left and combining 
the first with the first, the second with the second and the third 
with the third (by way of application of the 'Adywuidyena' 
formula), we have : 

x+a3+2b3-(b2+be+c2) t 
b-c 

- x+a3+2b3-b3+c3 -. x+a3+b3+c3 
-- 

~ L C  b-c 

Similarly, ta = the same N 
C-a 

the same N and t, = - - 
a-b 

:. x= -(a + b3+c3) 



MERGER TYPE 

of 
EASY SIMPLE EQUATIONS (by the Para'vartya' method) 

Having dealt with various sub-divisions under a few 
special types of simple equations which the Sfinyam Sdmya- 
sarnuccaye formula helps us to solve easily, we now go on 
to and takc up another special type of simple equations which 
the Parcivartya Sutra (dealt with already in connection with 
Division etc) can tackle for us. 

This is of what may be described as the MERGER Type ; 
and this too includes several sub-headings nntlrr that heading. 

The first type : 

The first variety is one in which a number of termd om 
thc left hand side is equated to a single term on the right hand 
side, in such manner that N,+N,+N, etc., (the sum of the 
numerators on the lcft) and (the single nunierator on ,.lie right) 
are the same. For instanoe, 

3 4 7  --+ ---- Here Nl+N, i.e. (3+4)--N(i.c. 7) 
x + l  x-2 x+3 

SO the Sfitra applies. 

The procedure is one of mergilig of the R.H.S. fraction 
into the left, so that only two terms remain. The process is 
as follows : 

As we Incan to lnrlyc the R.1I.S. into the L.H.S., we 
subtract the independent term of the to-be-merged binomial 
from the absolute tcrms in the binomials on the lcft aud ntulti- 
ply those remainders by the numerators of the terms on the 
left. And the process is complete. 

(i) We first put down the two to-be-retained denomi- 
nators down thus :- 

x T  x-2 

(ii) Then, as 3(from the R.H.S) is to  be merged, we 
subtract that 3 from the 1 in the first term, obtain 
+2 as the remainder, mltiply it  by the numerator 
(i.e. 3), get -6 as the product and put that down 
as the new numerator for our first term. 

(iii) And we do the same thing with the second term, 
obtain -4 as the product and set i t  down as our 
Numerator for the 2nd term of the new (i.e. the 
derived) equation. 

(iv) As the work of merging has been completed, we put 
zero on the right hand side. So the resultant new 
equation (after the merger) now reads : 

Then, by simple cross.multiplication, we say 
.'. 4 ~ + 4 - -  -6~-12 .= lox=-16 .'. X =  -815 

or, by the general formula (-mb-na)/(m+n) explained 
alreadv (in the chapter on simple equations and first principles), 
we sav a t  once : 

The Algebraical Proof hereof is :- 

The General Algebraical Proof hereof is : 



Well ; the Algebraical explanation, may look frightfully long. 
But the application of the 'Parcivartya' Satra (as just herein- 
above explained and illustrated) is simple enough and easy 
enough and should be welcomed by the student with delight. 

I A few more examples of this sort may be noted : 

1 Here 3+5=8 :. The SCitra applies. 

I Here 2+3 =6 :. The formula applies. 

I Note :-At this stage. when both the nun~erntors are found to be 
-6 and can therefore be renlov~d. the for~iluln "81itlyaT 
Sawuccaye" may be readily npplted : and we may say : 

(x+2)+(~+3)  = O  .'. x = -24 
2 3 ~ u t ,  if- +-- = 5 2+3= j. 

x+2 x+3 x+7' 
the merger Sftra applies ; but after the merger. the 
numerators are different (i.e. -10 and - 12) and there- 
fore the '8nnyana' Siitra will not apply. 

DISGUISES 
Here too, we have often to deal with disguises, by seeing 

through and penetrating them, in the same way as in the 
previous chapter (with regard to the 'fliinya?]2 Sarnuccaye' 
formula). 

A few illustrations will make this clear : 

(1) 5 2 - 3  
x-2 3-x x-4 

Here, mere transposition will do the trick. Thus : 
2 3 5  -+-=- Now, 2+3 =6 :. The Stitra applies. 

x-3 x-4 x-2 

4+9#15 :. Doubt arises ; but the coefficients of x being 
different in the three denominators, we try the L.C.M. method 
and gct : 

And here, on noting N, (12)$-N, (18) = N, (30), we say : 
"YES ; the Sfitra applies" and proceed to apply it : 

:. 12/(6x+3)+36/(6~+4)=0 :. X =  -13124 

But how should we know before-hand that the Siitra does 
apply ? The TEST is very simple and merely consists in tbe 
division of each nlimeratol by the x--coefficient in the denomi- 
nator (as in the '8&nyam' case). Thus $+$ = 2+3 = 5 ; and '2 : 
is also 5. 

Say, "YES" and go ahead, with the merging. 

Herc (++%) and are the same (i.e. 5) :.YES. 
. 60 90 - . . ---- + - - NOTE, 60+90=150 

30~-15 30~-10 30~-6  
2 3 . . --+-- - VOTE 2+3=5 :. YES 

3Ox-15 3Ox-10 3 0 x 4  
17 



Proceed therefore end say : 

Here )+$ = 1+14=% ; and is also 24 .; YES 
Do the merging therefore and say: 

126 210 84 + = -  
" 3-2 84x+21 84xf 70 

2 3 - ..---- + :. YES 
84x+12 84x+21 84x+70 

. -116 -147 -50 -+ - - = o  . ' ex=-  
" 84x+12 84x+21 263 

7 - 3 (5 )  LC+--- 
5x+1 1Ox+1 2x+1 

HerePf&=+8=3/2 .:YES 
7 - 15 - +--- :.YES 

"10x$-2 10x+1 10xf5 
-24 -28 + - = a  

" 10x+2 10x+1 

A -520~-80=0 
:. X =  -2113 

6 15 (6) 7+- = - 
7x+1 4 x f l  6x+l 

Here +-kg = 21 ; and 7 is also 24 :. YES 

. 84 126 - 210 . . + - -  :. YES 
84x+12 84x+21 84x+14 

2 . .- 3 - 5 
8 4 ~ + 1 2 + 8 ? 1 - 8 4 x + 1 4  

.= YE 

. -4 21 
* 8 4 k + 1 2 + 9 m = 0  

:. 1428x+168--0 

. . . x=-168--2 -- 
1428 17 

EXTENSION OF MERGER METHOD 

I (Multiple Merger) 

We now take up and deal with equations wherein N,+N,+ 
N,(of the L.H.S.)=N of the R.H.S. and wherein the same 
'Parivartya' (Merger) formula can be applied in exactly the 
same way as before. Thus : 

3 5 9 (1) - L + +  
x+2 x+3 x+5 x+4 

TEST : 1+3+5=9 :. YES. 
. -2 - 3 5 
. . x+2 

+--+--- x+3 x+5 = O  :. YES, again. 

i.e. + - =  2 3 5 
x+2 x+3 x+5 

. .--.+----O -6 -6 
xf2  x+3 

:. (i) By the Basic Formula 

or (ii) By 'S~nya?p Samwcaye' formula : 
(x+2)+ (x+3)=0 :. x =  -24 

Note :-These two stcps (of successive merging) cail be combined 
into one by multiplying N, first by (2-4) and then 
by (2-5) i.e. by 6 and similarly Ng firat by (3-4) 
and then by (3-5) i.e. by 2 and proceeding as belore 

:. By either method (Basic or SQnyanz), x =  -4 
The Algebraic Proof hereof is this : 

m(a-d) (a-c) nib-d) (b-c) . .  - -  --+ = o  
x+a x+b 



1 which is the exact shape of the formula required for the single- I 
I step merger. (vide supra). I 
1 Similarly, the merger-formula can be extended to any I 
I number of terms as follows: I 

m n + +  P+2+r+  ... 
x+a x+b x+c x+d x+e 
- - m+n+p+q+r+... 

x+w 
, m(a-w) (- - -) (a-e) (a-d) (a-c) . . 

x+a 
+n(b-w) (- - -) (b-e) -- (b-d) (b-c) 

x+b 

I (which is the general formula for the purpose). Thus, in the 
above example- 

I A few more illustrations of this type are given below : 
48 (1 )  - 3 - + 4 L +  48 = 

3xf 1 4x+1 8x+1 6x+1 

Here 4 + * + 2 = 8  ; and 2 = 8  :. YES 
24 24 +- . . -- 144 - 192 + . YES 

24x+8 24x+6 24x+3 24x+4 . ' 
..- 1 . ' +- 6 - 8 + - - :. YES 

24x+8 24x+6 24x+3 24xf4 

:. YES 

Here if?+? =22 ; and 8 8  is also 22 
360 +- 900 - 1320 . . + :. YES 

60x+30 BOx+2O 60x+12 60x+l5 

-!.!-+30=48 YES 
60x+30 60xf 20 6094-12 " 

2 - 3 . + - :. YES . .- 
60x+30 60x+20 60xs12 

Note :-Any change of SEQUENCE (of the terms on the L.H.S.) 
will cause no change in the working or the result. 

and .!% is also 36 :. YES 
4 

. 120 +- ..- 1500 - 2160 540 + -- :. YES 
60~-30 BOX-20 BOX-12 60~-15 

2 .. - 9 36 + + x  = :. YES 
60~-30 60~-20 60X-12 60~-15 

-30 -45 -75 :. (By merger) - + - = - ... YES 60x-30 60x-20 60~-12 
2 . . 3 - 5 + -- :. YES 

60~-30 60~-20 60~-12 
, -36 -24 . . - +- = o  

60~-30 BOX-20 
1 1 + - = o  . . -- 

2OX-10 ~OX- 10 
:. IBv Basic rule or by cross-multiplication or by ('Sangam , " 

Formula), 50x-20=0 :. x = j  

OR (by Multiple simultaneous merger) 

:. x = %  
Note :-Again any change of SEQUENCE (of the terms on the 

L.H.S.) will cause no change in the working or t,he result. 
1 . . 6 15 22 + + -  =- :. YES 

60x+30 bOxf2O 6Ox+1!2 60x+15 

C 



~ COMPLEX MERGERS 

' There is still another type-a special and complex type 
of equations which are usually dubbed 'harder' but which can 
be readily tackled with the aid of the Parcivartya Satra. For 
instance : 

10 3 - 2 15 +- = ---- +--- 
2X+1 3 ~ - 2  2 ~ - 3  3 ~ + 2  

Note the TESTS : (1) Y-$=Q+? ; and 
(2) 10X3=2 X15 

i.e. 1 0 :  1 5 : : 2 : 3 ( o r  1 0 : 2 : :  1 5 : 3 )  
Transposing. 10 15 - 2 2c+i -3x+2 - -- 3 .  

2x-3 -' 
and taking the L.C.M. 

Simple CROSS-MULTIPLICATION leads us to the main 
TEST : 

Here comes the third TEST i.e. that the numerator (of the 
final derived equation) is the same on both sides- 

:. ( 6 ~ + 3 )  ( 6 ~ + 4 )  .= (ex-9) (OX-4) 

CLUE-This gives us  the necessary clue, namely, that, after 
putting up the L.C.M. coefficient for x in all the 
denominators. (D,) (D,)=(D,) (D,). As the trans- 
position, the L.C.M. etc., can be done mentally, this 
clue amounts to a solution uf the equation at sight. 

I n  these examples, we should transpose the 4 fractions 
in such a manner that, after tlle cross-multiplication etc., are 
over, all the four denominators (of the final derived equation) 

have the same (L.C.M.) coefficient for x and the numerator is 
the same on the L.H.S. and the R.H.S (of the same equation). 

A few more illustrations will be found helpful : 

(i) Transposing etc., we have : 

Here the N on both sides (of the final derived equation) is 18 
:. The Satra applies. 

:. (18xf 3) (18x+0) =(lax-10) (18~-9) 

Note :-In some cases (details of which we need not now enter 
into but which will be dealt with later), the original 
fractions themselves (after the transposition) fulfil the 
conditions of the Test. In such cases, we need not 
bother about the L.C.M. etc., but may straightaway 
transpose the terms and apply the 'Parcivartya' formula. 
In fact, the case just now dealt with is of this type, 
as will be evident from the following : 

(ii) 2 1 9 2 = 
6 x 1 1  3 x 1 1  9 ~ - 5  2 ~ - 1  - ,  

Mere 0 =a ; )=t ; and the i~unlerator (on both sides of the 
final derived equation) is 1. 

:.The Sitra applies aild can be applied immediately 
(without bothering about the L.C.M. etc.). 

:. (6xf l )  ( 3 ~ + 1 )  =(9~-5)  (2~-1)  
:. 18x2+9~+1= 18x2-19x+5 :. 2 8 ~  = 4  :. X =  : 

3 1 6 (2) _- 2- + _ =  +_- 
2x+3 3x+2 x+l  Ux+7 

(i) By L.C.M. method, (6x+9) ((ix+6)=(6x+7) ( 6 x t 4 )  



(ii) In this case, there is another peculiarity i.e. that 
the transposition may be done in the other way too and yet 
the conditions are satisfied. So, we have : 

(6x+9) (6x+7) =(6x+6) (6x+4) 

(iii) And even, by CROSS-multiplication at the very 

I outset, we get 12x+13=0 (by Sdmya Sammaye). :. x=-'  TB 

1 In such cases, SEQUENCE (in transposition) does not matter ! 
(This will be explained later). 

52 39 (3) 51 - 68 - - - 
3x+5 4x+ 11 4~-15 3 ~ - 7  

TESTS : and 5; aar both 17 ; and %a and are both 13. 

This equation can be solved in several ways (all of them 
very simple and easy) : 

(i) By the L.C.M. process : 
204 204 - 156 156 

12x+20 12x+ 33 12x-45 12x-28 
:. In the derived equation (in its final form), 

N1=204x13=12X13X17; 
and N2=156~17=12X13X17 i 

:. The Siitra applies. 
... (12x4-20) (12xf 33)=(12~-45) (12~-28) 

:. 12x= 28X45-20X33=600 ... ,=22 
20+33+45+28 126 63 

(ii) or, removing the common factor (12) : 

:. In the (final) derived Equation, 
Nl= 17 X13; and N,=13 x 17 :. The Siitra applies- 

. . .D D --D,xD, :. 12x=600 : .x=% 1x 2- 126 63 I 

(iii) or, a t  the very outset (i.e. without L.C.M. etc.) : 
68 - 51 - -  52 39 

33+5 4 ~ + 1 1  4~-15-3~--7 
:. L.H.S. N=561-340 =221 ; and 

R.H.S. N= -364+585 =221 

:. The Siitra applies straightaway. 
:. (3x + 5) (4~+11) =(4~-15) (3~-7)  
:. 12x2+53x+55 = 12xa-73x+105 
:. 126x=50 :. x = # s  

Note :-In the second method, note that 
Nl =N,=D,-D, and N, =N4=DI-D, TESTS 

The General Formula applicable in such cases i s :  

As the numerators are the eame, 
... The Sfitre applies 
... (x+p) (x+q)=(x+m) (x+n) 
..,,= --pq-. 

p+q-m-n 
8 6 3 (4) 1- + = - + - 

2 ~ - 1  4 ~ - 1  3 ~ - 1  6 ~ - 1  
6 6 24 24 (i) .. .------ = --- 

1 2 ~ - 6  1 2 ~ - 2  1 2 ~ - 4  1 2 ~ - 3  

:. In  the h a 1  derived equation, 
L.H.S. N=24 ; and R.H.S. N is also 24 

:. The Sfitra applies. 
12-12 - :. 12x= - -0 :. x = o  

D 
(ii) 'Vilokana' (i.e. mere observation) too will suffice in this 

case. 

(i) Here the resultant N is the same (1 )  (on both sides) 
:.YES 
:. 6x8+5x+l =exB-7~+2 :. 12x= 1 :. x = f t  

(ii) or, by cross-multiplication a t  the very outset and 
Stinyap Samuccaye, 12x-1=0 :. x = + ~  

18 



(ii) or by cross-multiplication at  the very outset and 
8zinyaw formula, 

-5 :. 18x+15=0 :. x=- 6 

( 138 

5 3 5 15 (e) + = + -  
Sxf2 3x4- 1 5xf3 15xf2 

15 15 16 15 (i) . - - 
15x+6 15x+9 15xf2 15x+5 

I 
:. The resultant Numerator on both sides is 45 
:. The Siitra applies. 

10-54--44 . -11 :. 15x= - -  . . x = - 
8 8 30 

(ii) Or, by cross-multiplication at  the very outset and 
Szinyaw etc., formula, we get 30xf 11 and 150xf 55 on the 
L.H.S. and the R.H.S. respectively ; and the uumerical factor 
(5) being removed, both give ua 30x+11=0 :. x =  -f & 
(7) 2 9  6x f 11 4x4- 4 3x+l9 + = -  

x f 5  2x+3 2x+1 x f 6  
(i) : (By Parcivartya division) : 

1 2  --+ 2 1 
x f 5  2xf3 2 3 + %  

2 2 - 2 2 
. '2x+ld-2--2x+l-23 
:. 4 is the N on both sides (of the derived equation) 
:. The Satra applies. 
:. (2xflO) (2x+12) = (2xfl)  (2x+3) 

3-120- -117 . -13 :. 2x = - - . . x = - 
18 18 4 

(ii) or by cross-multiplication at the very outset and 
Slinyaq SzZtra, we have : 

4 ~ + 1 3 = 0  :. x=-Lz 

(8) 2x + 11 15~-47-9~-9 4 ~ + 1 3  +- x+5 + 3x-10 3x-4 x+3 
3 (i) :. -- 3 - 3 3 +---+- 

3x+ 15 3~-10  3 ~ - 4  3x+9 

3 3 - 3 3 . - _ _ - _ _ - _  __ 
3x+ 15 3 ~ + 9  3x-4 3x-10 

In  the resultant equation, 

:. By (Parrivartya) devision twice over. 
3 4 12 1 - +-- 

3 x t 4  4x-1 12x+1 x+l  

-18 is the numerator on both sides 
:. The Sfitra applies. 

b 

12 12 12 12 
12x+16 1 2 x 4  1'2x+1112xt12 

:. By 'Siilzyam' Sfitra, we immediately obtain : 
-13 

24x+13=0 :. x =  - 24 

-3 

Note :-The Cross-multiplication and 'Sinyam' method is SO 

simple, easy and straight before us here that there 
is no need to try any other process at  all. The student 
may, however, for the sake of practice try the other 
methods also and get further verijcatiorb therefrom 
for the correctness of the answer just hereinabove 
arrived at. 



SIMULTANEOUS SIMPLE EQUATIONS 

Here too, we have the GENERAL FORMULA applicable 
to all cases (under the 'Par6vartya' Stitra) and also the special 
Siitras applicable only to special types of cases. 

THE GENERAL FORMULA 

The current system may congratulate and felicitate itself 
on having a fairly satisfactory method-known as t,he Cross- 
multiplication method-for the solving of simultaneous simple 
equations, which is somewhat akin to the Vedic 'Parcivartya' 
method and mmes very near thereto. 

But even here, the unfortunate drawback still remains 
that, in spite of all the arrow-directions etc., intendcd to 
facilitate its use, the students (and sometimes even the teachers) 
of Mathematics often get confused as regards the plus and the 
minus signs (+ and -) and how exactly they should be used ; 
and, consequently, we find most of them preferring-in actual 
daily practice-the substitution method or the elimination 
method (by which they frame new equations involving only 
x or only y). And this, of course, does not permit a one-line 
mental-method answer ; and it entails the expenditure of more 
time and more toil. 

The Vedic method (by the Parrivartya Rule) enables us 
to give the answer immediately (by rne1.e mental Arithmetic). 
Thus- 

4x+5y = 14 

The rule followed is the "Cyclic" one : 

(i) For the value of x, we start with the y-coefficients 
and the independent terms and cross-multiply forward (i.e. 
rightward) (i.e. we start from the upper row and multiply 

across by the lower one ; and conversely ; and the connecting 
link between the two cross-prodcts is always a minw). And 
this gives us our Numerator ; 

(ii) For finding the Denominator. we go from the upper 
row across to the lower one (i.e. the x coefficient) but backward 
(i.e. leftward). Thus, 

:. for the value of x, t,he numerator is 3 X  14- Ei;;II: I 5 x 8 = 2  ; and the Denominator is 8 ~ 4 -  

2 ~ 5 = 2  

In other words x - f - 1. 

And, as for the value of y, we follow the cyclic system (i.e. 
start with the independent term on the upper row towards the 
x coefficient on the lower row). So, our Numerator is: 

8 x 4 - 1 4 x 2 ~ 3 2 - 2 8 = 4  

And NOTE that the Denominator is invariably the SAME as 
before (for x) and thus we avoid the confusion caused in the 
current system by another set of multiplications, a change of 
sign etc. In  other words, y = $ =2  



A SPECIAL TYPE 

There is a special type of simultaneous simple equations 
which may involve big i~umbers and may therefore seem "hard" 
but which, owing to a certain ratio hetween the coefficients, 
can be readily i.e. mentally solved with the aid of the Satra 

&i 9 (SZnyam Anyat) (which cryptically says : If one 
is in ratio, the other one is Zero). 

An example will make the meaning and the application 
clear : 

6x+ 7y= 8 
19x+14v= 16 

Here we note that the v-coefficicnts are in the same 
ratio to each other as the independent terms are to each other. 
And the Satra says that, in such a case, the other one, namely, 
x=O. This gives us two simplc equations in y, which give us 
the same value + for y. Thus x = 0  ; y = 9 

N.B. :-Look for the ratio of the coefficients of one of the un- 
known quantities being the same as that of the inde- 
pendent terms (on the R.1I.S.) ; and if the four are in 
proportion, put the other urikriown quantity down as 
zero ; and equate the first cinknown quantity to the 
absolute term on the right. 

The Algebraical Proof is this: 

=+by = bm 
cx+dy = dm 1 
:. adx+bdy = bdm 

bcx-kbdy = bdm } 
:. x(nr1-bc)=0 :. x = o  

anti y =in 

A few more illustrations may be taken: 

(1) 12x4- 8y= 7 1  H e ,  .: 8 :  15 :: 7 : 14 (mentally) 
16X+16y= 14 

(2) l2x+ 78y= I2 1 Here -: 12 : 16 :: 12 : 16 (mentally) 
1Gx+ 96y=10 

and y=O 

(3) 499x+172y = 212 
9779~+387y =477 I 
Here 172 - 4 x 43 and 387 = 9 x 43 

a n d Z 1 2 = 4 ~ 5 3 a n d 4 7 7 = 9 ~ 5 3  

and y=$O 

Note :-The big coefficients (of x = 01) need not frighten us !) 
N.A. :-This rule is also capable of infinite extension and 

may be extended to any number of unknown 
quantities. 

Thus : 

(1) ax+by+cz=a : .x=1 
bx+cy+az= b Y=O) 
cx+ay+by=c and z=O 

(2) ax+by+cz=cm ;. x=O 
ax+ay+fz=fm) y = O  1 

mx+py+qz=qm and z = m  

(3) 97x+ay +43z = am x=O 
48979x+by+(p+q)z=bm ) .'' 

=rn] 49x(n-d)s+cy+(m-n)sz= cm and a=O 

N.B. :-The coefficients have been deliberately made big 
and co~nplex but need not frighten us. 

A Second Special Type 

Thcrc is another special typc of simultaneous linear 
equations where the x-coefficient's and the y-coefficients 
arc fomld intcrchangcd. Xo elaborate multiplications etc., 
are needed here. The (axiomatic) Cpasfitra m - w = i n n l h  

( '~anhluf ia-~~ccz~aknlanr ibh~, im' )  (which nieans "By addition 
and by snht,raction) gives us irn~nediately two eqi~at.ions giving 
thc values of (s+y)  turd (x->.). And a repetition of the same 



process gives us the values of x and y ! And the whole work 
can be done mentally. Thus : 

45~-23y= 113 
23~-45y= 91 

:. By addition, 68x-68y = 68(x-y) = 204 * 

And by subtraction, 22x4-22y =22(x+y) =22 :. x+y = 1 

I and y=-1 

Note:-However big and complex the coefficients may be, 
there is no multiplication involved but only simple 
addition and simple subtraction. 
The other special types of simultaneously linear equa- 
tions will be discussed a t  n later stage. 

I CHAPTER XVI 

1 MISCELLANEOUS (SIMPLE) EQUATIONS. 

! There are other types of miscellaneous linear equations 
which can be treated by the Vedic Siitras. A few of them are 

i shown below. 
FIRST TYPE 

I Practio~s of a particular cyclical kind are involved here. 
And, by the ParStvartya Sfitra, we write down the Numerator 
of the sum-total of all the fractions in question and equate it  

I to zero. n u s  : 

Here, each numerator is to be multiplied by the factor 
absent from its denominator. This is usually and actually 
done everywhere but not as a rule of mental practice. This, 
however, should be regularly practised ; and the resultant 
numerator equated to zero. 

In the present instance, 
(x -3 )+(2~-2 )+(3~-6 )=6x-1110  .'. x=Y 

I The Algebraical proof is well-known and is as follows : 

111 other words, 
Each N multip!ied by t,he absent ~ i u ~ r ~ b a r  reversed x= 

Nl+N,+N, 

As this is simple and easy to reme~liber and to apply, 
the work can be done t~zentally. -4nd we can say, x = l l  

IS 



(1) 1 + 3 + - - - - = O  5 
(x-1) (x-3) (x-3) (x-5) (x-5) (x-1) 

. 5+3+15-23 . .  x = - -  
1+3+5 9 

(2) + - - - +  3 = o  
(x-1) (x+2) (x+2) (x-4) (x-4) (x-1) 

. 8+3--8-s- . . x=-- 
2+3+4 '-' 

(3) 1 + 3 + 5 - =o 
(x-3) (x-4) (x-4) (x-9) (x-9) (x-3) 

. 9+9+20-38 . . x=-- 
1+3+ 5 9 

A few disguised samples may also be taken : 

(1) - - 5 + +  3 
x2+3x+2 x2+5x+6 xa+4x+3=0 

:. (yentally) 
5 1 + -  . +  3 

(x+l)  (xS.2) @I-2) (x+3) (x+3) (x+l)--O 
-3-5-6--14 :. x =  p-- 

l+5+3 9 

1 (2) pp 1 1 
6xa+5x+ 1 + i ~ ~ ~ + 8 ~ ~ + 6 x + l  = O  

:. (mentally) 

+ 1 1 
( W x T i )  ( 3 ~ + 1 ) ( 4 ~ - ; - ~ ) + ( 4 x + l ) ( a x + l ) = ~  

:. 9x+3=0 :. x=-& 

3 2 1 (3) -- + - +  - =o 
( ~ + 3 ) ~ - 2 2  ( ~ + 4 ) ~ - l ~  (x + 2)a-18 

2 1 

-9-2-5 - -16 - -8 .'. x =  
3 + 2 f l  6 3 

(4) x+4 x+8 + x+6 3 

(x+l)(x+3)+(x+3)(x+5) (x+5)(x+l) = x  
:. (mentally) 

x2+4x - 1 + -- x2 + 8x -I+---- x2+ 6x -1-0 
(x+ 1)(x+3) (x+3)(x+5) (x+.5)(x+l) 

:. (mentally) - 3 -15 + ------- -5 
(x+l)(x+3) (x+3)(x+5)+(~+5)(x+l)=~ 

:. (mentally) - 2  + - 6 + --3 - = o  
(x-1)(~-2) (x-2)(~-3) (x-3)(~-1) 

- 3 :. (mentally) - ---+ - 18 + -6 
(x-1)(~-3) (x-3)(~-6) (x-6)(~-I) = 0 

- 20 :. (mentally) -I2 - -  - -14 = o  
(x-2)(~-3) (x-3)(~-4) (x-4)(~-2) 

SECOND TYPE 

A second type of such special simple equations is one where 
1 1 1 1  we have -+- = -+- and the factors (A, B, C ant1 L)) of 

AB AC AD BC 
ttie denominn.tora are in Arithnleticnl Progression. Tllc Sutw 



(Sopcintyadvayamantyam) which means "the ulti- 
mate and twice the penultimate" gives us the answer immedi- 
ately, for instance : 

Here, according to the Sfitra, L+2p (the last+twice the 
penultimate)=(x+5)+2(~+4) =3x+13=0 :. x=-4) 

The proof of this is as follows : 

Removing the factors (x+2) and (x+3) 

The General Algebraical Proof is as follows : 
1 -!-+1 = i+- (where A,B, C and D are in A.P.) 

AB AC AD BC 

Let d be the common difference. 

Cancelling the factors A(A+d) of the denolninators and d 
of the Numerators : 

In other words 2 - -1 I-;-P :: L+2P=0 

Another Algebraicul proof. : 

D-B A-B - . . t l a~ t= I i r l  
But .: A, B, C a& D ale in AP- 

:. D-B=-2 (A-B) 

A few more samples may be tried : 

(1) 1 + 1 - 1 + 1 
xs-+7x+12 x8+8x+16-xa+9x+18 xa+9x+20 

:. (mentallv) 

THIRD TYPE 
A third type of equations are those where Numerator 

and Denominator on the L.H.S. (barring the independent 
terms) stand in the same ratio to each other as the entire Numera- 
tor and the entire Denominator of the R.H.S. stand to each 
other and these can be readily solved with the aid of the Upasfitra 
(subformula or corollary) maY@ (Antyayoreva) which means, 
"only the last terms" i.e, the absolute terms. Thus : 

xS+x+1 -x+1 
x*+3x+3-x73 

IIere, (xa+x) = X  ( ~ $ 1 )  and (xs+3x) =x(x+3) 
:. The Rule applies ; and we say : 



A*D = 1 = I\O = ? ( b y  Dividend) 
BC+E B BC E 

Another Algebraic Proof is this 

A few more examples may be taken : 

Note :-By cross-multiplication, 

(x+l )(x+B)(x+ 8) = (~+3) (~+5)(x+7)  
Here, the total of the Binomials is 3x+15 on each side. 
Buz the S h y a m  Samuecaye Siitra does not apply 
beacuse the number of factors (in the original shape) 
is 2 on the L.H.S. and only one on the R.H.S. 'Antyayo- 
revo is the Sfitra to be applied. 

(9) (x+l)(x+2)(x+9) = ( ~ + 3 ) ( ~ + 4 ) ( ~ + 5 )  
The total (on each side) is the s a w  (ie. 3x+12). But 
the 'Szinyam Sacnumaye' Sfitra does not apply. The 
'Antyayorevo' formula is the one to be applied. 
(x+l)(x+2) - x+3 - 2 . - 7 . . x = -  
1x+4)(x+5) x+9 20 3 

(10) (~+2)(x+f)(x+ll) =,(~+4)(~+5)(x+7)- 
The case is exactly like the one above. 

FOURTH TYPE 

Another type of special Fraction-Additions (in connection 
with Simple equations) is often met with, wherein the factors 
of the Denominators are in Arithmetical Progression or related 
to one another in a special manner as in SUMMATION OF 
SERIES. These we can readily solve with the aid of the 
same "Antyayoreva" Siitra [but in a different context, and in a 
different sense). We therefore deal with this special type here. 

(1) The &st sub-section of this type is one in which the 
factors are in AP. Thus : 

The Sfitra tells us that the sum of this aeries is a fraction 
whose numerator is the sum of the numerators in the series and 
whose denominator is the product of the two ends i.e. the first 
and the last Binomials ! 

So, in this case, S8- 3 and so on. 
(x+l)(x+4) 

The Algebraical proof of this is as follows : 

wherein the Numerator is the sum of the original Numerators 
and the Denominator is the product of the first and the last 
Binomial factors. 



Adding t, to the above, we have 2 + 1 
(x+l)(x+3) ( ~ + 3 ) ( ~ + 4 )  

- 2x+8+x+1 3(x4-3) 3 
-(~+1)(x+3)(~+4)=(x+1)(~+3)(x+4) -(~+1)(x+4) 

Continuing this process to any number of terms, we 
find the Numerator continuously increases by one and the 
Denominator invariably drops the middle binomial and retains 
only the first and the last, thus proving the correctness of the 
Rule in question. 

and YO on to any number of terms 

Note :-The second term of each step on the R.H.S. and 
the first term on the next step (of the L.H.8) cancel 
each other and that, consequently, whatever may be 
the number of terms which we take, all the terms 
(on the R.H.S.) except the very first and the last 
cancel out and the Numerator (being the difference 
between the first and the last binomial i.e. the only 
binomials surviving) is the sum of the original Numera- 
tors (on the L.H.S.). And this proves the proposition 
in question. 

A few more illustrations are taken. 

(5) + -  + + . . .  1 
(x+1)(3x+1) (3~+1)(5x+l) (5~+1)(7x+1) 
Here, there is a slight difference in the structure of the - 

Denominator i.e. that the A.P.is not in respect of the indepen- 
dent term in the binomials (as in the previous examples) but in 
the x-coefficient itself But this makes no difference as regards 
the applicability of the Siitra. 

:. s - 3 
'-(x+l)(7x+ 1) 

The First Alqebaical Proof of this is exactly as before : 
3 . t + t  t - - a n d s o o n  

tl+t'= (x+l ) (k+l )  ' '-(x+1)(7x+l) 

The addition of each new term automatically establishee 
the proposition. 

The second Algehical proof is slightly different but 
follows the same lines and leads to the =me result: 

1 

1 

Note :--The cancellations take place exactly as before, with 
the consequence that the sum-total of the fractions= 

1 (21cx) = 1 (Where 1 stands for S,) 
2xD1XDI D1xD, - -  - 

(which proves the proposition) 



Here, the progression is witharegard to both the items in 
the binomials (i.e. the x-coefficients and the absolute terms). 
But this too makes no difference to the applicability of the 
formula under discussion. 

Seemingly, there is a still greater difference in the structure of 
the Denominators. But even this makes no difference to the 
applicability of the aphorism. So we say : 

Both the Algebraical explanations apply to this case 
also. And we may extend the rule indefinitely to as many 
t e r m  and to as many varieties as we may find necessary. 

We may conclude this sub-section with a few examples 
ef its applioation bo Arithmetical numbers : 

In  8 sum like thie, the hdmg of the L.C.M. and the multi- 
plications, divisions, additions, cancellations etc., will be tire- 
eome and diaguating. But our recognition of this series m 
coming under its r4h t  particular classification enables US to 
8ay at  once : 4 ;4,= - =A and so on, 

7x11 77 

Note :-The principle explained above is in constant requisi- 
tion in conneotioli with the "Summation of Series" 
in Higher Algebra eta., and therefore of the utmost 
importance to the mathematician and the statistician, 
in general. 

( 1s 

FIFTH TYPE 

There is also a fifth type of fraction-addition$ (dealing 
with simple equations) which we often come across, which are 
connected with the "Summation of Series" (as in the previous 
type) and which we may readity tackle with the aid of the same 
(Aqaywm) fomula. 

The characteristic peculiarity here is that each numerator 
i~ the difference between the two Binomial factors of its Deno- 
minator. Thu, 
(1) a-b b-c + 0-d 

(x+a)(x+b)+(x+b)(x+o) (XI-  c)(x+d)"' 
a-d 

.'. S a = ( w  

Both the Algebraical mpla~tions hereof are exactly as 
before (and need not be repeated here). 

X-W :. S - - (B+X)(&+W) 

(6) a-b b-c + C-d 
(PX+a)(px+b)+(px+b)(px~) (PX+C)(PX+~) 

a-d :. S - 
- (px+a)(px+d) 
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Note :- (i) ~ f ,  instead of d, there be a in the last term (in this 
case), the Numerator in the answer becomes zero ; 
and consequently the L.H.S. (i.e. the sum of the 
various fractions) is zero. 

(ii) The differcnce between the Binomial factors of 
the Denominator in the L.H.S. is the Numerator 
of each fraction; and this characteristic will be 
found to charscterise the R.H.S. also. 

(iii) The note at  the end of the previous sub-section 
(re : the summation of series) holds good here too. 

CHAPTER XVII 

QUADRATIC EQUATIONS 

In the Vedic mathematics Sttras, CALCULUS comes 
in a t  a very early stage. As it so happens that DIFFERENTIAL 
calculus is made use of in the Vedic Sfitrqs for breaking a qua- 
dratic equation down at  sight into two simple equations of 
the first degree and as we now go on to our study of the Vedic 
Siitras bearing on Quadratic equations, we shall begin this 
chapter with a breif exposition of the calculus. 

Being based on basic and fundamental first principles 
(relating to limiting values), they justifiably come into the 
picture at  a very early stage. But these have been expounded 
and explained with enormous wealth of details covering not 
merely the SBtras themselves but also the sub-siitras, axioms, 
corollaries, implications etc. We do not propose to go into 
the arguments by which the calculus has been established 
but shall content ourselves with an exposition of the rules 
enjoined therein and the actual Modm Ope~andi. The principal 
rules are briefly given below : 

(i) In every quadratic expression (put in its standard form 
i.e. with 1 as the coefficient of xa), the sum of its two Binomial 
factors is its first differential. 

Thus, as regards the quadratic expression x2-5x+6, 
we know its binomial factors are (x-2) and (x-3). And there- 
fore, we can at  once say thqt (2x-5) (which is the sum of these 
two factors) is its D, (i.e. first DIFFERENTIAL). 

(ii) This first differential (of each term) can aIso be 
obtained by multiplying its m (Dhwaja) w (Ghita) (i.e. the 
power by the (Ahka i.e. its coefficient) and reducing it by 
one. 

Thus, as regards x4-5x+6 
x8 gives 2x ; -5x gives-5 ; and 6 gives zero. 
.*. Dl =. 2x-6. 



(iii) Defining the DISCRIMINANT as the square of the 
coefficient of the middle term minus thc product of double the 
first coefficient and double the independent term, the text then 
lays down the very important proposition that the first differential 
is equal to the square root of the discriminant. 

In the above case xa-5x+6=0 
.'. 2 ~ - 5  = f 1/25-24 = f 1 

Thus the given quadratic equation is broken down at  
sight into the above two simple equations i.e. 2x-5 = 1 and 
2x-5=-1 ;. x = 2  or 3 

The current modern method (dealing with its standard 
quadratic equation ax8+bx+c =0) tells us that : 

-b,t .\/ba-pac This is no doubt all right, so far 8s it goes ; 
x= 

2a but it is still a very crude and clumsy way 
of stating that the first differential is the square root df the 
discriminant. 

Another Indian method (of medieval times well-known 
as Shree Sbreedharacharya's method) is a bit better than the 
current modern Methods; but that too comes nowhere near 
the Vedic method which gives us (1) the relationship of the 
differential with the original quadratic (as the sum of its factors) 
and (2) its relationship with the discriminant as its square root ! 
and thirdly, breaks the original quadratic equation-at sight- 
into two simple equations which immediately give us the two 
values of x ! 

A few morc illustrations are shown hereunder : 
(1) 4xa-4xf 1 =(2x-1)(2x-1)=0 .'. 8x-4=0 
(2) 7xa-EX-2= (x-1)(7~+2) = O  .'. 14~-5  = f dFl= f 9 - 
(3) xa-llxf 10=(x-10)(x-1)=0 .'. 2x711 = ,t.\/Sl= &9 
(4) 6x2+5x-3=0 :. 12~+5=,t-9? 
(5) 7xa-Qx-1 = 0  :. 14~-9= f 4% 
(6) 5xa-7x-5=0 :. 10x-7=j-1/149 
(7) 9x2-13~-2=0 .'. 18x-13 = f .\/=I 
(8) 11x2+7~+7 = O  :. 22x+7= &.\/-259 

.- 
(9) ax2+bx+c = 0  :. 2ax+b = f.\/b%-4ac 

This portion of the Vedic Siitras deals also with the Bino- 
mial theorem, factorisations, factorials, repeated factors, 
continued fractions. Differentiatioas, Integrations, Successive 
Differentiations, Integrations by means of continued fractions 
etc. But just now we are concerned only with the just here- 
inabove explained use of the differential calculus in the solution 
of quadratic equations (in general) because of the relationship 
D1 = f l/ the discrimiilant. The other applications just 
referred to will be dealt with at  later stages in the student's 
progress. 

I1 This calculus-method is perfectly GENERAL i.e. i t  
applies to all cases of quadratic equations. There are, however, 
certain special types of quadratic equations which can be still 
more easily and still more rapidly solved with the help of the 
special Siitras applicable to them. Some of these formulas 
are old friends but in a new garb and a new set-up, a new context 
and so on. And they are so efficient in the facilitating of mathe- 
matics work and in reducing the burden of the toil therein. 
We therefore go on to some of the most important amongst 
these special types. 

FIRST SPECIAL TYPE 

(Reciprocals) 

Thie deals with Reciprocals. The equations have, under 
the current system, to be worked upon laboriously, before they 
can be solved. For example : 

According to the current system, we say: 
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But, according to the Yilokanum sub-Siitra of Vedic 
mathematics, we observe that the L.H.S. is the sum of two 

Reciprocals, split the of the R.H.S. into 4 f f  and at  once 
say : 

1 
x + -=4+f :. x=4 or 114. I t  is a .matter of simple 

X 

observation and no more. 

a+1=26L5+ :. x = 5  or ) 
x 5 

Here the R.H.S. does not readily seein to be of the same 
sort as the previous examples. But a little observation will 
suffice to show that '3 can be split up into $+$ 

1 :. x+ .'. x=; or # 

Here t%e connecting symbol is a minus. ~ccordingly, we 

say: X - !=~_g:. x=;  or--) 
X 

h 

M.B. :--Note the miltus (of the second root) very carefully. 
For, the value x = 8 will give us not % but -8 on thc 
R.H.S. and will therefore be wrong ! 

(15) 5 ~ + 9  5x119 - ,, =, -,... S x t e  = , 
5x-9 5x+9 5x-9 

Note :--In t,he above examples, the L.H.S was of the form 
a * b ,  and, consequently, we had to split the R.H.S. 
3 a ' into the same form a h 

(G%) 
aa&b2 

And this, when simplified, = - ab - 

In other words, the nenominator on the R.H.S. had to he 
factorised into two factors, the sum of whose squares (or their 
difference, as the case may be) is the Numerator. 

As this factorisation and the addition or subtraction of the 
squares will not always be easy and readily possible, we shall, 
a t  a later stage, expound certain rules which will facilitate this 
work of expressing a given number as the sum of two sqllares 
or as the difference of two squaree. 

SECOND SPECIAL T17PE. 

(Under the Szinyalant Samtrccaye Formula.) 

We now take up a second special type of quadratic equa- 
tions which a very old friend (the Szinyam Sarnuccnyc Si~tra) 
can help us to soha at  sight (a sort of problenl which the 
mathematicians all regard as "Hard") ! 

We may first remind the student of that portioil of arl 
earlier chapter wherein, referring to various t~ppllcations of 
the Samuccaye Szltra, we dealt with the easy method by which 
the oneness of the sunl of the numerator on the one hancl and tbe 
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denominator on the other gave us one root and the oneness of 
the difference between the Numerator and the Denominator 
(on both sides) gave us another root, of the same Quadratic 
equation. We need not repeat all of i t  but only refer back to 
that poltion of this volume and remind the student of the 
kind of illustrative examples with which we illustrated our 
theme : 

THIRD SPEClAL TYPE 

There is a third special typc of Quadratic Equations which 
Is also generally considered "very hard" but whereof one root is 
readily yielded by the same arlcient friend (the "Snmya Samu- 
coaye" Satra and the other is given by another friend-not so 
ancient, however but still quite an old friend i.e. the "S~nyaly, 
Anyat" SzZtra which was used for a special type of simultaneous 
equations. 

Let us take a concrete instance of this type. Suppose 
we have to solve the equation: 

The nature of the characteristics of this special type 
will be recognisable with the help of the ueual old test and an 
additional new test. 

The TESTS are: $+a=+++; and #+$=$++ 

In all such cases, "$finyam Anyat" formula declares 
tlrat one root is zero ; and the "k%nyam Samllecaye" Stitra says : 

I),+D,=O :. 2x+5=0 :. x =  -24 

The Algebraical Proof hereof is as PoUows : 

2 - (by simple division) = 1 -> . and so on, 
x+2 x+2 ' 

:. (Removing 1-1 and 1-1 from both sides) x, (the 
common factor of all term)=O ; 

1 1  1 1  and on its removal, -$- = + -  
x+2 x+3 x+4 x+l  

:. (By the Samuccaye formula) 2x+5 =O ; 

Note :-In all these cases, Vibkanam (i.c. mere observation) 
gives us both the roots. 

A few more illustrations of this sperial type are given : 

Now, .: 1 -  2x and so on, 
1 +2x 1-x -I---- 

:.x=O 
or (by cross-multiplication) 12x+B or (36x+15)=0 

:. x- -5112 

.. x=O or-i(a-tb) 
4 )  a -  1 -  - 1 )  b+c + ----- - - - 

x t a -  b xfb-r x ~a+b-x-b-c 
:. x=O or )(c-a) 



FOURTH SPECIAL TYPE 

And again, there is still another special type of Quadratics 

which are "harder" but which our old friends "$iiozya~ Anyat" 

and "Parcivartya" (Merger) can help us to solve easily. 

Note :-Apropos of the subject-matter of the immediately 
preceding sub-section (the 3rd special type), let 

3 5 us now consider the equation 2 - 
This may look, at the outset, x+2 x+3 x+5 
a like, but really is not, a quadratic equation of the type 
dealt with in the immediately previous sub-section 
(under S~nya? Anyat and S ~ n y a ~ ~  S6mya San~uocaye) 
but only a simple MERGER (because, not only is the 
number of terms on the R.H.S. one short of the number 
required but also g+ #+* I t  is really a case under 
Szinyam Anyat and Paicivartya (merger). 

Here, the TEST is the usual one for the merger process 
i.e. N1+N2 (on the L.H.S.)=N, (on the R.H.S.) Thiis: 

2 5 +3=- 
x+2 xf3  x+5 

:. (By merger method) 2- -6 -0 ,.. 2x+5 = 0 
x f 2  x+3 :. x = -24 

A few true illustrations are given below : 
4 9 25 (1) + = - -  

x+2 x+3 x+5 
Here .: $+; = :. YES 

2x :. (By Division) +3-- 3x =5-- 5x 
x+2 x+3 x+5 

:. x=O. (This can be verified by mere observation) 
2 3 - 5 :. (by merger), x= -24 Or -+--- 

x f 2  x+3 x+5 

This result can be readily put down, by putting up 
each numerator over the absolute term of the Denominator 
as the Numerator of each term of the resultant equation and 
retaining the Denominator as before. [Or by taking the Square 
Root of Each Numerator] (in the present case). 

Thus 4 =2 ; 3 = 3 ; and = 5. And these will be our 
new Numerators. !Thus, we have the newly derived Equation : 

(By merger) x = - 21) 

Here *: ++#=y :. YES 

The derived equation is : 
2 3 5  -+-=- 

x+l  x+3 x+S 

(which is the same as in all the three preceding cases). 

;. x=O or -2) 

Note :-In the last two cases, the first term alone is different 
and yet, eince the quotien& $ 84d 9 are the same, 
therefore it makes no difference to the result; and 
we get the eame two roots in all the three cases ! 

Here =.%+#=+ :.YES .*;-x=o 
A or(f)yDivision), 4-4 - 4-6 - +I6 

2x+3 3x+2 4x+1 

N.B. Note that 2 ~ 6 - ~ , 3 ~ 4 - ~ ~ ~ ~  4 x 4  - 16 
3 2 1 

and that these are the new Numerators (for the derived 
Equation) 

:. (By L.C.M.) 24 - 24 - 48 :. YES +- - ---- 
12x-/-18 12x+8 12x+3 

... (By merger) 15 + 5 - 0  ... x=-# 
12xt18 12x+8 
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N.B. :-The remaining examples in this chapter may be held- 
over (if deemed advisable) for a later readihg. 

Here . .a ?++b =?! :, YES :. X=O 
a b  c 

. 1  1 2  . . -+-- = - :. YES 
X+LL x+b X+C 

:. (By merger) a-c b-c -+-=o 
x+a x+b 

. = bcfca-2ab . . 
a+b-2c 

(6) a2-bs ba-c2 aa-ca 
x+a+a+=c=x+8$.~ 

as-bg bZAC'2 Here +: - + - :. YES :. x=O 
a+b b f c  a+c 

a-b b-c - a-c 
O R x m + x w c  A x m  :. YES 

:. (By Merger) (a-b)(b-c) (b-c)(b-a) -0 and so on. - 
(x+a+b) + x+b+c 

(6) 1 +-=- 1 2 
ax-+J bx+d cx+d 

Here (by division), we have : 

abc - abc +-- . , .- 2abc I... YES abcx+bcd ahcx+acd abcxfahd 

. c-a b -c 
..---.a=- 

ax+d bx+d 

. 2d 3d 6d Here : -+- =-=O :. YES :, X = O  
d d d  

Or (by division) 
1 2 - 3 --+ ----- 

abcx+bcd abcx+acd abcx+abd 
:. (By merger), bcd-abd -- acd-abd - ,, 

Dl 
+-- 

"8 

. bd(a-c) 2ad(b-c) = . . - - - -- 
b d ( a x + d ) + a m )  

. a -c 2(b-c) _- . .- 
ax+d+(bx~.d)-O 

. = ad+bd-2cd . . 
ac fbc-2ab 

OR (by mere division Parcivartya) at  the very first step. 
. d 2d 3d . .-+-=- 

ax+d bx+d cx+d 
(which is the same as No. 6 supra) 

, x =  adfbc-2cd 
. ' a W 2 a b  

CONCLUDING LINKING NOTlE 

(On Quadratic Equations) 

In addition to the above, there are sevel*al other special 
types of Quadratic Equations, for which the Ve:dic Sfitras have 
made adequate provision and also suggested several beautifully 
interesting devices and so forth. But these we shall go into 
and deal -with, at a later -stage. 

Just a t  present, we address ourselves to o~ur next appro- 
priate subject for this introductory and i l l~s t~~a t ive  Volume 
namely, the solution of cubic and Biquadratic Equations etc. 



CUBIC EQUATIONS 

1 We solve cubic equations in various ways: 

(i) with the aid of the Parcivartya SBtra, the Lopnna- 
Sthapana Sfitra, the formula (Ptirana-Aptirncibhnydm) 
which means "by the completion or nun-completion" of the 
square, the cube, the fourth power etc.) 

I (ii) by the method of Argumentation and Factorisatiori 
(as explained in a previoua chapter). 

~ The Ptiraw M & h d  

The Piirapa method is well-known to the current system. 
-- 

In fact, the usually-in-vogue general formula -bf .\/b8-4ac x =  
for the standard quadratic (axqbx+c  =o) 211 
has been worked out by this very method. Thus, 

axn+bx+c =O 
:. (Dividing by a), bx c 

xa+-+-=o 
a a 

. bx -c . . xz+-= - 
a a 

:. (completing the square on the L.H.S.) 

This method of "completing the square" is thus quite well- 
known to the mathematicians, in connection with the 
solving of Quadratic Equations. Bat this is only a fragmentary 
and fractional application of t f l ?  General Formula which (in 

conjunction with the Par6vartya, the Lopana-Sthapnu etc., 
Siitras) is equally applicable to cubic, biquadratic and other 
higher-degree equations as well. 

Completiltg the Cubic 

With regard to cuhic equations, we combine the Parcivartya 
SQCra (as explained in the 'Division by Pmciwtya' chapter) and 
the Paraw sub-formula. Thus, 

(1) xS-6x8+11x-6=0 
.'. x3-6x2= -11x+6 
But (~-2)S=xS-6~~+12~-8  
:. (Substituting the value of xa-6xa from ahove herein), 

we have : ( ~ - 2 ) ~ =  -1lx+6+12x-8 =x-2 

Let x-2=y (and let x=y+2) 
.-. yS= y .'. y = 0 or # 1 .'. x = 3 or 1 or 2 

N.B. :-It need hardly be poirted out that, by argumentation 
(re: the coeficients of x8, XS etc.,) we can arrive at  the 
same answer (as explained in a previous chapter dealing 
with factorisation by Argumentation) and that this 
holds good in all the cases dealt with in the present 
chapter. 

(2) xs+6x*f l lx+6=0 
.'. x8+6x0= -11~-6 
But ( X + ~ ) ~ = X ~ + ~ X ~ + ~ ~ X + S =  -1lx-6+12~$8=~+2 

ys=y (where y stands for x+2) . . 

N.B. :-The object is to bring (x+2) on the R.H.S. and thus 
help to formulate an equation in Y, obtain the three 
roots and then, by substitution of the value of x (in 
terms of y), obtain the three values of x. 

:. y8-4ByS120=0 .: (y-3)(y"3y-40) = o  
.'. (y-3)(y-5)(y+8)=0 .'. y = 3  or 6 or -8 



(5) x3+9x2+24x+16=0 

i 
..; x8+9x2= -24~-16 
.-. (x+3)S=(~3+9~2+27~+27) = 3 ~ + 1 1 = 3 ( ~ + 3 ) + 2  
... yS=3y+2 .'. y3-3y-2=0 
.'. (y+l)% (y-2)=0 .'. y=-1 or 2 x=-4 or - 1  

(6) x s + 7 x ~ 1 4 x + 8 = 0  
.'. xS+7x2= -14~-8 
.'. (x+ 3)8=(~3+9x"27~+27) =2x2+13x+19 - 

(~+3)(2x+7) -2, 
.'. y8=y(2y+1)-2 :.y8-y(2y+1)+2=0=(y-l)(y+l) 

(Y -2) .'. y = 1 or -1 or 2 :. w = -2 or -4 or -1 
(7) ~ ~ + 8 x ~ + 1 7 x + 1 0 = 0  :. xs+8x2- -17x-10 

A ( ~ + 3 ) ~ = ( ~ ~ + 9 ~ ~ + 2 7 ~ + 2 7 )  =x2+10x+17 == 

(x+3)(x+7)--4 
a ' .  y8=y(y+4)-4 :. y8-y2-4y-4=0 :. y=1 or f 2 
:. x=--20r  -1 or -5 

(8) :. xS+1Ox~27x+18=0 
Now .'. ( ~ + 4 ) ~ = ( ~ ~ + 1 2 ~ ~ + 4 8 ~ + 6 4 )  
Hence the L.H.S. = ( ~ + y ) ~ - ( 2 ~ ~ + 2 l x + 4 6 )  = ( ~ + y ) ~  

{(~+4)(2~+13)-6t 
.'. y8=y (2y+6)-6 :. (y-l)(y+2)(y-3)=0 

:. y -1 of -2 or 3 
:. x=-3 or -6 or -I  

Note:-Expressions of the form xS-7x+6 can be split .hto 
x8-1--7x+7 etc., and readily factorised. This is always 
applicable to all such cases (where x2 is absent) and 
should be fully utilised. 

The Pziranu method explained in this chapter for the 
soluiion of cubic equations will be found of great help 
in factorisation ;and vice-versa. 
"Harder" cubic equations will be taken up later. 

CHAPTER XIX 

BIQUADRATIC EQUATIONS 

The procedures (PGruw etc.,) expounded in tho previous 
chapter for the solution of cubic equations can be equally well 
applied in the case of Biquadratics etc., too. Thus, 



Note :-The student need hardly be reminded that all these 
examples (which have all been solved by the Piivapz 
method hereinabove) can also be solved by the Argn- 
mentation-cam-factorisation method. 

A SPECIAL TYPE 

There are several special types of Biquadratic equations 
dealt with in the Vedic Slit,ras. But we shall here deal with only 
one such special type and hold the others over to a later stage. - 

This type is one whcrcin the L.H.S. consists of the sum 
of the fourth powers of two Bmomiccls (and the R.H.S. gives us 
the equivalent thereof in the shtkfle of an arithmetical number.) 
The formula applicable to such cases is the +-w& (Vyasti 
Sanaasti) Sfitra (or the Lopana Sthdpana one) which teaches us 
how to use the average or the exact middle binomial for break- 
ing the Biquadratic down into a simple quadratic (by the 
easy device of mutual cancellation of the old powers i.e. the 
xS snd the x). 

A singh conclete illustration will uuffice for explaining 
this prooess : 

(x+7)'+(~+5)~=706. 
Let x+6 (the average of the two Binomials)=a 

( 173 

:. (a+l)4+(a-l)4=706 
:.owing to the cancellation of the odd powcrs xa and X, 

2aA+12a2+2=706 :. &4+6aa-352==0 
:. a2=16 or-22 :. a = f  4 or& l/= - 

:. x =  -2 or-10 orf l / - 22 -6  

N.B. :-In simple examples like this, the integral roots are 
small ones and can be spotted out by mere inspection 
and the splitting up of 706 into 625 and 81 and for this 
purpose, the Vilokanam method will suffice. But, 
in cases ir~volvirlg nlore complex numbers, fractions, 
surds, imaginary quantities etc., and literal coe&cients 
and so on : Vtlokannm will not com~pletely solve the 
Equation. But here too, the Vya~ti-Samasti formula 
will qulte serve the purpose. Thus, 

The General Formula will be a8 follows : 

Glven (x-+n)4+(xF-n)' = 

:. a4+6a2+(n4-g)=0 

. 2- -6f d36-4n4+2p . . a  - 
2 

Applying this to the above example, we have : 

- -- 
=-6&2/160r2/-22=--6(& 401 *1/Tr%)-6 

(which tallies with the aobve) 

N.B. :-"Harderu Biqudratics, Pentics etc., will be taken np 
later. 



MULTIPLE SIMULTANEOUS EQU4TIONS. 

We now go on to the solution of Simultaneous Equations 
involving three (or more) unknowns. The Lopam-Sthipanu 
Siit~a, the Antcrapya Siitra and the Par6vartya Siitra are the 
ones that we make use of for this purpose. 

FIRST TYPE 

In the first type thereof, we have a significant figure on 
the R.1I.S. in only one equation (and zeroes in the other two) 
From the homogeneous zero equations, we derive new equations 
defining two of tfhc unknowns in terms of the third; we then 
substitute these values in the third equation ; and thus we 
obtain the values of all the three unknowns. 

A second method is the judicious addition and subtract- 
ion of proportionate multiples for bringing about the elimina- 
tion of one unknown and the retention of the other two. 

In both these methods, we oan make our own choice of 
the unknown to be eliminated. the multiples to be taken etc., 
Thus : 

(i) A+C gives us : 4x+3y =10 ; :. 10x=10 
B PA+B glves us: 6x--3y=oI :. X =  1 1  

y =  2 
and z= 3 )  

(ii) from A, we have x+y =z 
and from B, we have 4x-5y= - 2 ~  \ 

:. Ry Parcivartya, x = = t  z ; and y = f .Z 

:. (by substitution in b z =  11 3 z +&=lo  :.z=3 

and y=2  

(i) Adding Band 2C, we have 
Subtracting B from 3A, 13y-262 =0 

1820- 910 :.y =--4; and z=-=2 
455 455 

:. (Substituting these values in C) :. x=S 

:. 3x+5)x+3)x=35 :. x = 3  

and z=2 

(3) 2x-3yS4z= 0 ... ... (A) 
7 ~ + 2 ~ - - 6 ~ =  0 ... ... (B) 
4~+3J'+ 2=37 ... ... (c) 

(i) A+C gives us : 
2A+3B gives us: 25x-10z= 0 
:. x=;;$=2; and z = $ # % = 5 ;  and y = 8  

From (A) and (B) we have 

(ii) :. -3y+4z = -2x 
Zy-6z = - 7 ~  [ . . . v=- - 4 0 ~ -  -25x -4x; andz=- 

-10 -10 
= 2gx 

:. 4x+12xf 2fx=37 :. x = 2 ;  y = 8 ;  and z = 5  

SECOND TYPE 

This is one wherein the R.H.S. contains significant figures 
in all the three equations. This can be solved by Parivrtya 
(CROSS-multiplication) so as to produce two derived equations 
whose R. H. S. consists of zero only, or by the first or the second 
of the methods utilised in the previous sub-section. Thus, 



.'. 3 4 ~ - 1 2 8 ~ + 5 2 + 3 8 7 ~ - 1 6 2 - - 4 7 ~  ;. 293x =586 
.'. x = ;  y-3;  and z=-4 

(1) (1) :. 196~+84y-14~~=84,  
and 6 ~ - - 1 2 ~ +  27r =84 :. l=+96y+l,j7z=0 .'. 28~$-12~- -20~  =18 
and 2 7 ~ + 3 0 ~ - - 3 3 ~  =12 1 :. ~ - - 1 8 ~ # 1 3 ~ = 0  , 

Having .thus derived ~ W O  eguatiolls of tllis kind (i.e. of 
the first special type), we can now follow the first Aethod under 
that ; and, after 3 lot of big multiplications, 

This method .too involves a lot of clumsy labour. 

(iii) ~ A - B  gives US: y - t - 2 ~ ~  €1 -'. :z;] 
2B-C gives us : 3y$3ZS a ~ d  xz2  

or (iv) by mere observation. 

(3) x + ~ + 3 z = 1 C  . . a  A 

(iii) or, (adopting the Lop~na-Sth~i~ana method), we my : 
C-A-B gives 11s l iy-- l jz= -27 

and gR--TCI gives us --43~+32~=,- 1 
:. y=3, 2=4 and-x,g I 

and divisions, we can obtain the answer : = 2, = ... 2 8 ~ + 4 2 ~ + 5 6 ~ = 2 8 0  ' .'. Rxt 2Y- 4x=0 
and 2 ~ 4  2ox+40y+6Wc '280 

I I 
23x+46y+6gZ = 322 ' 

and so on as before. 

I and a2x+14y 3-84~  =r 322 -.. 19~-32~3.15'=0 
(ii) Or, (adoptillg the first method adopted in the last sub- 

section), we have : . 

.'. 3y- 5 2 ~ 3 - 7 x  f (ii) ,,. S+3z=14- :. y=60-6~--56$4x=4-2~ 
and I O ~ - - I ~ Z = C - ~ ~  31+*z=20-&) 2 = 4 2 - 3 ~ - 4 0 + 4 ~ = ~ ~ ~  

.'. By CROSS-m~ilti~~licat,io~~, .., 3x+4-2x+6x+12=23 .'. x = l ,  yS2 and z=3  
--20+45~$-33-77~- 32x-13 . y =-< - I (di) 2A-B gives us : y+2z= 8 { .'. 

-17 
l 

and 3h- C gives u6 ; 5y-f 3z= l9 
= 3°-70x-12+37x-43x-1~ - - x - i l  

-1 7 17 I 

- - .  . .  
(i) ( 1 6 ~ + 3 2 y + 4 8 ~ ) - ( 2 2 ~ + 3 3 y $ 4 4 z ) = - 6 x - " ~ ~ 4 z = ~  
and (33x+55y+66z)-(26~+6~~+ 7 6 ~ ) = 8 x S 5 ~ - 9 ~ = 0  

and so on. 

(ii) :. ay + 95 = i i - x and so on, as before. 
3y + 42 = 16-2X i 

(ii) ... ~ Y + ~ Z = I Z - X  ; and ay+4z=18-zx ... y=B-2x;  
and z = x  :. x = y Z z  =2. 

I n  all these processes, there is an element, mole or less, 
of clumsiness and cumbrousness which renders them unfit 
$0 come under and fit satisfactorily into the Vedic category. 
Metllods expounded in the Vedic Shtras and free f1-01~ the said 

draw-back and also capable of universal application will be 
explained st a later stage. 



' 1 

SIMULTANEOUS QUADRATIC EQUATIPNS . 
l h e  Sfitras needed for the solutioll of simultaneous 

Quadratic equations have practically all been explained already. 
Only the actual applicational procedure, devices and modus- 
operanIi thereof have to be explained. Thus : 

(1) X f Y  .'. xai-2xy+y8=26 :. (X-Y)~= 4 
dr XY 2: 1 4xy =24 1 :. x-y =*I 

y-2 

This is readily obtainable by Vilohnam (mere observation) 
and also because symmetrical values can always be reversed. 

(2) x-y=l . . x=3 Note the minus 
and xy=6) ' y=2) Or 1: 1 

(3) 5x- y=17 :. 2 5 ~ ~ - 1 0 ~ y + y ~ = 2 8 9  
and xy=l2) and 20xy =240 

:. 10x=40 or -8 :. 
N.B. :-1. When the value of x or y has been found, xv at . " 

once gives us the value of the other. Thus, if, 
here, x=4, y=3, no other substitution etc., ie 
necessary. 

2 One set of values can be found out by Vilokumm 
alone. 

3. The interl~al relationship betweell t8he two sets of 
Values will be explained later. 

(4) 4 x - 3 ~ =  7 .'. X=4 and y=3 by (mere Vilokamnt- 
n11d xy=12} observation) 
(ii) ( 4 ~ - 3 ~ ) ~ = 4 9  .'. 4~+3y=:f 25 ... 8 ~ ~ 3 2  or -18 " x=4} or -"} 

p=3 -a) 
(5) x3--~"19) . .  x'+ xy+y2:19 ;.3xyrlfj :.xy =l 

x -y - 1 ancl X~-ZX~+,+.= 1 1 

N.B. :-There is p l w  sign all through. Therefore it can all be 
simply reversed (i.e. one by Vilokanam and the other by 
reversal). 

(7) x+y=4 :. (i) By Vilokunum, x=3 and y = 1  
and xa+xy+4x=24 

Secondly x(x+y)+4x=8x=24 y = l  

(8) x+2y=5 
and xa+3xy+2ya+4x-l=l0 
:. (x+y) (~~-2y)+ax-1=5x+5y+4x-y=lO 

:. 9x+4y=lO 
B U ~  x+ay= 5 1 

:. (By Parciwrtya or by $4nya? Anyat) x=O & y=2f 

(9) x + S = 5  
and x"3xy-2y2+4x$3y=0 
:. (x+2y) (xSy)-4ya+4x+3y=0 .-. 5x+5y-4y~+4x+3y=9~+~y-4~B=o - 
... 4y'+IOy-45=O :. 8y+lO=f 4820 

8 ~ 0 - 1 0 - - 5 ~ 4 ~  . * - -  . . 8 4 

isr d%% :. x= ---- 
2 



(13) 2~ + y=3 :. I)x+2fy-$y2= 3 :. y2--2y+l=0 
x2+2xy=3 I :. 6x+ 9y-3y2=12 t :. y =1 and x=l  
or (ii) 4x2+2xy=6x 

x2+2ry=3 1 . 3xa-6x+3=0 . x = l  
a d  y=l  1 

And (by CROSS-multiplication) 
3 4 ~ ~ + 1 7 x y + 1 7 y ~ = 2 4 x ~ - 8 x ~ + 3 2 ~ ~  

:. 10x2f 2iixy-lSy2=0 :. 2 ~ ~ + 5 x y - 3 ~ ~ = 0  
:. (xf3y) (2x-y)=0 :. x=-3y or f y  

Substituting in xa+y2=5, we have 
9ye+y2=5 or $y2=5 :. ye=# or 4 

1 .'. y =* - 0l.f 2 
4% 

and :. x = f  3&or f )2/h-or # 6 or # 1. 

N.B. :-Test for the correct sign (plus or minus). 

(16) 2 ~ $ +  XY+Y '-77 - ... 184xa-t 9 2 ~ ~ + 9 2 ~ ~ = 1 5 4 ~ 2 + 2 3 1 ~ ~  
2x2+3xy =921 . 30~--13'3xy+92~~=0 
:. (5x-4y) (ex-23y)=O :. x=4 s Y  0' q y  :. (Bv substitution). 

(17) 3xa-4xy+2y2=1 (By subtraction), 4x2-4xy+2y2=16 
y2-xZ =-15}:.:2x-y=*4 

:. (By substitution), 4x2~i6x+16-XL-15 

:.3x2f 16x+31-=0 & so on. 
(18) 2x2-7xy+3y2= 0 :. x=3y or #y 

x2+xy+ y2=13 I :. 
(19) 3x2-4xy+2y2=1 :. x=&y. 

y2-xa =o 1 :. 3xr-4x2+2x2=1 :. x=*l 1 
.'. y=, 1 j 

or 3x8+4y"+2y2=~ :. y = & d x 3  
and x=*\/1/3 1 

xz+yZ =68 
:. By substitution, 17y2==68 or 10y2=68 

.a, y= f 2/2 or f 4 3 7 5  

and x= f2/For  f 3 \/34/5 

(21) xe-2xy+yx=2x-2y+3 
x.+xy+2y2=2x- y+3 \ 

(i) By fifinyav Anyat :. y=O 
Let x-y=a :. a2-2a-3=0 :. a=3 or -1 
:. x-y=3 or f 1. 
Now, subst,itute and solve. 

or (ii) By subtraction, 3xy +y2=y 
y=O or 3x+y=1 . . 
Snbstitute and solve 

N.B. :-The Stinyav Anyat method is the best. 

:. Substitute and solve 
or (ii) By transposition, 

4x2-2xy+y2=o 

This means that the two equations are not independent ; 

and therefore. any value may be given to y and a corresponding 
set of values will emerge for x ! 

("Hardert' simult,aneous Quadratics will be taken up at  a 
later stage). 



FACTORISATION AND D~PFERENTZIAL CALCULUS 

In  this Chapter the relevant Siitras ( G u p a k a - S a m ~ y a  
etc.,) dealing with successive differentiations, covering Leibnity's 
theorem, Maclaurin's theorem, Taylor's theorem etc., and 
given a lot of other material which is yet to be studied and 
deciclecl on by the great ~natl~ematicians of the present-day 
westcrn world, is also given. 

Without going into the more abstruse details connected 
herewith, we shall, for the time-being, contei~t ourselves with 
a very brief sketch of the general and basic principles involved 
nrld a few pertinent sample-specimens by way of illustration. 

The basic principle is, of course, elucidated by the very 
nomenclature (1.e. the Gunaka-Samucmya) which postulates 
that, if and when a. quadratic expression is the product of the 
Binomials (x+a) and (x+b), its first differential is the sum of 
the said two factors and SO on (as already explained in ,the 
chapter on quadratic equations). 

I t  need hardly be pointed out that the well-known rule of 
tliffercntiation of a product (i.e. that  if y=uv, when u and v be 

d v the function of x , d ~  = v du+ U-) and the G'upaka-Samuccaya 
dx dx dx 

Sfitras denote, connote and imply the same ~nathematical truth. 

Let us start with very simple instances : 
b (1 )  xa+3x+2.= -5- - -_ 

(x+1) (x-t-2) 
:. Dl (the first dlffrrent1al-2x+:j=(t+2).t(x-t I ) =  Za 

(3) x"l0x~+35x"50x+24=(x+l) (xf2) (x+3) (x+4) 
:. 1),=4~8+30~*+70~+50= Zabc 

D,=12x* f 60x+70=2, Bab=!a. Cab. 
D,=24~+60=6(4~+10)=/3 Ca 

(4) x6+15x~+71x~+178x2+214x+120 
=(x+l) (x+2) (x+3) (x+4) (x+5) 

:. D,=5x4+60x~+213xa+356x+214= Babcd 
:. D,=20x3+ 180x8+42(ix+356=I2_ Zabc 
:. Da=60xs+360x+426=j3_ Cab 
:. 1)+=120x+360=24 (5x+15)=14 Ba 

(5) x4~10x3+234xa+ 284x+a40=(x+2) (x+3) ( ~ $ 4 )  ( ~ + 1 0 )  
:. D~=4xs+57x~+468x+284=Xabc 
:. 1),=12x2+114x+468=12 Zab 
:. 1),=24x+114=6(4~+19)=~~ Xa 

These examples will suffice to show the internal relationship 
subsisting between the factors of a Polynomial and the success- 
ive differentials of that Polynomial ; and to show how easily, 
on knowing the former, we can derive the latter and vice versa. 

There i s  another relationship too in another direction 
wllerei~i factorisation and differentiation are closely connected 
wit11 each other and wherein this relationship is of immense 
praotical help to us in our mathematical work. And this is with 
regard to the use of successive differentials for the detection 
of repeated factors. 

The procedure hereof is so simple that i t  needs no ela- 
borate exposition a t  all. The following examples will serve to 
show the modw operalzdi in question : 

( 1) Factorise x S - 4 x 9 5 ~ - 2  

. dy- . . ;1x-3x2-8~+ 5=(~-1 ) (3~-5 )  

Judging from the first and the last coefficients of E(the given 
expression), we can rule out (3x-5) and keep our eyes on (x-1). 

:. D,=6~-8=2(3x-4) :. we have (x-1), 

:. (According to the Adyarn Kd~enaSutra) E = ( X - ~ ) ~  (x-2) 



(2) Factorise 4x3-12x2-15x-a. 
:. D1=12x2-2~~-15=3(4~2-8x-j)=3(2~-5) (2x+1) 
.'. Da=24x-Z4=24(x-~) :. As before, we have, ( 2 ~ + 1 ) ~  
:. E =(2x+l)a (x-4) 

8 
(3) Factorise x4--6x8+ 13x2-24x+36 

.'. D , = 4 ~ ~ - 1 8 ~ ~ + 2 6 ~ - 2 ~ = 2 ( 2 ~ ~ - 9 ~ ~ 3 x - 1 2 )  
=2(x-3) (2~'-3x+4) 

:. D,=12xa--36x+26 (whic11 l t a ~  no rational factors) 
:. E=(x-3)8 (xa+4) 

(4) Factorise : 2x4-23x3+84x"80x-64 
:. D1=8x3-69xa+168x-80 
,'. Da=24~2-138~+168=6(4~2-23x+28)~(x-4) (4~-7) 
:. DS=48x-138=6(8x-23) 
:. DS=6(x-4) (ix-7) 
:. D , = ( x - ~ ) ~  (8x-5) 
:. E = ~ ( x - i ) ~  (2xl-1) 

(5) Resolve x4-5x3-9xa+ 81x-108 illto factors, 
:. D , = 4 ~ ~ - 1 6 ~ ~ - 1 8 ~ + 8 1  
:. D,=12x8-30~-18=6(2x,-jx-3)=6(~-3) (2x4-1) 

:. D8=24x-30=6(4~-5) :. D,=(x-3) ( l 2 ~ + 6 )  
.*. D,=(x-3)' ( 4 ~ + 8 )  

:. E = ( ~ - 3 ) ~  (xS.4) 
(6) Resolve 16x4-24xa+10x-3 into factors. 

:. D , = 6 4 ~ ~ - 4 8 ~ + 1 6 = 1 6 ( 4 ~ ~ - 3 x + l )  
.*. Dm=192~P-48=48(4~8-1)=48(2x-l) (2x+1) 
:. D,=384x 
:. Da=(2x-1) (96x+48) 
:. D,=(2~-1)~  (x+l) 
:. E . = ( Z X - ~ ) ~  (2x+3) 

(7) Resolve x5-5x4+10x3-10x2+5x-1 into factors. 
:. D1=5x4-20x3+30x2-20x+5 

= 5 ( ~ ~ - 4 ~ ~ + 6 ~ ~ - 4 ~  1 1 )  
:. D , = 2 0 ~ ~ - G 0 ~ ~ + 6 0 ~ - 2 0 = 2 0 ( ~ ~ - 3 ~ ~ + ~ )  
:. D3=3x2-6~+3=3(~e-2~+1) 

Many other such applications are obtainable from the 
Vedic SCltras relating to w-wm (Calam-Kalana-Differential 
Calculus). They are, however, to be dealt with, later on. 



CHAPTEK XXIII 

PARTIAL FRACTIONS 
e 

Another subject of very great importance in various mathe- 
matical operation8 in general and in Integral Calculus in 
particular is "Partial Fractions" for which the current systems 
have a very cumbrous procedure but which the 'Parivartya' 
Sltra tackles very quickly with its well-known MENTAL ONE- 
LINE answer process. 

We shall first explain the current method ; and, alonp-side 
of it, we shall demonstrate the "Parciwrtya" Sfitra application 
thereto. Suppose we have to express 3xa+12x+11 
in the shape of Partial Fractions. (xS1) (x+2) (x+3) 

The current method is as follows: 
Let- 3xP+12xfll - -4 + B 4 C 

(x+1) ( ~ $ 2 )  (x+3) X+l x+2 x+3 

. , .  . 
+C(x +3x+2)- 

(x+l)  (x+2) (x+3) 
:. xa(A+B+C)+x(5A+4B+3C)+(6A+3B+2C)- 

(3x2+12x+l I) 
:. Equating the coefficients of like powers on both sides, 

A+ Bf C= 3 
5Af 4R+3C=12 
6A+3B+2C=ll 1 

:.Solving these three simultaneous equations involving 
three unknowns, we have, A=l ; B=l ; and C=l 

In the Vedic system, however, for getting the value of A, 
(i) we equate its denominator to zero and thus get the 

Pwdvartya value of A(i.e. -1) ; 
(ii) and we MENTALLY substitute this value -1 in the 

E, (but without the factor which is A's denominator 
on the R.H.S.) & 

( 167 

(iii) we put this result down as the value of A. Similarly 
for B and C. 

Thus, A = 3xe+12x+11-3-12+11- 
( ~ $ 2 )  ( x f 3 ) - 1 x 2 - l ;  

B =  3 ~ ~ + 1 2 ~ + 1 1 - 1 2 - 2 4 + 1 1 - - 1 ~ ~  --- ; 
3 - 1 )  - 1  - I 

and C =  3xa+12xf 11-27-36+11 
(~+1)(~+2)-(-2)(-1)  2 
1 1 1  .'. E = -  

x + 1 + x s 2 + x i  
Note:-All this work can be done metztally ; and all the 

laborious work of deriving and solving three simul- 
taneous equations is totally avoided by t h i ~  method. 

A few more illustrations are shown below : 
1 1 (also available by mere (1) 2x+3 =- 

(x+1) (x+2) x+1+x+2 Vibkananz) 
7 7 '1 (2) -- =--- 

(x+l) (x+2) x+l x+2 
1 (3) 2x-5 - 1 + 

(x-a) (x-3) x-2 x-3 
10 7 (4) 3x+13 - 

(x+Z) x+1 x+2 
-5 7 (5) 2x+1 - $ -_ 

x'-5~+6 X-2 X-3 
(6) 7 ~ - 1  - -6 4 -- 

1 -6x+6xa 1 - 2 x + ~ x  

(7) 9 =---- 3 3 
xg+x-2 X-1 x+2 

X-13 2 1 (8) -- =--- 
xP-2~-15 x+3 x-5 

2 1 (9) -x--5 =- - 
xa-x-2 x+1 x-2 

(10) x+37 - 4 3 -- -- 
x2+4x-21 (x-3) X-+7 

(11) 5+2x-3xe =(l+x) (3-3x) 
(x8-1) (x+l) (x+1)' (x-1) 
- -- 5 - 3 ~  - ---- 1 4  

xa-1 X - l x + 1  



Therefore, the GENERAL FORMULA is : 
6x2+ mx& -- - 

(x-a)-) (x-c) 
1 2+mc+n laP+ma+n . B = lb2+mb+n. and - c - - - .A=-- 

(a-b) (a-c)' (b-c) (b--a)' (c-a) (c-b) 

If and when, however, we find one or more factors of the 
Denominator in repeti t io~~ (i.e. a square, a cube etc,,) a slight 
variation of procedure is obviously indicated. For example, 

let E be 3x+5 
( 1  -2x)B 

According to  the current system, we say : 

Let 1 -2x=p (so that  x= 3) 
2 

This is no doubt a straight and simple procedure. Rut 
even this iu rather cumbrous, certainly not easy and certa~nly 
not mental arithmetic ! And, with bigger numbers and higher 
numbers (as will be the case in the next example), it will he 
still worsc ! 

The Vedic system, however, gives us two very easy 

Par6vartya methods whercby the whole work can be done 
mentally, eas~ly and speedily. They are a s  follows : 

(i) 3x+5 - A B 
(i=2~)2- (1_2x)'+EG 
. 3x+5=A+B (1-2x) ............... M 
:. -2Bx=3 : and A +  B=5 
:. B=-l+ and A=6$ 

( ~ i )  5x+5=A+B (1-2x) ............... M 
Ry Par6vartya (inakmg 1-2x=0, i.e. x=$), 

we have A=6& ; and (as this is  an absolute identity) 
(i.e true for all values of x), let us put x=O 
. . Aj-B-5 :. B=-lf 

Two more examples are taken by way of Illustration : 

According to the current system, we say: 
let 1-x=p (so that  x=l-p) 

But according to the Vedic procedure, we say : 

( I )  A+B (I-x)+C(l - ~ ) ~ j - n ( 1 - ~ ) ~ = ~ 3 + 3 ~ + 1  

:. (A+R+C+D)+x(-R-2C-3D) f x ~ ( C - ~ D ) - D X ~  
-x2+3x+5 

... -D=I ... n=-1 
:. C-3D=C-3=0 :. C= 3 

-B-2C-3D=-B-G+3=3 :. R=-6 . . 
A+ B+C+-D=A-6+3-l=I :. A- 5 . . I 



Or, secondly, (by Parcivartye), 
Put x=l  :. A= 5 
Put x=O :. A+B+C+D= 1 :. H=-6 
Put x=2 :. A - B + C D = l 5  1 C= 3 

:. D=-1 
(all of which call be done by mental Arithmetic). 

I 

or, secondly (by Parcivartya), 
Put x=l  :. 4c=5 

x=o :. B=-3 
N.B. :-I. It need be hardly pointed out that the current 

method will involve an unquestionably cumbrous 
and clumsy process of working, with all the atten- 
dant waste of time, energy etc. 

2. Other details of applications of ParCavartya and 
other Sfitras to partial fractions, will be -dealt 
with later. 

3. Just now we take up an important part of Integral 
Calculus wherein, with the help of partial fractions, 
we can easily perform difficult integrational work. 

INTEGRATION 

BY 
PARTIAL FRACTIONS 

In this chapter we shall deal, briefly, with the question 
of INTEGRATION by means of Partial Fractions. But, before 
we takc it up, it will not be out of place for us to give a skeleton- 
sort of summary of the first principles and process of integration 
(as dealt with by tlie ElcCdhika Satra). 

The original process of differentiation is, as is wellknown, 
a process in which we say : 

Let y=xa. Then Dl (i.e. *)=axa dx ; 

1),=6x ; and Da=6 

Now, ill the converse process, we have : 

-- dy-3x2 :. dy=3x2dx 
dx 

Integratiag, :. J ~ Y = J ~ X ' ~ X  :. y=x9 

Thus, in order to find the integral of a power of x, we 
add unity to the @ (Pfirva i.e, the original index) and divide 
the coefficient by the new index (i.e. the original one plus 
unity). 

A few specinlell examples may be taken : 
(1) Integrate 28x3. f 2 8 ~ ~ d x = Y x ~ = 7 ~ ~  

I 

I (2) j (~4+3~3+6~2+7~-9)dx  
=+x6+4~4+2xa+3)~2-9x+K(where K is an in- 
dependent term) 

1 3J(xa+x"-l+x"2 etc.) 
I X.tl ~a X"l 

(3) = - 
a + - l + ~ + ~  

...... Ete. 



This is simple enough, RO far as i t  goes. But what about 
complex expressions involving numerators and denominators ? 

I The folloming sample specimens will pake the procedure (by 
means of Partial Fractions) clear : 

(1) Integrate 7x-1 -- 
6xa-5x+l 

-: (By Parcivartya), 7 ~ - 1  -. 7x-I 
ex2-5x+1 (2x-1) (3x-1) 

(2) Integrate xe-7x+l 
- - - - - - - 
~ ~ - - 6 ~ * + l l x - ~  

-: (By Parcivprtya), x"7x+1 - x2-7x+ 1 
xs-6xa f 1 lx-6-(x-l)(x-2)(x-3) 1 

=-$ log (x-l)+Q log(x-2)-$! log(x-3) 
(3) Integrate 1 

x3-xz-x+1 
Let 1 I B C 

x3--x2-x+1 x-, +(-q2+-......3f x+ 1 

:. l=A(x-1) (x+l)+B(x+ 1 ) + ~ ( ~ - 1 ) 2  

= A ( x 2 - ~ ) + B ( ~ + I ) + c ( x - I ) ?  .............. N 

( 193 1 

Now, let x=l  .: 1=2B :. B=f 

Differentiating (R), - 
0=2Ax+B+2Cx-2c.. ........... ..P 

Nowputx=l '. 2A=-4 .'. A=--& 
Differentiating g), 2A+2C=O :. 2C=+ :. C=$ 

- 1 1 .= E = -  -- 
4(x-1) 2 ( ~ - - 1 ) ~ 4 ( x + 1 )  

=-*log (x-I)=+ log (x-l)+& 1.g (.+I) 



CHAPTER XXV 

THE VEDIC NUMERICAL CODE 

It is a matter of historical interest to note that, in their 
mathematical writings, the ancient Sanskrit writers do not 
use figures (when big numbers are concerned) I in their numerical 

notations but prefer to  use the letters of the Sanskrit (Deva- 
nagari) alphabet to represent the various numbers ! And this 
they do, not in order to conceal knowledge but in order to 
facilitate the recording of their arguments, and the derivation 
conolusions etc. The more so, because, in order, to help 

the pupil to memorise the material studied and assimilated 
they made it a general rule of practice to  write even the most 
technical and abstruse text-books in Sfitras or in Verse (which 
is so much easier-even for the children-to memorise) than 
in prose (which is so much harder to get by heart and remember). 
And this is why we find not only theological, 
medical, astronomical and other such treatises but even huge 
big dictionaries in Sanskrit Verse ! So, from this stand-point, 
they used verse, Siitras and codes for lightening the buden and 
facilitating the work (by versifying scientific and even mathe- 
matical material in a readily assimilable form) ! 

The very fact that the alphabetical code (as used by them 
for t'his purpose) is in the natural order and can be immediately 
interpreted, is clear proof that the code language was resorted 
not for concealment but for greater ease in verificatio~~ etc., 
and the key has also been giver1 in its simplest form : 

g l m f t  ;m, nfq qs, qrk -, smari; and a: vq" which 
means : 
(1) ka and the follow~l~g eight letters ; 
(2 )  ta and the following eight letters ; 
(3)  pa and the following four letters ; 
(4) ya and the Following seven letters ; and 
(5) ksa (or Kyudra) for Zero. 

Elaborated, this means : 
(1) ka, ta, pa and ya all denote 1 ; 
(2) kha, t h ,  pha and ra all represent 2 ;  

(3) ga, &, ba and la all stand for 3 ; 
(4) gha, &, b h  and ua all denote 4 ; 
(5) gna, w, ma and sa all represent 5 ; 
(6) ca, ta, and da all stand for 6 ; 
(7) cha, thu, and (ra all denote 7 ;  
(8) ja, da and ha all represent 8 ;  
(9) jha and dha stand for 9 ;  and 

(10) Ksa (or Ksudra) means Zero ! 
The vowels (not being included in the list) make no differ- 

ence ; and in conjunct consonants, the last consonant is alone 

i to be counted. 

Thus papais  11,naamais55,@@is 11,maryis52and ao 
on ! 

And it was left to the author to select the particular 
consonant or vowel which he would prefer a t  each step. And, 
generally, the poet availed himself of this latitude to so frame 
his selections as to bring about another additional meaning 
(or meanings) of his own choice. Thus, for instance, w, 
b p a ,  papa and yapa all mean 11 ; and the writer can (by a 

i proper selection of consonants and vowels) import another 

meaning also into the same verse. Thus "I want mamo and 
papa" will mean " I  want 55 and 11" ! 

Concrete, interesting and edifying illustrations will be 
given later on (especially in connection with recurring decimals, 
Trigonometry etc. wherein, over and above the mathematical 
matter on hand, we find historical allusions, political reflections, 
devotional hymns in praise of the Lord Shri Kriehna, the Lord 
Shri Shankara and so on !)* 

I 
This device is thus not merely a potent aid to versification 

(for facilitating memorisation) but has also a humorous side to 
it  (which adds to the fun of it) ! 

*The hymn (in praise of the Lord) gives us the value 
of %& to 32 decimal places (in Trigonometry), 



RECURRING DECIMALS 

I t  has become a sort of fashionable sign of c~lltural advance- 
ment, not to say up-to-datism, for people now-a-days to 
talk not only grandly but also grandiosely and grandiloquently 
about Decimal coinage, Decimal weights, Decimal measurement6 
etc. ; but there can be no denying or disguising of the 
fact that the western world as such--not excluding its mathe- 
maticians, physicists and other expert scientists-seems to have 
a tendency to theorise on the one hand on the superiority of 
the decimal notatlon and to fight shy, on the other, in actual 
practicGof decimals and positively prefer the "vulgar fractions" 
to them ! 

In fact, this deplorable state of affairs has reached such 
a pass that the mathematics syllabus-curricula in the schools, 
colleges and univ-rsities have been persistently "progressing" 
and "advancing" In this wrong direction to the extent of 

declaring that Recurring decimals are not integral parts of the 
matriculation course in mathematics and actually instructing the 
pupils to convert all recurring decimal8 AT SIGHT into their 
equivalent vulgar fraction shape, complete the whole vork 
with them and finally re-convert the fraction result back 
into its decimal shape1 

Having invented the zero mark and the decimal notatioll 
and given them to the world (as described already from the 
pages of Prof. Halstead and other Historians of Mathematics), 
the Indian Vedic syste~n has, however, been advocating the 
decimal system, not on any apriori or because of 

partiality but solely on its intrinsic merits. Its unique achieve- 
ments in this direction have been of a most thrillingly wonderful 
character : and we have al~eady-at the very commencement of 

this illustrative volume-given a few startling sample-speoi- 
men8 thereof. The etudent will doubtless remember that, a t  
the end of that chapter, we promised to go ihto fuller details of 
this subject a t  a Wer stage. In fulfilment of that promise, we 
now pass on to a further exposition of the marvels .of Vedic 
mathematics in this direction. 

Prelimimry Note 
We may begin this part of this work with a brief reference 

to the well-know1 distinction betseen non-recurring decimals, 
recurring ones and partly-recurring ones. 

(i) A denominator containing only 2 or 5 as factors 
gives us an ordinary (i.e. non-recur~ing or non-circulating) 
decimal fraction (each 2, 5 or 10 contributing one significant 
digit to the decimal). For instance, 

1 
= .0125 ; T ) ~ = - ! -  = .Ol ; and sn on. 

10e 
(ii) Denominators containing only 3, 7, 11 or higher prime 

numbers as factors (and not even a single 2 or 5 )  give 11s recurring 
(or circulating) decimals whicn we shall deal with in detail in 
this chapter and in some other later chapters too. 

. . 
) = ' 3 ;  )=.142857; $=.1 ; & = . 0 9 ;  

&= 052631578/947368421 ; and so on. 

(iii) A denominator with factors partly of the former type 
(i.e. 2 and 5) and partly of the latter type (1.e. 3, 7, 9 eta.,) 
gives US a mixed (i.e. partly recurring and partly non-recurring) 



decimal, (each 2, 6 or 10 contributing one non-recuning digit 
to the decimal). 8 

1 ,\=2q=.0416; and so on. 

N.B. :-(i) Each 3 or 9 contributes only one recurring digit ; 11 
gives 2 of them ; 7 gives 6 ; and other numbers make 
their own individual contribution (details of which 
will be explained later). 

(ii) In every non-recurring decimal with the standard 
numerator (i.e. I), it will be observed that the last 
digit of the denominator and the last digit of the 
equivalent decimal, multiplied together, will always 
yield a product ending in zero ; and 

(iii) In every recurring decimal x with the standard 
numerator (i.e. l ) ,  i t  wilI be similarly observed that 
9 will invariably be the last digit of the prcduct of 
the last digit of the denominator and the last digit 
of its Recurring Decimal Equivalent (nay, the 
product is actually a continuous series of NINES) ! 

mus, )=.5; +.2;  g o = - l ;  $=.25;4=.125; 
,\=-0625; &='04; ,,',=.008; etc. 

. . . . 
And )=-3;+=.142857;$='1;&='09; . . 

gS= .676923 ; etc., etc. 

And this enables us to determine beforehand, the last digit of 
the recurring decimal equivalent of a given vulgar fraction. 
Thus in its decimal shape must necessarily epd in 7 ; & in 1; 
Ir'r in 9 ; ph in 3 ; and so on. The immense ~ractical utility of 
this rule in the conversion of vulgar fractions into their decimal 
ahape has already been indicated in the first chapter and will 
be expatiated on, further ahead in this chapter and in subse- 
quent chaptere. 

Let us firat take the case of 4 and its conversion 7)1.0(. i4286i 
from the vulgar fraction to the decimal shape. - 7 
We note here : 30 

(i) that the successive remainders are 28 
3, 2, 6, 4, 5 and 1 and that, inasmuch as 1 is the 20 
original figure with which we started, the same 14 - 
remainders are bound to repeat themselves in 60 
the same sequence (endlessly). And this is 56 
where we stop the division-process and put the - 40 
usual recurring marks (the dots on the first 36 
and the last digits) in order t~ show that the - 

60 
decimal has begun its characteristic (recurring) 49 
character. 

At this point, we may note that inasmuch as the first 
dividend 10 (when divided by 7) gives US the first remainder 3, 
and, with a zero affixed to it, this 3 will (as 30) become our 
second dividend and inasmuch as this process will be continuing 
indefinitely (until a remainder repeats itself and warns us that 
the recurring decimal's recurring character has begun to manifest 
itself, i t  stands to reason that there should be a uniform ratio 
in actual action. In other words, because the first Dividend 
10 gives us the first remainder 3 and the second dividend 30, 
therefore ( A a n u r ~ ~ ~ q a  i.e. according to the ratio in questior. 
or by simple rule of three), this second dividend 3 should 
give us the second remainder 9 ! In fact, it is a "Geomelm'cal 
Progression" that we are dealing with ! 

And when we begin testing the successive remainders from 
this standpoint, we note that the said inference (about the 
Geometrical Progres~io~l with the common ratio 1 : 3) is correct 
Por, although, when we look for 3 x 3=9 as the second remainder, 
we actually find 2 there instead, yet as 9 is greater than 7 (the 
divisor), it is but proper that, by furt,her division of 9 by 7, 
we get 2 as the remainder. And then we observe that this 
second remainder (2) yields us the third remainder 6, and 
thereby keeps up the Geometrical Progression (with the aame 



ratio 1 : 3). In  the same way, this 6 gives us 18 which (being 
greater than tlie divisor and being divided by it) gives us 4 as 
the fourth remainder. And 4 gives us 12 which (after division 
by 7) gives us 5 as the fifth remainder ! And, by the same 

ratio, this 5 gives us 15 which (when divided by 7) gives us 1 
as the sixth Remainder. And as this was the dividend which 
we began with, we stop the division-process here ! 

The fun of the Geometrical Progression is no doubt 
there ; but it is not for the mere fun 7)l .O(G.P. 1, 3, 2, 6,4, 5 
of it, but also for the practical utility 7 
of it, that we have called the _? - 
student's attention to it. For, in the 
actual result, it means tjhat, once we know the ratio between 
the first dividend and the first remainder (1 : 3 in the present 
case), we can-without actual further rlivision-automatically 
put down all the remainders (by maintaining the 1 : 3 Geo- 
metrical Progression). For example, in the present case, 
since the ratio is uniformly 1 : 3, therefore the second remainder 
is 9 (which after deducting the divisor), we set down a_s 2 ;  
and so on (until we reach 1). Thus our chart reads as follows : 

1, 3, 2, 6, 4, 5. 

Yes ; but what do we gain by knowing the remainders 
beforehand (without actual division) ? The answer is that, 
as soor1 as we get the first remainder, our whole work is practi- 
cally over. For, since each remainder (with a zero affixed) 
autonlatically becomes the next dividend, we can mentally do 
this affixing at sight, mentally work out the division at each 
step and put down the quotient automatically (without worrying 
about the remainder) ! For, the remainder is already there in 
front of us ! 

Thus the remamdeis 1, 3, 2, 6, 4 and 5 give us (Dividend digits) 
the succesulve dividcntls 10, 30, 20, 60, 40 and 1, 3, 2, 6, 4, 5 
50 ; and, d~vidlng these mentally. by 7, we can 1 4 2 8 5 7 
go forward or backward and obla~n all the (Quotient-digits) 
quotient-dlg~ts 1, 4, 2, 8, 5, and 7. And, as i t  
is a pure circulat~~lg dccimal, our answrr is 112857 ! 

There is, however, a still.more wonderful Vedic method by 
whieh, without doing even this little division-work, we can put 
down the quotient-digits automatically (forward or backward, 
from any point whatsoever) ! The relevant Siitra hereon 
says : alTim ($e@~ydfikmu Cararnepz and means : The 
Remainders by the last digit) : 

As explained in another context (in the very first chapter 
of this volume), the word by indicates that the operation is not 
one of addition or of subtraction but of division and of 
multiplication ! 

The division-process (whereby we affix a eero to 1,3,2 etc., 
divide the product by 7 and set down the quotient) has been 
shown just above. We now show the reverse procegs of multi- 
plication, which is easier still. 

In so doing, we put down not the dividend-nucleus 
digits but the remainders themselves in order : 3,2,6,4,5,1. 

And, as we know from a previous paragraph that 7 is the 
last digit, we multiply the above-given remainders by 7 and put 
the last (i.e. the right-hand-most digit) down under each of the 
remainders (totally ignoring the other digit or digits, if any, 
of the product) ! And lo ! the answer is there in front of US 

again, (really looking more like magic than like mathematics) ! 

Thus, (Remainders) 

3 multiplied by 7 gives us 21 ; 
and we put down only 1 ; 

2 X 7 gives us 14 ; and we put down only 4 ; 
6 x 7 gives us 42 ; and we put down only 2 ; 
4 x 7 gives us 28 ; and we put down only 8 ; 
5 x 7 gives us 35 ; and we put down only 5 ; and 
1 x 7 gives us 7 ; and we put down 7. 

And the answer is ai4285i 
81 



At this point, we may remind the student of a very 
important point which we have already ex- 7)l.O (-142 
plained in chapter I (regarding the conversion L( 867 
of g,, &, and $v to their recurring decimal 30 
shape). This is in connection with the facts 28 
that the two halves of these decimals together 5 
total a series of NINES ; that, once half the 14 
answer is known. the other half can be had - 

60 by putting down the complements (from 66 
nine) of the digits already obtained ; and - 
that, as the ending of the first half of the result 40 - - 
svnchronises with our reaching of the 50 - 
difference between the numerator and the 60 
denominator as the remainder, we know when 49 - 
exactly we should stop the divisiorl (or multi- 1 
plication, as the case may be) and begin the 
mechanical subtraction from 9 of the digits already found ! 

The student can easily realise how, inasmuch as this 
rule is applicable to every case (wherein D - N  comes 
up as a Remuinder), i t  therefore means an automatic reduction I II 
of even the little labour involved, by exactly one-half! 

I 

Uoinq back to the original topic (re: the conversion of 
vulgar fractions into their equivalent decimal shape and how 1 
the Geometrical Progressional ratio can give us beforehand- 
without actual division-all the remainders that will come up 
in actual division), we now take up f, as another illustrative 
example and observe how the process works out therein : 

(1) (i) Here the successive Dividends- 13)lS00 (.076 1 
hucleus- digits are 1, 10,9,12,3 and 91 ( 923 - 

90 999 
I 

4. Affixing a zero to each of them 
78 I 

and dividing the dividends by 13, - 
we get 0, 7, 6, 9, 2 and 3 as the first 120 

117 
digits of the quotient in the answer. - 

30 
26 
40 
39 

I 
I 

(ii) Or, seoondly, re-arranging 13)la00(=, 10,0,12,3,4 
the remainders so ae to  0 7 6  9 2 3  
start from the first actual remainder, we have : 

10, 9, 12, 3, 4 and 1. And multiplying these by 

last digit of the 13)1.00(10, 9, 12, 3, 4, 1 
answer in the present case), - 

0 7  6 9 2 3  
we put down merely the 
right-hand-most digit of each product ; and these 
are the successive quotient-digits! Here too, as 
usual, we go forward or backward (or in any sequence 
which we may choose). And the answer is .076923 

(iii) And here too we observe, in operation, the rule about 
complements from NINE ! And it  commences 076 
from the point st whioh we obtain 12 (the differ- 923 
ence between the Numerator and the deno- 999 
minator) as the Remainder. 

(iv) In the above charts, we may avoid big numbers by 
using a minus where a big number is threatened. Thus, 
instead of taking 3 (as in the C.p. l, , 9 -3 5 etc. 
case of 7), we may take -3 as 
the common geometrical ratio and will find the 
Geometrical Progression intact ; and naturally the 
product of each -T%,g, -f;,-V,-O,-Y 
remainder-digit by the ,, 2 3 
last digit remains in- 
tact too and gives us the same answer: .076923! 

We pass now on to still another and easier method which 
comes under the Ekdhika Sfitra which we have expounded 
and explained at sufficient length already (in the first chapter) 
and which therefore we need only summarise and supplement 
here but need not elaborate again. 

The Ekddhika Sara (which means 'by the preceding one 
increased by one') has already been shown at  work in a number 
of ways and in a number of directions and on a number of 
occasions and will similarly come into operation still further, 
in m y  more ways and in many more contexts. 



Nu&s d n g  .in Nine 
(i) If and when the last digit of the denominator is 9, we 

know beforehand that the equivalent recurring decimal ends in 1. 
(ii) In the case of &, the laat but one digit is 1; we increase 

it by 1 and make it  2. In & we work with 2+ l=3. In & and 
in &, we operate with 4 and 5 respectively and so on. 

(iii) In the multiplication-process (by Ekcidkika PGrva), 
in all these cases, we put 1 down as the last digit (i.e. in the 
right-hand-most place) ; and we go on multiplying that last 
digit (1) from the right towards the left by 2, 3, 4 and 5 respec- 
tively ; and when theke is more than one digit in that product, 
we set the last of those digits down there and carry the rest of it 
over to the next immediately preceding digit towards the left. 

(iv) When we get D - N as the product, we know we have 
done half the work ; we stop the multiplication there ; and we 
mechanically put down the remaining half of the answer (by 
merely taking down the complements from NINE). 

(v) The division-process (by EWhika Sctra) follows the 
same rules (vide Supra). 

(1) We may first consider the fraction ,I, as our first illus- 
tration of the method described : 

(i) Putting 1 a s  the last digit and continually multiplying 
by 2 towards the left, we get the last four digits (towards the 
left) without the least difficulty. 

. 8 4 2 1  . . . . . . . . . . .  
9 4 7 3 6  

(ii) 8X2=16. Therefore put 6 down immediately to the 
left of 8 (with 1 to carry over). 6X2+the 1 carried over-13. 
Put the 3 to the left of the 6 (with 1 to cany over). 3 ~ 2 + 1 = 7  

Set it down before the 3 (with nothing to carry over). 7 x2= 
14. Therefore put the 4 before the 7 (with 1 to carry over) 
4 x2+the 1 carried over=g. 

(iii) We have thus got 9 digits by continual multiplication 
from the right towards the left. And now 9 x 2 2 1 8  (which is 
D - N). This means that half the work is over and that the 

~ earlier 9 digits are obtainable by putting down the complements 

(from NINE) of the digits already determined. So, we have 
~ B ~ ~ . ~ 5 2 6 3 1 5 7 8 / 9 4 7 3 6 8 4 2 i  

(2) Let us now examine the case of ,1, : 
Segin with 1 (as usual) a t  the extreme right end and go 

on m~lltiplying by 3 each time, "carrying over" the surplus 
digit or digits (if any) to the left (i.e. to be added to the next 
produot to be det,ermined. Thus, when we have obtained 14 
dipits i.e. -- 0 

..................... 9 6 5 5 1 7 2 4 1 3 7 9 3 1 ,  
we find that we have reached 28 ; we know we have done half 
the work ; and we get the first 14 digits by simply subtracting 
each of the above digits from NINE. 

- 0 3 4 4 8 2 7 5 8 6 2 0 6 8 1  

:. 2 1 g = O ~ ~ 3 4 4 8 2 7 5 8 6 2 0 6 8 / 9 6 5 5 1 7 2 4 1 3 7 9 3 i  

(3) Next let us take & 
Take 1 again a t  the extreme right end and continually 

multiply by 4 from the right to the left. Thus, we have : 
&=.i)2564i. 

Note in this case that .: 39 is a multiple of 3 and 13 and 
not a prime number (like 19 and 29) and .: 3 and 13 give only 
I and 6 recurring decimals, there is a difference in its behaviour 
i.e. that the two halves are not complementary with regard to 
9 hut only in relation to 6 1 In fact, D N (i.e. 38) does not come 
up at  all as an interim product (as 18 and 28 did). And so, 
the question of complements from 9 does not arise at  all ; and 
the decimal equivalent has only 6 figures (and not 38) ! 

The reason for this is very simple. As ,l,=&+3, as r\l~as 
only 6 recurring decimals in its decimal equivalent and because, 
for reasons to be explained a little later, this decimal equivalent 
of & is exactly divisible by 9, much more therefore is it divisible 
by 3. And, conscquently, when we divide it  by 3 and exhaust 
the six digits, we find that there is no remai~lder left. In other 
words, ;g has only 6 digits in its recurring decimal shape. 

These have been obtained by the self-same Ekridkiko pro- 
cess as served our pnrpose in the case of & and ja 



We next take up and aremine the case of t', which, besides 
following the rules hereinabove explained, has the additional 
merit of giving us the clue to a still easier process for the con- 
version of vulgar fractions into their recurring decimal shape : 

(i) If A we go on dividing 1 by 49 or . i4285i by 7 
(until the decimal begins to recur), we shall doubtless 
get our answer. But this will mean 42 steps of labo- 
rious working and is therefore undesirable. 

(ii) We therefore adopt either of the Ekdhika methods 
and go on multiplying from right to left by 5 or 
dividing from left to right by 6. 

(iii) On completing 21 digits, we find 48 (i.e. D rn N) coming 
up and standing up before us ; and we mechanically 
put down the other 21 digits as usual (by the subtrac- 
tion, from 9, of the digits already obtained). And 
the answer is : 

0 ' 0 2 0 4 0 8 1 6 3 2 6 5 3 0 6 1 2 2 4 4 8  
9 7 9 5 9 1 8 3 6 7 3 4 6 9 3 8 7 7 5 5 i }  

(iv) And this gives us the clue just above referred to about 
a still easier method (than even the Ekcidhike ones) for the con- 
version of vulgar fractions into recurring decimals. And it ie 
as follows : 

By actual division (of 1 by 49), we 49)1.00 ( .20408 
observe that the successive remainders 98 
are in Geometrical Progression (with the 200 
common ratio 1 : 2) that the dividends are 196 - similarly related and that each set of two 

400 digits in the quotient is also so related to 
its pmdecessor. In other words, this connotes and implies that, 
after putting down 02, we can a~ltomati~slly put down 04, 
08, 16 and 82 and so on. 

But when we reach 64, we find that 2xB4=1% i.e. ha8 
3 digits. All that we have to do then is to add the 1 of the 
128 over to the 64 already there, turn it into 65 and then put 
down not 28 but the remaining part of double the corretted 
figure 65 (i.e. 30) and carry the process ca~efully on to the very 
end (i.e. until the decimal starts to recur). We therefore have : 

0 ~ 0 2 0 4 0 8 1 6 3 2 6 5 3 0 6 1 2 2 4 4 8  - 
&= 9 7 9 5 9 1 8 3 6 7 3 4 6 9 3 8 7 7 5 5 i  - . . -  - - - -  - I 

This new method does not apply to all cases but only to 
some special cases where the Denominator of the given vulgar 
fraction (or an integral multiple thereof) is very near a power 
of ten and thus lends itself to this kind of treatment. In such 

cases, however, i t  is the best procedure of all. 
Note :-The rule of complements (from 9) is actually at  work 

in this case too ; but, inasmuch as (for reasons to be 
explained hereafter), the actual total number of digits 
is 42, the first half of it ends with the 21st digit and as 
we have been taking up a group of two digits a t  each 
step, we naturally by-pass the 2lst digit (which is 
concealed, so to speak, in the middle of the 11th 
group). But, even then, the double-digit process is 
so very simple that continuation thereof can present 
no difficulty. 

Other Ercdiqa 

So far, we have considered only vulgar fractions whose 
denominators end in 9. Let us now go on to and study the 
cases of 4, ,',, g,, & and other such fractions (whose denomina- 
tors end not in 9 but in 1, 3 or 7). 

(i) Here too, we first make up our minds, a t  sight, as 
regards the last digit of the decimal equivalent. 
Thus, Denominators ending in 7, 3 and 1 must neces- 
sarily yield decimals ending in 7, 3 and 9 (so that the 
product of the last digit of the denominator and the 
last digit of the decimal equivalent may end in 9.) 
Let US start with the case of ). 



(ii) Put down + in the shape & +=A 
(iii) Take 5 (one more than 4) as the Ekiidhika Piirva 

for the required multiplication or division (8s the 
case may be). 

(iv) Thus start with 7 at  the right end 8 5  7 
2 3 I 

(v) Multiply it by 5 and set down 35 as shown in the 
marginal chart. 

(vi) Multiply 5 by 5,  add the 3 to the product and 
set 28 down in the sanie way. 
Now, 5 x 8+2=42. But that is D w N 142 8 5 7 
Therefore put 142 down as the first 1 2 5  
half (according to the complements . . 
rule) .-. )='142/857 

Or 3=& 
The EkGdhika being 5, divide 7 by 5 i 4 2  / 8 5 
and continue the division as usual 2  1 4 / 
(with the same rule of procedure). 
After getting the three quotient-digits 1, 4 and 2 
you find 42 as the remainder before you. So tackle 
the last 3 digits (according to the complements rule) 
and say : I 

+=&=.142/857 
I 

(2) Let us now take the case of ,b =A: I 

(i) The last digit is 3 :.the last digit 
SO 7 6 / 9 2 3 

(in the answer) will be 3. . 0 7 6 / 9 2 3  
2 3 

(ii) The Ekdhika (multiplier or divisor) is :.4. 

(iii) &=& After 3 digits (whether by multipliction or 
by division), 36 (D - N) comes up. So, the other 
half is mechanically set down. And we say: 

,j-.676/923 

( m e  I 
(3) Next, let us take $,=,,Pp 

(i) The last digit is 1. The last digit b i d  
(of the answer) will be 9. 9l 

(ii) The Bkaidhika (in both ways) is 10. 

(iii) Immediately after the very first digit, we get 90 
(which is 90 9) before us. So, the complementst 
rule operates. . . 

(iv) And, in either case, we get &= '0/9 

(4) A=& (giving 7 as E k a i k a )  and 3 as the last digit of the 
answer. 
:. (By both methods, Multiplication and Division). 
- 0 . b 4 3 4 7 8 2 6 0 8 6  

Is- 

(5 )  (giving 12 as Ekidhika and 7 as the last digit) 
.: By both the methods (multiplication and division). 

we have : 
& = I ~ v = ~ ~ 5 8 8 2 3 6 2 / 9 4 1 1 7 6 4 7  

The Code Language at Work. 

Not only do the Vedic Siitras tell us how to do all this 
by easy and rapid processes of mental arithmetic ; but they 
have also tabulated the results in the shape of special sub-Siltras 
(containing merely illustrative specimens with a master-key 
for "unlocking other portals" too). The abstruse1 details 
(and the master-key) are not given here ; but a few sample-spe- 
cimens are given of the way in which the code and the Eka- 
nyam S a r a  (explained in Chapter 2) can be utilised for the 
purpose of postulating mental one-line answers to the questions 
in question. The three samples read as follows: 

(1) +& + (Kevalaih Saptakap Gun@) ; 

(2) e: (Kakzu Ksudrasdh)  : and 

(3) + w: (Kapse ~ s i d h - k h h i r m k r i b )  
In the first of these, Saptab means 'seven' ; and Kevcclaib 

represents 143 ; and we are $old that, in the case of seven, our 
multiplicand should be 143 1 

21 



In the second, Kalau means 13 and Ksudrasasaih repre- 
sents 077 ; and we are told that the multiplicand should be 
077 ! and, 

In the third, K a p e  means 17 ; and K~dma-dB&-khalair- 
mkzih means 05882353 ; and wc arc told that the multiplicand 
s h d d  be this number of 8 digits ! 

Now, if we advert to the "Ekuny.lina" corollary of the 
Nikhilam chapter (on multiplication), we shall be able to 
remind oursleves of the operation in question and the result 
to be achieved thereby. Let us do the multiplications accord- 
ingly (as directed) and see what happens. 

(1) In the case of 7 (as denominator), 143 X 999=142/857 ; 
and lo ! these are the six recurring decimal digits in the answer ! 

(2) In the case of 13,077 ~999=076/923 ; and these are the 
six digits in the recurring decimal equivalent of ! and 

(3) In the case of 17, 05882353 ~99999999=05882352/ 
94117647 ; and these are the 16 'recurring digits in the recur- 
ring decimal equivalent of gl ! 

In d l  the 3 cases we observe the Rule of Complements 
(from 9) at  work. And the sub-Sfitra merely gives us the 
necessary clue to the first half of the decimal and also a simple 
device (Ehny6nena) for arriving at the whole answer ! And 
all this is achieved with the help of the easy alphabet-code ! 

These results may therefore be formulated as follows : 

= .05882352/94117647'! 
And, by CROSS-multiplication, we get from the above, 

the following results : 
(1) 7 X 142857 =999999 ; 
(2) 13 X076923=999999 ; and 
(3) 17 x 058823521941 17647 

=9999999999999999 (16 digits in all) ! 

And, just in passing, we may note tha% this is the reason 
why, in the case of all these vulgar fractione, the last chgit of 
the denominator (9, 3, 7 or 1, as the case may be) gives, 1,3,7 
or 9 before-hand as the last digit of the equivalent recurring 
decimal fraction 1 

The b inder -Quot i en t  Complenmts-Cyclee. 

We have already - again and again - noted the fact that, 
in the various typical cases observed and analysed by us, the 
two halves of the quotients (added together) give us a series 
of NINES. We shall now proceed a little bit further and try to  
see if there be any such (or similar) rule governing the remainders. 
For the purpose of the necessary experimentation and investi- 
gation, lct us take up a more detailed consideration of the 
remainders obtained in each case by successive divisions of 
the numerator by the denominator ; and let us start with +. 

We know the successive Remainders are 3, 2, 6, 4, 6 and 
1. We know already that, on reaching 6 (i.e. D *N) as the 
remainder, half the work has been completed and that the 
complementary half is about to begin. Putting the 

3 2 6  above 6 figures, therefore, into two rows of three 
figures each, we have : 
and we observe that each vertical column (of one digit from the 

upper row and of one from the lower one) gives 3 2 6 

us the same total (i.e. 7) 1 -- 4 6 1  
7 7 7  

N.B. :-As our divisor is 7, it is but natural that no remainder 
higher than 6 is permissible i.e. that the only possible 
remainders are 1, 2, 3, 4, 6 and 6. (And these are the 
ones we actually find). 

Let us now take up the cave of and note what happens. 
The successive remainders are 10, 9, 12, 3, 4 and 1 (the highest 
of which is 12). And when they are placed 10 9 1213 4 1 
in two rows, we find here too, that the last 
three remainders are complements-from 10 9 12 

3 4  1 
13-of the first three remainders. 13 13\13 



i n  the case of If, the successive remainders are : 
10 15 14 4 6 9 5 1617 2 3 13 11 8 12 1 
7 2 3 1 3 1 1  8 1 2  1 

17 17 17 17 17 17 17 17 

The last 8 remainders are thus complements-from 17--of 
the first eight ones ! 

t n  the case of 19, the Remainders are: 
10 15 12 6 3 11 15 17 18 

Here again the first nine remainders, when added 
successively to the next nine, give 19 each time. 

Thus, it is clear- that, whereas the quotient-halves are 
uniformly complements from nine, the remainder-halves are 
complements from the individual divisor in each case. And 
this further reduces our labour in making out a list of the Re- 
mainders. 

Multiples of the Basic Fractions. 

Thus far, we have dealt with vulgar fractions whose 
numerator is unity. But what about fractions which have some 
other Numerator ? And the answer is: "There are several 
simple and easy methods by which, with a tabulated list before 
us of the results obtained by one or more of the processes above 
expounded, or even independently, we can readily put down 
the Recurring Decimal equivalents of the vulgar fractions of the 
type just under discussion. 

Let us, as usual, start with ) and frame a chart as follows * 

;= . i4285i  

0,=.285714 

p= .42857i 

q z . 5 7 1 4 2 8  

)=.714285 ; and 
+ = . & 7 1 4 i  

In this chart, we observe that, in all the "proper" fraotions 
having 7 as their Denominator, 

(i) The same six digits are found as in the case of ) ; 

(ii) they come up in the same sequence and in the same 
direction as in the case of + ; 

(iii) they, however, start from a different starting-point 
but travel in "Cyclic" order (in what is well-known 
as the "Clock-wise" order). 

(iv) and with the aid of these rules, one can very easily 
obtain the recurring decimal equivalent of a vulgar 
fraction whose numerator is higher than 1. 

In fact, a person who is actually looking at  a statement 
(on a board, a piece of paper, a slate etc.,) to the effect that 
1,= . i4285f, has several easy alternative processes to choose 
from, for determining the decimal equivalents of all the other 
five possible fractions having the same denominator (i.e. 7). 
They are as follows : 

The First Method. 

1. The verious digits can be numbered and marked 
in ascending order of mgnitude,  thus : 

(i) Unity being the least of (1) (3) (2) (6) (4) (6) 
them, the cycle for )starts 1 4 2 8 6 7 
with one as its starting 
point, travels in clock-wise cyclic order and reads : 

iazssi ; 
(ii) 2 being the second, ) starts with 2 and gives US the 

answer . is5714 ; 

(iii) There being no 3 at all, the third digit in ascending 
order is 4. So p begins from 4 and reads : 

. i2857i  ; 

(iv) The next digit (i.e. the 4th) in ascending order 
actually being 5, 417 begins with 6 and gives : 

.s7142i ; 



(v) The fifth digit actually being 7, 517 commences with 7 
end reads : 

.571428 ; and 

(vi) The 6th and last digit being 8, the sixth and last 
fraction (i.e.. )) starts with 8 and says : 

.857142 

ThiPis the h s t  method. 

Yes, but what about those cases in which the number of 
decimal places is more than 10 and thus, in the tabulated answer 
before us, some digits are found more than once ? 

Yes, i t  is perfectly true that, just as some digits are found 
absent [as in the case of : (just seen)], there are other cases 
where the same digits are found more than once. In fact, in 
every case wherein the ]lumber of decimal places is more than 
10, this is bound to happen ; and provision too there must be 
against it. In  fact, the remedy is very simple i.e. that, even 
where digits occur more than once, there still are gradations ; 
and, if these are taken into account, the cyclic order and the 
ascending order of magnitude will still operate and serve their 
purpose. 

For example, in the case of A, we have ,05882 ...... a t  the 
very commencement ; and there are two eights before us. Yes, 
but 88 is greater than 82 ; and therefote we should take 82 first 
and 88 afterwards and do our numbering accordingly: 
:,=.~j 5 8 8 2 3 5 2 9 4 1 1  7 6 4 j 

(1) (10) (15) (14) (4) (6) (9) (5) (16) (7) (2) (3) (13) (11) (8) (12) 
Thus, h starts with zero; h with 11; ,87 ; with 17 ; with 23 ; 
& with 29 ; ,", with 3 ; 9, with 41 ; ,81 with 47; ,9, with 52; i$ 
with 58 ; +) with 6; t$ with 70; $$ with 76; with 82 ; with 
88 ; and i$ with 9. The arranging in ascendmg order of magni- 
tude has, of course, to be done carefully and correctly. But i t  

must be admitted thst,  although thc procedure of counting and 
numbering is quite reasonable and scientifically correct, yet 
i t  is rather cumbrous, clumsy and t~ring. Hence the need for 
other methods. 

Yes ; but what again about the cases wherein the number 
of digits in the decimal equivalent is much less than the deno- 
minator of the vulgar fraction in question and has thus no 
scope for meeting all the possible demands ? 

Yes, Gy is such a case. The number of possible multiples 
is 12 ; and the number of digits in the decimal equivalent is 
only 6. (for Gy=.076/923). What is the remedy ? 

The remedial provision is that a multiple or two will do the 
trick quite satisfactorily and neatly. 

Now, ,1,=.076923 
.: (By simple multiplication by 2), 

<ss=. i5384i 

And now, there are twelve digits in all ; and these can 
meet the needs of all the possible multiples. 

~hus-&=.076923 ; and *,=. i53846 
:. &=.230769 ; and =$,= .307692 

A 2,=..&346lk ; and +s=.461538 
.-. &=.53846l ; and &=.6153sh 

:. ,%=. 69230i ; and $$= .i69230 
:. $&=.846153 ; and i 83 .923076  

The procedure is there and is quite correct. But, after all, 
one must confess that, even with this device, this counting 
and numbering procedure is still a cumbrous, clumsy and 
tiring process. Hence, let us repeat, the need for other methods. 

The Second Method 

The second method is one wherein we avoid even this num- 
bering and marking etc., and (in accordance with the Adyam 
Adyenu rule), multiply the opening digit or digits of the basic 
decimal fraction (. 142857) and determine, therefrom the starting 
point for the multiple in question. Thus, . i 4 2 8 h  

:. 3 starts with '14 ...... ... + should start with .28 etc., and 
(in clockwise cyclic order) give 'i857i4 ; 

1 $ ought to start with .42 etc., and give .428571 



( Slb ) 

$ muat start with .56 ; but there is no .66 but only .57 
before us ;  and so (making allowance for a possible nay, the 
actual-carrying over of a surplus digit fr0.m the right leftward), '* 

we start with 67 and say: #=.571428 ; 

Similarly $ should start with .70 ; but (for the same reason 
as in the immediately preceding case), it actually starts with 
-71 and giyes us : .i14285 ; and + should start with .84, .9 

actually starts with .85 and yields the answer : 857142! 

This is the Second method. 

The Third Method 
The third process is very similar ; but it bases itself not 

on Adyarn Adyena but on Antyam Antyena. In other words, 
it deals not with the opening digit but with the closing one. 

Thus, 
:: + ends with 7, . i42857 ' 
:. 9 must end with 4 :. It is .28571.k 
:. $ should end with 1 :. I t  is a428571' 
.: 4 ought to end with 8 :. I t  is .6714??b 
:. $ should end with 5 A I t  is .i14285 

and A Q must end with 2 :. I t  is .a57142 
This is the third method and the easiest and therefore 

the best of the lot. 

Independent method 

The above described methods are all for the utilisation 
of our knowledge of the decimal shape of a fraction whose nume- 
rator is unity, for deriving the corresponding decimal form 
of any multiple of that fraction. This is all right, so far as 
it  goes. But what about a person who ha9 not got such a ready- 
to-hand table to refer to  ? In such a case, should one newly 
prepare the basic chart and then manipulate it--cyclically- 
(in one of the ways just explained), for getting the required 
result ? 

That would, of course, be absurd. For use by such 
persons, we have too, a totally indbpendent method, by which, 

without resorting to any such previously prepared (or newly 
prepared) table, one can readily deal with the particular fraction 
on hand ! And the whole modw operandi is exactly the same 
as has been already explained in respect of the basic fraction 
and without the slightest dtferercce OY dtmkdeviation in any particular 
whatsoever therefrom. 

For example, suppose you have to decimalise 9. Your last 
digit will be 1. and as +f) ,  your Ekcidhika Piirva will be 
5. Now, go on dividing by 5, in the usual manner; and you get 
the chart, as explained in the margin : *=a:= 4 2 81571 

1 4 21 
After you get the tirst three digits 4; 2 and 8, you find that 
your dividend is 28 ; but this is D W N  (i.e. 49-21). So you 
may stop here and put the last three quotient-digits down as 
5, 7 and 1 (the complements, from nine, of the digits already 
found). 

Or you may continue the division till you get 21 as the 
dividend ; and as this was your etading-point, you may put 
the 6 digits down as a "Recurring" decimal. 

~ h n s  += 42857i 
Try thi with A, fq, $g and so on, with any number of 

cases. And you will always fmd the same thing happening right 
through of them. Thus, for those who do not have a tabu- 
lated schedule before them, this absolutely independent method 
is also there : and you can make full use of it. 

Note :-I, In this independent method, it  should also be noted 
that if we have to decimalise +, ), 4, 6 ,  %, etc., we 
havemerely to divide 10, 20, 30, 40, 50 etc., by 7 
and put down that remainder as the first remainder 
in each particular case and that: the work can be 
done automatically thereafter. 

2. or, we may pre-decide the last digit in each case by 
taking the last digits of 7, (1) 4, (2) 1, (2) 8, 3(5), 
(4) 2 as the last digits of the decimal eqaivalent ~f 

4, 9, #, 6 ,  8 and + 1 



I 
Recapitulation (and Supplementation) 

Over and above the ones expounded and explained herein- 
I 

above, there are several other very instructive and interesting 
principles, features and characteristics characterising this 
question of the conversion of vulgar fractions into decimal 
ones (in respect of the remainders, the quotients etc.). For ! 

i the benefit of the, students, we propose now to recapitulate, 
summarise, supplement and conclude this portion of the subject : 1 

(1) As regards the remainders, we have noted that, as 
soon as D w N comes up before us as a remainder, the remaining 1 
remainders are all complements-from the divisor (i.e. the 
denominator)-of the remainders already obtained ; 

(2) This automatically means that the quotient-digits 
already obtained and the quotient--digits still to be found, 
are complements from Nine ! 

I 

(3) If we take any remainder and multiply it by the 
Ca~arnd11.h (the last digit), the last digit of the product is 
actually the quotient a t  that step. (The formula here is M 
*T * ( f l e s a ~ i  Ankena Carameqa) which is therefore of 
the utmost significance and practical utility in mathematical 
computations. For instance, 

(1) ) The remainders are 3, 2, 6, 4, 5 and 1. Multiplied by 
7 (the C~rana~fika) these remainders give successively 
21, 14, 42, 28, 35 and 7. Ignoring the left-hand side 
digits, we simply put down the last dight (Chararncirika) 
of each product ; and lo ! We get )=.i42857 ! 

(2) +s The remainders are 10,9,12,3,4 and 1. Multiplied 
successively by 3 (the last digit), these remainders 

give 30, 27, 36, 9, 12 and 3. Ignoring the previous 
digits, we write down merely the C ~ r a ~ r i k a s  the 
last digit) of each product ; and lo! &,=.o+9623'! 

(3) The remainders are 10, 15, 14, 4, 6, 9, 5, 1617, 2, 
3, 13, 11, 8, 12 and 1. Mulltiplied by 7, they give us 
successively : 

70, 105, 98, 28, 42, 63, 86, 112, 49, 14, 21,91,77 
56,84 and 7. Uropping the surplus (i.e. left-side) 
digits and putting down only the Curm6rikas 
(the right-hand most digits), we have 
+,= .05882352/9411764i 

I n  fact, the position is SO simple and clear that we need 
not multiply the whole digit, write down the product and then 
drop the surplus digit (or digits). We need only put down the 
~ b ~ m a f i k u  (the right-hand-most digit) a t  the very outset 
(8s each step) and be done with i t !  

(4) The Geometrical-Progression = character of the 
Remainders gives us a clue to the internal relationship between 
each remainder (and its suooessor) (or its predecessor) ! Thus, 
as we know one remainder, we practically know all the rest of 
them Thus, 

In the case of ): AB we know the first remainder is 3, 
we can multiply any remainder by 3, cast out the sevens (if any) 
and immediately spot out and announce the next Remainder. 

3 x 3=9 ; 9-7 =2 ; :. 2 is the second remainder 
2 x  3=6. This is the third rdmainder. 

As 6 is D M  N, we may stop here and (by the rule of com- 
plements from the denominator), we may put down 4 , 5  and 1 as 
tho remaining three remainders. 

Or, if we overlook the D n N rule or prefer to go on with our 
multiplication by 3 (the Geometrical ratio), we get : 

6 ~ 3 = 1 8  ; 1 8 - 1 4 ~ 4 ;  and this is the 4th remainder. 
4x3=12;  12-7=5 ; and this is the 5th remainder. 
5x3=15;  15-14=1; and this is the 6th (md last) 

Remainder. 

We have thus obtained from the first remainder, all the 
remainders : 

3, 2, 6, 4, 5 and 1. 

And from these, by multiplication by the Carad%& (I), 
we get all the 6 quotient-digits (as explained above) : 

i, 4, 2, 8, 5 and ? 



This is not all. Instead of using the first remainder 
(3) as our Geometrical Ratio, we may take the second one (2), 
multiply each preceding group of 2 remainders by 2 and get 
32, 64 and 51 (for, by casting out the sevens, 6x2-7=5 ; and 
4x2-7=1). And multiplying these 6 digits by 7, we again get 
the Caramankas 1 4 2 8 5 7 (as before). 

Or we may take help from the third remainder (i.e. 6), 
multiply the preceding group of 3 remainders and get 3 2 6,4 5 1 
(for, by casting out the sevens, 3 X6-14=4 ; 2X 6-7=5 ; and 
6x6-35=1. And, multiplying these (same) 6 digits by 7, 
we again obtain the Caraminkas 142857 as before. 

This procedure is, of course, equally applicable to the 
fourth and fifth remainders (i.e. 4 and 5) and can get us the 
same result as before This is doubtless purely academical and 
of no practical utility. But we are discussing a principle, nay 
a universally operating mathematical law and must therefore 
demonstrate its actual universality of application. 

So, if we take the 4th remainder (i.e. 4) and multiply the 
 receding group of four remainders by 4, we again get 3264151 
(For, 4x3-7=5; 4x2-7=1; 4x6-21=3; 4x4-14=2); 
and the only difference is that the &st two digits are found to 
have already started repeating themselves ! 

If we now take the 5th remainder (i.e. 5) and multiply the 
preceding group of 5 remainders by 5, we again get 3264511 ... 
(for 3 X5-14=1; 2x5-7=3 ; 5x6-28=2 ; 5x4-14=6 ; 
5x5-21=4 ; 

And, if we follow the same procedure with the 6th 
remainder (i.e. 1) and multiply the group of preceding remainders 
by 1, we will, of course, get the same preceding remainders over 
again ! 

(5) In  the case of 17, the first four remainders are: 
10, 15, 14 and 4. As 4 is a manageable multiplier, we may make 
use of it as a convenient and suitable remainder for this purpose. 
Let ue therefore multiply the group of four Remaindere (already 

found) by 4 and cast out the seventeens (wherever necessary). 
And then we find : 

4x10-34=6 10, 15, 14,4 
4 X 15-61=9 10,15,14,4,6 
4x14-61=6 10, 16, 14, 416, 9, 5, 161 

4x4316.  But as D aN=16, we can stop here and set 
down all the other remainders by subtracting each of the above 
digits from 17 : 7, 2, 3, 13/11, 8, 12 and 1. And, multiplying 

each of these 16 remainders (or rather their Caranzcilikae i.e. 
units digits) by 7, we get: 

h: - b 5 8 8 2 3 5 2 / 9 4 1 1 7 6 4 i  

Besides (1) the corollary-SMra (2) each remainder X the 
last digit method, (3) the Ekidhika process from right to left 
and (4) the EkZdhika method from left to right, there is still 
another method whereby we can utilise the Geometrical-bogre- 
ssion relationship and deduce the same result by a simple and 
easy process. And it  is this, namely, that as soon as we come 
across s clear ratio between one remainder (or dividend) and 
another, we can take that ratio for granted (as being of universal 
application) and work it out all through. For example, 

In the case of 19, we have 10 and 5 as the first two 
remainders and we note that 5 is just one-half of ten. Keeping 
this ratio in view, we can deduce that the next remainder ahodd 
be one-half of 5. But, as 5 is not exactly divisible by 2, we add 
19 to it, make it 24 and put down its half (i.e. 12) as the next 
remainder. The 12 10, 5, 12, 6, 3, 11, 16, 17, 18 
g ives6 ,6g ives  3, 9, 14, 7, 13, 16, 8, 4, 2, 1 
3(+19) gives 11, 
11(+19) gives 15, 15(+19) gives 17 & (17+19) gives 18. And 
we stop there and put down the remaining half of the remainders 
by subtractions from 19. Having thus got the remainders, we 
multiply the Caram-nhas by 1 (the last digit of the answer) 
and we get the quotient-digits automatically. 



N.B. :-The ratio in question may be noticed a t  any stage of the 
work and made use of a t  any point thereof. 

In the oase of ft, we have the remainders 10 and 15 a t  
the very start. We can make use of this ratio immediately 
and throughout, with the proviso that, if and when a fractional 
product is threatened, we can take the denominator (or as many 
multiples thereof as may be necessary) for making the digit on 
hand exactly divisible by the divisor on hand. 

I 
Thus, in the case of &, we have the remainders 10 and 

15 to start with (the ratio being 1 to 1)). So, whenever one odd 
number crops up, its successor will be fractional. And we 
get over this difficulty in the way just explained. 

And when we get a remainder which is numerically greater 
than the divisor, we cast off the divisor and put down the remain- 
der. Thus, 

10 gives us 15;  15 (+17) gives 10, 15, 14, 4, 6, 9, 5, 16 
us48i.e.14;14givesus21i.e.4; 7, 2, 3, 13,11, 8,12, 1 

4 gives us 6 ; 6 gives us 9 ; 
9(+17) gives us 39 i.e. 5; (54-17) gives us 33 i.e. 16. And 
there we can stop. 

Number of Decimal Phes  

Students generally feel puzzled and non-plussed as to 
how to know beforehand the number of decimal places which, on 
division, the decimal equivalent of a given vulgar fraction 
will actually consist of. In answer hereta, we must point out 
that, having-in the immediately preceding sub-section on this 
subject-made a detailed, analytical study of the succcssive 
remainders, we have, in every case before us, practically a 
tabulated statement from which (without actual division to the 
very end) we can postulate beforehand all the forthcoming 
remainders. And the tabulated statement has the further 
merit that it can be prepared, a t  any time, at a moment's 
noticr l 

All this means, in effect, that, 
(i) As soon as 1 (or other starting point) is reached (in 

our mental analysis), we will have completed the whole 
work of-decimalisation and therefore know the actual 
number of decimal places coming ahead. The rases 

+, &, T$, etc., have all proved this. 
(ii) As soon as we reach the difference between the 

numerator and denominator, we know we have done 
half the work and that the other half is yet to come. 
The cases of ) etc., (which we have dealt with in 
d e m o )  have proved this too. 

(iii) As soon as we reach a fairly small and manageable 
remainder (in our mental calculation), we know how 
many more steps we should expect. 

Let us again take the case of ) by way of illustration. 
The first remainder is 3 ; and used as a successive multiplier 
(with the provision for the casting out of the sevens), that 
first remainder-multiplicr brings US on to 1. 

When we have done two stcps and got 1 and 4 as the 
first two rpotient-digits, we find 2 is the remainder. Multi- 

plying the first group of two digits (14) by 2, we get 28 as the 
second-group (with the remainder also doubled i.e. 2 ~ 2 ~ 4 ) .  
14/28/. 

Multiplying 28 by 2, we get 28 X2=56 as the third group 
and 4x2=8 as the remainder. And then, by casting out 
the sevens, we obtain 57 as the quotient-group and 1 as the 
remainder ! And as this was our starting-point, we stop further 
computations and decide that ), when decimalised, has 6 
decimal places in the answer. 

Going hack to the case of ,l,, the student will remember 
that, after 4 steps, we got.0588 as the quotient-digits and 4 as 
t,he remainder. Multiplying the former by t,he latter, we 
obtained 2353 as the second quotient-group and 4 x 4 3 1 6 ;  
as the remainder ; and there we stopped, (because we had the 
first 8 digits on hand and knew the other 8 digits). Thus ft 
gave us 16 digits. 



(As a fJeometrica1 seriea is of the atandard form 1, r, ra and 
so on, we are able to utilise 2,and 2% (in the case of +), 4 and (a 
(in the case of A) and 80 on for helping us to pre-determine the 
number of decimal places in the answer. This is the Algebr8iCg1 
principle utiliied herein. 

Note :-I. We need hardly point out that the Ekcidhika method 
has the sipreme and superlative merit of lightening 

our division (and multiplication) work. For ina- 
tance, in the case of fv, fo etc., we have to do our 
division-work, a t  stage after stage, by succeseive 
division, not by 19 or 89 etc., (the original deno- 
minator) but by 2 or 3 etc. (the E&djjdh~~~i-)). 
And this is the case with regard to every case i.e. 
that we perform all our operations-in this system- 
with much smaller divisors, multipliers eto., and 
this rule is invariable. What a tremendous saving 
in effort, labour, time and cost! 

2. We have purposely treated this subjeot a t  great 
length and in elaborate detail, because it is very 
essential that the whole matter should be clearly 
understood, thoroughly assimilated and closely 
followed so that, even without the help of a teacher, 

the student may be enabled to work out these 
methods independently in other similar cases and 
to know- with absolute certainty - that ANY and 
EVERY vulgar fraction can be. readily tackled 
and converted into the corresponding recurring 
decimal . ( w h w  may be the complexity thereof 
and the number of decimal places therein). In 
fact, in as much as these simple and easy processes 
are available -and suitable - for ALL possible 
denominators and ,for all possible numerators, 
the decimal (and especially the reourring decimal) 
should no longer be a bugbear to the student. 
On the contrary, they shouId be the most welcome 
of all welcome friends 1 

sme chor&Oittic features (Genwa,Z and Special) 

(1) In the cases of fractions with prime n u l l ~ b ~ . ~  (like 19, 

29, etc.,) as denominators, the maximum number of decimal 
is one lass than the denominator ! This is self-evident 

and requires no elaboration. 
(2) u a u ~ ~ , ~ ,  it, or a sub-multiple thereof, is the actual 

number. 
[a oen&y, the rule of complements (from nine) found 
\ ,  

in operation amongst them. 
(4) Tor fractions like 3% A, dr etc.. (where the denonlinator 

are pro&cts of prime numbers), the nuuser of digits d ~ c n a s  
on the respectictire factors in each case (as will be llresently 
elucidated). 

( 5 )  ~f and the decimal-fraction obtained from one of 

the factors of the denominator is exactly divisible b the other 
factor (or faders), the division by the second factor leaves no 
remainder. And tlrere$re the numhrr of decimals obtained 
by the first factor is not added to ! Thus, 

- - (i) A - --- 
7x3-  3 

Here, the numerator on the R. H. S. being exactly 
divisible by 3, it divides out and haves no remainder Therp- 
fore, t,he number of digits continues the same. 

This moans that, in every case wherein the colnplemcntal~ 
halves (from nine) are found, the numaator on the H S 

must neceaarily be divisible by 3, 9 etc. And by m l ~ l t l l ~ l ~ ~ n g  
the denominator in such a case by such factors, We cause 
difference to the number of decimal places in the .llsl?'er Alld 
consequently, we have : 

h='--"42851;;(l)$7j ; and so on. 
7 x 9  9 

Going b ~ 1 ;  to tho Ekanyqim Sfitra (as explained in port- 
nection with the Sanskrit Alphabetical cde). Ve kll()w that, 
142857--143 Xggg=l l  x 11  Y 33x $7. This mcms t int  *incc 
the Ilj~merator is divisible by 11.13, 3 ,  9, 27. 37, 33, 39, 99. 
297, 351 and 999, the multiplication of thu 1)erlominator (7)  



by anyone of these factors will make no difference to t,he 
number of decimal places in the answer. 

Here too, all the above considerations apply. ,4nd, since 
76923=77 x 999=3a x 7 X 11 x 37, therefore these factors (and 
combinations of factors) will, by multiplying the denominator, 
make no difference to  the number of decimal places. (Note. 
999999=999~1001=999X7xl lx13) .  

# 

(6) &=Z& and comes under the same category (with 

I 22 digits in the answer (just like A). 
(7) ,1, is a special case and stands by itself. Naturally i t  

should have been expected to provide for 48 places. But, 
as a matter of fact, i t  gives only 42; and for a perfectly valid 
and cogent reason i.e. that, out of the 48 possible multiples, 
six (i.e. &, $3, P+, t$, 2; and $t) go into a different family, as 
i t  were-and take shape as 3, $, ), 3, q and + ; have their places 
there as . i4285+, ,485714 and SO forth and need no place in the 
,I, etc., group ! And thus, since 6 go out of the 48, theremaining 
42 account for the 42 places actually found in the decimal 
equivalent of ! Thia is not a poet's mere poetic phantasy but 
a veritable mathematical verity ! 

(8) & is, in a way, an exception, as i t  containsonly 13 
digits. And, as this is an odd number, the question of the two 
complementary halves does not arise ! 13, however, i s  a sub- 
mnltiple of 78 ; and there is no deviation from the normal in 
this respect. An at-sight-one-line mental method will soon be 
given for .l, (in this very chapter). 

(9) Similarly ,'a has 44 digits and thus conforms to the sub- 
multiple rule. And this implies that, like $=, it willneed another 
complete turn of the wheel (in one of its multiples) in order to 
mcet the needs of all the multiple8 ! (Bn incredibly easy method 
will be shown in this very chapter for reeling off the answer in 
this case). 

( 227 ) 

(10) &J has only two recurridg places (.G) ; but the whole 
gumut can be and has been provided for, therewith. 

(11) In the case of basic fractions ending in 3, the denoniina- 
tor is first multiplied by 3 and gives us the Ekdhika ,  and the 
last digit in the answer is also 3. 

(12) ,I, (like &) has only two decimal places (~03). 

(13) 2, has only 21 digits. 21 is a sub-multiple of 42 but is 
odd and gives no srope for the complementary halves. 

(14) has only 13 digits (a sub-multiple but odd) 

(15) ,$ has only 41 digits (similarly). 

(16) ,$ is special. Since 73 x 137=10001 a.nd 8ince 

=-:0136!986i (by EkanyQna Satra) 

(17) ,4nd, conversely, , - 73 73 X9999- .b072992j 
T37p10001=9~9m- 

(18) 8$ will be discussed a littlc later. 

(19) In the case of fractions whose denominators end in 

7, the last digit is &Iso 7 ; and the Ekcidhzka is obtained from the 
denominator multiplied by 7. 

(20) + arid Tl, have been dealt with in detail al~eady. 

(21) and ,l, are speolal (because . . 27 ~37=999) .  And 

their decimal fornls are. .03i and .027. 

(22) has 46 digits. 

I and has only 18 digits (23) &= -- 
1 9 x 3  

(24) ,?, has 33 digits (odd) 

(25) +7 has been discussed already (number +) 

1 and has 28 digits. 
(26) 

(27) ,', has its full quota of 96 digits. 



I (28) In the case of fractions with denominators ending in 
1, the Ekidhika comes from the denominator multiplied by 9 : 
and the last digit is 9. h . . 

(29) rf='09 

1 and has been discussed under 7. (30) &=- 
7 x 3  

(31) will come up a little later. 

(32) iT is special *.' 41 X271=11111 

a71 -271x9 :. 99999 ='02439 (odd) 

(33) And, conversely, 1 - 41 -41 x 9-00369 
271-m -9=-isis,= 40389' 

1 and has 16 digits. 
(34) 2 ~ = ~ ~ ~  

(35) ,I, has 60 digits. 

(36) has 35 digits (odd) . . 
1 (a very interesting (37) 2 -=O%=.612345679 

T - 2 7 ~ 3  3 number). 

1 and has already been discussed under 7 and 
(3s) under 13. And besides, 

But 

But here a big BUT butts in and exclaims: "Yes ; all 
this is all right in its own way and so far as it goes. But, as 
our denominators go on increasing, we note that, although the 
last digit of the decimal fraction is 1,3,7, or at the most 9 and 
no more, yet, the Ehxidhika Pfirva goes on increasing steadily 
all the time and we have to multiply or divide successively by 
bigger and bigger Elccidhikas, until, a t  last, with only two-digit 
der~orriinators like 61, 71 and 81 and so on, we have now to deal 
with 55, 64, 73 etc., as our multipliers and divisors, and 
surely this is not such an easy process. 

The objection is unobjectionable ; nay, i t  is perfectly 
correct. But we meet it  with quite a variety of sound and 
valid answers which will be found very cogent and reasonable. 
They are as follows : 

(i) Even the biggest of our Ekidhikaa are nowhere -in res- 
pect of bignees-near the original divisor. In every case, 
they are smaller. But this is only a theoretical and dialectical 
answer from the comparative standpoint and does not really 
meet the intrinsic objection (about the Vedic methods being not 
only relatively better but also being free from all such flaws 
altogether) I We therefore go on and give a satisfactory 
answer from the positive and construotive stand-point. 

(ii) Even though the Ekridhika is found to be increasingly 
unmanageably big, yet the remainders give us a simple and 
easy device for getting over this difficu!ty. This we shall 
demonstrate presently. 

(iii) The Ekiidhiku (so far explained and applied) is not 
the whole armoury. There are other Auxiliaries too, wherein 
no such difficukty can crop up. These we ahall expound and 
explain in a subsequent, but sufficiently near chapter of this 
very volume; and they will be found capable of solving the 
problem {n toto ; and 

(iv) Above all, there is the CROWNING GEM of all 
coming up in a near chapter and unfolding before our eyes a 
formula whereby, however big the denominator may be, we 
can-by mere mental one-line Vedic arithmetic-read off 
the quotient and the remainder, digit by digit I This process 
of "Straight Division", we have already referred to and shall 
esplain and demonstrate, in a later chapter, under $his very 
caption "Straight (or Instantaneous) Division". 

In the meantime, just now, we take up and explain the way 
in which the remainders come to our rescue and solve this 
particular problem for us. 



Let US take first, the cae of 2,. We know immediately 
that the last digit of the decimal is 3 and that the Ekidhika 
is 7. And then we work as follows : 

(i) Multiplying digit after digit (as usual) by 7, we have : 

or (ii) dividing digit by digit (as usual) by 7, we have : 
s ~ = & - . 0 4 3 4 7 8 2 6 0 8 6 / 9 5 6 5 2 1 7 3 9 1 3  

2 3 5 5 1 4  6 4 6  

These are the usual Ekddhika PPiirva methods. But 

t (iii) .we obser~~e in the first chart, after t ~ o  digits (1 & 3 
have been obtained), the next leftward group (39) 
is exactly three times (the extreme-right-end one) 
and we can immediately profit by it. Thus 39 gives 
us 117, out of which we put down 17 and keep 1 to 
carry over ; 17 gives 11s 51+1==52. 52 gives us 156, 

out of which we set down 56 and keep 1 to carry over. 
56 gives us 168+1=169, of these, we put 69 down 
and keep 1 to be carried over ; and so on. In fact, 
the whole procedure is exactly like the one which 
we followed from left to right in respect of 
(='020408 16 32 ...... ). Thus we have : 

&=&=.0434780608, 69, 56, 52, 17, 39, 13 

or(iv) if we wish to start from the left end, p on to  the 
right, that too is easy enough. 

We note that, the first digits being completed, we get 
8 as the Reminder. We can immediately work out this 
process by n~ultiplying each two-digit group by 8 (as we did in 
the case of & by 2) and frame the following chart : 

.04 : 32 : 72 : 24 : 08 : 64 : and so on 
: 2 :  6 :  2 :  : 5 :  

: 3 4 : 7 8 : 2 6 :  : 6 9 :  

These multiplications by 3 to the left and by 8 to the right 
are easy enough. Aren't they ? 

I Let us now take up and try (as promised a t  an earlier 
stage). Obviously, the last digit is 7 an? the ~ k a h i k a  is 33. 

c This is rather unwieldy as a multiplier or as divisor. We should 
therefore try and see what we can get from the Remainders. 
We find them to be 10, 6 etc. We can immediately pourlce up 
on this 6 for our purpose and work in this way: 

.02 being the &st two digits of the quotient and 6 being 
our ratio, the next two digits are obviously 12. These x 6 should 
give us 72 ; but as 4 will be coming over from the right, we add 
the 4 and put down 76. This should give us 456, of which the 
fitst digit has already been taken over to the left. So 56 remains. 
But this will be increased by 3 (coming from the right) and will 
become .%--This gives us 57, 44 and 68 for the next three 2- 
digit groups and 08 for the one thereafter. The 08 group of 
two digits gives us 48 which, with the carried digit becomes 51. 
This gives us 06 and 36 (which becomes 38). And then we have 
28 (turning into 29, then 74 which becomes 78) and so forth. 
Thus we have : g7=.02 12 76 59 44 68 08 51 3821 

97 8 

Here we notice that, exactly after 23 digits, the corriple- 
merits (from nine) have begun. So, we can complete the secorid 
half arid say : T17=.02 12 76 59 57 44 68 08 51 06 382 

97 87 23 40 42 55 31 91 48 93 617 

We have thus avoided the complicated divisions by the 
original divisor 47 and also the divisions and multiplications 
by the unmanageable Ekddhika 33 ; and, with the easy remainder 
6 as our multiplier, we have bee11 able to obtain all the 46 digits 
of the answer ! 

This merely shows that these are not cut-and-dried 
mechanical processes but only rules capable of being applied 
to the special kind of cases which they are particularly designed 
to  meet and fit into. 

And, as for a cut-and-dried formula capable of universal 
application, that too is forthcoming (as already indicated) and 
will be dealt with, very soon. 



Let us now take up & which, a little earlier, we promised 
to deal with soon afterwards. In this case, the last digit is 9 ; 
and the Ekidhika is 28 (which is nearly as big as the original 
denominator itself) ! We should therefore sift the remainders 
and find a suitable auxiliary therefrom. 

In this case, we find 7 is the &st significant remainder. 
So, leaving the EkLidhika process out of account for the moment, 
we may use the Geometrical Progression principle and achieve 
our purpose thereby (as we did-with 6-in the case of A). But let 
us proceed further and see whether a still more easily nuanageable 
remainder is ava~lsble further up. 

Well ; we observe : 
&= .032258 (with remainder 2). The actual remainders 

(in order) are : 10, 7, 8, 18, 25 and 2 1 
This suits us most admirably, and we proceed further 

with the help of 2. Thus : 
.032258/064516/129,032/258064...... 

But this means that, after only 15 digits (an odd number), 
the decimal has already begun to reour ! So, we simply say : 

&=.d32258064516 129 1 
What a simple and easy device1 

Lot us now take up &. The last digit is 7 ; but the 
E&dhik~ will bo 68 1 So, we seek help from the Remainders. 
They are : 10, 3 etc., and the quotient-digits are .0103... 

So, multiplying each quotient-group (of 2 digits each) 
by 3 (as we did, by 2, in the case of A), we get: 

,',=.010309 27 81 
2 - 

8%- etc. etc ! 

Let us take one more example (i.e. st.r) and conclude. The 
last digit is 7 ; but the Ekbdhika will be 698 1 It will surely 
not be an enviable task for even the most practised and expe- 
rienced stntistiuian to multiply or divide, a t  each step, by 
such a big figure ! We therefore again seek help from the 
remainders and thc Geometrical Progression Rule. 

The Quotient-digits are '001 etc., and the successive 
remainders are 10: 100, 3 etc. ! This means that we should 
multiply each group of three quotient-digits by 3 and get our 
answer (to any n u ~ b e r  of decimal-places). We thus have : 

1 _. . .,,-- 001 : 003 : 009 : 027 : 081 : 243 : 729 
: 3 - 

732 etc. eto. 
The Converse operation. 

Having dealt, i n  mtenso, with the conversion of vulgar 
fractions into their equivalent recurring decimals, we now 
take up the CORVERSE process i.e. the conversion of decimals 
into the equivalent vulgar fractions. We do not, however, 
propose to go into such a detailed and exhaustive analytical 
study thereof (as we have done in the other case) but only to 

out and' explain one particular principle, which will be 
found very useful in this particular operation and in many 
subsequent ones. 

Tho principle is based, on the simple proposition that 
-9 '=~-1;  3- .99=5$-1 ; .999'=8:;=1; and so forth ad 
injnitum. It therefore fo!lows that all recurring decimals whose 
digits are all nines are ipso facto equal to unity ; and if a given 
decimal can be multiplied by a multiplier in such a manner as 
to produce a product consisting of only nines as its digits, the 
operation desired becomes automatically complete. 

For instance, let us first start with the now familiar deci- 
mal -576923. In order to get 9 as the .O 7 6 9 2 3 
last digit, we should multiply this by 3. 1 3  

Setting this product down (.230769), -2  3 0 7 6 9 

we find that, order to get 9 as the 6 - 7  6 9 2 3 

penultimate digit, we should add 3 to Tg (i 
the 6 already there. And, in order 
to get that 3, we should multiply the given multiplicand by 1. 
On doing this, we find that the totals (of the two rows) are all 
nines I So we stop there and argue that, because the given 
decimalx13=999999 (i.e. l), therefore the fraction should 
be &. In fact, it is like aaying 13x=1 :. x=& 

80 



(2) Secondly, let US take the 'case of .63j and see how this 
works. Here as the last digit is 7, so, in order to  get g as 
the last digit of the product, we should multiply .d it  by 7. And, putting 259 down, we should add 4 2 7 
to obtain 9 as' the penultimate digit. And, in order - 

2 6 9  to  get that 4 there, we should midtiply the multi- 
0 7 4 

plioand by 2. 9nd, on tioing so, we find that the - 
product is 999 (=I).  Therefore, the fraction 0'9 9 ~ = 1  
X27=1 .'. x = h  

(3) When we try the case of 142857 ; we find that multi- 
plication by 7 gives us the all-nine product. .99999$ (=I) ; and 
therefore we say .i4286i=) 

(4) 047619. We first multiply by 1, see 1 .O 4 7 6 1 9 
in the peni~ltimate place, have to  add 8 thereto, 2 1 
multiply by 2 (for getting that 8) and thus find 'O 

0'9 5 2 3 8 
that the required answer is A. 

. 9 9 9 9 9 9 = 1  
(5) Similarly, we may take up various other decimab 

(including the long big ones like the equivalents of &, &, A, 
&, &, fv,  &, &, etc., a n 8  invariably we find our 
purpose achieved. 

(6) But, what about decimals ending in even numbers or 
5 '1 Wcll; no integral multiplier can possibly get us 9 as the last 
digit in the product. And what we do in such a case is to  divide 
off by the powers of 2 and 6 involved and use this new method 
with the final quotient thus obtained. Thus, if we have t o  
deal with 285714 we divide it  off by 2, get .i4285i .2).28571k 
as the quotient and iind that multiplication thereof ,142857 
by 7 gives us the product .999999'-1. And therefore we say : 

(7) Let us now try the interesting .b 
decimal. 012345679. On applying this new 8 1 
method, we find that multiplication by 81 . O  1 2 3 4 5 6 7'9 
gives us 1 as the product .'. x=& ' 9 8 7 6 5 4 3 2  

' 9 9 9 9 9 9 9 9 9 = 1  

N.B. 1. The student should also make use of the EkanyCna 
formula. This is readily applicable in every case 
of "Complementary halves" (including ), &, A, +* 
etc. 

143x999-11x13 - 11x13 _+ Thus. :142~57=-~- - 1001 - l l X 1 3 X 7  

. . 77x999 = T g ; a n d , o o n  Similarly. .076923 g99 

2. Similarly, with regard to  other factors too, lt goes 
without saying that the removal, in general. of 
common factors (from the decimal and the denomi- 
nator) facilitates and expedites the work. 

3. The subsequent chapters on "AUXILIARY FRAC- 
TIONS" and "DIVISIBILITY" etc., will expound 
and cxplain certain very simple and easy processes 
by which this work (of arithmetical factorisation) 
can bc rendered splelldidly simple and easy; and 

4 Ahove all, the forthcoming "Straight Divion" 
method will not merely render the whole thmg simple 
and easy but also turn it  into a   lea sure and a 
delight (even to the children) 

Some Salient Points and Additioml Traits. 
Thus, the Ekbdhika process (forwards and backw~rde) 

and the Geometrical Progression relationship between the 
remainders have given us the following t,hree main principles : 

(i) The quotient-complements (from 9) ; 

(ii) The remainder-complements (from the Denominator) ; 

& (iii) The multiplication of the Caramb?ika (last digit) of 
the remainders by the Caram6?ika ((the last digit) of 
the decimal, for obtaining each digit of the quotient. 

Now, apropos of and in connection with this fact, 
the follolving few important and additional traits 
should also be observed and will be found interesting 
and helpful : 



(I) In the case of ,Iv, theremainders are (I), 10, 5, 12, 6, 
3, 11, 15, 17, 1819, 14, 7, 13, 16, 8, 4, 2, 1 and the quotient 
digits are: 0 5 2 6 3 1 5 7 8 / 9 4 7 3 6 8 4 2 1 .  

I (i) Each remainder by itself, if even ; and with the 
addition of the denominator, if odd, is double t,he next 
remainder. This follows fro111 the Elc6d11aka being 2. 

(ii) Each quotient-digit is the last digit of its corres- 
ponding remainder. This is because 1 is the last 
digit of the decimal. 

(2) In thecase of,',, the remainders are : (1) 10, 13, 14, 
24, 8, 22, 17, 25, 18, 6, 2, 0, 26, 28/19, 16, 15; 5, 21, 7, 12, 4, 
11, 23, 27, 9, 3, and 1. 

(i) The quotient-digits are the last digits thereof (for 
the same reason as above) 

(ii) Each remainder (by itself or in conjunction with the 
denominator or double of it)=thrice its successor ; and 

(iii) Each remainder plus ita suocessor's successor=the 
next remainder thereafter. Thus 10+14=24 ; 13+ 
24-29=8 ; 14+8=22 ; 24+22-29=17 ;8+17=25 ; 
n+25-29=18 ; 17+18--29=6 ; 

25+6-29=2 ; 18+2=20 ; 6+20=26 ; and so on l 
N.B. Note the casting off of the denominator all through. 

(3) In the case of ,Iw, the quotient-digits are : 

0 118 3595 5056 1797 752 808 
9887 6404 4943 8202 247 191 1 

and the remainders are (I), 10, 11, 21, 32, 53, 85,49, 45, 5, 
50, 55, 16, 71, 87, 69, 67, 47, 25, 72, 8, 80, 88, 79, 78, 68, 57, 
36, 4, 40, 44, 84, 39, 34, 73, 18, 2, 20, 22, 42, 64, 17, 81, 9 and 
1. (Note the Ratio 9 : 1.) 

The remarkaole thing here is that the numerator+the 
first remainderzthe second remainder and that all through, 
the sum of any two consecutive remainders is the next remainder 
thereafter ! Thus 1+10=11 ; 10f l l=21  ; 11+21=32 ; and 
80 on to the very end. 

The general form herefor is a, d, a+d, a+2d, 2a+3d, 
3a+5d, 5a+8d etc. The st~ldent who knows this secret relation- 
ship (between each remainder and its successor) can reel the 
44 digits of the answer off, at sight, by s~mple addition ! 

(4) In the case of ,',, the remainders are : 
(1) 10, 21, 52, 46, 65, 18, 22, 62, 67, 38, 64, 8 and 1. 

The general form herefor is a, d, a+2d, 2a+5d etc. Know- 
ledgeof this relationship will be of splendid practical utility in 
this case. (Note the Ratio 8 : 1.) 

(5) h t,he case of ,L, the remainders are : 
(I) lo, 31, 34, 64, 18, 52, 37, 25, 43, 16, 22, 13, 61, 58, 

28, 4, 40, 55, 67, 43, 7 and 1. (Note the Ratio 7 : I.) 

The general form herefor i s  obviously a, d, a+3d, 3a+10 d, 
10a-f33d etc. 

(6) In the case of 69, the remainders are : 

(1) 10, 41, 56, 29, 54, 9, 31, 15, 32, 25, 14, 22, 43, 17, 62, 

48, 8, 21, 33, 35, 55, 19, 13, I?, 2, 20, 23, 63, 58/49, 18, 3, 30, 
5, 50, 25, 44, 27, 34, 45, 37, 16, 42: 7, 15, 51, 38, 28, 24, 4,  40, 

40, 47, 57, 39, 36, 6 and 1 (Note the Ratio 6 : 1). 

Here the general form is a, d, a+4di 4af17d etc. 

Znductzzie conclusion 

Havlng thus examlned the cases of A, gig aud ,',, we 
note tho follow~ng : 

(i) In every case, we &art with 1 (the basic numerator) 
as a sort of pre-natal remainder (whch 1s perfectly 
justified because we are dealing with a recurring 
decimal) , and we call it a ; 

(h) In every case, the first actual remainder 1s 10; and 
we call it d ; 

(iii) And then the succeesive remainders are a, d, a+d, 
a+2d, a+3d, a+4d respectively (wherein the co. 
efficient of x is obviously the deficit of the penultinlate 
digit from 9 ! 



Thus for &, we have a+-ld ; 
for &, we have a+-2d ; 
for &, we have a+3d ; 
for we have a+4d ; and so on. 

(iv) And this relationship is maintained systematically 
all through. In other words, each remainder+the 
next one or double that or thrice that etc.=the further 
subsequent remainder. Arguing thus, let us try J* 
As 3 is 6 less than 9, :. the general form should 
be a+6d. This means 1, 10, 61 (i.e. 9), 64 (i.e. 12). 
3, 30 (i.e. 4) and 27 (i.e. I). And we find this t o  be 
actually correct. 

(v) And, in case the penultimate digit is more than 9, 
we should react by subtracting d (and not add to i t)  
a t  t>he rate of 1 for each surplus. Thus, our chart will 
now read-a, d, a-d, d- (a--d) i.e. 2d-a, and so on. 
For instance, for =aB, the remainder8 will be (1) 10, 
-9, 19,-28, 47 and so on. 

(vi) And, over and above all these details whicli are 
different for different numbers (as explained above), 
there is oue nlult,iplier (namely 10) which is applicable 
to all case8 ! And thus, whatever fraction we may 
be dealing with, 2, 4, 5 ,  8 or any remainder what- 
soover can br safely pit, in into the next  lace with 
a zero added ! The stutlent will obsexve that, in 
all t,he exarilples dealt with hereinabove (not only 
in t,lris psrt,icular subsection), every such remainder 
of twn  digit,^ (ending in zero) has been invariably 
preceded hy the same number (without t,hc zero) ! 

With the help of tJhis rule applicable in all cases and the 
spec:ial rule8 (shout d, 2d, 3d, 4d etc.,) enjoined for the different 
individual cases, the strident should easily now bc in a position 
to nrske a list of the s~iccessive remainders in each case and 
tllerefron~, by Cn~arnrihka multiplication, put down the succe- 
ssive quotient-digits without further special labour ! 

These and many more interesting features there are in 
the Vedic decimal system, which can turn mathematics for the 
children, from its present excruciatingly painful character t o  
the exhilaratingly pleasant and even funny and delightful 
character it really bears ! 

We have, however, already gone into very grea.t details ; 
and this chapter has already become very long. We therefore 
conclude this chapter here and hold the other things over for 
a later stage in the student's progress. 



GTRAIGHT DIVISION 1 
We now go on, a t  last, to the long-promised Vedic process 

of STRAIGHT (AT-SIGHT) DIVISION which is a simple and 
easy application of the DRDIIVA-TZRYAK Siitra which is 
capable of immediate application to all cases and which we have 
repeatedly been describing as the "CROWNING GEM of all" 
for the very simple reason that over arid above the universality 
of its application, it is the most eupemeand superlative mani- 
festation of the Vedic ideal of the at-sight mental-one-line 
method of mathematical computation. 

Connecting Li~k 1 
In order to obtain a correct idea of the background, let 

us go back, very briefly, for a very short while, to the methods 
which we employed in the earlier chapter8 on division ; and let 
us start with the case of B9z-% 

According to the first method According to the seco~~d 
(under the Nikhibm etc., Sfitra), method (by Par'arcivartya for- 
our chart will read as follows : mula), we say : 

We have felt, and still feel, that even these comparatively 
I 
I 

short, intellectual and interesting methods are cumbrons and 1 

clumsy (from the Idealistic Vedic standpoint). And hence the 
clamant need for a method which in free from all such flaws ftnd 

which fulfils the highest Idealistic ideal st the Vedic Sfitran. 

And that is as follows : 3 : 3 8  9 8 :  2: 
Out of the divisor 73, we put down 7 : 3 3 : 1 : 

only the &st digit (i.e. 7) in theDivisor- : 6 3 4 - : - 0: 
column and put the other digit (i.e. 3) "on 
top of the flag" (by the Dhvajci6ka Sara), as shown in the 
chart alongside. 

The entire division is to be by 7 ; and the procedure is 
as explained below : 

As one digit has been put on top, we allot one place (at  
the right end of the dividend) to the remainder portion of the 
answer and mark it off from the digits by a vertical line. 

(i) We divide 38 by 7 and get 6, as the quotient and 3 as 
the remainder. We put 5 down as the first quotient- 
digit and just prefix the remainder (3) up before the 
9 of the dividend. In other words, our sctual second- 
step Gross Dividend is 39. Prom this, we, however, 
deduct the product of the indexed 3 and the first 
quotient-dight 5 (i.e. 3 x 5=16). The remainder 
(24) is our actual Nett-Dividend. It is then divided 
by 7 and gives us 3 as the second quotient-digit and 
3 as the remainder, to be placed in their respective 
places (as was done in the first step). From 38 (the 
gross dividend thus formed), we subtract 3 ~ t h e  
second quotient-digit 3 i.e. 9, get the remainder 29 as 
our next actual dividend and divide that by 7.  We 
get 4 as the quotient and 1 as the remainder. This 
means our next Gross Dividend is 12 from which, 
as before, we deduct a x t h e  third quotient-digit 4 
(1.e. 12) and obtain 0 as the remainder. Thus we 
say : Q is 534 and R is zero. And this finishes 
the whole procedure ; and all of it is one-iine mental 
Arithmetic (in which all the actual Division 1s done 
by the simple-digit Divisor 7) ! 

The Algebraical Proof hereof is very simple and is based 
on the very elementary fact that all arithmetical numbers are 
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merely ~ l ~ e b r a i c a l  expressions wherein x stands for ten. For 
instance, 3x2+5x+1 is merely the algebraical general expression 
of which (with x standing for 10) the arithmetical value is 361, 

Remembering this, let us try to understand the steps by 
means of which 3 8 9 8 2 is  ought to be divided by 73. ~ 1 ~ ~ -  
braically put (with x standing for lo), this dividend is Sax*+ 
9x2+8x+2; and this divisor is 7x+3. Now, let us proceed 
with the division in the usual manner. 

When we try to 7x+3 ) 38x3+ 9x2+8x+2(5xa+3x+4 
divide 38x8 by 7x, our 35x3+15x2 - 
first quotient-digit is 3x3- 6x8 
5x8 ; and, in the first =24x2+8x 
step of the multipli- 21x2+9x 
cation of the divisor -- 

3x2-x bv 5xa, we get the - 
product 35x3+16x2 ; 
and this gives us tbe 
remainder 3xS+9xa- x-10 
15x2, which really =lo-10=0 
means 30x2+9x2-15xa --- 
--24xa. This plus 8x being our second-step dividend, we 
multiply the divisor by the second quotient-digit 3x and subtract 
the product 21x2+9x therefrom and thus get 3x2-x as the 
remainder. But this 3x2 is really equal to 30x which (with 
-x+2) gives us 29x+2 as the last-step dividend. Again 
multiplying the divisor by 4, we get the product 28x+12 ; 
and subtract this 28x+l2, thereby getting x-10 as the Remain- 
der. But x being 10, this remainder vanishes t And there 
you have the whole thing in a nut-shell. 

I t  wiil be noted that the arithmetical example just here- 
above dealt with (i.e. Qp,"A) is merely the arithmetical form of 
38xS+9x2+8x+ 2 and the Arithmctioal chart has merely 

7x+3 shown the above given algebraical opern- 
tion in its arithmetical shape (wherein 3 : 38 9 8 : 2 
x=10) and that, whenever the algebraical 7 :: 3 3 : 1 
working has taken a remainder-digit : 5 3 4 : 0 

over to the right with a zero added, the arithmetical chart 
shows that particular remainder prefixed to the Q h t  already 
there. 

Thus, where 3x8 has been counted as 30x2 and added to the 
9xs already there and produced 39x2 as the result, this algebraical 
operation has been graphically pictured as the prefixing of 
3 to 9 and making it 39 ! And similarly, in the next step 

of the division, the remainder 3 is prefixed to the 8 already 
there; and we have to deal with 38 ; and similarly, a t  least, 
the 1 prehed to the 2 gives us 12 (which the 3 X 4 subtracted 
therefrom cancels out) ! 

In other words, the given expression 38x3+9x2+8x+2 
(with 10 substituted for x) is actually the same as 35x3+36x8+ 
37x+12. Bnd we say: 

graphically, this algebraical operation 3 : 38 9 8 : 2 

is demonstrated arithmetically in the i j ' 
manner shown in the margin. 

: 6 3 4 : 0  -- 
The procedure is very simple and needs no further ex- 

position and explanation. A few more illustrative instances 
(with running comments, as usual) will however, be found useful 
and helpful and are therefore given below: 

(1) Divide 529 by 23. 3 : 6  2 : 9  
The procedure is exactly the same : : O 

and is simple and easy. : 2  3 : O  

(2) Divide 4098 by 64. (3) Divide 16384 by 128 

4 :  40 9 : 6 :  8 : 1 6  3 8 :  4 
A t  4 : 1 :  1 2 :  4 11 : 6  



(4) Divide 7632 by 94 

(ii) New Nikhilam method or (ii) Newest Vedic method 
9 4 : 7  6 : 3  2 : - 4 : 7 6  3 :  2 :  
0 6 :  0 : 4 2  : 9 :  4 : 2 : : . Q = 8 1  

: 0 3 6 :  R=l8  - : 8 1  :18:  
: 76 : 4 8 8 :  

: 81 : 18 : 

(5) Divide 601325 by 76. 
Here, in the first division by 7, we can : 60 : 

7 : 1 1 6  2 : 2  
put 8 down as the first quotient-digit ; - 
but the remainder then left will be : 7 9 1 2 : 13 
too small for the subtraction expected 
a t  the next step. So, we take 7 as the quotient-digit and prefix 
the remainder 11 to the next dividend-digit. [N.B. For 
purposes of reference and verification, i t  will be a good plan to 
underline such a quotient-digit (because the chart offers itself 
for verification a t  every step and any reconsideration necessary 
a t  any stage need not involve our going back to the beginning 
and starting the whole thing over again)] 

(0) Divide 3100 by 25. 5 : 3 1 0 : 0 : 
2 : l  2 : 2 :  

: l  2 4 : 0 :  --- 
Note-In algebraic terminology, 3 1 0 0 = 3 ~ ~ + x ~ =  

2xs+9xa+8x+20 and the above example is the arithn~etical 
way of stating that 2xS+Bxay 8xya+ 20ys=(2x+5y) ( x a + 2 ~ y  
+4y 2, (i.e. 25 x 124=3100) 

(7) Similar is the case with regard to the division of 
38x3+9xz+8x+2 by (x-l), wherein Q=38xa+47x+55 and 
R=57. 

(8) Divide 695432 by 57. (9) Divide 3279421 by 53. 
7 : 6 9 5 4 3 :  2 : 3 : 3 2 7 9 4 2 :  1 :  

5 : 1 2 1 0  : 3  : 6 :  2 4 6 5 : 6 :  

: 1 2 2 0 0 :  3 2 :  : 6 1 8 7 5 : 4 6 :  - 

( 245 

(10) Divide 7777777 by 38 (11) Divide 500001 by 89. 
8 : 7 7 7 7 7 7 :  7 :  9 : 5 0 0  0 0 :  1 

3 : 1 1 5 7 8  : 7  : 8 : 1 0 , s  : 1 5  

1 : 2 0 4 6 7 8 : 1 3 :  : 5 6 1 7  : 88 ----- A 

! (12) Divide 37941 by 47. (13) Divide 745623 by 79 
7 : 3 7  9 4 :  1 :  9 : 7 4  5 6 2 :  3 :  

4 :  5 3 : 6 :  7 :  1 1 6  9 : 9  : - - 
: 8 0 7 : 1 2 :  : 9 4 3 8 : 2 1 :  - 

(14) Divide 7453 by 79 (to 3 (15) Uivide 710 014 by 39 (to 3 
places of decimals) places of decimals) 
9 : 7 4 5 3 . 0  0 :  9 : 7  1 0 . 0  1 4  : 

7 : 1 1 6  6 5 0 :  3 :  4 8 2  2 6 4 :  - --- 
: 9 4 . 3  4 2 0 :  : I  8 . 2  0 5 5 : ----- - 

(16) Divide 220 by 52 ( to  3 (17) Divide 7 .3  by 53 (to 5 

places of decimals) places of decimals) 
2 : 2  2 0 ' 0  0 0 3 :  7 . 3  0 0 0 0 :  

5 : 2 2 1 4  5 :  2 5 6 4 4 :  - - 
: 4 . 2  3 0 8 :  :O.l 3 7 7 3 6 : 

I -------- - 
(18) Divide 71 by 83 (to 5 places of decin~als) 

3 : 7 1 0 0 0 0 :  
8 :  7 6 5 3 .  - 

: 0 .85 6 4 2 ... : 
I -- 

(19) Divide 1337 by 79 

(i) By the New Nikhilnm (li) By the newest Vedic 
method method 

7 9 : 1 3 : 3  7 :  - 9 :  13 3 :  7 :  
2 1 :  2 : l  7 :  6 : 1 2 :  

: 1 0  5 :  -- 
------ : 1 6 : 7 3 :  
: 1 5 :  1 : 6 2 :  - 

: 21 : 

i - 
: 16 : : 73 : - - 



(20) Divide 1681 by 41. 
1 : 16 8 1 : N.B. :-The Algebraical form is : 

4 :  0 0 0 :  

(21) Divide 115491 by 137. 
7 :  115 4 9 :  1 :  

13 : 11 6 : 2 :  
-- 
: 8 4  3 : 0 :  

or in Algebraical form : 
13x+7 : 115x3+ 4xs+9x+1(8xa+ 4 ~ - 3  

: 104xs-56xa 

l l ~ ~ - 5 2 ~ ~ + 9 ~ = 5 8 ~ ~ +  9~ 

(22) Divide 7458 by 127 (to (23) Divide 3517 by 127 (to 3 
3 places of decimals) places of decimals) 
7 : 7 4  5 8 0 0 0 0  7 : 3 5  1 7  0 0 0 

1 2 :  14 1 4 8 7 8 4  12 : 11 13 16 10 13 -- 
: 5 8 ,7  2 4 4 ..... : 2 7 ' 6 9 2 ...... 

(24) Divide 7031985 by 823 . . 
Here, the Divisor is of 

2 3 ' 7 0  3 1 9 :  8 5 3 digits. All the difference I : and 
which this makes to us is 

: 8 6 4 4 3 3 R=273 that, instead of putting one - 
extra digit on top, we put 
both the extra digits (23) there ; and, we adopt a slightly 
different modus operadk (on the ORDHVA-TIRYAK lines) 
in respect of the subtraction- portion of the work. 

111 this instance, for instance, tve divide 70 by 8 and set 
8 and 6 down in their proper places as usual. Thus, our second 
Gross Dividend is now 63. From that, we subtract 16 (the 
product or the first of the flag-digits i.e. 2 and the first quotient 

digit i.e. 8) and get the remainder (63-16=47) as the actual 
dividend. And, dividing it by 8, we have 5 and 7 as Q and R 
respectively and put them down at  their proper places. SO 

now, our Gross Dividend is 71 ; and we deduct, by the Drdhva- 
Tiryak rule, the cross-products of the two flag-digits (23) and 
the two quotient-digits (85) i.e. 10+24=34 ; and our remainder 
is 7 1 - 3 4 ~ 3 7 .  We then continue to divide again by 8 and 
subtract etc., in the same manner (by cross-multiplication) 
as (just now explained) by the Urdhva-Tiryak method (until 
the last digit of the dividend) is reached. And that finishes the 
task. 

And, in other divisions too, irrespective of the number 
of digits in the divisor, we follow the same method. And, in 
every case, our actual divisor is of one digit only (or a t  the most, 
a small two-digit one (like 12, 16 and so on) which one can 
easily divide by) ! And all the rest of the digits (of the divisor) 
are hoisted on the flag-top. And this is the whole secret of the 
"Straight Division" formula. 

Note :-If instead of the decimal places in the Quotient, you 
want the remainder, you can have it in the usual way. 
In this case, 23 and 44 (by cross-multiplication) give 
us 20, which (when taken to the right) means 200 ; and 
3 x 4 (the last flag-digit x the last obtained quotient- 
digit)--.la. Subtracting the total of these two 
(i.e. 212) from 485, we have R=273. (i.e. R=485- 
2 0 0 - 1 2 ~ 2 7 3 ) .  

Some more instances (of division by three-digit divisions 
etc.) are cited below : 
(1) Divide 1064321 by 743 (to (2) %vide 222220 by 735 (to 

4 places of decimals) 3 places of decimals) 
4 3 : 1 0 6 4 3 2 1 0 0  : 3 5 : 2 2  2 2 2 0 0  : 

7 : 3 4 4 5 7 7 6 5 :  7 : 1 3 3 5 3 3 :  -- 
: 1 4 3 2 . 4 6 4 3  : : 3 0 2 - 3 4 0  : ----- ---- 

.'. R=521-170-6~345 R=320-60-10~250 



(3) Divide 888 by 672 (to 3 places of decimals) 1 

- 
: 1 . 3 2 1 5  : : 1 : R=216: 

1 
I 

or by mere Vzlokanam (Iaspection) 
(4) 2 8 : 6 3 8 1 8 :  2 7 :  o r 3 2 : 6 3 8 1 8 :  2 7 :  I 

5 : 1 1 6 5  : : 5 : 1 0 4 5  : 4  1 2 :  - - 
: 1 2 0 8 6 : R=419 : : 1 2  0 8 6 :R=419: 

I 
--- 

(5) Dlvide 13579 by 975 (6) llivide 513579 by 939 
7 5 : 1 3  5 '  7 9 :  3 9 :  51 3 5 :  7 9 :  

9 :  4 : 1 1  : 9 . 6 12 : 1 4  : --- ----- 
: 1 3 :  : 5 4  6 : - - 

R=1179-260-15=904 R=1479-640-54~594 
(7) Divide 7143 by 1171 

(i) By the new Parcivartya (ii) By the new Parhwartya 
method (Vinculum) method : I 

: 6 : 117 
: 6 : 117 - 

(iii) By the newest Vedic method 
71 : 71 : 4 3 : .'. &=6 

11 : : 5 1 : and R=543-543-426=117 
: 6 :  1 0 :  

(8) Divide 4213 by 1234 (to 4 (9) Divide 46781 by 1483 (to 
places of Decimals) 3 places of deci~nals) 

(10) Divide 3124 by 1532 (to 3 (11) Divide .333333 by 1782 
places of decimals) (to 3 places of decimals) 

32 : 51 : 2 4 6 8 2 : 3 3 :  3 3 3 3  
15 : : 1  6 0 17 : : 16 19 8 1 ---- - - 

: 2.: 0 4 0 : 1 :  8 7 

(12) Divide 46315 by 1054 (to 
3 places ot decimals). 
5 4 : 4 6 :  3 1 5 0 

10 : : 6 13 10 8 

(13) Divide 75313579 by 1213 
1 3 i 7 5 :  3 1 3 5 79 

12 : : 3 3 1 1 1 1 1 1  

---- 
R=1315-310-12 

(14) Divide 135791 by 1245 
46 : 13 : 5 7 91 

12 : : 1  11 4 

(15) Divide 13579 by 1616 
16 : 135 : 79 

16 : : 7 

: 8 :  

(16) Divide 135791 by 1632 
32 : 135 7 : 91 

16 : 7 : 5 R=59l-250-0~336 -- 
: 8 3 :  

(17) Divide 97531 by 1627 
27 : 97 5 : 31 or 27 : 97 5 : 31 

16 : 17 : 21 16 : 1 : 3  

: 6 9 :  : 6 0 :  -- 
R=2131-593 and JX=331-420=-89 

=I538 i.e. Q=59 and R=1538 

(18) Divide 97531 by 1818 
18: 97 5 : 31 

18 . 7 : 16 

: 5 3 : . . R=1631-454 (or 1200-23)=1177 ----- 
(19) Divide 13579 by 2145 

45 : 135 : 79 
21 : : 9 

-7- 

: 6 : Arid R=!~79-270 or 930-221=709 

(20) Divide 135791 by 2525 



(21) Divide 50 x 11 by 439 (to three places of decimals). 

(22) Divide 15x61 by 349 (to three plaeea of Decimals). 

4 9 :  15X 6 1 0 5 1 :  15 .6 1 0  : 
3 : 3 8  85 10 or 3 : 3 4 4  : 

: 4 . 475 277 : 4 47277 : -- 
And R-361-196 And R=361-i96=165 

or 200-35=165 

(23) Divide 47 by 798 (to five places of decimals). 

(24) Divide 1111 by 839 
3 9 : l l :  1 1 :  or 

8 : : 3 4 :  

: 1 : 3 : By mere Vilohnam (Inspection) 

And R=311-39=272 

We now extend the jurisdiction of the Sara and apply 
it  to Divisors consisting of a large number of digits. The 
principle involved being the same, the procedure is alao 
identically the same as in thr, foregoing examples. And the 
division by a single digit (or a small two-digit divisor) continueb 
exactly the same. A few illustrative instauces are given 
hereunder : 

(1) Divide 7031.95 by 8231 (2) Divide 995 311 by 16123 
(to 5 decimal places). 1 2 3 : 9 9  5 :  3 1 1  

2 3 1 : l O  3 1 9 5 0 0  16 3 
8 : 6 7 . 5 4 6 9  

r 6 1  : 
: .8 5 4 32 

R=13311-1503 (or 1200f190 
f q=l l so8  

(3) Divide 975 311 by 16231 
231:97  5 : s  1 1 

16 : 1 : 3  

: 6 0 : R=1500+5+1 or 3311-1800=1451 

(4) Divide 975 311 by 16 333 
333 :97  5 :  3 1 1  

(5) Divide 975 311 by 18123 

: 5 3 : (or 16311-1519)=14792 

(6) Divide 995311 by 20321 
3 2 1 : 9 9  5 :  311 

20 : 19 : 2 3  R-20100-190-7 (=23311- 
: 4 8 :  3408)= 19903 

(7) Divide 997531 by 30321 

321 : 99 7 531 
30 : 9 28 R=27300-40-1 

: 3 2  (or 28531 -1272)=27259 

(8) Divide 137 294 by 5749 (to 6 places of decimals). 
7 4 9 : 1 3 7 2  9 4 0 0 0 

5 : 3 8 13 13 14 14 8 

: 2 3. 8 8 1 370 

or 



(9) Divide 53 247 by 4999 (to five places of dectmals). 
9 9 9 . 6 3 .  2 4 7 0 0 

4 : 1 4 9  11 1 4 1 2  

...... : l o .  6 5 1 5  3 

or 
001-: 5 3 . 2  4 7 0 0 0 

6 : 0 3 2 0 2 1 0 -  
N.B. Better to 

: 1 0.6 5 1 5 3 ... divide by 60 

(10) Divide 13 8462 by 39898 (to 3 places of Decimals). 
9898 : 13 8 4 6 2 0 0 

3 : 4 9 1 3 1 4  0 

: 3 d 4  7 0 0 3  

or 
0 1 0 2 : 1 3 . 8  4 6 2 :  

4 : 1 2 3 4 :  

: 3. 4 7 03 9 : N.B. Better to divide by 40 

(11) Divide 131 by 19799 (to 5 places of decimals). 
9799: 1 3 1 0  0 0 

I 

I 
1 : 1 7 11 13 19 

: 0 0 6 6 1 6 ...... 
OT 

02101-: 1 3 1 0 0 0  
a : 1 1  - 

: 0 0 6 6 16 N.B. Better to divide by 20 

(12) Divide 76432 by 67998 (to 5 places of decimals). 
7 9 9 8 : 7  6 4 3 2 0 

6 : 1 3 6 7 9 1 0  

: 1 1  2 4 0 3 

(13) Divide .2537 bp 48329 
8329: 2 6 3  7 0 or 2331: .2 5 3 7 0 0  

4 : 5 5 1 0 1 6  6 : 2 0 3 1 1  - 
: . 0 6 2 4  9 : .O 6 2 4 9 ... 

(14) Divide 371628.112 by 12734 (to 6 decimal places). 
2784 : 371628. 112 

1 : 14 8 7 11 8 12 8 11 11 11 N.B. Better 
: 291839 25868 divide by 12 
- 

OT - 
3 3 4 : 3 7  1 6 2 8. 112 00 

13 : 1 1 0 1 4  3 1 4  5 8 6  

: 2 9 1  8 3 9  2 6 8 6 8  

N.B. Here we have divided by 13 

1161 Divide 4'1326 by 31046 (to 5 decimal places). 

(161 Divide -20014 by 137608 (to 5 decimal places). 

N.B. Better divide by 13 

(17) Divide .0034147 by 814256321 (to 6 decimal places). 
14266321 : 0 0 3 4 1 4 7 

8 3 2 9 5  

: .O 0 0 0 419 ...... 
N.B. The Vinculum method is always available but will not 

make much difference. In fact, it may prove stiffer. 

(18) Divide .200103761 by 9371836211 (to 3 places). 
371838211 : ' 2  0 0 1 0 3 7 6 1 

9 : 2 6  7 7 

: *O 2 1 3 6 .,.... 



( a54 

(19) Divide 74. 5129 by 9314 
3 1 4 : 7 4 -  5 1 2  9 0 0 0 0 

9 : 2 1 3 0 9 9  9 9  

: 8 .  0 0 0 0 0  966 

(20) Divide 7132$ by 23145 
3 1 4 5 : 7 :  1 3  2 4 or 1 4 5 : 7 1 :  3 2 4 

2 : : I 2 4 4  23 : : 2 2 0 6 l g  

: 3 :  0 8 I . . .  : 3 : 0  8 1  - 
(21) Divide 137426 by 7 4 3 . 2 ~  1 -24% x 80 9 4  (to 4 places of 

004: 6 4  0 4 9  -- 
8 . 1. 8 6  0 0 9 

: = 1 .  8 6  0 1 (approximately) - 

CHAPTER XXVIII 

AUXILIARY FRACTIONS 

In our exposition of vulgar fractions and decimal fractions, 
we have so far been making use of processes which help to 
give us the exact results in each case. A d .  in so doing, we 
have hitherto (generally) followed the current bystem whereby 
multiplications and divisions by powers of ten are mechanically 
effected by the simple device of putting the decimal point 
backwards or forwards (as the case may be). 

Conventional Method 
For instame, we manipulate the decimal point thus : 

(1) .- 1 - - (2) -- 39-3.9 - . (3) 17 -1.7 . 
800 8 70 7 ' 1 % - 3  ' 

(4) 3741 - ,3741 ; and (6) 97654 - .0097054 
11OOOO 11 90000000 9 

But after this has been done, the other operations-of 
division etc.,-have had to be carried out in the usual 

manner. 
Auxiliary Fractions 

There are certain Vedic processes, however, by which, 
I with the aid of what we call SAHAYAKS (AUXILIARY 

I ffactions), the burden of the subsequent operations is also consi- 
derably lightened and the work is splendidly facilitated. 

First T y p e  

The f i s t  (and commonest) type thereof is a very simple 
and easy application of our self-same old friend the Ek6dhQa 

I PGrva. And the whole modus operandi is to replace the Deno- 
minator by its Ekidhika (i.e. to drop the last digit and increase 
the penultimate one by 1) and make a consequeritial alteration 
in the division-procedure (as in the case of other EkGdhika 
operations). 

N.B. :--The student will remember that, in these o~erations, 
the remainder at each step (of a division) 's not prefixed 
to a series of zeroes from the right-hand side, but to 
each quotient-digit. 



Auziliary Fractions '(A.B.) (E'irst type) 

(1) for r$, the Auxiliary fraction is 4 
:. &=.652631578/94736~2i 

(2) for dO, the A.P. is f 

:. =. 63448275862068/9655172413793i 

(3) for % f  9 F  is 3.718 
(4) for ESj, AF is -O,' 
(5) for f $, AF is l& 
(6) for I:o, AF is ;'p 
(7) for Ito, .AE' is 2g 
(8) for if 0,  AF='Pg 
(9) for AF=l:& 

(10) for AF is .aQL 
(11) for s$Jl,,, AF is S-$x 
(12) for rJJ"JJ, AF is 
(1 3) tor a'$a8, AF is 
(14) for r;rsdoaav, AE'='CPGGul IS-- 

(15) for TsB,l,$$pv, AF=.0UOz*7g 8- 

(16) for f $383, AF=%;W- 

m the above' oases, the first eight denominators end in 
a single niibe ; the remaining eight terminate in 2, 3, 4,3,4,9, 7 
and 4 nines respectively. The queation now is : Does it stand 
to reason that the Ekcidlika should be the same in and in 
.JV, (irrespective of the difference in the number of nines) 1 
That would be tantamount to declaring that the same (signi- 
ficant) numerator lor dividend) with two different denominators 
(or divisors) will yield the same quotient 1 And that would be 
palpably absurd ! 

Yes ; the objection is perfectly valid ; and the relevant 
Siitra has surmounted this difficulty beforehand, by providing 
for groups of quotient-digits (to which the remainder a t  each 
stage of the mental division should be prefixed)! And that 
~oIves the whole probIem. 

Modus Operandi 

For insta~~ce, let us take the sixteerJth example supra 
(namely, a'g$$$ whose A.P. is 3 4 8 - 8  and whose denominator 
ends in four nines) : 

Here, F is f $g$b; and AF is Qb8u; and we have to make 
5 (in lieu of 49999) our working divisor. As we have dropped 

4 nines from the original denominator and have 5 as our Ekd- 
dhika in the Denolni~iator of the Auxiliary fraction, we have 
t,o divide the nin~~erator of the latter ia bundles, so to say, of 
4 digits each by 5 ; a.nd, whatever remainder there is, has to be 
prefixed not to any part~ic~il:~r quotient-digit, but to the bundle 
just already reached. 

Thus, we tnlce up 2.1863 to start with and divide it by 6. 
We get 5 )  2'1863 --- 

,4372 as the h~sf  [ Q=.4373 -R=3 
quotient-group and 3 as the remainder. We prefix this remain- 
dcr to that group and say : 

.4372 and we divide this dividend (namely, 34372) 
3 by the same divisor 5 ; and we get : 

4 

i.e. 6874 is thp, second quotient-group ; and 2 is the second 
remainder, which therefore we prefix to the second quotient 
group. And we continue this process with as many groups as 
we need. 

Thus we have : .4372, 6874, 5374, 9074 and so on 
3 2 4 4 

(to any number, or tens, or hundreds or thousands etc., of Deci- 

Thc PROOF hereof is very simple : 
oooi : 2.1863 000 

5 : 3 



N.B. :-The prefixed rr n h d e r s  are not parts of the quotient 
but only prefixes to the quotient-group in question 
and are therefore to he dropped out of the answer! 

This is a simple method by which we avoid divisions by 
long big divisors and have small and easy dcliominators to 
deal with. 

The student will note that division by big denominators 
(with a continuous series of zeroes on the right-hand side) and 
division by the Ek6dhib (with the prefixing of the remainder 
a t  each step) yield the same result ! And this is why the Auxi- 
liary Fraction scheme has been incorporated for lightening the 
burden of long big divisions. 

A few more examples are given below : 
(1) Express 5 in its decimal shape. 

29 

.'. F= .20689655172413 

79310344827586 

(2) F,? ... A p Z 7 2  .'. F='79775280898 etc., etc. 
89 9 

N.B. :-The upper row ('06633291614518 ......) is the answer 
and the lower one (5 2 7 4 3 1 ......) is a mere scaffol- 
ding and goes out. 

F= 00323391 00107791 6670259 rtc . ,  etc 
0 2 2 

The student wlll have noted that the drnomrnsto~s in all 
the above cases enrled in 9 (or 3 whlch cor~ld be bo n~ultlplled 
as to yield an easy mult~ple ending In 9). But what about 
those endlng in 1 a h ~ c h  would h.lvc lo be multlpl~ed by 3 for 
this purpose and would, t h e r ~ f o r ~ ,  a h  alleddy polrited out  (11, 

the chapter on Recurring Decin~alh) yleld CL rathe] unmanagcabls 
Ekiidhika ? is there any provfslon for t h ~ s  kind of tract~ons ! 

Yes ; there is. Arld thrs taltcs US on to the eecond type nf 
Auxiliary fractions. 

Auxiliury Frctctioits (Second Type) 

If and when F has a dencmiiiator endir~g In 1, drop the 1 
and T)XCRF,ASE the numerator hp u~rity Thls 1s the requlred 
second type of Auxiliary Frartionb. Thu,s, 

(1) for 3/61, AF=2/60= $ 
(2) for 36/61, AF-35/60=3 5 , 8  
(3) for 28/71, AI?=27/70--2'7/7 
(4) for 73/91, AF=72/90=7'2/9 
(5) for 21121, AF=1/120=.1/12 
(6) for 141131, AF=13/130=1 .3/13 
(7) for 11301, AF=0/300=.00/3 
(8) for 1/901, AF=0/900= .00/0 
(9) for 17211301, AF=171/1300=1'71/13 



(10) fot 27*3/7001, AF=2742/7000=2'742/7 

(11) for 616?/8001, AF=6162/8000=G.162/8 

(12) for 1768/9001, AF=1767/9000=1.767/9 

(13) for 56/16001, AF=55/16000=~055/16 
(14) for 50/700001, AF=49/700000= .00049/7 
(15) for 2175/80000001, AF=2174/80000000= .0002174/8 

(16) for 1/900000001, AF=0/900000000=~00000000/9 

Modus operandi 

The principles, the prefixing (to the individual quotient- 
digits or to groups of quotient-digits) etc., and other details are 
the same as in the Ek6dhika Auxiliary fraction. BUT the 
procedure is different, in a very important (nay, vital) particular. 
And this is that after the first division (or group-division is over) 
we prefix tlic remainder not to each quotient-digit but to its 
COUPLEMENT from NINE and carry on the division in this 
way all through. 

An illustrative instance will clarify this : 

(i) We divide 1.2 by 3 and set 4 down as the first quotient- 
digit and 0 as the first remainder. . 4  

0 
(ii) We then divide not 04 but 05 (the complement of 4 

from 9) by 3 and put 1 and 2 as the second quotient- 
digit and thc second remainder respectively. There- 
fore we have a 4  1 

0 2 
(iii) We take now, not 21 hut 28 ns our dividend, divide it  

by 3 and get:  .4 I 9 
0 2 1  

(iv) Thus, dividing 10 by 3, we have : 4 1 9 3 
9 0-  2 1 1 a.nd 

so on, until finally our chart reads: 
F (i.e. %;)= . 4  1 9 3 5 4 8 3 7 0 9 6 etc., etc. ! 

0 2 1 1 1 2 1 2 2 0 2 2 2  

1 Always, therefore, remember to take the conlplement jl"rom 

9) of each quotient-digit (and not the quotient-digit itself) for 
J 

the purpotie of further division, subtraction etc. TlGs is the 

whole secret of the second type of Auxiliary Fract  on. 

Some more illustrative examples are given hereunder : 

1 ' 0  (1) F=- :. AF=- 
41 4 

:. ~ = . 6  2 4 3 910 So, this is a definite recurring 
0 1 1 3 0/O decimal. 

1 (2) F=- 70 :. AF=- 6.9 
i 71 7 

10 30 2.9 :. .i 7 613 Evidently a re- (4) F=-- =- ... AF=- 
27 81 8 5 0 215 curring decimal. 

131 1.30 (with groups of 2 digits) 
(5) F=,= :. AF=- 7 

1400 13.99 (with two-digit groups) (6) F=- 1401 :. AF=- 14 

243 2.42 (with groups of two digits) 
(7) F=- 1601 :. AF=- 16 

.14 (with groups of two digits) (8) g=5=15 ... AF=- 
67 201 2 



2743 2.742 (with %digit groups) (9) F=- :. AF=- 
7001 7 

:. F= ,391 801 171 261 248 393 086 
5 1 1 1 2 0 4  

Proof: 001 : 2 742 999 
7 : 5 

31 403 . .402 (with three-digit groups) OR F=-=- 
77 1001 . - 1 

:. F=.402/59? (evidently a recurring decimal) 

(11) F- 29 . . . *p-.0128 (with three-digit groups) 
15U01 15 

:. I?= .001 933 204 453 036 etc., etc. 
1 3 3 6 0  

137 .000136 (with 6-digit groups) (12) I ? =  . . AF=- 
13000001 13 

:. l?= ' 000010 : 538460 : 727810 : 713245 etc., etc. 
6 : 9 : 0 : 4 

Other Astounding Applications 

Yes ; but what about still other numbers which are neither 
immediately below nor immediately above a ten-power base 
or a multiple of ten etc., (as in the abovc cases) but a bit remoter 
therefrom ? Well ; these too have been grandly catered for, in 
the shape of a simple application of the Anurtipya Siitra, whereby, 
after the pre-fixing of each' Remainder to the quotient-digit 
in question, we have to add to (or subtract fro&) the dividend 
at  every step, as many times the quotient-digit as the divieor 
(i.e. the denominator) is below (or.above) the NORMAL which, 
in the case of all these Auxiliary fractions, is counted as 
ending, not in zero or a number of zeroes but in 9 or a eerie8 
of nines ! 

For example, let F he &QI and suppose we have to exprem 
this vulgar fraction in its decimal shape (to, my, 16 places of 
decimals). 

Lest the student should have, in the course ot these 

peregrinations into snch very simple and easy methods of work, 
forgotten the tremendous difference between the current method 
and the Vedic method and thereby deprived himself of the 
requisite material for the purpose of cornparison and contrast, 
let us, for a brief while, picture the two methods to ourselves 
side by side and see what the exact position is. 

According to the Vedic method, the process wholly mental 
is as follows : 

F=&#, :. A.F.=A,L. But 68 being one less than 69 (the 
normal ending in 9) we shall have to add to each dividend, the 
quotient-digit in question. Thus 

(i) when we divide 1 . 5  by 7, we get 2 and 1 - 1 . 5  

as our first quotient-digit 7 
and our first remainder. ' 2  

1 
(ii) our second dividend will not be 12 hut 

12+2=14; and by division of that by . 2  2 

7, our second Q and R are 2 and 0. 1 0  

(iii) our next dividend is 02f 2 ~ 0 4  ; and . 2  2 0 

this gives us 0 and 4 as Q and R. 1 0 4  

(iv) our fourth dividend is 40$0, giving us ' 2  2 0 5 

6 and 5 as our fourth Q and R. 1 0 4 5  

(v) So, our next dividend is 65+5(=60) ; ' 2  2 0 5 8 

and our Q and R arc 8 and 4. 1 0 4 5 4  

We can proceed on these lines to as marly places of decimals 
es we may need. And, in the present case (wherein 16 decimal- 
places have been asked for), we toss off digit after digit (mentally) 
and say : 

F . l . 2  2 0 5 8 8 2 3 5 2 9 4 1 1  7 6 etc.,etc. 
1 0 4 5 4 0 2 3 1 6 1 0 1 5 3 2  



Over against this, let us remind ourselves of the 
method for answering this que8tion : 

68)16'0(.2205882352941176 etc., etc. 
136 

- 
Alongside of this cur~lbrous 16-step process, let us once again 

I put down the whole working by the Vedic metl~od ar~d say : 
I?(:$)= , 2 2 0 5  8 8 2 3 5  2 9 4  1 1 7 6 4  etc.,etc. 

1 0 4 5 4 0 2 3 1 6 1 0 1 5 3 2 4  

A few more illustrative examples are given hereunder : 
(1) Exprcss 101/138 in its decimal shape (20 places). 

(i) Rozctzne M e t h o L  
138)lOl' 0(.73188405797101449275 

966 - 
440 
414 

260 
138 - 
1220 
1104 - 

1160 
1104 - 

560 
552 - 

800 
690 - 
1100 

960 - 
1340 
1232 
- 

980 
966 - 

140 
138 - 

200 
138 - 

620 
552 - 

680 
552 - 
1280 
1242 - 

380 
276 - 
1040 
966 

740 
690 - 
50 - 

34 



(ii) Vedic Melhod. 
A.F.=I$; (with one below the normal 139) 

- F - - . 7 3  1 8 8 4 0 5  7 9 7 1 0 1 4 4 9 2  74etc. . . 
3 2 1 2 1 0 4 0 8 1 0 1 2 8 0 0 2 6 6 1 2 2 1 0 6 5  

Note :-More-than-one-digit quotient if any, should 
be carried over (as usual) to the left. 

(2) Conventional method : 
97)73.0('75257731958762886597 etc., etc. 

679 

. ." -- - 
91 

(ii) Vedic (at-sight) method 
Data : I?=;$ .'. AF=%$ (but with 2 below the normal 99). .= Add twice the Q-digit a t  each step. 

Actual Working : 
' . F = , . 7 5 2 5 7 7 3 1 9 5 8 7 6 2 8 8 6 5 9 7 e t c . , e t c .  

1 5 6 5 1 1 9 3 7 5 4 1 8 6 4 4 8 5 7  

(3) Express $2, as a decimal (20 places). 

Current metho& 
127)17.0(. 13385826771653543306 eto., eto, 

127 

(ii) Vedic at-sight method- 
.: F=& :. AF=g (but with 2 below tne normal 129) 
:. Double the Q-digit to be added at  every step. 

.*.P=.l 3 3 8 5 8 2 6 7 7 1 6 5 3 5 4 3 3 0 6etc. 
4 4 1 0 5 9 1 8 8 7 0 8 5 3 6 4 3 3 0 9 1 2  



( 2sa \ 

(4) Express :)$$ in decimal form (21 decimal places) 

(i) Usual method- 
8997)5236.0(. 581 /971/768/367/233/522/285 eb., etc. 

44985 

What a TREMEND- 
DOUS mass and - mess of multi- 

87430 21010 
80973 17994 

plications, sub- - - tractions eta. I 
64570 30160 
62979 26991 - - 
15910 31690 
8997 26991 - - 
69130 46990 
62979 44985 -- - 
61510 20050 
53982 17994 - - 
75280 20560 
71976 --- 17994 - 
33040 25660 
26991 -- 17994 - 
60490 76660 
53982 71976 - 
65080 46840 
62979 44985 - - 

1855 
(ii) Vedic at-sight method : 

.. p, 5236 ,.. Ap,5'236 (but with 2 below the 
8997 9 r~ormal 8999 and also 

with groups of 3 digits 
a t  a time). :. Add twice the Q-digit a t  every step. 

.= F= .581 : 971 : 768 : 367 : 233 : 522 : 285 etc., etc. 
7 : 4  : 1  : 1  :4 : 1  ;1  

(5) Express Ql,$$j  as a decimal (16 places) 

Conventional method 

49997121863.0(. 4372/8623/7174/2302/etc., etc. 
199988 

431160 
399976 -- 
311840 
299982 

118580 What a horrible 
99994 mess ? 

185860 
149991 

358690 
349979 
-- 

87110 
49997 - 
371130 
349979 

211510 
199998 

115120 
99994 - 
151260 
149991 



I (ii) Vdic  At-sigiat method- 

I 
(with 2 below the normal 49999 and with 

groups of four digits each). 
:. Add double the Q-d&t a t  every step) 

62 71 4 2 30 -- -- :. F= 4372 : 8) 3 : 6(11) 73 : (12) 2 (10) 2 
3 :1 : 4 : 4 

N.B. : very carefully that the extra (or surplus i.e. left-hand 
side) parts of Q-digita have been "carried over" to the 

I left. 

This excess is due to the additional multiplication and 
can be got over in the manner just indicated. A method for 
avoiding this difficulty altogether is also available but will 
be dealt with a t  a later stage. 

(6) Express )g as a decimal (eight places) 
Current methocl- 

76)17 + 0(. 22368421 eto., etc. 
152 

280 
228 - 
520 
456 - 
640 Even this i s  bad enough. 
608 - 
320 
304 

(ii) Vedic At-sight method : 
-: F=+; :. AP=+ (but with 3 less than the 

normal 79) 

Thrice the Q-digit is to be added at every step. 

:. F d . 2  2 3 6 8 4 2 1 etc., etc. 
1 2 4 4 0 0 0 0  

(7) Expre~s ifPgig as a tlecimal (12 places) 

(i) Usual mdhod- 



(ii) Vedic At-sight method : . 
.. 17125 . 1.7125 (with 1 less the . F =  .. AF=--- 

59998 6 normal and with 
4-digit groups) 

:. only one Q-digit is to be added. 
:. F= .2854 : 2618 : 0872 etc., etc. 

1 : o  : 4  
These examples should suffice to bring vividly home to 

the student the extent and lnag~litude of the difference between 
the current cumbrous methods and the Vedic at-sight one-line 
process in question. 

Yes ; but what about other numbers, in general, wl~ich are 
nowhere near any power or multiple of ten or a "normal" deno- 

minator-divisor ending in 9 or a series of nines ? Have they 
been provided for, too ? 

Yes ; they have. There are methods whereby, as explained 
in an earlier chapter (the one dcaling with recurring decimals) 
we can easily transform any miscellaneous or non-descript 
denominator in question-by simple multiplication etc.,.-to 
the requisite standard form wliich will bring them within t l ~ c  
jurisdiction of the Auxiliary Fractions hereinabove explained. 

In fact, the very discovery of these Auxiliaries a i d  of 
their wonderful utility in the transmogrification of frightful 
-looking denominators of vulgar fractions into such simple and 
easy denominator-divisors must suffice to prepare the scienti- 
fically-minded seeker after Knowledge, for the marvellous 
devices still further on in the offing. 

We shall advert to this subject again and expound it 
still further, in thc next two subsequel~t chapters (ctealii~g with 
DIVISIEILITY and the application of the Bkidhika P,iLrva ctc.. 
as positive and negative OSCULATORS in tliat c,ontext). 

DIVISIBILITY AND SIMPLE OSCULATORX 
We now take up the interesting (and intriguing) question 

as to how one can determine before-hand whether a certain 
given number (however long i t  may be) is dipisible by a certain 
given divisor and especially as to the Vedic pmcesses which 
can help us herein. 

The current system deals wth this subject but only In an 
ultra-superficial way and only in relation to what may be termed 
the most elementary elements thereof. Into details of these 

(including divisibility by 2, 5,  10, 3, 6, 9, 18, 11, 22 and so cn), 
we need not now enter (as they are well-known even to the 
mathematics-pupils a t  a very early stage of their mathematical 
study.) We shall take these for granted and &art a i th  the 
intermediate parts and then go on to the advanced portlons of 
the subject. 

The Osculators 
As we have to utilise the " h s "  (Ve#ulzas =Osculators) 

tl~roughout this subject (of divisibility), we shall begin ai th  a 
simple definition thereof and the method of their application. 

Owing to the fact that our familiar old friend the Ekadhzha 
is the first of these osculators (i.e. the positive osculator), the 
task becomes all the simpler and easier. Over and aboxe the 
huge nur111)er of purposes which the Ekddhika hss already been 
shown to fulfil, it has the Curtl~er merit of helping us to  readily 
determine the divisibility (or otherwise) of a certain given 
d~vidend by a certain given divisor. 

Let us, for instance, start with our similar famlllar old 
friend or experimental-subject (or shall we say, "Guinea-pigs" 
the number 7. The student need hardly be reminded that the 
Ek&~%ika for 7 is derived from 7 ~ 7 = 4 9  and is therefore 6 .  
Tlle Ekddhika is a clinching test for divisibility ; and the process 
by which it serves this purpose is technically called Vestana 
or "Osculation". 

36 



Suppose we do not know and have to determine whether 
21 is divisible by 7. We multiply the last digit (i.e. 1) by the 
Ek*idhika (or Positive Osculator i.e. 5) and add the product 
(i.e. 5) to the ~revious digit (i.e. 2) and thus get 7. This process 
is technically called "Osculation". And, if the result of the 
oscdation is the divisor itself (or a repetition of a previous 
result), we say that the given original dividend (21) is divisible 
by 7. 

A trial chart (for 7) will read as follows : 
14;  4 ~ 5 + 1 = 2 1 ;  and 1 x5+2=7 :.YES. 
21 (already dealt with) ; 
28 ; 8 ~ 5 + 2 = 4 2  ; 2x5+4=14 (already dealt with) 
35 ; 5 x 5+3=28 (already dealt with) ; 
42 (already dealt with) ; 
49 ; 9 x5+4=49. (Repetitiw lrteans divisibility). 
56 ; 6 x 5+5=35 (already dealt with) ; 
63 ; 3 x5+6=21 (already dealt with) ; 
70 ; 0 )<5+7=7 :. YES 
77 ; 7 x 5+7=42 (already done) ; 
84 ; 4 x 5+8=28 (already over) ; 
91 ; 1 x 5+9=14 (already dealt with) ; 
98 ; 8 x 5+9=49 (already done) ; 
Now let us try and test, say, 112. 
112; 2 ~ 5 + 1 = 1 1 ;  11 x 5 +  l=56 :. YES. 

OR 2x5+11=21 .: YES. 

We next try and test for 13 ; and we find the repetitions 
more prominent there. The Ekddhika is 4. Therefore we go 
on multiplying leftward by 4. Thus, 

13 ; 3X4+1=13 
26 ; 6 X 4+2=26 
39 ; 9 ~ 4 + 3 = 3 9  The repetition etc., is uniformly 
52 ; 2 X4+5=13 there and in correct sequence 
65 ; 5 X4+6=26 too (i.e. 13, 26, 39) 1 :. YES. 
78 ; 8X4+7=39 
91 ; 1 X4+9=13 

104 ; 4X4+ 10=26 

I Exampla qf the OaculQtirm Procedure fTe#ana) 
A few examples will elucidate the process: 

I (1) 7 continually osculated by 5 giv6s 35, 28, 42, 14, 21 
and 7. 

I 
(2) 5 so osculated by 7 glves 35, 38,69, 68, 62; W, 2 and 

i so on. 
(3) 9 (by 7) gives 63, 27, 51, 12, 15 etc. 

! (4) 8 (by 16) gives 128, 140, 14 eto. 
(5) 15 (by 14) gives 71, 21, 16 etc. 
(6) 18 (by 12) gives 97, 93, 4, 64, 64, 63,4l, 16 eta. 
(7) 36 (by 9) gives 57, 68, 78, 79, 88, SO, 8 eb.  
(8) 46 (by 3) gives 22, 8 etc., etc. 
(9) 49 (by 16) gives 148, 142, 48, 100, 10, 1 etc., eta. 

(10) 237 (by 8) gives 79, 79 etc., and is .'. divisible by 79. 
(11) 719 (by 9) gives 162, 33, 30, 3 etc., etc. 
(12) 4321 (by 7) gives 439, 106, 52, 19, 64, 34, 31, 10, 1 etc. 
113) 7524 (by 8) gives 784, 110, 11, 9 eto., etc. 
(14) 10161 (by 5) gives 1021, 107, 45, 29, 47, 39, 48, 44, 

24, 22, 12, 11, 6 etc. 
(15) 35712 (by 4) gives 3579, 393, 51, 9 etc. 
(16) 50720 (by 12) gives 5072, 531, 65, 66, 78, 103, 46, 

etc., etc. 

N.B. :-We need not carry this process indefinitely on. We 

can stop as soon as we reach a comparatively small 
number which gives us the nemsary clue as to 
whether the given number is divisible (or not) by the 
divisor whose Ek6dhika we have used as our offiulator I 
Hence the importance of the Ekddhihikcc. 

Rule for Ekadhikas 
(1) For 9, 19, 29, 39 etc., (all ending in 9), the Eidhikas  

are 1, 2, 3, 4 etc. 

(2) For 3, 13,23,33 etc., (all ending in 3) multiply them by 
3 ; and you get 1, 4, 7, 10 etc., ae the Ekridhikas. 

(3) For 7,17,27,37 etc., (all ending in 7) multiply them by 
7 ; and you obtain 5, 12, 19. 26, eto., as the Eklidhikas. 



(4) For 1, 11, 21, 31, etc., (all ending in l ) ,  multiply them I 

by 9 ; and you get 1, 10,19,28 etc., as the Eluidhikus. 

Osculation by own Eluidhika 
1 
I 

Nde that, the osculation of any number by its own Ekd- 
d h i h  will (as in the case of 7 and 13) go on givirlg that very 
number or a multiple thereof. Th~ls, 

(1) 23 osc~zlated by 7 (its Ekddhikn) gives 7 ~ 3 + 2 = 2 3  ; 
46 (osculated by 7) gives 7X6+4=46 ; 
69 (similarly) gives 7 x 9+6=69 ; 
92 (likewise) gives 2 x 7 f S t 2 3  ; 
115 (similarly) gives 7 ~5 + l l=46 And so on. 

NOW, 276 (osculated by 7) (by way of testing for divisi- 
bility by 23) gives 7>t6+27=69 which again gives 69! 
:. YES. Thus, all the multiples of 23 fulfil this test i.e. of 

osculation by its Ekddhika (7). And this is the whole secret 
of the Vestma sub-Stitra. 

Modus Operandi of Osculation 

Whenever a question of divisibility comes up, we can 
adopt the following procedure. Suppose, for instance, we wish 
to know-without actual division-whether 2774 is divisible 
by 19 (or not). We put down the digits in order as shown 
below. And we know that the Ek6dhika (osculator) is 2. 

(i) We multiply the last digit (4) by 2, add the prodllct 
(8) to the previous digit 7 and put 
the total (15) down under the second 

2 7 7 4  
15 

right-hand digit. 
(ii) We multiply that dB by 2, add that 30 to the 7 on 

the upper row, cast out the nineteens 2 7 7 4  
I 

(from that 37) and put down the 3715 I 

remainder 18 underneath that 7. (18) 
N.B.-This casting out of the nineteens may be 

more easily and speedily achieved by first osculating the I 
15 itself, getting 11, adding it to the 7 

2 7  7 4  
(to the left-hand) on the top-row and 18 l5 
putting the 18 down thereunder. i 

(iii) Wc then osculate that 18 with the 2 to  the left on 
the upper row and get 38 ; or we may osculate the 
18 itself, obtain 17, add the 2 and get 
19 as the final. osculated result. (2 (19 18 15 4, ) 
And, as 19 is divisible by 19, we say 
the givcn number (2774) is also divisible thereby. 

This is the whole process ; and our chart says : 

By 19 ? 7 7 { :9 18 15 } :. YES. 
:. The osculator is 2 

OR Secondly, we may arrive a t  the same result-as effectively 
but less spectaculariy by means of a continuous series of oscula- 
tions of the given number (2774) by the osculator (2) as here- 
inbefore explained. And we can say : 

.: 2774 (oscillated by the osculator 2) gives us 285. 38 
and 19 

A 2774 is divisible by 19. 

N.B. :-The latter method is the shorter but more mechanical 
and cumbrous of the two; and the former procedure 
looks neater and more pictorially graphic, nay, 
spe~t~acnlar. And one can follow onc's own choice 
as to which pocedure should be preferred. 

Note:-Whenever, a t  any stage, a bigger number than the 
divisor comes up, the same osculation-operation can 
always be performed. 

Some more specimen examples are given below : 

(1) By 29 ? :. The osculator is 3. 

ORE (osculated by 3) gives 3307 351, 38,27, etc. :. No. 

(2) By 29 ? :. The osculator is 3. 9 3 1 4 8 { 20 26 27 28 
} "' 

OR The osculation-results are 9338, 957, 116 and 29 
:. YES 



(3) By 29 ? :. The osculator is 3. 2 4 3 4 5 2 1 :. YES 
I29  9 21 6 20 5. 

OR The osculation-results are 243455, 24360, 2436 261 
and 29 :. YES 

(4) By 39 1 :. The osculator is 4. 1 i9 i7 4 1 :. YES 

OR The osculation-results are 507, 78 and 39 :. YES 

(5) By 49 ? :. The osculator is 5. 5 3 3 
. . No. 

OR The osculation-results are 543, 69, 51 and 10 A No 

(6) By 69 ? :. The osculator is 6. 1 9 1 5 7 3 { 59 49 46 37 25 
} "' 

08 The osculation-results are 19175, 1947, 236 and 59 
:. YES 

(7) By 59 ? :. The osculator is 6. 1 2 5 6 7 :. YES ( 59 49 57 48 } 
OR The osculation-results are 1298, 177 and 59 :. YES. 

(8) By 59 ? :. The osculator is 6. 4 0 1 7 9 1 { 47 17 52 38 15 

OR Theosculation-results are 40185,4048,452 and 57 :.NO. 

(9) By 791 :.The osculator is 8. 6 3 0 9 4 8 2 1 
{I3 70 38 64 76 9 10 } ." 

OR The osculation-results are 6309490, 630949, 63166, 
6364, 668, 130 and 13 :. NO. 

(10) By 43 2 :. The osculator is 13. 
{:29 f i g  E 8  f 'f' 

OR The osculation-results are 1419,258 and 129 :. YES 

(11) By 53 ? :.The osculatoris 16. 2 , 1  9 5 3 
I { 149 39 62 53 

1 '.' 
I OR The osculation-results ar 2243, 272 and 59 :. NO. 

(12) By 1791 :. Theosculatoris 18. 7 1 4 5 5 0 1 
(179 109 6 20 150 18 I"' 

OR The osculation-results are 714668, 71600, 7160, 716 
and 179 :. YES 

(13) Determine whether 5293240096 is divisible by 139 (or not) 
(A) By the current method (just by way of contrast) : 

i 139)5293240096(380864 417 - 
1123 
1112 - 
1124 
1112 -- 
1200 
1112 - 

889 
834 

556 
556 - 

0 :. YES. 

(B) By the Vedic method : 
By 139 ? :, The Ekddhika (osculator) is 14. 

2 9 3 2 4 0 0  YES 1 :39 89 36 131 29 131 19 51 :3 1 
OR The osculation-results are 529324093, 62932451 

5293259 529451,52959, 5421, 556 and 139 :. YES 

Note :-In all the above cases, the divisor either actually ended 
in 9 or could-by suitable mu!tiplication-be made to 

I yield a ending in 9 (for the determination of 
the required Elccidhih or Osculator in each case). 
But what about the numbers ending in 3,7 and 1 (whose 
Ekidhih may generally be expected, to be a bigger 
number) ? Is there a suitable provision for such 
numbers being dealt with (without involving bigger 

, Ekidhika-multipliers) ? 

Yes ; there is ; and this we proceed to deal with. 

The Negative Oscutator 
This is an application of the Parciva~tya Sctra and is called 

the Negative Osculator because it is a process not of addition 



(as in the case of sf the l3kdh ih)  but of Subtraction (leftward). 
And this actually means a consequent alternation. of plw and 
minus. 

Emm@ of the Negative Osozhtion Process 'i 
(1) 36 thus osculated by 9, gives 3-54=-51. I 

(2) 7(osculated by 5) gives 0-35=-35 
(3) 35712 (osculated by 4) will yield 8 - 3 5 7 1 ~ ~ 3 5 6 3 .  I 

How to Determine the Negative Oshclator 

Just as the B k a h i h  (the positive Vetam) has been duly 
defined and can be correctly ascertained, similarly the Negative 
Osculator will also require to be determined by means of a 
proper definition and has been so defined with a view to  proper 
recognition. 

It consists of two clauses : 
(i) In the case of all divisors ending in 1, simply drop the 

one ; and 

(ii) in the other cases, multiply so as to get 1 as the last 
digit of the product (i.e. 3 by 7, 7 by 3 and 9 by 9) ; 
and then apply the previous sub-clause (i.e. drop the 1). 

Note :--For facility of symbolisation, the positive and the 
negative owulators will be represented by P and Q 
respectively. 

Emmples of Negative Osculators 

(1) For 11, 21, 31, 41, 51 and other numbers ending 
in 1, Q is 1, 2, 3, 4, 5 and so on. [Note that, by 
this second type of oscultors, we avoid the big 
Ek6dhikm (produced by multiplying these numbers 

by 9)1. 
(2) For 7, 17, 27, 37, 47, 57 etc., we have to multiply 

i 

them by 3 (in order to get products ending in 1). 
And they will be 2, 5, 8, 11, 14, 17 and so on. 
(In these cases too, this process is generally cal- 
culated to  yield smaller multipliers than the 
multiplication by 7 is likely to do). 

(3) For 3, 13, 23, 33, 43, 63 etc., we havetomultiply 
them by 7 ; and the resultant Negative Osculators 
will be 2, 9, 16, 23, 30, 37 etc., (which will generally 
be found to  be bigger numbers than the Ekadhikas). 

(4) For 9, 19, 29, 39, 49, 59 etc., we have to multiply 
these by 9 ; and the resultant Negative Osculators 
will be 8, 17, 26, 35, 44, 53 etc., (all of which will 
be much bigger than the corresponding Ekadhikas). 

Important and Interesting Feature 

Note:-A very bkautiful, interesting and important featurc 
about the relationship between F and Q, is that, 
whatever the Divisor (L)) may be, P+Q=D. i.e. the 
two osculators together invariably add up to the 
Divisor. And this means that, if one of them is known, 
the other is automatically known (being the comple- 
ment thereof from the divisor i.e. the Denominator). 

Specimen Schedule of Osculators P and Q 

Number Multiple for P Multiple for Q P Q Total - 
I 9 11) 1 0  1 



Number Multiple for P Multiple for Q P Q Total - 
53 159 371 16 37 53 
57 399 171 40 17 67 
59 (59) 531 6 53 59 
61 549 55 6 61 
63 189 441 ('I) 19 44 63 
67 469 20 1 47 20 67 
69 (69) 621 7 62 69 
71 639 64 7 71 
73 21 9 51 1 22 51 73 
77 539 23 1 54 23 77 
79 (79) 711 8 71 79 
81 729 (81) 73 8 81 

N.B. It will be noted :- 
(i) that P+Q always equals D ;  
[ii) multiples of 2 and 5 are inadmissible for the purposes 

of this schedule ; 
(iii) and these will have to be dealt with by dividing 

off all the powers of 2 and 5 (which are factors of the 
Divisor concerned). 

Note :-(I) If the last digit of a divisor be 3, its P < its Q ; 
(2) If the last digit be 7, its Q < i t s  P ; and 

I (3) in the actual working out of the subtractions of the 
osculated multiples (for the negative osculators), 
the actual result will be an alternation of p k s  and 
minus. 

Explanation (1) In the removal of brackets, a series of subtrac- 
tions actually materialises in an alternation of 
+ and-For example, 

a-(b-{c-[d-e--f)]] 
=a-b+c-d+e. 

Exactly similar is the case here. 
(2) When we divide aR+b" by (a+b), the quo- 

tient consists of a series of terms which are 
alternately plus and minus. Exactly the same 
is the case here. 

Nett. :-The student will have to carefully remember this alter- 
nation of positives and negatives. But the better 
thing will be, not to rely on one's memory at  each 

I step but to mark the digits beforehand, alternately, say, 
by means of a Vinculum (from right to left), on all the 
even-place digits, so that there may be an automatic 
safeguard against the possible playing of any   ranks by 
one's memory. 

Armed with this safeguard, let us now tackle a few illus- 
trative instances and see how the plan works out in actual 

A few sample examples 

practice. 
(1) By 41 ? :. Tho (Negative) Osculator is 4 - 

- 4 1  \ :. YE8 

(1) for 59, P is 6 :. &= 53 ' 
(2) for 47, Q is 14 :. P =  33 
(3) for 53, P is 16 .'. &= 37 
(4) for 71, Q s 7 :. P= 64 
(5) for 89, P is 9 :. Q= 80 
(6) for 83, P is 25 :. &= 58 
(7) for 9 1 , P i s 8 F  :. &= 9 
(8) for 93, & is 65 :. P= 28 
(9) for 97, P is 68 :. &= 29 

(10) for 99, Q is 89 :. P= 10 
(11) for 101, P is 91 :. &= 10 
(12) for 103, & is 72 :. P= 31 
(13) for 107, P is 75 :. Q= 32 
(14) for 131, Q is 13 :. P=118 
(15) for 151, P is 136 :. &-- 15 
(16) for 201, Q is 20 :. P=181 , 

The osculation-results are 16564, - 1640,164 

By 31 ? :. Q--3 ti 6 0 3 
33 9 ) :.YES 

P+Q=D throughout 

and 0 :. YES 

Or 
The osculation-results are 651, 62 and 0 :.YES. 



The osculation-results are 1107, 82 and 0 :. YES 
- 

(4) By 47 ? :. Q=14 7 4 9 1 8 5 
I l l  102 7 51 64 ) :. so  

Or 
The osculation-results are 74146, 7330, 733 and 31 :. NO 

(5) By 51 ? :. Q=5 3 ? 3 1 
( -5 10 32 18 3 [ . NO 

Or 
The osculation-results are 43727, 4337, 398 & I :. NO 

(6) By 61 ? :. Q=6 1 < 5 8 1 
Or (0-51-7-2 ) :.YES 
The osculation-results are 1952, 183 and 0 :.YES 

(7) By 67 ? :. Q=20 1 o 1 7  
0 1 0  1 0  - 8  } . Y E S  

Or 
The osculation-results are 1017060, 101706, 10050, 1005 

and 0 :. YES. 
( 8 ) B y 9 l ?  :.&=9 9 0 5 3 0 c3 

Or { 84 69 49 56 37 44 16 22 1 :. NO 
The osculation-results are 98045878, 9804515, 980406 

97986, 97441 938 and 21 :. NO 
(9) By 61 ? :. ~ = 6  i 2 2 I 3 o 5- 4 

Or 10- ib -3  0 1 0 5 3  19 1 :.YES 
The osculation-results are 1221281, 122122, 12200, 1220, 

122 and 0 :. YES 
(10) By 71 ? :. Q=7 8 0 $ o 4 5 

Or I 0  62 19 4 31 1 :.YES 
The oscula,tion-results are 80869, 8023, 781 and 71 :. YES 

- 
(11) By 131 ? :. Q=13 1 3 3 7 

Or 1 0  10 1 20 1; 3; 1 :. YES 
The osculation-results are 133751, 13362, 1310 & 131 :.YES 

(12) By 141 1 :. Q=14 4 % 9 8 5 7 
(94 81 37 2 41 93 1 : NO 

N.B. But this dividend (yielding the sarrie res~llls) is divisihlc 
by 47 (whobe Q is also 14). (94=47 x 2) 

CHAPTER XXX 

DIVISIBILITY 

AND 

COMPLEX MULTIPLEX OSCULATORS 

The cases so far dealt with are of a simple type, involving 
only small divisors and consequently small osculators. What 

then about those wherein bigger numbers being the divisors, 
the osculators are bound to be correspondingly larger ? 

The student-inquirer's requirements in this direction 
form the subject-matter of this chapter. I t  meets the reeds 
in question by formulating a scheme of goups of digits which 
can be osculated, not as individual digits but in a lump, so to say. 

Examples of fifultiplex Ve+alza i.e. (Osculation) 

(1) 371 osculated by 4 for 2 digits at  a time, gives 3+ 

71 X 4 (=287) and 3-284 (=-281) for plus oscillation 
and minus oscillation respectively. 

(2) 1572 osculated by 8 for 2 digits glves 15+576 (=591) 
and 15-576 (=-561) respectively. 

(3) 8132 osculated by 8 (P and Q) for 2 digits gives 81 
+256 (=337) and 81 -256 (= -175) rcspectively. 

(4) 75621 osculated by 5 ( P  and Q) for 3 digits gives 
75+3105 (=3180) and 75-3105 (=-3030) rcspec- 
tively. 

(5) 61845 osculated by 7 ( P  and Q) for 3-digit groups 
gives 61+5915 (=5976) and 61-5915 (=-5854) 
respectively. 

(6) 615740 osc~ilated by 8 (P and Q) for %digit packets 
gives 615+592C (=6535) and 615-5920 (= -5305) 
respectively. 

(7) 518 osculated by 8 ( P  and Q) for 4-digit bundles gives 
0+4144 (=4144) and 0-4144 (--4144) respectively. 

(8) 73 osculated by 8 (P and Q) for five-digit groups yields 
0+584 (=584) and 0-584 (=-584) respectively. 



(9) 210074 osculated by 8 (P and Q) for five-digit bundles 
give 2+80592 (=80594) and 2-80592 (= -80590) 
respectively. 

(10) 7531 osculated by 2(P) for 3 digitsgives 7+1062=1069 

(11) 90145 osculated by 5 (Q) for 3 gives -725+90=-636 
(12) 5014112 osculated by 7 (Q) for 4 gives 601-28784 

= -28283 
(13) 7008942 osculated by 3 (P) for 2 gives 126+70089 

=70215 
(14) 7348515 osculated by 8 (P) for 3 gives 7348+4120 

=I1468 
(15) 59076242 osculated by 7 (Q) for 2 gives --590762+294 

= -590468 

f Categories of Divisors and their O s c u h ~ .  
In this context, it should be noted that, as there are 

various types of divisors, there are consequent differences 
as to the nature and type of oscu~ators (positive andlor negative) 

which will suit them. They are generally of two categories: 
(i) those which end in nine (or a series of nines) 

[in whch case they come within the jurisdiction 
of the. E&dhiku (i.e. the Positive) Osculator] 
or, which terminate in or contain series of zeroes 
ending in 1, (in which case they come within the 
scope of operations performable with the aid of 
the Viparita (i.e. the negative) osculator ; and 

(ii) those which, by suitable multiplication, yield @ 

multiple of either of the two sorts described in sub- 
section (i)  supra and can thus be tackled on that 

basis. 

The First Type. 

We shall deal, first, with the first type of divisors, namely, 
those ending in 9 (or a series of nines) or 1 (or a series of zeroes 
ending in unity) and explain a technical terminology and 
symbology which will facilitate our operations in this context. 
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(1) Let the divisor be 499. It is obvious that its osculator 
P is 5 and covers 2 digits. This fact can be easily 
expressed in symbolical language by saying : P,=5 

(2) In the m e  of 1399, i t  is obvious that our osculator 
(positive) is 14 and covers 2 digits :. P,=14. 

(3) As for 1501, & obviously comes into play, is 15 and 
covers 2 digits. In other words, Q2=15. 

(4) For 2999, P is 3 and covers 3 digits :. P,=3 
(5) For 5001, Q8=5 
(6) For 7001, Q8=7 
(7) For 79999, P4=8 
(8) For 119999, P,=12 
(9) For 800001, Q,=8 

(10) For 900001, Q,=9 
(11) For 799999, P,=8 
(12) For 120000001, Q,=12 

Gwrectness of the Symbology 

The osculation-process invariably gives us the original 
number itself (or a multiple thereof) or zero : For example, 

(i) 499 (with P,=5) gives us 4$5 (99)=4+495=499 
(ii) 1399 (with P,=14) gives 13+14 (99)=13+1386=1399 

(iii) 1501 (with Q2=15) gives 15x1-15=0 
(iv) 2999 with P,=3) gives 2+3 (999)=2+2997=2999 

(v) 5001 (with Q8=5) gives 5x1-5=0 
(vi) 7001 (with Q8=7) gives 7 X 1-7=0 
(vii) 79999 (with P4=8) gives 7+8 (9999)=79999 
(viii) 119999 (with P,=12) gives 11+12 (9999)=119999 

(ix) 800001 (with &,=8) gives 8X 1-8=0 
(x) 900001 (with &,=9) gives 9x1-9=0 

(xi) 799999 (with P,=8) gives 7+8 (99999)=799999 
(xii) 120000001 (with Q,=IZ) gives 12><1-12=0 

N.B. :-The osculation-rule is strictly adhered to ; and the P's 
and the Q's invariably yield the original dividend itself 
and zero respectively ! 



Utility and Significance of the Symbology 

The symbology has its deep significance and high practical 
utility in our determining of the divisibility (or otherwise) of a 
certain given npmber (however big) by a certain given divisor 
(however large), inasmuch as it throws light on (1) the number 
of digits to be taken in each group and (2) the actual osculator 
itself in each individual case hefore us. 

A few simple examples of each sort will clarify this: 

(1) Suppose the question is, Is 106656874269 divisible by 499 1 
Here, a t  sight, P2=5. This means that we have to 

split the given expression into 2-digit groups and osculate 
by 5. Thus, 

10 66 56 87 42 69 { 499 497 186 525 387 1 :. YE8 
(69X5=345; 345+42=387; 435+3+87=525; 5X25+5 
+56=186 ; 5 X86+66=497 ; 5 ~97+4+10=499 !) 

Or 
The osculation-results are 1066569087, 10666125, 

106786, 1497 and 499 :. YES 

(2) Is 126143622932 divisinle by 401 ? 

Here Q,=4 
- - . . 12 61 43 62 29 32 

' { -16 400 185 458 99 ) :. NO 
Or 

The osculation-results are 1261436101, 12614357, 
125915, 1199 and -385. :. NO 

(3) Is  69492392 divisible by 199 ? 

Here P,=2 
69 49 ] 199 463 92 \ :. YES 

or 
The osculation-results give 695107, 6965 and 199 

:. YES 

I (4) Is 1928264569 divisible by 5999 2 
Here Pa=6 

I 
.'. I :999 8 E 9  8 1 .-. YES 

Or 
The osculation-results are 1931678 and 599 :. YES 

I 

(5) Is  2188 6068 313597 divisible by 7001 ? 

1 Here Qa=7 
886 068 3 5  597 

." 1 -3 6127 3866 1 :. YES 

Or 
The osculation-results give 21 886 064 134, 21885126, 

1 21003 and 0. :. YES. 

(6) Is 30102 1300602 divisible by 99 ? 
Here P,=l 
As P,=l and continuous multiplications by 1 can 

make no difference to the multiplicand, the sum of the 
groups will suffice for our purpose : 
-: 30+10+21+30+06+2=99 :. YES. 
The second method amounts to the same thing and 

need not be put down. 

(7) Is  2130 1102 1143 4112 divisible by 999 ? 
Here PB=l 
and ..a 2+130+110+211+434+112=999 

:. (by both methods) YES. 

(8) I s  7631 3787 858 divisible by 9999 ? 
Here P4=1 
and .: =763+1378+7858=9999 

:. (By both methods), YES. 

(9) Is  2037760003210041 divisible by 9999 ? 
Here P,=l 
and .: 2037+7600+0321$0041=9999 

:. (By both methods) YES. 
37 
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( lo)  Is 5246 7664 0016 201452 divisible by 1001 ? I As P (in the present context) requires, for osculation, 
Here Q8=l ; and numbers ending in 9 (or a series of nines), we have to adopt 
.: ~==+676+648+016-201+452=221=13 x 17 a similar procedure for the same purpose; and, in the case of 
:. Divisible by 13 Q too, we have to apply a similar method for producing a number 

~ u t  1 0 0 1 = 7 x i i x 1 3  :. Divisible by 13 but not by 7 or which will terminate in 1 or a series of zeroes ending in 1. 
by11. :.NO 

The Smnd Category 
The second type is one wherein the given number is of 

neither of the standard types (which P and Q readily and instan- 
taneously apply to) but requires a multiplication for the 
transforniation of the given number to either (or both) of the 
standard forms and for the ascertaining of the P and Q (or both) 
suitable for our purpose in the particular case before us. 

The Process of Transformation 

In an earlier chapter (the one on "Recurring Decimals") 
we have shown how to convert a given decimal fraction into its 
vulgar-fraction shape, by so multiplying it as to bring a series of 
nines in the product. For examplf, in .the case of .i4285$, 
we had multiplied it by 7 and got .$I99999 (=I) as the product 
and thereupon argued that, because 7 X the given decimal =1, 
:. that decimal should be the vulgar fraction ) 

1 )  . i 4 2 8 S j x 7  . . 
=.999999=1 
:. x=) 

Similarly, with regard to .076923, we had multiplied it 
by 3 (in order to get 9 as the last digit of the product) ; argued 
that, in order to get 9 as the penultimate digit, (2) .i)76923 
we should add 3 to the already existkg 6 13 
there and that this 3 could be had only by 

- 
multiplying the original given decimal by 1 '; .230769 

0 ' 76923 
then found that the product was now a series -- 
of nines; and then we had argued that,, 999999=1 

.: 1 3 ~ ~ 1 ,  :. x must be equal to ,l,. And :. x=& 
we had also given several more illustratiorls of the same kind 
(for demonstrating the same principle and process). 

The Modus Operandi 
A few examples of both the kinds will elucidate the process 

and help the student to pick up his P and Q .  And once this 
is done, the rest will automatically follow (as explained above). 

(1) Suppose the divisor is 857. .: 857x7=5999, we call 
therefore a t  once say : Ps=6. 

The test and proof of the correctnees hcreof is that any 
multiple of the divisor in question must necessarily fulfil this 
condition i.e. on osculation by YS, niust yield 857 (or a 
multiple thereof). 

For instance, let us take 857 ~ 1 3  = 11141. AS PB=6 
:. 11$6 (141)=857! And this proves that our osculator is 
the correct one. 

(2) Let us now take 43. +.a 4 3 x 7 ~ 3 0 1 ,  :. Qa=3. 

Taking 43 x 3  (=129) for the test, we see 129 yields 
29x3-1=86;  and 80 is a multiple of 43 (bcing exactly 
double of it). So, our Q is correct. 

The significance of this fact consists in the natural 
consequence thereof, namely, that any number (which is really 
divisible by the divisor in question must obey this rule of divi- 
sibility by the P process or the Q process. 
N.B. :-Remember what has already been explained as regards P 

or Q being greater. 

In this very case (of 43), instead of multiplying it by 7, 
getting 301 as the product and ascertaining that Q,=3 is 
the osculator, we could also have multiplied the 43 by 3, got 
129 as the product, found P1=13 to be the positive osculator 
and verified it. Thus, in the case of 43 ~ 2 ~ 8 6 ,  :. 8$6(13)=86 
.= P,=13 is the correct positive osculator. 



Multiplication by 13 at  every step being necessarily 

more cumbrous than by 3, we should naturally prefer Q p 3  
(to P1=13). 

In fact, i t  rests with the student t o  choose between P and Q 
and (in view of the bigness or otherwise of multiplier-osculator 
etc.) decide which to prefer. 

(3) Ascertain the P and the Q for 137. 
137 :. P,=37 137 :. &,=I4 

27 103 - - 
959 41 1 

274 1370 -- - 
3699 141 11 - - 

Obviously &,=I4 is preferable (to PI=37). 

(Test : 137~8=1296 ': Q, gives 1296-0=1296 !) 

(4) Determine the P and the Q for 157. 
.: 157x7=1099 .-. Ps=ll 

And 167x93-14601 :. Q1=146. 
:. P,=ll is to be preferred 

(Tast :-I57 x7=1099 :. Pa gives 10+1089=1099) 

(5) Find out the P and Q for 229 
'.' 229~131=29999 A P4=3 

This Osculator being so eimple, the Q need not be 
tried at all. But on principle, *; 229 X 69=15801 
at  all. But on principle, .'. 229 x 69-15801 

:. Q,=159 (obviously s big multiplier) 

(Test for P4=3 
229 x 100=2/2900 :. P=3 gives 8702=229 ~ 3 8 )  

(6) Find P and & for 283 
283><53=14999 :. P8=15 

and '.' 283~47=13301 .'. Q8=133 

:. P8=15 is preferable 

(Test 283~4=1132;  1+15 (132)=1981=283~7) 

(7) Find P and Q for 359 
': 359 X61=21899 :. Pa=219 

i and ': 359X339=14001 .'. Q8=14 
Obviously Q8=14 is to be preferred. ! 

(Test : (i) 369x3=1077 .'. &,=I4 gives 14x77-1 

1 =lo77 

and (ii) 359 x 115~41285 .'. give 14 X285-41 
=3949=359 X 11) 

(8) Asct:rtain P and Q for 421 

i 
.: 421 )< 19=7999 .'. Ps=8 
and .: 491 ~81=34101 .'. Q8=341 
obviously P,=8 is the better one 

(Test : 421 X5=2105 :. P,=8 gives 2+840=842 
=421 X2) 

(9) Determine P and Q for 409 
.: 409 ~511=208999 :. P8=U)9 

and .: 409 X489=200001 :. Q,=2 
Obviously the Q osculator is preferable. 

(Test : 409 X 10M)=4/09000 
Q,=2 gives 18000-4=17996=409~44) . . 

Having thus studied the multiplex osculator tecbique 
and modus operandi, we now go on to and take up actual examples 
of divisibility (which can be easily tackled by the multiplex 
osculatory procedure). 

Model Applicatiow to Concrete Examples 
(1) Is 79158435267 divisible by 229 ? 

... 229 )( 131 -29999 .'. P4=3 

.: 1 ;;t5 ;;:& 5267 I 
But 5725=229 x 25 .'. YES 

(2) Is 6056200566 divisible by 283 ? 
': 283~53=14999 :. P,=15 . . 1 :226 1 1 

But 6226=283 x n  :. YES 



(3) Is 7392 60251 divisible by 347 ? 
:. 347 X 317=109999 .'. P,=ll 
. 7 

173664 :g! 6251 1 
But 73654=347 X212 :. YES 

(4) Is 867 311 7259 divisible by 359 ? 
.: 359)<39=14001 :. Q,=14 - 

673 117 ' 
1 764 3609 259 1 :. NO 

(5) Is 885648437 divisible by 367 1 
.: 367X3=1101 :. &,=I1 - - 

85 64 1 :34 66 314 :;3 [ 
But 734=367 X 2 :. 'YES 

(6) Is 490 222 8096 divisible by 433 ? 
.: 433~3=1299 :. P2=13 

02 22 80 ] 5 7  1292 399 1328 96 1 :. NO. 

(7) Is 51 898 888 37 divisible by 467 ? 
.: 467X3=1401 :. & -14 - a-- :. 51 88 88 :. YES { -467 -37 504 f:O 37 1 

N.B. :-The alternative method of successive mechanical oscula- 
tions is also, of course, available (but will prove generally 
less neat and tidy and will also be more tedious). 

(8) Is 789405 35994 divisible by 647 ? 
.: 647 X 17=10999 :. P,=ll 
. 78 940 535 I 11194 6110 11469 

But 1294=647 X2 :. YES 
(9) Is 2093 1726 7051 0192 divisible by 991 ? 

i (10) Is 479466 54391 divisible by 421 ? 
.: 421 x 19=7999 :. Ps=8 

i 47 946 { 1694 7205 3g1 1 NO 

(11) What change should be made in the first digit of the 
above number in order to render it divisible by 421 ? 

Alzswer :-As 1684 is exactly 4x421, the only change needed 
in order to reduce the actually present 1694 into 
1684 is the alternation of the first digit from 4 to 3. 

': 991X111=110001 :. Q,=ll. - . . 2093 1726 7051 
1-30721 -526 -;9 O l g 2  1 

But 30721=991 X331 :. YES 



CHAPTER XXXI 

SUM AND DIFFERENCE OF SQUARES 

Not only with regard to questions arising in connection 
with and arising out of Pythagoras' Theorem (which we shall 
shortly be taking up) but also in respect of matters relating to 
the three fundamental Trigonometrical-Ratio-relationships (as 
indicated by the three formulae Sin2 O+cos2 0=1, l+tan% 
6=Sec2 O and l+cota O= cosec2 6) etc., etc. we have often 
to deal with the difference of two square numbers, the addition 
of two square numbers etc., etc. And it  is desirable to have 
the assistance of rules governing this subject and benefit by them. 

Difference of two Square number8 

Of the two, this is much easier. For, any number can 
be expressed as the difference of two square numbers. The 
Algebraical principle involved is to be found in the elementary 
formnla as-bs=(a+b) (a-b). This means that, if the given 
number can be expressed in the shape of the product of two 
numbers, our task is automatically finished. And this "if" 
imposes a condition which is very easy to fulfil. For, even if 
the given number is a f rime number, even then it can be correctly 
described as the product of itself and of unity. Thus 7 ~ 7 x 1 ,  
17=17X1, 197=197x1 and so on. 

In the next place, we have the derived formula : 
(a+b)a-(a-b)'=.4ab ; and therefore ab can 

always come into the picture as a!!? '=i.e, 
(half the s~im)~-(half the difFe- (??)'-( 2 ) 
rence)2; and as any number can be expressed as ab, 
the problem is readily solved. And the larger the number 
of factorisations possible, the better. In fact, if we accept 
fractions too aa permissible, the number of possible 
solutions will be iiterall2/in$nite. 

For example, suppose we have to express 9 as the difference 
of two squares. We know that- 

The question, therefore, of expressing any number as the 
difference of two squares presents no difficulty a t  all ! 

The Sum of Two Square Numbers 

Inasmuch, however, as a*+b2 has no such corresponding 
advantage or facilities etc., to offer, the problem of expressing 
any number as the sum of two square numbers is a tough onc 
and needs very careful attention. This, therefore, we now proceed 
to deal with. 

A Simple Rule in. Operation 

We first turn our attention to a certain simple rule a t  
work in the world of numbers, in this respect. 

We need not go into the relevant original Siitras and 
explain them (especially to our non-Sanslirit-knowing readers). 
Suffice it for us, for our present purpose, to explain their purport 
and their application. 

Let us take a particular scrics of "mixed" fractions, 
namely,-li, 2,8, 3:, 4; , 5& etc. 
which fulfil three conditions : 

(i) that the integer-portion conslsts of the natural 
numbers in order ; 

(ii) that the nuillerators are exactly the same ; and 
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(iii) t h k  the denominators are the odd numbers, in order, 
commencing from 3 and going right on. 

I t  will be observed that, when all these fractions are 
put into shape as "improper" fractions, 

i.e. as 4, 9 a* $2 O 0  etc., etc. 
6 >  7 3  0 3 1 T  

the sum of D2 and Ne is invariably equal to (N+l)a! And the 
General Algebraical form being;, 

:. D,=zn+l ; and N=2n (n+l) 
:. Dm+Ne=(N+l)' 
o r .  (%1+1)~+4n~(n+ l)a=(2ne+2n+l)a 

The shape of it is perhaps frightening; but the t h i q  in 
itself is very simple : and the best formula is Da+Na=(N+l)a, 

This means that when a2 (given) f x2 is a perfect square, we 
can readily find out x4. Thus, for instance, 

(i) If a (the given number) be 9, 2n+l=9 :. n=4 
:. 4; is the fraction we want. And 92+40s=41a 

(ii) If a be 35, 2n+l=35 :. n=17 :. The fraction 
wanted is 173z=0# :. 36e+612a=613e. 

(iii) If a=5?, 2n+l=57 :. n=28 :. The required 
fraction is 28#+=34* :. 57e+1624a=16252 

(iv) If a=l4l,  2nf l=141 :. n=70 :. The fraction 
wanted is 70gT%= 5'$$ :. 141a+99408=994~4 

Note:-Multiples and sub-multiples too behave in exactly 

the same manner (according to Anur.iipya i.e. pro- 
portionately). For instance, 

Let a=36 :. %+l=35 :. n=17 :. The fraction 
wanted is 1 7 5 = ' 2  :. 358+612n=613a 
:. 70a+12242=1226a 

A fiinaplw Method (for the same) 
This same result can also be achieved by a simpler and 

easier method which does not necessitate the "mixed" fractions, 
the transforming of them into the "improper"-fraction-shape 
etc., but gives us the answer immediately. 

1 It will be observed that, in all the examples dealt with 

1 above. 
Since D2+Ne=(N+1)' 

:. ~ a = ( ~ + i ) s - N ~ = z N + l = N + ( N + 1 )  

In other words, the square of the given number is the 
sum of two consecutive integers a t  the exact middle. For instance, 

I if 7 be the given number, it8 square=49 which can be split up 
into the two oonsecutive integers 24 and 24 

:. 7a+24a=252. Similarly, 
(1) If a=9, its square (81)=40+41 :. 9a+402=41* 

(2) If a=35, its square (1226)=612+613 :. 35e+6128 
=613" 

(3) If a=57, its square (3249)-16244-1626 :. 572+ 
16248s16254 

I (4) If a=141, its squore (19881)=9940+9941 
:. 141'+9O4OS=b9418 

I and so on. And all the answers are exactly as we obtained 
before (by the first method). 

The Case of Even Nunabws 

Yes ; the square of an odd number is necessarily odd and I can be split up into two consecutive integers. But what about 

even numbers whose squares will always be even and cannot be 
1 split up into two consecutive numbers ? And the answer is that 

such cases should be divided off by 2 (and other powers of 2) 
until an odd number is reached and then the b a l  result should 
be multiplied proportionately. 

For example, if a=52, we divide it by 4 and get the 
odd number 13. Itssquare (169)=84+85 :. 13s+84a=862 
:. (multiplying all the terms by 4), we say : 522+336a=340a. 

I There are many other simple and easy methods by which 
we can tackle the problem (of aa+be=ca) by means of cluee and 1 conclusions deducible from 3q4a1.=,  5 a + ~ ~ e ~ 1 3 ~ ,  8'+15' 
~ 1 7 '  etc. But into details of these and other allied matters I 

we do not now enter. 



CHAPTER XXXII 

ELEMENTARY SQUARING, CUBING ETC. 
In some of the earliest chapters of this treatise, we have 

dealt, a t  length, with multiplication-devices of various sorts, 
and squaring, cubing etc., are only a particular application 
thereof. This is why this subject too found an integral place 
of its own in those earlier chapters (on multiplication). 

And yet it so happens that the squaring, cubing etc., of 
numbers have a particular entity and individuality of their 
own ; and besides, they derive additional importance because of 
their intimate connection with the question of the square-root, 
the cube-root etc., (which we shall shortly be taking up). And, 
consequently, we shall now deal with this subject (of squaring, 
cubing etc.), mainly by way of Preliminary Revision and Recapi- 
tulation on the one hand and also by way of presentation of 
some important new material too on the other. 

The Yivadanam Sutra (for Sqmm'ng) 

In the revision part of it, we may just formally remind 
the student of the YAVADUNAM formula and merely cite some 
examples thereof as a sort of practical memory-refresher : 

1. 97'=94/09 ; 
2. 872=74,/,69=7569 
3. lga=ll ,  S8 1=2S8 1=361 
4. 91a=82/81 
5. 9652=930,/225=931/225 
6. 113a=126,/69=12769 
7. 996'=992/016 
8. 998a=996/004 
9. 99978=9994/0009 

10. 10072=1014/049 
11. 9996a=9992/0016 
12. 9Wga=9998/0001 
13. 10172=1034/289 

The Anurqya Siitra (jor Cubing) 

This is new material. A simple example will, however, 

suffice to explain it : 
Take the hypothetical case of one who knows only the 

cubes oC the "firat ten natural numbers" (i.c. 1 to 10) and widies 
to go therebeyond, with the help of an intelligent principle and 
procedure. And suppose he desires to begirl with 11%. 

1. The first thing one has to do herefor is to put down the 

cube of the first digit in a row (of 4 figures in a Geometrical 
Ratio in the exact proportion subsistirlg between them). Thus- 

11s= 1 1 2 1 2 1 

1 3 3 1  

(ii) The second step is to put down, under the second and 
third numbers, just two tunes the said numbers themselves and 
add up. And that is all! 

A few more instances will clarify the procedure : 
(1) 123=1 2 4 4 8 8 (2) 138 = 1 3 9 27 

6 18 -- 



912 6 7 3 

or, better still, 978=(100-3)s 

N.B. :-If you start with the cube of the first digit and take 
the next three numbers (in the top row) in a GeometricaI 

( 303 ) 

Proportion (in t,he ratio of the original digits them- 
selves) you find that the 4th figure (on the right end) 
is just the cube of the second digit! 

The Algebraical explanation hereof is very simple : 

If a and b are the two digits, then our chart reads : 
a" a%+ ab3+bs 

2a'b+2aba 

aa+3asb+3ab'+ba 

and this is exactly (a+b)a ! 

Almost every mathematical worker k w 8  this ; but 
very few people apply  i t !  This is the whole tragedy a~id  the 
pathos of the situation! 

The YBvadCmm SQra (for Cubilzg) 
The same Y ~ V A D ~ N A M  Sfitra can, in view of the above, 

be applied for cubing too. The only difference is that we take 
here not the deficit or the surplus but exactly twice the deficit 
or the surplus as the case may be and make a few corresponding 
alternations in the other portions also, as follows : 

Suppose we wish to ascertain the cube of 104. Our base 
being 100, the excess is 4. So we add not 4 (as we did in 
the squaring operation) but double that (i.e. 8) and thus have 
104+8 (= 112) as the left-hand-most  ort ti on of the cube. 
Thus we obtain 112. 

Then we put down thrice the new exceee multi 
plied by the original exces~ (i.e. 1 2 x 4  = 48) and 112148 

put that down as the middle portion of the product. 

And then we affix the cube of the original 
excess (i.e. 64) as the last portion thereof. h d  the 112/48/64 
answer is complete. 

Some more illustrative instances are given below for 
familiarising the student with the new process (which is not 
really new but only a very useful practical applicatiom of the 
(a+b)s formula just above described : 



( m )  
(1) 103~=109/27/27 (because 9x3=27 ; and 33=27) 
(2) 1133=139/07/97 (because 39 x 133507 and 138=2197) 

5 21 =I442897 
(3) 1004~=1012/048/064 (because 12x4=48 and 4&64 
(4) 10005~=i0015/0075/0125 (because 15 x5=75 and 53=125 

(5) 9963=988/048/064=988/047/936 (.: 12 ~ 4 = 4 8  and 43=64 - 
(6) 933=79/47 143 (because 21 x -7=147 aud -73=-343 

1 -3 =SO4357 
(7) 99918=9973/0243/%% (because -27 x -9=243 

and -93=-729=9973/0242/9271 
(8) 10007~=1002I /0147/0343 
(9) 999993=90997/oooo3/wooi=99~97/oooo2~99999 

(10) 100~12~=~0oo36/00432/01728 

(I  1) 999983=99994/00012/0000~ =99994/00011199992 
(12) 1000007~= 1000021 /000147/000343 
(13) 9999923=999976/000192/~~~512 (because 24 x 8 =I92 

& g3=512 
Fou~th Power 

We know that (a+b)4=a4+4asb+6aab2+4ab3+b4. 
This gives us the requisite clue for raising any givc11 number 
to its fourth power. Thus, 

(1) 114 = 1 1 1 I I 
3 5 3 

The Binomial Theorrm 
The "Binomial Theorem" is thus capable of practical 

application and-in its more comprehensive Vedic form-has 
thus been utilised, to splendid purpose, in the Vedic Sutras. 
And a huge lot of Calculus work (both DiEerential and Integral) 

has been (and can bc) facilitated thereby. Bnt thcsc details, 
we shall hold over for a later stage. 

STRAIGHT SQUARING 

Reverting to the subject of the squaring of numbers, the 
student need hardly be reminded t,hat the methods expounded 
and explained in an early chapter and even in the previous 
chapter are applicable only to special cases and that a General 
formula capable of universal application is still due. 

And, as this is intimately connected with a procedure 
known as the Dwandwa Yoga (or the Duplex Combination 
Process) and as this is of still greater importance and utility a t  
the next step on the larlder, namely, the easy and facile extrac- 
tion of square roots, we now go on to a brief study of this pro- 
cedure. 

1 
The Dwandwa-Yoga (07 the Duplex Combination Process) 

I 
The term "Dwandwa Yoga" (or Duplex) is used in two 

different senses. The first one is by squaring ; and the second 

one is by Cross-multiplication. And, in the preser~t context, 

/ I it is used in both the senses (aa and 2ab). 

In the case of a single (central) digit, the square (aa etc.,) 
is meant ; and in the case of a number of even digits (say, a 
and b equidistant from the two ends), double the cross-product 
(2ab) is meant. 

A few examples will elucidate the procedure. 

Denoting the Duplex with the symbol D, we have: 

(1) For 2, D=22=4 

(2) For 7, D=49 
(3) For 34, D=2 (12)=24 
(4) For 74, D=2 (28)=56 

I (5) For 409, D=q (36)f 0=72 
(6) For 071, D=0+49=49 

I (7) For 713, D=2 (21)+la=43 

I (8) For 734, n = 2  (28)+38=65 

I 39 
I 



(9) D for 7346==2 x42+2 x 12==108 
(10) D for 26734=16+36+49=101 
(11) D for 60172=24+0+la=25 

(12) D for 73215=70+6+4=80 
(13) D for 80607=112+0+36=148 
(14) D for 77=2X49=98 
(15) D for 521398=80+36+6=122 
(16) D for 746213=42+8+12=62 
(17) D for 12345679=18+28+36+20=102 
(18) D for 370415291=6+126+0+ 40+1=173 
(19) D for 432655897=56+54+32+60+25=227 

This is merely a recapitulation of the Urdhva Tiryak 
process of multiplication as applied to squaring and needs no' 
exposition. 

Note :-If a number consists of n digits, its square must have 
2n or 2n-1 digits. So, in the following process, take 
extra dots to the left (one less than the number of 
digits in the given numbers). 

Or 1 1 0  ~z=1-2+1-6+~+0$9=80409 
Or (by YBvadzlnum Szitra)-784/1032=80409 

. . 8 8 9  
(8) 8 8 9 2 = ~ i 2 8 / ~ 0 8 / i 4 4 / 8 i = ~ g o 3 2 1  

2 
O r 1 1 7 = 0  0 0 1 1 1  i 

1-2- 9+0+3+2+1=790321 
Or (by YivadSnam S a r a )  

889a=778/11 1 '=789/ 321 =790/321. 
112 

2 
Or 1i022=1/-$11-5/0/4/4/4=80604484 
Or (by Yimdzlnam Szltra) 7956/102ZP=80604484 

Or 1 ~ = 1 - 2 - 1 0 - 3 + 8 7 6 9 = 7 8 9 7 8 7 6 ~  

Or (by Yduadanarn) 7774/11132=7774/ 8769=7897876g 
1123 



CHAPTER XXXIV 

VARGAMULA (SQUARE ROOT) 

Armed with the recapitulation (in the last chapter) of 
the "Straight Squaring method" and the practical application 
of the Dwandwayoga (Duplex Process) thereto, we now proceed 
to deal with the Vargamda (i.e. the Square Root) on the same 
kind of simple, easy and straight procedure as in the case of 
"Straight Division". 

The basic or fundamental rules governing the extraction 
of the square root, are as follows: 

(1) The given number is f is t  arranged in two-digit groups 
(from right to left) ; and a single digit (if any) left 
over (at the left-hand-end) is counted as a simple 
group by itself. 

(2) The number of digits in the square root will be the 
same as the number of digit-groups in the given 
number itself (including a single digit (if any such 
there be). Thus 16 will count as one group, 144 as 
two groups and 1024 as two. 

(3) So, if the square root contains n digits, the square must 
consist of 2n or 2n-1 digits. 

(4) And, conversely, if the given number has n digits, 
the square root will contain _n or + digits. 

2 2 

(5) But, in cases of pire decimals, the number of digits 
in the square is always double that in the square root. 

(6) The squares of the first nine natural numbers are 
1, 4, 9, 16, 25, 36, 49, 64 and 81. This means: 

(i) that an exact square cannot end in 2, 3, 7 or 8 ;  
(ii) (a)  that a complete square ending in 1 must have 

either 1 or 9 (mutual complements from 10) as 
the last digit of its square root ; 

( m )  
( b )  that a square can end in 4, only if the square 

root ends in 2 or 8 (complements) ; 
(c) that the ending of a square in 6 or 0 means that 

its quare  root too ends in 6 or 0 (respectively) ; 
(d) that a square ending in 6 must have 4 or 6 

(complements) as the last digit in its square 
root ; and 

(e) that the termination of an exact square in 9 is 
possible, only if the square root ends in 3 or 7 
(complements). 
In other words, this may be more briefly 
formulated thus : 

(a) that 1, 5, 6 and 0 at  the end of a number reproduce 
themselves as the last digits in its square ; 

(6) that squares of complements (from ten) have the 
same last digit. Thus, l a  acd 9% ; Z2 and 86 ; 32 and 
7a ; 4a & 6a ; ba and ba ; and Oa and 10% have the same 
ending (namely 1,4,9,6,6 and 0 respectively) ; and 

(c) that 2,3,7 and 8 are out of court altogether, as the 
h a 1  digit of a perfect square. 

Readily Available First Data. 

Thus, before we begin the straight extracting of a square 
root by "straight division" method, we start with previous 
knowledge of (1) the number of digits in the square root and 
(2) the f is t  digit thereof. Thus- 

(1) 74562814 N=8 .'. N in square root=N/2=4 ; and 
the first digit thereof is 8. .' 

(2) 963106713. N=9 :. Nin the square root=N+l=5 ; - & the &st digit thereof is 3. 2 
But (3) ('7104)a must contain 8 decimal digits. 

(4) 2/.16='4 - 
(5) 2/'0064='08 

(6) 2/.000049=007 



(7) 2/ .00007(0)= '008 etc. 
(8) 2/ .00000007= '0002 etc. . . 

(9) 2 / 5 9 = ' 3  

But (10) 2/3= 2/'==.9 etc. 

Modus qerandi (of Straight Squaring) 

The procedure of Straight Squaring as inculcated in the 
Vedic Siitras is precisely the same as in Straight Division but 
with this difference, namely, that in the former the Divisor should 
bc excatly double the &st digit of  he square root. 

N.B.  As a single digit can never be more than 9, it follows 
therefore that, in our method of straight squaring, no 
divisor above 18 is necessary. We may, of course, 
voluntaril?/ choose to deal with larger numbere ; but there 
is no wed to do so. 

Initial Chart 
We 'thus start our operation with an initial chart, like the 

samples given hereunder : 
(1) 5 : 29 : (2) 7 : 3 1 :  

4 :  : 1  : : 3  : 

4 :  2 :  : 2  : 

(3) 32 : 49 : (4) 4 0 :  9 6 :  
- : 7  : : : 4  : 

1 0 : 5  : 1 2 :  6 :  

(5) 1 : 63 84 : (6) 8 :  3 1 7 6 :  
2 :  : 1  4 :  : 4  -- 

2 : : 1  : 

(7) 44 : 44 44 : (8) 6 1 :  1 3 6 :  
1 2 :  : 8  141: : 12 : 

: 7  : : 6  : 

(9) 73 : 60 : 84 : (10) 6 : 00 00 01 : 
4 :  : 2  1 6 :  : 9  : : -- -- . . : 2 :  : 8 :  . . 

Further Procedure 

Let us now take a concrete case (the extraction of the 
square root of, say, 119716) and deal with i t :  

(i) In the above given general chart, we have not only 
put down the single first digit of the square root 
wanted but also prefixed to the next dividend-digit, 
the remainder after our subtraction of the square of 
that first digit from the left-hand-most digit or 
digit-group of the given number. 

1 1 :  9 7 1 6 :  And we have also set down 6 : : 
as our divisor, the exact double 

: 3 :  of the first digit of the quotient. 

(li) Our next Gross Dividend-unit is thus 29. Without 
subtracting anything from it, we simply divide the 
29 by the divisor 6 and put down II  : 6 : 
the second quotient-digit 4 and 6 : : 2 5 
the second remainder 5 in their - 

: 3 : 4  proper places as usual. 

(iii) Thus our third Gross Dividend is 57. From this we 
wbtract 16 (the square of the second quotient-digit), 
get 41 as the Actual Dividend, 11 : : 
divide it by 6 and set down the 6: : 2 5 5 : 

Q (6) and the R (5) in their -- 
: 3 : 4 6  

proper places as usual. 

(iv) Our third gross dividend-unit is 51. From this we 
subtract the Dwandwa Yoga (Duplex) (=48), obtain 
3 as the remainder, divide i t  11 : 9716 
by 6 and put d0w11 the & 6 :  : 2553 

1 
(0) and the R (3) in their y 3  : 46 .OO 
proper places. -- 



(v) This gives us 36 ss our last gross dividend-unit. 
From this we subtract 36 (the DwaItdw .Yoga of 
the third quotient digit 6) ; get 0 aa Q and as R. sC 
This means that the work has been completed, 
that the given expreseion 11 : 9 7 1 6 I 

a perfect square and that 346 6: : 2 5 5 3 1 
is ita square root. ~ n d  that : : 6.0 tt 
is all. 

COMPLETE 

Prmf of Completeness & Comedltess 

(1) A manifest proof bf the Complete-squaresesa of the 

given expression (and of the oonffitness of the square root 
ascertained) is by squaring the letter and finding the squam to 
be exactly the same as the given complete square. Thus, 

3468-9/24/52/48/36=119716 .'. YES. 

(2) But this is too mechanical. We obtain a neat and 
'I 

valid proof from the very faet that, if and when the process is 
continued into the decimal pert, all the quotient-digite en the 
decimal part) are found to be zeroee and the remainders too 
are all zeroes ! 

Proof to tjre aontrory 

A number can nd be an exact square in the following 
circumstances : 

(1) if i t  ends in 3, 3, 7 or 8 ; 
(2) if i t  terminates in an odd number of zeroes ; 

(3) if its last digit is 6 but its penultimate digit is even ; 

(4) if its last digit is not 6 but its  enu ultimate digit is 
odd ; and 

(5) if, even though the number be even, ita last two digits 
(taken together) are not divisible by 4 ; 

AND a square root cannot be correct if i t  fans to fulfil ,I 

any of the requirements hereinabove indicated : 

Some instructive illustrative examples are given below : 
(1) 5 : 2 9  : (2) 32: 4 9 

4 :  : 1 0  10: : 7 4  
-- -- 
: 2 : 3 (complete) : : 5 : 7 (complete : ---- - 

(3) 40 : 9 6 : (4) 1 : 6 3 84 
12: : 4 1  2 :  : 0 2 3 6  --- - 

: 6 : 4 (complete) : : 1 : 2 8 (complete) : --- ---------- 
(5) : 55: 2 0 4 9  (6) : 6 9 :  9 0 6 3 1  

14:  : 6 6 2  16: : 5 1 1 5 4 1  - - 
: 7 : 4 3.00 (complete) : 8 : 3 6 1.  0 0 0 --- - -- 

.: A complete square 
(7) 14: 53: 1 6 3  2 1 4  

: : 4 1 3 6 1 3 6 7  - -- 
: 7 : 2 9 1 '3 l...(incomplete) 

(8) 6 :  14: 0 4  7 5 0 4  
: : 5 8 1 1 1 3  - 
: 3 : 7 4 8 ...( incomplete) 

: 6 : 4 2 3 .O 0 0 :. A complete square ----- 
(10) 4 :  7 :  3 8 9  1 5 4  8 0  

: : 3 5 5 1 3 6  7 4  0 

: 2 : 7 1 8 3 .0000 :. An exact square 

(11) 10: 25: 7 4 5  4 7  6 
: : 0 7 4 5 5 1  
-- - 
: 5 : 0 7 4'0 0 0 .'. A perfect square 

(12) 12: 45: 3 1 9  8 2 4  
: : 9 9 6 3 1  

: 6 :  7 3 2.0 0 0 :. A complete square 



(13)16: 74: 5 7  5 3 1 4  49 
: : l o 9 1 3 1 9 1 2 7 7 4  

-- 
: 8 : 6 3 5 7 ' 0 0 0 :. An exact square -- 

(14) 14 : 52 : 4 4 3 9 0 7 (to 2 places of decimals) 
: : 3 6 4 1 3 7  

(15) 16 : 73 : 2 1 0 8 (to 3 decimal-places) 
: : 9 12 16 14 15 

: 8 : 5 5 . 6  3 3  ... 
(16) 8 : 18 : 1 3 4 5 1 2 6 (to 3 decimal-places) 

: 2 5 9 1 0  1617  - - 
: 4 : 2 ' 5 8 4 6 4  

(17) 6 : 13 : 8 7 0 0 0 (to 4 decimal-places) 
: : 4 6 6 8 8  12 

: 3:  7 '2424 ... 

(19) 6 : '00 : 09 : 2 4 0 1 6 0 (to 35 places) 
: : : 0 2  6 6  - 
: * 0 : 3 :  0 3 9 7  ... 

(20) 8 : 16. : 7 9 0 0 0 0 0 0 0 (to 5 places) 
: : 0 7 7 1 4 1 9  

(21) 10 : 27. : 1 3 0 0 0 0 0 0 0 0 0 (to 5 places) 
: : 2 1 9 1 0 8 1 6 7  

- 
: 5  . :  2 0 8 64 . . . 

(23) 8 : 19. : 7 0 6 4 1 2 8 14 (to 6 places) 
: : 3 5 10 10 15 17 13 

:4. : 4 3 9 1  9 0 .  . 
(24) 10 : 27. : 0 0 0 0 0 0 0 0 (to 6 places) 

: : % 10 9 12 17 10 - 
:5 .  : 1 9  6 1 5  2 4  ... 

(25) 6 : .09 : 0 0 4 6 13 (to 5 decimal-places) 
: : 0 0 0 4 3  1 

: . 3  : 0 0 0 7 5  . . . 
(26) 6 : .0009 : 1 3 4 0 0 0 0 0 (to 6 places) 

: 0 1 1 2  - 
: . 0 3  : 0 2 2 2  . . . 

(27) 12 : '0039 : 3 0 0 0 0 0 0 0 (to eight places) 
: 3 9 1 4  

(28) 18 : 00000083 : 1 0 0 0 0 0 0 0 (to 8 places) 
: 2 3 1 1 1 8 7 2 0  

: '00 0 9 : 11 5 9 ... 
(29) 18 : ,000092 : 4 0 1 0 0 0 0 0 (to ten places) 

: 11 6 6 13 15 14 24 32 

(30) 2 : 2 :  0 7  3 6  
: : 1 2  3 1  

: 1 : 4 4. 0 0 :. A complete square. 

Or, taking the first two digits together a t  the first step, 
we have : 

(22) 16 : '74: 1 0 7 0 0 000 (to 5 places) 
: : 10 5 14 19 14 

: 14 : 4. 0 :. An exact square 
--- - 



CHAPTER XXXV 

CUBE ROOTS 

of 
EXACT CUBES 

(Mainly by Inspection and Argumentation) 

(Well-known) FIRST-PRINCIPLES 

(1) The lowest cubes (i.e. the cubes of the f i s t  nine natural 
numbers) are 1, 8, 27, 64, 125, 216, 343, 512 and 729. 

(2) Thus, they all have their own distinct endings; and 
the is no possibility of over-lapping (or doubt as in the case 
of squares). 

(3) Therefore, the last digit of the cube root of an oxact 
cube is obvious : 

(i) Cube ends in 1 ; :. cube root ends in 1 ; 

(ii) C ends in 2 ;  :. C R ends in 8 ; 

(ii) C ends in 3 ; :. C R ends in 7 ; 

(iv) C ends in 4 ; :. C R ends in 4 ; 

(v} C ends in 5 ; .= C R ends in 5 ; 

(vi) C ends in 6 ; .= C R ends in 6 ;  

(vii) C ends in 7 ; :. C R ends in 3 ; 

(viii) C ends in 8 ; :. C R ends in 2 ; and 

(ix) C ends in 9 ; :. C R ends in 9 ; 

(4) In  other words, 

(i) 1, 4, 5, 6, 9 and 0 repeat themselves in the cube- 
endings ; and 

(ii) 2, 3, 7 and 8 have an inter-play of complem~nts 
(from 10). 

(5) The number of digits in a cube root is the same as the 
number of 3-digit groups (ih the original cube) including a 
single aigit or a double-digit group (if any such there be). 

(6) The first digit of the cube-root will always be obvious 
(from the first group in the cube). 

(7) Thus, the number of digits, the first digit and the 
last digit of tho cube root of an exact cube are the data with 
which we start, when we enter on the work of extractir~g 
the cube root of an exact cube. 

Examples 

(Let a, 1 and n be the symbols for the first digit, the last 
digit and n the number of digits in the cube root of an exact 
cube). 

(I)  For 271, 601, f=6, 1=1 and n=2 
(2)  For 4, 269, 813, P=l, L=7 and n=3 
(3) For 5, 678, f=l,  L=2 and n=2 
(4) For 33,076, 161, F=3, L=l  and n=3 
(5) For 83,453,453, F=4, L=7 and n=3 
(6) For 105, 823, 817, f=4, L=3 and n=3 
(7) For 248, 858, 189, f=6, L=9 and n=3 
(8) For 1, 548, 816, 893, f=l,  L=7 and n=4 
(9) For 73,451, 930, 798, f=4, L=Z and n=4 

(10) For 76, 928, 302, 277, f=4, L=3 and n=4 
(11) For 6, 700, 108,456, 013, f=l,  L=7 and n=6 
(12) For 62, 741, 116, 007, 421, f=3, L=l  and n=5 
(13) For 91, 010, 000, 000, 468, f=4, L=2 and n=5 and 

SO on. 

The Chart-Preliminary and Procedure 

The ~rocedure is similar to the one adopted by us in 
"Straight Division" and particularly in the extraction of square 
roots. The only difference is that our divisor (in this context) 
will not be double the first digit of the root but thrice the sqetare 
thereof. h s  we know the first digit a t  the very outset, our 
chart begins functioning as usual (as follows) : 

(1) 31 1 : 7 2 8  (a) 12: 13: 8 2 4 
: : 0 1  : : 5  -- -- 
: 1 :  : 2 :  -- -- 



Algebraical Priraciple C'tilised i 
Any arithmetical namber can be put into its proper 

algebraical shape as : 
a+10b+lOOc+1000 d etc. 

4 

Suppose we have to find the cube of a three-digit arith- 
metical number. Algebraically, we have to expand (a+lOb+ 

I 

1 0 0 ~ ) ~ .  Expanding it accordingly, we have : 
(~+lOb+100c)~=a~-~100b~+1000000c~+30a~b+300ab~ . 1 

+300a2c+30000aca+300000b%+300O00bca+ 6000abc. 

Removing the powers of ten and putting the result in i 

algebraical form, we note the following : 

(1) The units' place is determined by as. 

(2) The tens' place IS determined by 3 a% 

I 
(3) The hundreds' place is contributed to by 3 ab"3a2c 

(4) The thousands' place is fornied by b3+6abc 

(5) The ten thousands' place is given by 3aca+3bac 

(6) The lakhs' placc is constituted of 3bce ; and I 

(7) The millions' place is formed by ca. 
I 

N.B.  :-The number of zeroes in the various coefficients (in the 
Algebraical expansion) will prove the correctness of this 
analysis. 

Note :-If one wishes to proceed in the reverse direction, one 
may do 8s ; and, for facility's sake, the letters substi- 
tuted (for a, b, c, d etc.) may be convenient,ly put down 
as L, K, J ,  H etc. 

The Implications of the Priw'ple 

This Analytical sorting of the various parts of the 
algebraical expansion into their respective places, gives us the 
necessary clue for eliminating letter after letter and determining 
the previous digit. And the whole procedure is really of an 
argumentational character. Thus, 

(i) Prom the units'   lace, we subtract as (or L3) ; and that 
eliminates the last digit. 

(ii) From the ten's place, we subtract 3a2b (or 3LaK) and 
thus eliminate the penultimate digit. 

(iii) From the hundreds' place, we subtract 3ah+3aba 
(or 2 3LzJ-)-31ka) and there-by eliminate the pre- 
penultimate digit. 

(iv) From the thousands' place, we deduct b3+6abc ; 
and so on 

N.B. :-In the case of perfect cubes we have the additional 
advantage of knowing the last digit too, beforehand. 

Some instructive examples are given below : 

(1) Extract the cube root of the exact cube 33, 076, 161. 
Here a=3 ; L=1 ; and n=3. 
(L) L=I ... ~ 3 = 1 .  1 1 1  

:. Subtracting 1, we have 1 33 076 161 
1 1 33 076 16 

6 (K) 3LaK=3k (ending in 6) :. K=2 
Deducting 3K ; we have 1 33 0761 

(J) 312J+3LKa=3J+12 (ending in 1) :. CR=321 
:. aJ  ends in 9 :. J==3 I 

N.B. :--The last step is really unnecessary (as t l ~ e  first digit is 
known to us from the outset). 



(2) Extract the cube root of the exact cube 1728. 
Hero, a = l  ; L=2 and n=2 :. CR=12 - 

(3) Extract the cube root of the exact cube 13,824 
Here a=2 ; L=4 ; and n=2 :. CR=24 

(4) Determine the cube root of the exact cube 83,453,453. 
Here F=4 ; L=7 ; and N=3 
(L) L=7 :. L8=343. 83 453 453 

Subtracting this, we have 343 
83 453 11 

(K) 31baK=147K (ending in 1) 441 
:. subtracting 441 :' K=3 1 83 448 I 

(J) 3L?J+3LKB=147J+ 189 (ending in 7) :. 147J ends in 8 :. Jl-4 } :. CR=437 

N.B. :-Exactly as in the previous example. 

(5) Find out the cube root of the exact cube 84, 604, 519 
Here a=4;  L=9 ; and n=3 84 604 519 
(L) LEg ... L3=729 .= Subtracting this 729 

(K) 3LzK=243K (ending in 9) .: I<=3 
Subtracting 729, 845965 

(J) 3LaJ+3LKs=243J+243 (ending in 5) 
;. 243J ends in 2 .'. J=4  

1 8460:i, 
1 . CI(=439 

N.B. :-As before. 
(6) Extract the cube root of the exact cube 2488 58189 

Here a=6 ; L=9 ; and n=3. 2488 58189 
729 

(L) L=9 :. LS--729 :. Subtracting this, 24885 746 
(K) :. 3LaK=243K (ending in 6) 486 

:. K=2 :. Deducting 486) 1 248852 6 
(J)  3LaJ+3LKB=243J+108 (ending in 6) 

:. 243J ends in 6 :. J=B) } CR-629. - 
N.B. Same as before. 

(7) Determine the cube root of the exact cube 105823817 
Here a=4 ; L=3 ; and n=3 105823817 
(L) L=3 ;. L3=27. Subtrarting this 27 

10582379 
(K) 3L2K=27Ii (ending in 9) :. K=7 189 

Subtracting 189, we have 1 1058219 

(J) 3LBJ f 3LKa=27J+441 (ending in 8) 
:. J=4 :. Cn=473 

N.B. As before, 

(8) Extract the cube root of the exact cube 143 055 667 

Here a=5 ; L=3 ; and n=3 143 055 667 27 

(L) L=3 :. Ls=27. deducting this 
143 055 64 

(K) 3LaK=27K (ending in 4) :.K=2 54 

Subtracting 54, we have 1143 055 1 - 
(J) 3La J+3LK2=27J+36 (ending in 1) 

:. J=5  } . CR=523 

N.B. Exactly as before. 

(9) Bind the cube root of the cube 76,928, 302,277. 

Here a=4, L=3 ; }The last 4 digis are 2277 

and n=4. 27 - 225 

(L) ~ = 3  ... L8=27. Subtracting this, 
(K) 3LaK=27K (ending in 5) 1 135 

;. K=5 :. Subtracting 1351 09 

(J) 3LaJ+3LK2=27J+225 (ending 
in 9) :. J=2  } :. cR=4253 

N.B. :-But, if, on principle, we wish to determine the first 
I digit by the same method of successive elimination of 

the digits, we shall have to make use of another alge- 
braical expansion (namely, of (L+K+J+W8. And, 
on analping its parts as before into the units, the tens, 
the hundreds et,c., we shall tind that the 4th step will 

I reveal ~ L ~ H + ~ L K J + K S  m the portion t c  be deducted. 

So, 
(H) 3L%H+6 LKJ+KS=27H+180 30 : 09 

+125=27H+305 (ending in 3) 2 : 79 
I :. H=4 : and CR=4253 1 27: 3 

(10) Determine the cube mot of tlie ~ l l b r  11,345. 123, 223 
Here a=%;  L=7 : and n=4 11 345 123 223 

(L) L.=;7 :. L3=343. Subtracting it, 
343 

11 345 12 288 
I 



(K) 3LaK+147K (ending in 8) 688 I 1 (13) Determine the cube root of the cube 792 994219216 
.-. K=4. Deducting 588 111 345 11 70 I 

Here a=9 ; L=6 ; and n=4 792.994 219 216 
(J) 3LJ8+3LKg=147J+336 

1 
330 

I (L) L=6 .= L k 2 1 6 .  Deducting this, 21 6 
(ending in 0) :. J=2  1134508 4 792 994 219 00 
:. Subtracting 330, we have (K) 3L2K=lO8K (ending in zero) 540 

(H) 3LaH+6 LKJ+K3=147H+336 

1 I 
;. K=O or 5. Which k i t  to be 'l 772 994 2136 

+64=147H+400 (ending in 4). .'. CR=2247 
:. H=2 Let us take 5 (a pure gamble) 1 

I (J) 3LaJ+3LK8=108J+450 (ending 666 
N.B. The last part (for ascertaining the first digit) is reaUy in 6) :. J = 2  or 71 "7729961 47 

superfluous. Which should we prefer ? Let us 

(11) Extract the cube root of the cube accept 2 (another perfect gamble) 1 
12,278,428,443 

Here a=2 ; L=7 ; and n=4. 12 278 428 443 
(H) 3LaH+6LKJ+Ks-lO8H+36O 

+125=108H+485(ending in 7) 

I 
(L) L=7 :. L8=343 :. Deducting it 343 

12 278 428 10 :. H z 4  or 9 ! Which should we 

(K) 3LeK=147K (ending in 0) I choose ? Let us gamble again 
0 :. K=O. 112 278 428 1 

and pitch for 9 ! 1 :. CR=9266 

(J) 3L2J+3LK2=147J+O(endingin 1) 44 1 Here, however, our previous knowledge of the first digit :. J = 3  1 12 278 384 may come to our rescue and assure us of its being 9. But the 
:. Subtracting 441, we have I other'two were pure gambles and would mean 2 x 2  i.e. four 

(H) 3LzH+6LKJ+K3=147H+o+o hierent  possibilities ! 
and ends in 4 :. H=2 1 :. CR=2307 A Better Method 

N.B. As in the last example. At every step, however, the ambiguity cun be removed 
(12) Find the cube root of the cube 355 045 312 441 by proper and cogent argumentation ; and this may also prove 

Here a=7 ; L=l ; n=4 355045 312 441 I Qnte7~t ing .  And anything intellectual may be welcomed ; but 
(L) L=1 .: L3=1. Deducting it, 1 

l 
it should not become too stiff and abstract ; and an ambiguity 

(K) 3LaK=3K (ending in 4) 355045312 44 (in such a matter) is wholly u m h i ~ a b k  (to put i t  mildly). A ;. K=8 :, Deducting 24. 24 I better method is therefore necessary, is available and is given 
3550453122 

I 
below. 

(J) 3L2J+3 LI<2=3J+192 (ending 192 
in 2) ;, J=o All that has to be done is to go on dividing by 8 (until an 

355045293 
(H) 3L%+6LKJ+K3=3h+o+512 odd cube emanates), work the sum out and multiply by the 

and ends in 3 :. h=7 .., CR=7081 

N.B. Exactly as above. 

Note :-The above method is adapted mainly for odd cubes, 
If the cube be even, arnblguous values may arise at 
each step and tend to confuse the student'e mind. 

A 

proper multiplier thereafter. Thus, 
8) 792 994 249 216 

8) 99124 281152 

8) 12390535144. 

1 548 816 893 
1 1  1 



Here a=]; L=7 ; and n=4 

(L) L=7 :. La=343. 1648816893 
Subtracting this, 343 

154881656 
(K) 3L3K=147K (ending in 5) 736 

15488092 .'. K=5. Deducting 735. 672 
- 

(J) 3LaJ+3LIP=147J+525 (endingin l 2) .= J=l Deducting 672, we have : 1548 742 

(H) 3LaH+6LKJ+KB=147K+210 :. The cube 
+125=147H+335 (ending in 2) root is 1157 :. H=1 1,nd 
and :. CR (of the original cube=8~1167=9256 

N.B. Here too, the last step is .unnecessary (as the first digit 
is already known to us). 

(14) Determine the cube rot of the cube 2, 840, 362, 499, 528 
Here a = l  ; L=2 ; and n=5 
(L) L=? :. La=8 12840 362 499 528 

8 
:. Deducting this, we have )2840 362 499 52 

(K) 3L2K=12K and ends in 2 72 :. I<=l or 6 ! Let us take 6 ! 2840 362 4988 
Deducting 12K. ] 2.28 

(J) 3L2J3LK2=12J+216 (ending 2840 362 476 
in8) .-. J=1  o r 6 !  
Let us take 1 I 

(H) 3LaH+LKJ+K8 = 12H + 12 
+ 216=2H+238 (ending in 6) 

I 
:. H=4 or 9 : Let us take 4 ! 

(G) We need not bother ourselves 
about G and the expansion of 
( a + b + ~ + d + e ) ~  and so on. 

I Obviously G= 1 :. CR=14162 I 

But the middle three digits have bcen the subject of un- 
certainty (with 2 x 2 ~2 -8 different possibilities). We 

must therefore work this csse too out by the other-the 
unambiguous-method. 

o r 8 : 2 8 4 0 3 6 2 4 9 9 5 2 8  

-- - 
Here a=7 ; L = l  ; and n=4 

(L) L= 1 :. L'J= 1 I 365 045 312 441 
1 :. Subtracting this, we have 

355 045 312 44 

(K) 3LaK=3K (ending in 4) 24 

:. K=8 .: Subtracting 24, ] 355 015 312 2 

(J) 3L2J+3LKk3J+192 -, . , 
and ends in 2 :. J=0 19 2 
:. Subtracting 192, 1 355 045 13 

(H) 3L2H+6LKJ+KB=3H+O+512 
and ends in 8 :. H=7 :. Cube Root=7081 
CR of the origiml expression=14162 

(15) Find out the 12-digit exact cube whose last four digits are 
6741. 

Here a= 1 ; L = l  ; and n=4 . . . 6 7 4 1  
(L) L=l  :. L8=1 :. Subtractingit, - 1 

. . . 6 7 4  

(K) 3LaK=3K and ends in 4 2 4 
K=8 :. Deducting 24. . . .  6 7  

(J)3L%T+3LKs=3J+192andends . . 1 9 5  
in 5 :. J=l 1 . . .  7 ;. Subtracting 195, we have 

(H) 3LaH+6 LKJ+KS=3H+48+ 
612=3H+560 and ends in 7. A The original :. H=9 I Cube Root is 9181 

N.B. As we did not know the first digit beforehand, all the 

steps were really necessary. 

(16) A 13-digit perfect cube begins with 5 and ends with 0541. 
Find it and its cube root. 



Here a = l  ; L=l  ; and n=6. . . . O K 4 1  
(L) L=1 :. L3=l. Deducting it. 1 

0 5 4 
(K) 3LBK=3K :. K=8 2 4 

:. Subtracting 24, we have } . . . O 3 
(J) 3LzJ+3LK2=3J+192 2 1 3  

and ends in 3 :. J=7 ] . . .  9 
:. Deducting 213, we have 

(H) 3L2H+6LK.J+K3=3H+336 
+512=3H+848 and ends in 9 
:. H=7 

(J) And G=1 :. CR= 17781 
And the cube= 

1778lS 

CEAPTER XXXVI 

CUBE ROOTS (GENERAL) 

Having explained an interesting method by which the 
cube roots of exact cubes can be extracted, we now proceed 
to deal with cubes in general (i.e. whether exact cubes or not). 
As all numbers cannot be perfect cubes, i t  stands to reason that 
there should be a provision made for all cases. This, 
of course, there i s ;  and this we now take up. 

First Principla 

It goes without saying that a11 the basic principles ex- 
plained and utilised in the previous chapter should hold good 
here too. We need not, therefore, re-iterate all that portion 
of the last chapter but may just, by way of recapitulation, 
remind ourselves of the colzelusions arrived at  there and the 
mdw operandi in question. 

The Sepuence of the Various Dig& 

(1) The &st place by as 
(2) The second place by 3azb 
(3) The third place by 3ab2+3asc 
(4) The fourth place by 6abc+b3 

(5) The fifth place by 3aca+3bac 
(6) The sixth place by 3bc" 
(7) The seventh place by pa ; and so on. 

The Dividends, Qotients, and Remainders 

(1) The first D, Q and R are available a t  sight. 
(2) From the second dividend, no deduction is to be made. 
(3) From the third, subtract 3abz 
(4) From the fourth, deduct 6 abc+bs 
(5) from the fifth, subtract 3ac2+3b% 
(6) from the sixth, deduct 3bca 
(7) from the seventh, subtract c8. ; and so on. 



Let us take a concrete example, namely, 258 474 853 and 
see the modus o p e r a d i  actually 258 : 4 74853 

@ 

a t  work (step by step) 108 : : 42 100 

: 6 :  3 
0 

(a) Put down 6 and 42 as first Q and fist R by mere 
V i l o h ~ m  (inspection). 

(b) The second Gross Divident : 258 : 4 74853 
is thus 424. Don't sub- lo8 : : 4% 100 
tract any thing thereform. : 6 : 3 7 

Merely divide i t  by 108 
and put down 3 and 100 as Q, and R, 

(c) So, the third Gorse : 258 : 4 7 4853 
Dividend is 1007. Sub- 108 : : 48 100 89 4 

tract therefrom 3ab* (i.e. : 6 : 37 
3 x 6 ~ 3 ~  i.e. 162). The 
third Actual Working Dividend the&fofo;e is 1007- 
162=845. Divide this by 108 and set do* 7 and 89 II 

as Q8 and R, 

(d )  Thus, the fourth Gross 258 : 4 7 4 853 
Dividend is 894. Sub- 108 : : 42 100 89 111 
tract therefrom 6 abcf : 6 : 37 0 
c8=(756+27=783). -- 
So, the fourth actual working dividend is 894-783= 
111. Divide this again by 108 and put down 0 and 
111 as &,and R,. 

(e) Our next gross dividend is 258 : 4 7 4 8 5 3 
now 1118. Subtract there- 108 : : 42 100 89 111 47 
from 3aca+3b2c=882+189 :<: 
=1071. Therefore our fifth -- - 
actual working dividend is 47. Divide it by 108 and 
put down 0 and 47 a% Q6 and R, 

(f) Our sixth gross divi- 258 : 4 7 4 8 5 3 
dend is 475. Subtract 108 : :42/100/89/111/47/34 - 
therefrom 3bc2(=441) : 6 : 3 7 0 0 0 

So, our Q, and R, - (complete cube) 
now are 0 and 34. 

(g) Our last gross dividend is thus 343. Subtract CP 
(~343) therefrom and set down 0 and 0 as our Q, 
and 6, 

This means that the give11 number is a perfect cube, 
that the work (of extracting its cube root) is over and that 
the cube root is 637. 

N.B. Proof of the correctness of our answer is, of course, 
readily available in the shape of the fact that 63V is the 
given number. But this will be too mudely and cruelly 
laborious. Sufficient proof, however, is afforded by the 
very fact that, on going into the decimal part of the 
answers, we find that all the quotients and all the remain- 
der sare zeroes. 
An Incomplete cube is now dealt with as a sample : 

Extract the cube root of 417 to 3 places of decimals 
Here the divisor is 147. 

417.: 0 0 0 0 
147 : 3 43 : 74 152 155 163 

7 4 7 1 -- - 
(a)  Here Q, and R1=7 and 74 

(b)  :. The second gross dividend is 740. No subtraction 
is required. :. Dividing 740 by 147, we get 4 and 
I52 as Q, and Ra. 

(c) :. The third gross dividend is 1520. Subtracting 
3aba (=336) therefrom, we have 1184 as our third 
actual working dividend. We divide it by 147 and put 
down 7 and 155 as our Q8 and R,. 

(a) Our fourth gross dividend is 1550. We subtract, 6abc+ 
b8 (=1176+64=1240) therefrom, obtain 310 as our 
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fourth actual working dividend, divide it by 147 and 
set down 1 and 163 as our Q, and R,. 

(e) Our next gross dividend is 1630. We subtract 3acS+ 
3 b h  (=1029+336=1365) therefrom, get 265 as our 
fifth actual working dividend, divide it by 147 ; and 
E.O on. 

Note :-The divisor should not be too small. Its ultra-smallness 
will give rise to big quotients (sometimes of several 
digits), the insufficiency of the remainders for the 
subtractions to be made and other such complications 
which will confuse the student's mind. 

In  case the divisor actually happens to be too small, 1 
two simple devices are available for surmounting this difficulty. 

(i) Take the first four (or 5 or 6) digits as one group and 
extract the cube root. For example, suppose we 
have to find out the cube root of 1346, 085. Our 
chart will then have to be framed thus: 

363 : 1, 346 : 086 I 

: 1 331 : 16 
4 

: 11 : -- 
Let us now take an actual concrete example and apply 

this method for extracting the cube root of 6334626 : 
: 6334 : 6 2 6 

972 : 6 832 : 502 166 312 1944 

: 18 : 5 0 2 ... ... 

(a) Q1=18 ; R,=502 ; and Divisor (D)=972. 

(b) No subtraction being needed at  this point, divide 5026 
I 

by 972 and put down 5 and 166 as Q, and R,. 

(c) Our third gross dividend (G.D) is 1662 ; subtract 3abs 
(=1350) from 1662, divide the resultant. Actual I 

dividend (AD) i.e. 312 by 972 and set down 0 and 312 
as Qg and RI. 

-. 

(a) Our next GD is 3125. "Subtract 6abc+bs (=0+126= 
125) from 3125, divide the AD (3000) by 972 and put 
down 2 and 1944 as Q4 and R4. and so on, 

Or, Secondly, multiply E (the given expression) by 
28, 33, 43 or 53 etc., (as found necessary and most 
convenient) find the cube root and then divide the CR 
by 2, 3, 4, 5 etc. For instance, instead of taking 3 
(as the divisor), take 3 ~ 4 8  (=3 ~64=192),  find the cube 
root and divide i t  by 4. 

Here again, a concrete example may be worked out by 
both the methods : 

First Meihod 
(a) Ql=l ; R,=l;  and D=3 2 :  0 0 0 0  

3 :  : 1  4 1 0 2  
: 1 :  26 

(b) Now, GD=AD=lO. Divided by 3, it gives 2 and 4 as 

Q ,  and R,. 
(c) The third GD is 40. From this subtract 3ab' (=12). 

After this subtraction, tho AD is 28. Divide this by 

3 and put down 6 and 10 as Q, and Rg. 
(d) The fourth GD is 100. From this deduct 6abc+ba 

(=72+8=80). The AD is 20. 

NOW, as for dividing this 20 by 3, the directly apparent 
Q4 and R4 are 6 and 2. But the actual quotient and Remainder 
are difficult to determine (because of the smallness of the divisor) 
and the insufficiency of the Remainders for the next subtrac- 
tions and a good number of trial digits may fail before one can 
arrive at  the correct figures ! This is why the other method 
is to be preferred in such cases. And then the working will 
be as follows : 

Multiplying 2 by b3, 250 : 0 0 0 
we get 250. 108 : : 34 124 196 332 

: 6 : 2 9  9 . . .  
(a) Q, and Rl=6 and 34 
(b) Es=340. Dividing this by 108, we have Q,=2 and 

R,=124. 



(c) 3abP=72. Deducting this from 1240, we get 1168, 
Dividing this by 108, Q,=9 and Rs=196 

(d) 6abc+bs=648+8=656 .'. The Working Dividend 
=1960-656=1304. Dividing this by 108, we have 
Q4=9 and R4=332 :. The CR=6.299- 
:. Dividing by 5, the actual cube r00t=1.259- 

(2) Let us take another 1500: 0 0 0 
concrete example i.e. 363 : : 169 238 400 387 
312. Wemultiply : 1 1 :  4 4 7 ... 
12 by 63 and put 
1500 down as the Total Dividend. And we take the 
first four digits as one group. 

(a) Thus Q,=11 and R,=169 

(b)  Dividing 1690 by 363, we have Q,=4 and R,=238 

(c) &ba=528 :. Working Dividend=2380-528=1852 
:. Dividing it by 363, we have Q,=4 and R=4W 

(d) 6abc+bs=1056+64=1120. Deducting this from 4000, 
we get 2928. Dividing this by 363, Q4=7 and 
R=387 

:. The CR=ll.447 etc. 
:. The cube root of the original E=2.289.. . 

I 
Some more examples may be taken : ! 

(1) (a) E=1728 ; &,=I ; 
D=3 ; and R1=O 

: 1 :  2 . 0 0  

(exact cube) 

(b) 7 divided by 3 gives 2 and 1 as Q, and R, 1 
(c) Third Gorss Dividend=12 ; 3aba=12 ; :. Actual 

I 

I 

dividend=O :. Qs=O and R,=O 1 

(d) Fourth gross dividend=8 ; 6abc+b8=0+8=8 
:. Subtracting the latter from the former, Q,=O I 

and R4=0 
:. The CR=12 

N.B. The obvious second proof speaks for itself. 

(2) (a) Here E=13824 ; D=12 ; 1 3 :  8 2 4  

Q,=2 ; and R1=5 1 2 :  : 5  1 0 6  
: 2 :  4 . 0 0  

(Perfect cube) 
(b) ii gives Q,=4; and R,=10 

(c) Gross Dividend=102 ; 3aba=96. 
:, Actual dividendz6. Divided by 12, this gives 

QS=o and R3=B 

(d) G.D=64; 6abc+bS=0$64 .'. A.D=O .-. Q4=0 
and R4=0 :. The CR is 24. 

(3) Here E=33, 076, 161 ; Q1=3 ; D=27 ; and R1=6 
(a)  Q1=3 ; and R1=6 

2 7 :  33 :  - : 6 6 4 2 0 0  0 7 6 1 6 1  
3 . 2 1 0 0 0  

(complete cube). 

(b) GD=AD=60 ; Divided by 27, this gives 2 &6 as 
&, and R, 

(c) GD is now 07 ; 3aba=36 :. A.D=31. Divided by 

27, this gives us 1 and 4 as Q, and R,. 

(d )  GD is 46 ; 6abc+b3=36+8=44 :. AD=2 And, 
divided by 27, this gives 0 and 2 as Q, and R,. 

(e) GD is 21 ; 3aca+3b2c=9+12=21 :. AD=O ; and, 

divided by 27, this gives 0 and 0 as Q6 and R,. 

(f) GD is 6 ; 3 b c k 6  .: AD=O. And, divided by $7, 
this gives us 0 and 0 as Q, and Re 

(9) GD=1 ; c3=1 ; AD=O. Divided by 27, this gives us 
o and 0 as Q, and R, :. The CR is 321. 

N.B.-The second proof is clearly there before us. 

(b) GD=An=370 : and, divided by 48, this gives us 0 
and 82 as Q, and R, 



(c) GDe820 ; 3abL438 :. AD=388. and, divided 
by 48, this gives us 5 and 148 as Q, and R, 

t 

( d )  G.D=1480 ; and 6abc+b8=720+216=936 ; 
:. AD=544. And this, divided by 48, gives us 9 
and 112 as Q4 and R4 

(e) GD=1120 ; and 3aca+3bPc=300+540=840 
:. AD=280. And, divided by 48, this gives 5 
and 40 as Q, and R, ; and so on. 

(5) E=29791 

(a) Here Q,=3 ; and R1=2 ; and D=27 

I (b) GD=AD=27 ; and, divided by 29: 7 9 1  
27, this gives us 1 and 0 as 27 : : 2 0 
Qg and Rg. : 3:  1.0 

(completc cube) 

(c) GD=9 ; and 3ab9=9 ; :. AD=O, and, divided by 27, 
this gives us 0 and 0 as Q, and R, :. The CR ia 31. 

N.B. :-The proof is there-before us as usual. 

(6) The given expression (E)=83, 453, 453 

(a) Q1=4 ; R1=19 ; and D=48. 

(b) GD=AD=194. : 83 : 4 5 3 4 5 3 
And, divided 48 : : 19 50 61 82 47 34 
by 48, this : 4 : 3 7. 0 0 0 (exact cube) 
gives us 3 and 50 as Qa and R, 

(c) GD=505 ; and 3aba=108 :. AD=397. And, divided 
by 48, this gives us 7 and 61 as Q, and R, 

(d) GD=61-3 ; and 6abc+b8=504+27=53i :. AD=82 
And, divided by 48, this gives us 0 and 82 as Q4 & R, 

(e) GD=824 ; and 3ac8+3bBc=588+189=777 :. AD 
=47 And this, divided by 48, gives us 0 and 47 as 

Q5 R, 
(f) GD-3bcS=475-441=34. :. Q6=0 and R,=34 
(g) GD=343; and c3=343 :. AD=O :, Q7=R7=0 

:. The CR is 437. 

N.B. :-The proof is there as usual. 

(a) Q1=4 ; 84: 6 0  4 5 1 9  
D=48 ; 48 : : 20 62 80 129 80 72 - - 
and R,=20 : 4:  3 9 . 0 0 0 (perfect cube) 

(b) GD=AD=BO6. And, divided by 48, this gives us 3 
and 62 as Q, and R, 

(c) GD=620 ; and 3ab2=108 :. AD=512. And, divided 

by 48, this gives us 9 and SO as Q, and R, 

(d) GD=804 ; and 6abc+b8=648+27=675 :. AD=129. 
And, divided by 48, this gives us 0 and 129 as Q4 & R4 

(e) GD=1295 ; and 3ac8+3b'c=972+243=1215 
:. AD=80. And, divided by 48, this gives us 0 and 
80 as Qr and R6 

(f) GD=80l ; and 3bca=729 :. AD=72. And, divided 

by 48, this gives us 0 and 72 as Q6 and Re 

(9) GDr729; and C k 7 2 9  :. AD=O :. Q7=0 and R,=O 
:. The CR is 439 

N.B. :-The proof is there as usual. 

(8) E=105, 823, 817 

(a) Q1=4 ; : l o b :  8 2 3 8  1 7  
R,=4 ; 48 : : 41 82 90 56 19 - 2 

and D=48 : 4 : 7 3. 0 0 0 (complete cube) 

(b) GD=AD=418. And, divided by 48, this gives us 
7 and 82 as Q, and RI 

(c) GD=822 ; and 3aba=588 :. AD=234 ; and, divided 
by 48, this gives us 3 and 90 as Q3 and Rs 

(d) GD=903 ; and 6 abc+bS=504+343=847 :. AD=56. 
And, divided by 48, this gives us zero and 56 as Q4 & RI 

(e) GD=568 ; and 3ac8+3b%=108+441=549 :. AD 
=19. And divided by 48, this gives us zero and 19 

as Q5 & R, 



(fl GD=lgl ; and 3bc2=189 :. AD=2 ; and, divided 
by 48, this gives 11s zero and 2 as Q, and Re  

(g) GD=27 ; and C3=27 :. A1)=0 :. 0,=0 and R,=O 
:. The CR=473 

N.B. :-The proof is there as usual. 
(9) E=143, 055, 667 143: 0 5 5 6 6 7  

75: : 18 30 20 17 5 2 
: 5 : 2 3 . 0 0 0 (exact cube) 

(a) Q1=5 ; R1=18 ; and D=75 
(b) GD=AD=l80; and, divided by 75, this gives us 2 

and 30 as Q2 and Ra 
(c) GD=305 ; and 3aba=60 :. AD=245 ; and, divided 

by 75, this gives us 3 arid 20 as Q3 and Rs 
(d) GD=205 ; and 6abc+ba=180+8=188 :. AD=17. 

And, divided by 75, this gives 11s 0 and 17 as Q4 and R4 
(e) GDL176; and 3a~2+3b~~=135+36=171 ... AD=5. 

And, divided by 75, this gives 0 and 5 as Q5 and Rs 
( j )  GD=56 ; and 3bcZ=54 :. AD=2 ; and, dikided by 

75, this gives 0 and 2 as Q ,  and R,. 
( g )  GD=27 ; and c3=27 :. AD=O :. Q,=O and R7=0 

:. The CR is 523 

N.B.  :-The proof is there ao, usual. 

(a) Q1=6; R1=32 ; and D=108 
(b) GD=AD=328. And, divided by 108, this givcs us 2 

and 112 as Q2 and R 2  
(c) GD=1125 ; and 3ab2=72 :. AD-1053 ; and, divided 

by 108, this gives us 9 and 81 as Q3 and RS. 
(d) CD=818 ; and 6abc+b8=648+8=656 :. Al)=162. 

And, divided by 108, this gives 0 and 162 as Q4 & R, 
(e) C*D=1621 ; and 3aca+3b2c=1458+108=1506 

:, AD=55. And, divided hy 108, thisgives us 0 and 
55 as Q6 and R,. 

(f) GD=558 ; and 3bc2=486 :. U = 7 2  ; and, divided by 
108, this gives us 0 and 72 and Qe and .Re 

(g) aD=729 ; and Ca-729 :. AD=O ; Q,=O and R7=0 
:. The CR is 629 

N.B. :-The proof is there as usual. 

Note :-The cubc root in this case being of four digits, the 
method obtained from the expansion of (a+b+c)s 
will naturally not suffice for this purpose ; and we &all 
have to expand (a+b+c+d)a and vary the above pro- 
eedure in accordance therewith. This is, of course, per- 
fectly reasonable. 

The Schedule of Digits 
The Analytical digit-schedule for (a+b+c+d)' now stands 

as follows : 
(a) First digit (9 zeros)=~S-- 
(b) Second digit (8 zeros)=3a2b- 
(c) Third digit (7 zeros)=3ab2+3aac 
(d) Fourth digit (6 zeros)=6abc+bs+3a2d 
(e) Fifth digit (5 zeros)=6abd+3ac2+3b"c- 
(f) Sixth digit (4 zeros)=6acd+3bc2+3b2c- 
(g) Seventh digit (3 zeros)=6b~d+3ad~+c~- 
(h) Eighth digit (2 zeros)=3bd2+3c2d- 
(i) Ninth digit (1 zero)=3cda- 
(j) Tenth digit (no zero)=da 

Consequent Subtractio~ 

(1) Q, and R, by mere inspection. 
(2) Q2 and R 2  hy sinlple division (without ally subtraction 

whatsoever). 

(3) Prom all the other Gross Dividends, subtract : 
(3) 3abz 
(4) 6abc+ba 

(5) 6abd+3ac2+3b2c 
(6) 6acd +3bc2+3b2d 
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(7) 6bcd+3ada+cS 
(8) 3bda+3cSd 
(9) 3cd8 

(10) d8 
respectively, in order to obtain the actual working dividend 
and thenoe deduce the required Q and R. 
Note :-It will be noted that, just as the equating of d to zero 

in (a+b+c+d)S will automatically give us ( a + b + ~ ) ~  
exactly so will the substitution of zero for d in the above 
schedule give w the necessary schedule for the 
three-digit cube root. 

As we go higher and higher up (with the number of digits 
in the cube root), the same process will be found at work. In 

other words, there is a general hrmula for n terms (n being any 
positive integer) ; and all these are only special applications 
of that formula (with n equal to 2, 3 , 4  and so on). This general 
form of the formula, we shall take up and explain a t  a later stage 
in the student's progress. 

I n  the meantime, just now, we explain the application of 
thc (a+b+c f d)3 schedule to the present case. 

Application to the Present Case 
11: 3 4  5 1 2  3 2 2 3 

12: : 3 9 22 37 59 76 69 62 34 - 
: 2 : 2 4 7' 0 0 0 0 (exact cube) ---- 

(a) Q1=2; R,=3 ; and Divisor is 12 

(b) GD=AD=33. Dividing this by 12, we get Q,=2 and 
R,=9 

(c )  GD=94 ; and 3abL24.  :. AD=70 :. Q3=4 and R,=22 

(a) GDs2.25 ; and 6abc+b3=96+8=104 ; :. AD=121 
;. Q4=7 and R4=37 

( e )  GD=371 ; and 6abd+3ac2+-3b2c=168f96$48=312. 
:. AD=59 :. Q,=O and R,=59. 

(f) m = 5 9 2  ; and 6aod+3bc2+3bad=336+96+84=516 
D=76 :. QO=O and Re=76. 

(9) GD=763 ; and 6bcd-+3ad2+cS=336+294+64=694 
:. AD=69 .: Q7=0 and R7=69 

(h) GD=692 ; and 3bd2+3c2d=294+336=630 :. AD=62. 
.'. Qs=O and R,=62 

(i) GD=622; and 3cdB=588 :. AD=34 :. Q,=O and 
R,=34 

Cj) GD=343 ; and ds=343 :. ADZ0 :. Q1,=0 and R l o = ~  
:. The cube root is 2247 

N.R. :-The ocular proof is there, as usual. This is the usual 
~roeedure. There are certain devices, however, n hicli 
can help us to over-come all such difficulties ; and. 
if and when a simple device is available and can serve 
our purpose, i t  is desirable for us to adopt it and minimise 
the mere mechanical labour involved and not resort 
to the other ultra-laborious method. 

The devices are therefore explained h~rcunder : 

The First Dewice 
The first device is one which we have already made use of, 

namely, the reckoning up of the first 4, 6 or 6 digits as a group 
by itself. Thus, in this particular case : 

: 1 1 , 3 4 5 :  1 2 3 2 2 3  
1452 : 10 648 : 697 1163 412 363 62 34 

: 22 : 4 7. o 0 0 (complete cube) 

(a)  Q1 (by the same process) is the double-digit number 
22; R1=697; and D=1452 

(b) GD=AD=6971 ; and, divided by 1452, this gives us 

4 and 1163 as Qa and R2  

(c) GD=11632 ; and 3ab2=lQ66 :. AD=10676 ; a d ,  
divided by 1452, this gives us 7 and 412 as Q, and R8 

(a) GD=4123 ; and 6abc+b3-3696+64=3760 :. AD= 
363 ; and, divided by 1452, this gives us 0 and 363 
as Q, and R, 



(e) GD=3632 ; and 3ac2f 3b2c=3234+336=3570 
:. AT)=62 ; and, divided by the same divisor 1452, 
this gives us zero and 62 as Q5 and Rs 

(f) GD=622 ; and 3bc8=588 :. AD=34. SO Q8=0 

and R6=34 

(g) G D 4 3  ; and c3=343 :. A D 4  :. Q,=O and R,=O 
:. The C.R.=2247 

N.B. :-(I) And the Proof is there before us, as usual. 
(2) By this device, we avoid the complication caused by 

shifting from (a+b+c)3 to (a+b+c+d)%. It ,  
however, suffers from the draw-back that we have 
first to find the double-digit Q, cube it an& subtract 
i t  from the first five-digit portion of the dividend 
and that all the four operations are of big numbers. 

Second Device 

This is one in which we do not magnify the first group 
of digits but substitute (c+d) for c all through and t l~us  have 
the sime (a+b+c)a procedure available to us. But, after all, 
it is only a slight alteratior~ of the first device, whereby, instead 
of a two-digit quotient-itam a t  the commencement, wc will be 
1~2~viag exactly the sanle thing a t  the end. 

The real desideratu~n is a formula which is applicable 
not only to two-digit, three-digit, or four-digit cube roots but 
one which will be automatically and u~liversally applicablc. But 
this we shall go into a t  a later stage of the student's progress. 

In  the meantime, a few morc illustrative instances are 
given hereunder (for further elucidation of-or a t  least, the 
student's practice in, the methods hereinabove explained : 

(1) E=12, 278, 428, 443. 

Here too we may follow the full procedure or first ascertain 
t l ~ c  f i rs t  two-digit portion of the cube root of 12, 278, treat the 
whole five-digit group as one packet and extract the cube root 
of the wllole given expression in the usual way. The procedure 
will t l l o ~ ~  bt? as follows: 

(i) Single-digit method 
12: 2 7  8 4 2 8 4 4  3 

12: : 4 6 1 3 2 7 2 2 3 3 4 4 3 3 4  

: 2 :  3 o 7. o o o o (perfect cube) -- 
(a)  Q,=2; R1=4; and D=12 

(6 )  GD=AD=42 :. Q,=3 and Ra=6 

(c )  G ~ = 6 7  ; and 3ab2=54 ; :. AD=13 :. Q,=O and 
Ra=13 

(d) GD=138; and 6abc+bs=0+27=27 :. AD=111 
:. Q,=7 and R,=27 

( e )  GD=274 ; and 6abd+3ac2+3b2c=252+O+O=252 ; 
:. AD=22 :. Q,=O and R,=22 

( j )  GD=222 ; and 6acd $ 3bc2 + 3b2d = 0 + 0 + 189 
:. AD=33 :. Qd=O and R6=33 

(g) G D = 8  ; and 6bctl+3ada+cs=0$294+O=294 
:. AD=44 :. Q7=0 arid R,=44 

(h)  GD=444 ; and 3bd2+3c2d=441+O=441 :. AD=3 

:. Q8=0 and R8=3 

(i) QD=34 ; and 3cdLO :. A1)=34 :. Q,=O and 
R,=34 

(j) GD=343 ; and da=343 :. AD=AO, Qlo=O 
and Rlo=O 

:. The CR=2307 

N.B. :-The poof is before us, as usual. 

(i) Two-Digit method 

Pretimiwry Work : 12 : 278 
12 :  : 4  

: 2 : 3. .. 
:. Q, (of two digits) is 23 ; 

12278 : 4 2 8 4 
1587 : 12167 : 111 1111 33 338 



(a) Q, (of two digits)=23 ; R1=lll  ; and D=1587 

(b) GD=AD=1114 :. Q,=O; and Ra=1114 

(c) GD=11142 ; and 3aba=0 :. AD=11142 :. Q9=7 & 
R3=33 

(d) GD=338 ; and 6abc+b3=0 :. AD=338 :. Q4=0 & 
R=338 

(e) GD=3384 ; and 3aca+3b2c=3381+ 0=3381 :. AD=3 
:. Q5=0 and R5=3 

(f) GD=34 ; and 3bc2=0 :. AD=34 :. Q6=0 & R6=34 

(g) GD--343 ; and d3=343 :. AD=o, Q7=0 and R,=o 
:. The CR is 2307 

N.B. :-The proof is before us, as usual. 

(2) E=76, 928, 302, 277. 

(i) Single-digit method 

: 7 6 :  9 2 8 3 0 2 2 7 7  
48: : 12 33 44 56 59 44 29 13 2 --- 

: 4 :  2 6 3. 0 0 0 0 (Exact cube) 

(a) Q1=4 ; R,=12; and D=48 

(b) GD=AD=129 :. QB=2 and R,=33 

(c) GD=332; and 3 a b h 4 8  :. AD=284 ... QsZ5 & 
R,=44 

(dl GD=448 ; & 6abc+bs=24o+s=2as :. AD=2oo 
:. Q4=3 and R,=56 

(e) GD=563 ; & 6abd+3ac2+3b2c=144+300+60=5~4 
:. AD=59 :. Q5=0 and R,=59 

(f) GD=59O ; & 6acd+3bca+3bed~360+150+36=546 

:. AD=44; :. Q6=0 and RB=44 

(g) GD=442 ; and 6bcd+3adB+cS=180+10S+125=4i3 

:. AD=29 ; :. Q,=O and R7=29 

(h) GD=292 ; and 3bd2+3cBd=54+225=279 :. AD=13 
:. Qs=O and Re=13 

(d) GD=137 ; and 3cd2=135 .*. AD=2 :. Q,=O and 
R,=2 

(j) GD=27 ; and da=27 :. AD=O . . Ql, =O and 
R,,=O :. The CR=4253 

N.B. :-Proof as usual. 

(ii) Double-digit method 

or, secondly, : 7 6 :  9 
:. Q, (double-digit)=& 48 : : 12 33 

(a) Q1=42 ; R=2840 ; and D=5292 

(b) GD=AD=28403 :. Q,=5 ; and R,=1943 

(c) GD=19430 ; and 3abL3150 :. AD=16280 
:. Qs=3 and R,=404 

(a) GD=4042 ; and 6abc+bs=3780+125=3905 
:. A D 4 3 7  :. Q,=O and R4=137 

(e) GD=1372 ; and 3ac2+3bac=ii34+225=1359 
:. AD=13 :. Q,=O and R,=13 

(f) GD=137 ; and 3bos=116 :. AD=2 :. Q,=O 
and R,=2 

(g) QD=27 ; and c b 2 7  :. AD=O ; Q7=0 and R7=0 
:. The CR is 4263 

N.B. Exactly as above. 

(3) E=355, 045, 312, 441 

(i) Single-Digit method. 

355:  0 4 6 3 1 2  4 4 1  
147 : : 12 120 28 138 39 55 19 6 0 

- -- 

(a) Q1=7 ; Rl--12 ; and D=147 
(b) GD=AD=IPO ; :. Q,=0 and R,=lm 



(c) GD=1204; and 3abs=0 :. AD=1204 :. Qa=8 
& Ra=28 

(d) GD=285 ; and 6abc+b8=0 :. AD=285 ; Q4=1 and 
R4=138 

(e) GD=1383 and 6abd+3acs+3bZc=0+1344+0=1344 
:. AD=39 :. Q5=0 and RS=39 

(f) GD=391 ; and 6acd+3bc2+3bsd=336+O+0 
:. AD=55 :. Q6=0 and R6=55 

(g) G D = 5  ; and 6bcd+3adz+cs=0+21+512=533 
:. AD=19 :. Q,=0 and R,=l9 

(h) GD=194; and 3bdz+3czd=0+192 :. AD=2 
:. Q,=O and R,=2 

(i) GD=24 ; and 3 c d k 2 4  :. AD=O ; Q=O and R=O 
(j) GD=l ; and ds=l :. AD=O, Q=O and R=O 

:. The CR is 7081 -- 
N.B. As above. 

(ii) Double-digit method. 

: 355045 : 3 1 2  4 4 1  
14700 : 343000 : 12045 2853 391 40 2 0 

: 70 : 8 1 ' 0  0 0 

(a) Q1 (of 2 digits)=70 ; R1=12045 ; and D=14700 

(b) GD=AD=120453 QZ=8 and Ra=2853 

(c) GD=28531 ; and 3aba=13440 :. AD=15091 
:. &,=I and R8=391 

(d) GD=3912; & 6abc+ba=3360+512=3872 :. AD=40 
:. Q4=0 and R4=40 

(e) GD=404 ; & 3ac~+3bac=210+192=402 :. AD=2 
.: Q5=0 and R6=2 

(f) GD=24 ; and 3bc2=24 :. AD=O :. Q,=O and 
R,=O 

(g) GI)=l ; ancl d3=1 :. AD-0 :. Q7-0 and R7=0 
:. The CR is 7081 

N.B. A s  above. 

-.' (4) E=792, 994, 249, 216 

(i) Single-Digit method. 

792 :  9 9 4 2 4 9 2 1 6  
243 : : 63 153 216 158 199 152 72 56 21 

, ;j : 9 :  2 5 6 . 0  0 0 0  

(a) Q1=9 ; R,=63 ; and n=243 

(b) GD=AD=639 :. QZ=2 ; and Ra=153 

(c) GD=1539 ; and 3abz=108 :. AD=1431 :. Q,=5 
and R8=216 

(d) GD=2164 ; & 6abc+ba=540+8=548 :. AD=1616 
:. Q4=6 and R4=158 

(e) GD=1582 ; and 6abd + 3ac
Q + 3bSc = 648 + 675 + 

60=1363 :. AD=199 :. Q,=O and R5=199 
(j) GD=1994 ; and 6acd+3bca+3 bad=1620+150+ 

7&=1842 :. AD=152 :. Q,=O and R,=152 

(9) GD=1529; & 6bcd+3ada+c8=360+972+125=1427 
:. AD=72 :. Q,=O and R,=72. 

(h) GD=722 ; & 3bd"3cPd=216+450=666 :. 
:. Q,=O and R8=56 

(i) GD=561 ; and cda=540 :. AD=21 :. Q,=O and 
R,=21 

(j) GD=216; and da=216 :. AD=O :. Q,,=O and 
R,,=O 

:. The CR=9256 

N.B. As above. 

Double- Digit Method 

I 792 : 9 : 
243 : : 63 153 : :, Q1 (of two digits is 92 and 

: 9 :  2 : 923=778688. And D=25392. 
- - 



(a) Q1=92; and R1=14306 
(6)  GD=AD=143062 :. Qs=5; and Rs=16102 
(c) GD=161024 ; and 3aba=6900 :. An=154124 

:. Qa=6 ; and Ra=1772 
(d)  GD-17729 ; and 6abc+ba=16560+125=16685 

:. AD-=1044 :. Q4=0 and R4=1044 
(e) GD=10442 ; and 3acn+3bb=9936+450=103RB 

:. AD=56 :. Q,=O and R,=56 
(f) GD=561 ; and 3bcZ=540:.AD=21:.Q8=0 ; & R8=21 
(g) G1)=216 ; and D8=216 :. AD=O :. Q,=O and R,=O 

:. The CR is 9256 

N.B. As above. 
Note :-It must be admitted that, although the double-digit 

method uses the (a+b+c)S schedule and avoids the 
(a+b+c+d)s one, yet it necessitates the division, 
multiplication and subtraction of big numbers and in 
therefore likely to  cause more mistakes. It is obvious- 
by better and aafer to  use the (a+b+c+d)s and deal 
with smaller numbers. 

1 In  this particular case, however, as the given number 

I terminates in an even number and is manifestly divisible by 
8 (and perhaps 64 gr even 512), we can (in this case) utilise 
a third method which has already been explained (in the imme- 
diately preceding chapter), namely, divide out by 8 (and its 
powers) and thus diminish the magnitude of the given number. 
We now briefly remind the student of that method. 

I Third Method 

(a) Q,=l and R1=O 

(b) GD=AD=Os :. &,=I and R,=2 

(e) GD=24 ; and 3aba=3 :. AD=21 :. Qa=5 and Ra=6 

(d) GO-68 ; and 6abc+b~=30+1=81 :. AD=37 
:. Q,=7 ; and R4=16 

(e) GD=168 ; and 6abd+3ac'+3b'%=42+76+16=132 
:. AD=36 :. Q,=O and Ro=36 

(f) GD=361 ; and 6acd+3bcs+3bsd=210+76+21=306 
:. AD=55 :. Q,=O and R,=55 

(9) GD=556 ; and 6bcd+3ada+ca=210f 147+125=482 
:. AD=74 :. Q,=O and R,=74 

(h) G13=748; and 3bds+3cV=147+525=672 :. AD=76 
:. Qs=O and R8=76 

(i) GD=769 ; and 3cdS=735 :. AD=34 .'. QB=O ; and 

(j) 0 ~ 3 4 3  ; and d8=343 :. AD=O :. Q1,=O ; and 
R1,=O 

:. The C.R. (of the sub-multiple)=ll57 
:. The C.R. of the given number=O256 

Or, Fourthly, the derived submultiple niay be dealt 
with (by the two-digit method) thlis :- 

1548: 8 1 6 8 9 3 
363 : 1331 : 217 363 266 221 76 34 

- ----- 
: 1 1 :  5 7 0 0  0 - 7---- 

.(a) Ql=li ; R1=217 ; and D=363 

(b) GD=AD=2178 :. Qa=5 and Ra=363 

(c) GD=3631 ; and 3abs=825 :. AD=2806 :. Qa=7 & 
R8=265 

(d) GD=2656 ; and 6abc+b8=2310+125=2436 :. AD= 
221 :. Q,=O and R4=221 

(e) GD=.2218 ; and 3acs+3b%=1617+526=2142 
:. AD=78 :. Q,=O and R6=76 



( j )  8D=769 ; and 3bc2=735 :. AD334 :. Q6=0 ; & 
R6=34 

(g) GD=343; and c3=343 :. hD=O :. Q7=0 and R7=0 
:. The cube root of the sub-multiple is 1157 
:. The CR of the original number=9256 

N.B. As above. 
(5) E =  : 2, 840, 363, 499, 528 

8 : - 
355, 045, 312, 441, 

This very number having already bean dealt with (in 
cxamplc 3 of this very series, in this very portion of this silbjcct), 
we need not work i t  all out again. Suffice i t  to say tliat, because. 

I 
7081 is the cubc root of this derived sub-multiple, 

:. The C.R. of the original number is 14162 

Note :-All these methods, however, fall in one way or allotllrr, 

short of the Vedic ideal of ease and simplicity. And 
the general formula which is simultaneously applicable 
to all cases and free from all flaws is yet ahead. But 
these matters we shall go into, later. 

CHAPTER XXXVII 

PYTHAGORAX' THEOREM ETC. 

Modern Historical Research has revealed-and all the 
modern historians of matl~cmatics have placed on record the 
historical fact that t l ~ e  so-called "Pythogoras' Theorem" was 
known to the ancient Indians long long before the time of 
Pythagoras and that, just as although the Arabs introduced tlie 
Indian system of r~umerals into the \Vestern world and distinct- 
ly spoke of them as the "Hindu" numerals, yet, the Europeall 
importers thereof undiscerningly dubbed them as tlle Arabic 
numerals and they are still described everywhere under that 
designation, sinlilarly exactly it has happened d ~ a t ,  although 
Pythagoras introduced his tl~eoreul t o  the Western matlicmatical 
ant1 scientific world long long afterwards, yet that Theorem 
continues to be known as Pythagoras' Theorem! 

This theorem is constantly in requisition in a vast lot of 
practical mathcinatical work and is acknowledged by all as 
practically the real foundational pre-requisite for Higher Geo- 
metry (including Solid Geometry), Trigonometry (both plane 
arid Spherical), Analytical Conics, Calculus (Differentid and 
Integral) and various other brailcl~es of mathematics (Pure and 
Applied). Yet, the  roof of such a basically important arid 
fundamental theorem (as presented, straight from the earliest 
sources known to the scientific world, by Eurlid etc., and as still 
rxpounded by tlie most eminent modcln geonletriciaris all 
the world over) is ultranotorious for its tedious length, its 
clumsy cumbrousness etc., and for the time and toil elitailed 
on i t  ! 

There are several Vedic proofs, everyone of which is much 
simpler than Euclids' etc. A few of them are shown below: 



First Proof 

Here, the square AE=the square KC, 
the four congruent right-angled t.rainglrs all 
around it. 

Their areas are ce, flr-:~)~ and 4 ~ 3 a b  
respectively. 

:. C"aa-2ab+l)2+4(fab)=a2+b2 
Q.E.D. 

Second Proof 
CONSTRUCTION : 

CD=AB=m ; and DE=l3C=n. :. ,4BC 

Kj and CDE are Congruent ; and ACE is right- 
angled Isosceles. Now, the trapezium 
ABDE=ABC+CDE+ACE :. + m n + ~ l i ~ +  
$mn=+(m+n) x (m+n)=#m2+mn+#na - :. ih2=fm8+fna :. ha=m2+n2 Q.E.D. 

(N.R.  Here we have utilised the proposition that the area of 
a trapezium=+ the altitudexthe sum of the parallel 
sides). 

Third Proof 
Here, AE=BF=CG=DH=m and EB= 

*/i-J %C=GD=HA= 11. 

Now, the squae AC=the square EG+ 
the 4 congruent right-angled triangles around 
it  :. ha_(-4(fmn)=(m+n)2=m2+2mr~+1~2 
:. h2=ma+n8 Q.E.D. 

Fourth Proof 
(The proposition to be used here is that the areas of 

similar triangles are proportional to the sqllares on the homo- 
logous sides). Here, BD is 1 to AC 

.'. The triangles ARC, ABD and BCD 
are similar. 

.- :. As between (1) the 6rst two tri~ngles 
and (2) the first and third ones, 

AB2-ADB. BC' BCD - -  and -= 
ACa ABC ' ACa 

ABe+BCa-ADB+BCD-ABC- :. By addition, - -  - 1  
ACa ABC ABC 

Fifth Proof 
(This proof is from Co-ordinate Geometry. And, as 

modern Conics and Co-ordinate Geometry (and even Trigono- 
metry) take their genesis from Pythagoras' Theorem, this 
process would be objectionable to the modern mathematician. 
But, as the Vedic Siitras establish their Conics and Co-ordinate 
Geometry (and even their Calculus), a t  a very early stage, on 
t11e hasin of first principles and not from Pythagoras' Theorem 
(sir), no such objection can hold good in this case. 

The proposition is the one which 

y, LA glves us the distance between two 
polnts whose co-ordinates have been 
given. Let the points be A and B 

1 
and let their co-ordinates be (a, 0) 
and (0, b) respectively. 

Then, RA d ( a - 0 ) 8 + ( ~ - b ) K  
~ / a v  :. BAa=aa+ba Q.E.D. 

Note :-The .\pollonius' Theorem, Ptolcmy's Theorem and a 
vast lot of other Theorems are similarly easy to solve 
with the aid of the Vcdio SBtras. We shall not, 
however, go into an elaborate description thereof 
(except of the Apollonlus Theorem) just now but shall 
reserve them for a higher stage in the student's studies. 



CHAPTER XXXVIII 

APOLLONIUS' TI-JEOREhI 
Apollonius' Theorem (sic) is practically a direct and 

clcmcntary Borollary or offslloot from Pythagoras' Theorem. 
But, unfortunately, its proof too has been beset with the usual 
flaw of irksome and ~ l e e d l ~ ~ s  length and laboriousness. 

The usual proof is well-known and need not be reiterated 
here. We need only point out the Vedic method and leave 
it  to the discerning reader to  do all tlic contrasting for himself. 
Arid, afLer all, that is the best way. Isn't it. ? 

Well, in any triangle ABC, if D he 
the mid-point of BC, then BB2+ACa= 
2(AD2+BD2). This is the propositioll 
which goes by the name of Apollonius' 
Theorem and has now to be proved by 
us by a far simpler and easier nlethod tl~aii 
the one employed by him. 

1"' ~~t AO be the perpendicular from A 
on RC ; let XOX' and YOY' bc the axes of co-ordi~latcs ; 
and let BO, OD and 0.4 be m, 11 ancl p re~pcctively 
:. DA=.DC=rnf n 

.'. AR'+AC'=(pa+ma)f (m*+4mn+4n2+pg)= 
2pa+2m'-t4mn+4n2 

'nil 2 (*1)Z+B1)2)=2 [ (p2+~12)+(me+2mn+ll~) I= 
=2pZ+ 2m2+4ninf 4n2 
... AB8+AC"=2 (ADz+DBz) Q . E . ~ ,  

-We faintly remember to have read n proof of Apollolliu6' 
Tlleorm 0. thesc lines in some publionti011 of prof. 

Loney ; hut we are rrot sure. However tllat may 
be, this proof (by means of Co-ordinate Geometry) 
was well-known to the ancient Indian matl~ematicians 
and specifically finds its place in the Vedic Siltras. 

And all the Geometrical Theorems about tile collcurre- 
u ~ Y  of certain straight lines and abo11t the o r thoe~nt r~ ,  

the circum-centre, the in-centre, the ex-centrea, the 
centroid, the Nine-Points-circle etc., ssn all be similarly I 
proved (very simply and very easily) by meane of 

1 Co-ordinate Geometry. 

We shall go details of these theorems and. their I 

i Vedic proofs later on ; but joat now we would jWt merely point 

, out, that, like the "Arabic numerals" and "Pythogorai Theorem". 

, the "Cart,esian" GO-ordinates are a historical MISNOMER, no more, 
1 and no less. 

I 



't 

CHAPTER XXXIX 

ANALYTICAL CONICS 

Analytical Conics is a vcry important branch of mathema- 
f tical study and has a direct bearing on practical work in various 

branches of mathematics. I t  is in the fitness of things, there- 
fore, that Analytical Conics should find an important and pre- 
dominating position for itself in the Vedic system of mathe- 
matics (as it actually does). 

A few instances (relating to certain very necessary and 
very important points connected with Analytical Conics) are 
therefore given here under (merely by way, let it be remem- 
bered, of illustration). 

I .  Equatiolt to the Straight Line, 
For finding the Equation of the straight line passing 

through two points (whose co-ordinates are given. 
Say, (9, 17) and (7,-2). 

The current method tells us to work as follows : I 

Take the general equation y,mx+c. 
Substituting the above values therein, 
We have: 9m+c=17; and 7m+c=-2. 

Solving this simultaneous equation in m and c, we have ; 
9m+c=17 
7m+c=-2 

I 
:. 2m=l9 :. m=9# 

t Substituting this value of m (in either of the above two equations) 
we have, 66i+c= -2 :. c= -684. Substituting theee values 
of m and c in the Original General Equation (y=mx+c), we 
get y=9) x -68). :. Removing fractions, we have 2y=19x- 
137. And then, by transposition, we say, 19%-2y=137. But 
this method is decidedly too long and cumbrous (and especially 
for euch a petty matter) ! 

And the Seed C w &  Method (which uses the formula 
is equally cumbrous and confusing. 

y-Yl= Zs (x-xl) it ultimately amounts to the right 
thing ; but it does not make it elear and requires eeveral more 
steps of .working ! 

But the Vedic at-sight, om-line, n a e d  &hod (by the 
Parcivartga Sutra) enables us to write the answer mechanically 
down by a merc casual look at  the given co-ordinates. And 
it is as follows : 

The General Equation to the straight line (in its final 
form) is . .x-. . y=.  . [where the co-efficients of x and 
y (on the left hand side) and the independent (on the Right 
hand-side) have to be filled in]. The Siitra tells us to do this 
very simply by : . 

(i) putting the difference of the y-co-ordinates as the 
x-coe5cient and vice versa ; and 

(ii) evaluating the independent term on that basis. 

For example, in the above example, the CO-ordinatea are : 
(9, 17) and (7, -2). 

(i) so our x-coefficient is 17-(-2)=19 

(ii) and our y-coeaient is 9-7=2. 
Thus we have 19 X-2y as our L.H.S. straightaway. 

(iii) As for the absblute term on the R.H.S., as the straight 
line in question passes through the two given points, 
the substitution of the original co-ordinates of each 
of the points must give us the independent term. 

So, the substitution of the values 9 and 17 in the L.H.S. 
of the equation gives us 19x9-2~17=171-34=137 ! 

Or Substituting the values 7 and -2 therein, we get 19 x 7 
-2x-2=133+4=137 ! And that is additional confkmation 
and verification ! 

But this is not all. There is also a third method by 
which we can obtain the independent term (on the R.H.S). 



And this is with the help of the rule about Adyam Antyam 
and Madhyam i.e. bc-ad (i.e. the product of the means minus 
the product of the extremes) ! So, we have 17 ~ 7 - 9  X- 
2=119+18=137 ! And this is still further additional 
confirmation and verification ! 

So, the equation is :-19x-2y=137 which is exactly the 
same as the one obtained by the elaborate current method 
(with its simultaneous equations transpositions and substitu- 
tions etc; galore) ! And all the work involved in the Vedic method 
has been purely mentul, slwrt, simple and easy ! 

A few more instances are given below: 
(1) Points (9, 7) and (-7, 2) 

.: The Equation to the straight line joining them is : 
5~-16~=-67  

(2) (10, 5) and (18, 9) :. x=2y (by Vilolucn too) 
(3) (10, 8) and (9, 7) :. x-y=2 (by V i b h n  too) 
(4) (4, 7) and (3, 5) :. 2x-y=1 
(5) (9, 7) and (5, 2) .= 5x-4y=17 
(6) (9, 7) and (4, -6) .: 13x-5y=82 
(7) (17, 9) and (13, -8) :. 17x-4y=253 
(8) (15, 16) and (9, -3) :. 19x-6y=189 
(9) (a, b) and (c, d) 

:. x(b-d)-y (a-c)=bc-ad 

ZI. The Gewal Equation and Two Straight Lines. 
The question frequently arises :-When does the General 

Equation to a straight line represent two straight lines 1 

Say, 12x2+Zxy-10y2+13x+45y-35=0. 
Expounding the current conventional method, Prof. S. L. 

Loney (the world-reputed present-day authority on the subject) 
devotes about 15 lines (not of argument or of explanation 
but of hard solid working) in section 119, example 1 on page 
97 of his "Elements of Co-ordinate Geometry", to his modcl 
solution of this problem as follows : 

7 13 Here a=12, h= -, b=-10, g=-, f=!!and c=-s5 
2 2 2 

:. The equation represents two straight lines. 

Solving it for x, we have : 

:.The two straight lines are 3x=2y-7 and 4x=-5y+5 

Note :-The only comment possible for us to make hereon is 
that t,he very magnitude of the numbers involved in the 
fractions, their multiplications. subtractions etc., ad 
infiitum is appalling and panic-striking and that i t  
is such asinine burden-bearing labour that is responsible 
for, not as a justification for, but, at  any rate, an ex- 
tenuation for the inveterate hatred which many 
youngsters and youngstresses develop for mathematics 
as such and for their mathematics-teachers as such ! 

We make no reflection on Prof. Lon~y. He is perhaps 
one of the best, the finest and the most painstaking of mathe- 
maticians and is very highly esteemed by us as such and for 11is 
beautiful publications (which arc standard authorities on the 
various subjects which they deal with). I t  is the system that 
we are blaming, (or, at  any rate, comparing and contrasting with 
the Vedic system). 

Now, the Vedic method herein is one by which we can 
immediately apply the "l?rdhwa" Siitra the Adyam Adyena 



Sara and the Lapam Sthipam Szitra and by merely looking at 
the frightful looking (but really harmless) Quadratic before 
us, readily by mere mental arithmetic, write down the answer 
to this question and say :-"Yes ; and the straight lines are 
3x-2y+7=0 and 4x+5y-5=0. How exactly we do this (by 
mental arithmetic), we proceed to explain presently. 

The Vedic Method 
(1) By the "Urdhva Tiryak", the 3x-2y+7 

"Lopam Stfipam" and thec'Adyam Adyena" 4x+BY-6 
Siitras (as explained in some of the 12x2+7x~-10~a 

+13x+45y-35 earliest chapters), we have (mentally) : 
12xa-7q+10ya=(3x-@) (&+ti~) and we find 7 and-6 to 
be the absolute t e r m  of the two factors. We thus get 
(3x-2y+7)=0 and $4x+6y-5)=0 aa the two straight lines 
repreeented by the given equation. And that is all there is to it. 

The Hyprbdas and the Aspptotee. 
Dealurg with the same p w p l e  and adopting the same 

procedure in connection with the Hyperbola, the Conjugate 
Hyperbola and the Asymptotes, in articles 324 and 325 on pages 
293 & 294 of his "Elements of Co-ordinate Geometry", Prof. 
8. L. Loney devotes 2 7 t l 4  (=41) lines in all to the problem and 
concludes by saying : 

"As 3xs-5~y-2y~+Bx+11~-8=0 is the equation of the 
Asymptotes, 

:. The Equation to the Asymptotes is 3xa-5xy-2ya+ 
bxflly-l2=0 

And consequently the Equation to the Conjugate Hyper- 
bola is 3xL5xy-2ya+5x+1iy-16. 

Well; all this is not so terrific-looking, because of the 
very simple fact that all the working (according to Art, 116 on 
pages 95 etc.,) has been taken for granted and done "out of Court" 

or in private, so to speak. But even then the substitution of the 
values of a, b, c, f, g, and li in the Discriminant to the Generrrl 

H Equation and so on is, from the Vedic standpoint, whoIly 
supererogatory toil and therefore to be avoided. 

By the Vedic method, however, we use the same Lopfi 
Stchcipana the Drdhva Tiryak and the Adyam Adyew Szitrae; 

I we first get-mentally 3x+y and 3x+y -4 
x-2y and then -4 a d  3 as the x--S+3 
only possibilities in the case; and 3,s-tixy-2ys+5xSlly-12 
as this givesus-12in the product, 
we get this p r o d u c t ~ 0  as the Equation to the Asymptotes; 
and, as the Conjugate Hyperbola is a t  the same distance-in the 
opposite direction from the Asymptotes, we put down the same 
equation (with only - 16 instcad of-8) as the required Equation 
to the Conjugate Hyperbola (and have not got to bother about 
the complexities of the Discriminants, the inevitable substi- 
tutions and all the rest of it) ! And that is all. 

A few more illustrative instances will not be out of place : 

:. The Equation to the Asymptotes is 8x8+10xy-3ya-2x 
f 4y=l ; and the Equation to the Conjugate Hyperbola is 

:. The Asymptotes are (y+x-2) (y-2x-3)=0 
And the Conjugate Hyperbola is ye-xy-2xa+x-5y+l8=0 

(3) 55~'-12O~y+2Oy~+64~-48y=O :. l lx- 2y+4 5~-10y+4 ----- 
:. 55x2-120xy+20ya+64x-48y+16=0 



:. This is the Equation to the Asymptotes; and the Equation 
to the Conjugate Hyperbola is 55x0-120xy+20y a+64x-48y+ 4 
32=0 

;. The Asymptotes are : 12x2-23xy+10y2-25xf 26y 6 
+12=0 

And the Conjugate Hyperbola is 12xa-23xy+10ya-25x4- 26y 
+38=0 

- .  

:. Independent term=4 

:. Two straight lines. 

, MISCELLANEOUS MATTERS 

There are also various subjects of a miscellaneous character 
which are of great practical interest not only to mathematicians 
and statisticians as such but also to ordinary people in the 
ordinary course of their various businesses etc., which the modern 
system of accounting etc., does scant justice to and in which 
the Vedic Siitras can be very helpful to them. We do not propose 
to deal with them now, except to .name a few of them : 

(1) Subtractions ; 

(2) Mixed additions and subtractions ; 
(3) Compound additions and subtraction@; 

(4) Additions of Vulgar Fractions etc ; 

(6) Comparison of Fractions ; 

(6) Simple and compound practice (without taking 
Aliquot parts etc.) 

(7) Decimal operations in all Decimal Work ; 

(8) Ratios, Proportions, Percentages, Averages etc. ; 
(9) Interest ; Annuities, Discount etc ; 

(10) The Centre of Gravity of Hemispheres etc ; 

(11) Transformation of Equations ; and 

(12) Dynamics, Statics, Hydrostatics, Pneumatics etc., 
Applied Mechanics etc., etc. 

N.B. :-There are some other subjects, however, of an important 
character which need detailed attention but which 
(owing to their being more appropriate at  a later stage) 
we do not now propose to deal with but which, a t  the 
same time, in view of their practical importance and 
their absorbingly interesting character, do require 
a brief description. We deal with them, therefore, 
briefly hereunder. 



Solids, Trigonometry, A s t m ~ y  Etc. 
In Solid Geometry, Plane Trigonometry, Spherical Tri- 

gonometry and Astronomy too, there are similarly huge masses 
of Vedic material calculated to lighten the mathematics students' 
burden. We shall not, however, go here and now into a detailed 
disquibition on such matters but shall merely name a few of the 
important and most interesting headings under which these 
subjects may be usefully sorted : 

(1) The Trigonometrical Functims and their inter- 
relationships ; etc. 

(2) Arcs and chords of circles, angles and sines of angles 
etc ;. 

(3) The converse i.e. sines of angles, the angles themselves, 
chords and arcs of circles etc ; 

(4) Determinants and their use in the Theory of Equa- 
tions, Trigonometry, Conics, Calculus etc ; 

(5) Solids and why there can be only five regular Poly 
hedrons ; etc., etc. 

(6) The Earth's daily Rotation on its own axis and her 
annual relation around the Sun ; 

(7) Eclipses ; 
(8) The Theorem (in Spherical Triangles) relating to the 

product of the sines of the Alternate Segments i.e. 
about : 

Sin BD Sin CE Sin AF-l and 
sDC 'SEA STB- 

(9) The value of 11 (i.e. the ratio of the circumference of a 
circle to its Diameter). 

N.B. :-The last item, however, is one which we would like to 
explain in slightly greater detail. - 

11 Actually, the value of , is given in the well-known 
10 

Anustub metre and is couched in the Alphabetical Code-Language 
(described in an earlier chapter) : 

It is so wordcd that it can bear three different meanings- 
all of them quite appropriate. The first-is a hymn to the Lord 
8ri Kysna ; the second is similarly a hymn in praise of the 

C 

Lord Shri Shankara ; and the third is a valuation of g t o  32 
10 

places of Decimals ! (with a "Self-contained master-key" for 

I extending the evaluation to any number of decimal places ! 

As the student (and especially the non-Sanskrit knowing 
student) is not likely to be interested in and will find great 
ditliculty in underdtanding the puns and other literary beauties 
of the verse in respect of the first two meanings but will naturally 
feel interested in and can easily follow the third meaning, we 
give only that third one here : - 

1 1 - . 3 1 4 1 6 9 2 6 5 3 5 8 9 7 9 3  -- 10 9 3 8 4 6 2 6 4 3 1 8 3 1 7 9 2 . .  . I  
on which, on understanding it, Dr. V. P. Dalal (of the Heidelburg 
University, Germany) felt impelled-as a mathematician and 
physicist and also as a Sanskrit scholar-to put on record his 
comment as follows : 

"It shows how deeply the ancient Indian mathe- 
maticians penetrated, in the subtlety of their 
calculations, even when the Greeks had no numerals 
above 1000 and their multiplications were so very 
complex, vhich they performed with the help of the 
counting frame by adding so many times the multiplier ! 
7 x 5  could be done by adding 7 on the counting frame 
5 times !" etc., etc. ! 



RECAPITULATION AND CONCLUSION 

In these pages, we have covered a large number of branches 
of mathematics and sought,by comparison and rontrast,tom~ke 
the exact position clear to all seekers after knowledge. Arith- 
metic and Algebra being the basis on which all mathematical 
operations have to depend, it was and is both appropriate and 
inevitable that, in an introductory and preliminary volume of 
this particular character, Arithmetic and Algebra should have 
received the greatest attention in this treatise. But this is 
only a kind of preliminary "PROLEGOMENA" and SAMPLE 
type of publication and has been intended solely for the purpose 
of giving our readers a foretaste of the delicious delicacies in 
store for them in the volumes ahead.l If this volume achieves 
this purpose and stimulates the reader's interest and prompts 
him to go in for a further detailed study of Vedic Mathematics 
we shall feel more than amply rewarded and gratified thereby. 

-- 
I NO subsequent volume has been left by the author.-Editw. 

A REPRESENTATIVE PRESS OPINION 

Reproduced from the Statesman, India, dated 10th January, 1956. 

EVERY MAN A MATHEMATICIAN 

Now in Cahutta and peddling a miraculous commodity is 
His Holiness Jagad Guru Sri Shankaracharya of the Govardhan 
Peeth, Puri. 

Yet Sri Shankaracharya denies any spiritual or miraculous 
powers, giving the credit for his revolutionary knowledge to 
anonymous ancients who in 16 Sutras and 120 words laid down 
simple formulae for all the world's mathematical problems. 

The staggering gist of Sri Shankaracharya's peculiar 
knowledge is that he possesses the kr~ow-how to make a mathe- 
matical vacuum like myself receptive to the high voltage of 
higher mathematics. And that within the short period of one 
year. To a person who struggled helplessly with simple equa- 
tions atld simpler problems, year after school-going year and 
without the bolstering comfort of a single credit in the subject, 
the claim that I can face M.A. Mathematics fearlessly after 
only six months of arithmetical acrobatics, makes me an im- 
mediate devotee of His Holiness Jagad Guru Sri Shankaracharya 
of the Goverdhan Peeth, Puri. 

I was introduced to him in a small room in Hastings, a 
frail but young 75 year-old, wrapped in pale coral robes and 
wearing light spectacles. Behind him a bronze Buddha caught 
the rays of a trespassing sun, splintering them into a form of 
aura ; and had 'His Holiness' claimed divine inspiration, I 
would have belived him. He is that type of pexson, dedicated 
as, much as I hate using the word ; a sort of saint in saint's 
clothing, and no inkling of anything so mundane as a mathe. 
matical mind. 



My host, Mr. Sitaram, with whom His Holiness Sri 
Shankaracharya is staying, had briefly- prepared me for the 
interview. I could pose any question I wished, I could take 
photographs, I could read a short descriptive note he had 
prepared on "The Astounding Wonders of Ancient Indian 
Vedic Mathematics". His Holiness, it appears, had spent years 
in contemplation, and while going through the Vedas had 
suddenly happened upon the key to what manv historians, 
devotees and translators had dismissed as meaningless jargon. 
There, contained in certain SBtras, were the processes of mathe- 
matics, psychology, ethics, and metaphysics. 

"During the reign of King Kaqaa" read a Sutra, "rebellions, 
arson: famines and insanitary conditions prevailed". Decoded, 
this little piece of libellous history gave decimal answer to the 
fraction 1/17 ; sixteen processes of simple mathematics reduced 
to one. 

The discovery of one key led to another, and His Holiness 
found himself turning more and more to thc astotmding know- 
ledge contained in words whose real meaning had been lost 
to humanity for generations. This lorn is obviously one of the 
greatest mankhd Gas suffered ; and, I suspect, resulted from 
the secret being entrusted to people like myself, to whom a 
square root is one of life's perpetual mysteries. Had it survived, 
every-educated-''~0uI" ; would, be ; a, mathematical-"~Uizard" ; 
and, rnaths-"masters" would "starve". For my note reads 
"Little children merely look at the sums written on the black- 
board and immediately shout out the answers ...... they ...... 
have merely to go on reeling off the digits, one after another 
forwards or backwards, by mere mental arithmetic (without 
needing pen, pencil, paper or slate)." This is the sort of thing 
one usually refuses to believe. I did. Until I actually met His 
Holiness. 

Qn a child's blackboard, attended with devotion by my 
host's wife ; His HoIiness began demonstrating his pcculiar 

skill ; multiplication, division, fractions, algebra, and intricate 
excursions into higher mathematics for which I cannot find a 
name, all were reduced to a disarming simplicity. Yes, I 
even shouted out an answer. ('Algebra for High Schools', 
Page 363, exercise 70, example ten). More, I was soon tossing 
off answers to problems, which ; owl-Maths-boolcs ; "described", 
as ; "adwa1u:ed", difficult, and very difficult. Cross my heart ! 

His Holiness's ambition is to restore this lost art to the 
world, certainly to India. That India should today be credited 
with having given the world, via Arabia, the present numerals 
we use, especially the epochmaking "acro", is not enough. 
India apparently once had the knowledge which we are today 
rediscovering. Somewhere along the forgotten road of history, 
calamity, or deliberate destruction, lost to man the secrets he 
had emassed. It might happen again. 

In the meantime, people like His Holiness Jagad Guru 
Sri Shankaracharya of the Govardhan Peeth, Pwi, are by a 
devotion to true knowledge, endeavouring to restore to humanity 
an interest in great wisdom by making that wisdom more easily 
acceptable. Opposition there is, and will be. But eminent 
mathematicians both here and abroad are taking more than a 
passing interest in this gentle ascetic's discoveries. I for one, 
as a representative of all the mathematically despairing, hope, 
sincerely hope, that his gentle persuasion will  reva ail. 




