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PUBLICATION ANNOUNCEMENT

| havegreat pleasure in associating myself with the publi-
cation of thebook Vedic Mathematics or 'Sixteen Simple Mathe-
matical Formulae, by Jagadguru Swami Bharati Krishna
Tirtha, Shankaracharya of Govardhana Pitha. It was long
awaited by his disciples. Shrimati Manjula Devi, sole inheriter
of Swamiji’s, right, entered into an agreement with the Banaras
Hindu University to publieh it and the same is now being
donein the Nepal Endowment Hindu Vishvavidyalaya Sanskrit
Granthamala.

| feel grateful to all those who have worked for it. Shri
Arvind N. Mafatlal business magnate of Bombay and a devotee
of Swamiji has taken interest in the publication of the work.
He has taken the trouble of being personally present in this
ceremony of publication (Prakaskane Utsava). He has given
expression to his deep devotion to Shri Shankaracharyaji by
consenting to found a chair at the Banaras Hindu University
by the name of Shri Jagadguru Bharati Krishna Tirtha Shan-
karacharya Chair of Vedic Studies for which he is making a
magnificent endowment. As Vice-Chancellor of this University
| accept the donation and offer my heart-felt thanks to him
for his generosity.

N. H. BHAGWATI
Date 27-3-65 Vim-Chancellor
Banaras Hindu University




GENERAL EDITOR'S FOREWORD

The work entitted VEDIC MATHEMATICS or 'Sixtearr
Simple Mathematical Formulse from the Vedas was written by
His Holiness Jagadguru Sankardcarya Sri Bharati Krsna
Tirthaji Mahsrdja Of Govardhana Matha, Puri (1884-1964).
It formsa classby itself not pragmatically conceived and worked
out asin the case of other scientific works, but the result o the
intuitional visualisation o fundamental mathematical truths
§ and principles during the course o eight years d highly concen-
trated mental endeavour on the part o the author and therefore
appropriately given thetitledf " mental" mathematics appearing
more as miracle than the usual approach o hard-baked science,
as the author has himself stated in the Preface.

Swami Sankaracirya was a gifted scholar on many fronts

o learning including science and humanities but his whole

milieu was something of a much higher texture vis, that he was

i a Rgi fulfilling the ideals and attainments o those Seers of

ancient India who discovered the cosmic laws embodied in

tlie Vedas. Swiami Bharati Krsna Tirtha had the same reveren-

tial approach towards the Vedas. The question naturally

arises as to whether the Sitras which form the basis o this

treatise exist anywhere in the Vedic literature as known to us

But thiscriticismlosesall itsforceif we inform ourselvesd the

definitionof Veda given by Sri Sankaracarya himsdf as quoted
below :

""The very word 'Veda has this derivational meaning i.e. the fountain-
head and illimitable store-house of all knowledge. TS derivation, in effect,
means, connotes and implies that the Vedas showld coniaén (italics mine) within
themselves all the knowledge needed by mankind relating pot only to the so-
called “spiritual’ (or other-worldly) matters but also to those usually described
as purely ‘secular’, 'temporal’, or 'worldly' and also to the means required by
humanity as such for the achievement of all-round, complete and perfect success
in al conoeivable directions and that there can be no adjectival or restrictive
epithet ealeulated (or tending) to limit that knowledge down in any sphere,
any direction or any respect Whatsoever.
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"In other words, it connotes and implies that our ancient Indian Vedic
lore should be (italies mine) all-round, complete and perfect and able to throw
the fullest necessary light on all matters which any aspiring seeker after know-
ledge can possibly seek to he enlightened on".

It is the whole essence of his assessment of Vedic tradition
that it is not to be approached from a factual standpoint but
from the ideal standpoint viz, as the Vedas as traditionally
accepted in India as the repository of all knowledge should be
and not what they are in human possesson. That approach
entirely turns the tables on all critics, for the authorship of
Vedic mathematics then need not be laboriously searched in the
texts as preserved from antiquity. The Vedas are well known
as four in number Rk, Yaju, Sdma and Atharva but they have
also the four Upavedas and the six Vedangas all of which form
an indivisible corpus of divine knowledgeasit once was and as
it may be revealed. The four Upavedas are as follows:—

Veda Upaveda
Rgveda Ayurveda
Samaveda Gandharvaveda
Y ajurveda Dhahurveda
Atharvaveda Sthapathyaveda

In thislist the Upaveda of Sthapatya or engineering com-
prisesall kinds of architectural and structural human endeavour
and al visual arts. Swamiji naturally regarded mathematics
or the science of calculations and computations to fall under
this category.

Inthelight of the above definition and approach must be
understood the author's statement that the sixteen Satras on
which the present volume is based form part of a Parisigta of
the Atharvaveda. We are aware that each Veda has its subsi-
diary apocryphal texts some df which remain in manuscripts and
others have been printed but that formulation has not closed.
For example, some Pariéistas of the Atharvaveda were edited
by G. M. Roalling and J. Von Negelein, Liepzing, 1909-10. But
this work of Sri Sankaragaryaji deservesto be regarded as a
new Parigista by itself and it is not surprising that the Sitras

lx
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mentioned herein do not appear in the hitherto known Pari-
igtas.

A list of these main 16 Sitras and of their sub-satras or
corollaries is prefixed in the beginning o the text and
the style of language also points to their discovery by Sri
Swamiji himsalf. At any rate, it is needlessto dwell longer on
this point of origin since the vast merit of these rules should be
a matter of discovery for eachintelligent reader. Whatever is
written here by the author stands on its own merits and is
presented as such to the mathematical world.

Swamiji was a marvellous person with surpassing qualities
and was a prolific writer and eloguent speaker. | had the
good fortune of listening to his discourses for weeks together on
several occasions when he used to visit Lucknow and attracted
large audiences. He could at a stretch speak for several hours
in Sanskrit and English with the same facility and the intonation
o his musical voice left a lasting impression on the minds of
hie hearers. He was an ardent admirer of Bhartrhari the great
scientific thinker of the Golden Age of Indian history in a
different field viz, that of philosophy of grammar.

Swamiji had planned to write 16 volumes on all aspects
and branches of mathematical processes and problemsand there
isno doubt that his mental powerswerecertainly of that calibre,
but what has been left to usis this introductory volume which
in itself is of the highest merit for reason of presenting a new
technique which the author styles as ""mental' mathematics
different from the orthodox methods of mathematicians all over
the world. Arithmetical problems usually solved by 18, 28 or
42 stepsin ease of such vulgar fractionsas 1/19, 1/29, 1/49 are
here solved in one simple line and that is possible to be done
even by young boys. Thetruth of these methods was demons-
trated by this saintly teacher before many University audiences
in Indiaand in the U S Aincluding learned Professorsand every
one present was struck with their originadity and simplicity.

We aretold in his Preface by Swami Sankaricarya that
he contemplated to cover all the different branches of mathe-




matics such as arithmetic, algebra, geometry (plane and solid)
trigonometry (plane and spherical) conics—geometrical and
analytical, astronomy, calculus—differential and integral etc.,
with these basic Siatras. That comprehensive application of
the Sitras could not beleft by him in writing but if some one has
the patience and the genius to pursue the method and impli-
cations of these formulae he may probably be able to bring
these various branches within the orbit o this original style.

A full fledged course of his lecture-demonstrations was
organised by the Nagpur University in 1952 and some lectures
were delivered by Swamiji at the B.H.U. in 1949. It is, there-
fore, in the fitness of things and a happy event for the B.H.U.
to be given the opportunity of publishing this book by the
courtesy of Srimati Manjula Devi Trivedi, discipled Sri Swamiji
who agreed to make over this manuscript to us through the
efforts o Dr. Pt. Omkarhath Thakur. The work has been
seen through the Press mainly by Dr. Prem Lata Sharma, Dean,
Faculty of Music & Pine Arts in the University. To al of
these our grateful thanks are due.  Dr. Brij Mohan, Head of the
Department of Mathematics, B.H.U., took the trouble, at my
request, ot going through the manuscript and verifying the
caculations for which I offer him my best thanks. | also
express gratitude to Sri Lakshmidas, Manager, B.H.U. Press,
for taking great pains in printing this difficult text.

We wish to express our deepest gratitude to Sri Swami
Pratyagatminanda Saraswati for the valuable foreword that
he has written for this work. Today he stands pre-eminent in
the world of Tantric scholars and is a profound mathematician
and scientific thinker himself. His inspiring words are like
fragrant flowers offered at the feet of the ancient Vedic Réis
whose spiritual lineage was revealed in the late Sankardcarya
8ri Bharati Krspa Tirtha. Swami Pratyagatmanandaji has
not only paid a tribute to Sri Sankaracaryaji but his ambrocial
words have showered blessings on al those who are lovers
of intuitional experiences in the domain of metaphysics and
physics. Swamiji, by afortunate chance, travelled from Calcutta
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to Varanasi to preside over the Tantric Sammelan o the Varana-
seya Sanskrit University (8th to 11th March 1965) and although
heisnow 85 years of age, hisinnate generosity made him accept
our reguest to give nhis foreword.
| am particularly happy that | am able to publish this
work under the Nepal Endowment Hindu Vishvavidyaaya
Publication Series, for | cntcrtained an ardent desire to do so
sinceour late President Dr. Rajcndra Prasadji spoke to me about
its existence when | once met him in New Delhi in the lifetime
of Sri Swiimiji.
V. S ACRAWALA,
MA., Ph.D., DLitt.
General Edator,
Hindu Vishwavidyalaya
Nepa Rajya Sanskrit
Granthamala Series.

Banaras Hindu University
Varanasi-6
March 17, 1965.



FOREWORD

Vedic Mahematics by the late Sankardcarya (Bharati
Krgna Tirtha) of Govardhana Pitha is a monumental work.
In his deep-layer explorations of cryptic Vedic mysteries relat-
e ing specialy to their calculus of shorthand formulae and their
' neat and ready application to practical problems, the late
Sankardcarya shews the rare combination of the probing insight
and revealing intuition of a Yogi with the analytic acumen and
synthetic talent of a mathematician. With the late Sankara-
carya we belong to a race, now fast becoming extinct, of die-
hard believerswho think that the Vedas represent an inexhaus-
tible mine of profoundest, wisdom in matters both spiritual
and temporal ; and that.thisstore of wisdom was not, as regards
its assets of fundamental validity and value at le#st, gathered
by the laborious inductive and deductive methods of ordinary
systematic enquiry, but was a direct gift of revelation to seers
and sages who in their higher reaches of Yogic realization were
competent to receive it from aSource, perfect and immaculate.
But we admit, and the late Sankaracrya has also practicaly
admitted, that one cannot expect to convert or revert criticism,
much less carry conviction, by merely asserting one's staunchest
beliefs. To meet these ends, one must be prepared to go the
whole length of testing and verification by accepted, accredited
methods. The late Sankaricarya has, by his comparative
and critical study of Vedic mathematics, made this essentia
requirement in Vedic studies abundantly clear. So let us agree
to gauge Vedic mysteries not as we gauge the far-off nabulae
with the poet's eye or with that of the seer, but with the alert,
expert, scrutinizing eye of the physical astronomer, if we may
put it as that.

That thereisa consolidated metaphysical background in the
Vedasdf the objective sciencesincluding mathematics as regards
their basic conceptions is a point that may be granted by a
thinker who haslooked broadly and deeply into both the realms.

In our paper recently published—'The Metaphysics of
Physics —we attempted to look into the mysteries of creative
emergence as contained in the well-known cosmogenic Hymn

T
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(Rg. X.190)with aview to unveiling the metaphysical background
where both ancient wisdom and modern physics may meet on
a common basis of logical understanding, and compare notes,
discovering, where possible, points of significant or suggestive
parallelism between the two sets of concepts, ancient and modern.
That metaphysica background includes mathematics also;
because physicsas ever pursued is the application of mathema-
tics to given or specified space-time-event situations. There we
examined Tapas as a fundamental creative formula whereby
the Absolute emerges into the realms of measures, variations,
limits, frame-works and relations. And this descent follows
alogical order which seems to lend itself, within a framework
of conditions and specifications, to mathematical analysis.
Ratri in the Hymn represents the Principle of Limits, for exa-
mple, Rtafica Satyafica Stand for Becoming (Calana-kalana) and
Being (vartana-kalana) at a stage where limits or conditions
or conventions do not, yet arise or apply. The former givesthe
unconditioned, unrestricted how or thus of cosmic process;
thelatter, what or éhat of existence. Tapas, which correspondsto
Ardhamdgtra in Tantricsymbolism, negotiates, initsrole specially
o critical variation, between what is, ab-initio, unconditioned
and unrestricted, and what appears otherwise, as for instance,
in our own universe of logico-mathematical appreciation.

This is, necessarily, abstruse metaphysics, but it 1s,
nevertheless, the starting background o both physics and
mathematics. But for all practical purposes we must come down
from mystic nabulaeto the éerra firma of our actual apprehension
and appreciation. That isto say, we must descend to our own
pragmatic levels of time-space-event situations. Here we
face actual problems, and one must meet and deal with these
squarely without evasion or mystification. The late Sankara-
carya has done this masterly feat with an adroitness that
compels admiration.

It followsfrom the fundamental premisesthat the universe
we live in must have a basic mathematical structure, and
consequently, to know a fact or obtain a result herein, to any
required degree of precision, one must obey the rule of mathe-

13

matical measures and relations. This, however, ore may do
consciously or semi-consciously,systematically or haphazardly.
Even some speciesof lower animalsare by instinct gifted mathe-
maticians; for example, the migratory bird which fliesthousands
d miles off from its nest-home, and after a period, unerringly
returns. This 'implies a subconscious mathematical talent that
works wonder. We may cite the case of a horse who was a
mathematical prodigy and could 'tell' the result of a cube root
(requiring 32 operations. according to M. Materlink in his
'‘Unknown Quest") in atwinkle of theeye. Thissoundslike magic,
but it is undeniable that the feat of mathematics does sometimes
assume a magical look. Man, undoubtedly, has been given his
share of this magical gift. And he can improve upon it by
practice and discipline, by Yoga and allied methods. This is
undeniable also. Lately, he has devised the ‘automatic brain'
for complicated calculations by science, that looks like magic.

But apart from this 'magic', there is and has been, the
logic’ of mathematics also. Man works from instinct, talent,
or even genius. But ordinarily he works as a logica entity
requiring specified data or premises to start from, and more
or less elaborate steps of reasoning to arrive at a conclusion.
This is his normal process of induction and deduction. Here
formulee (Sdtras) and relations (e.g. equations) must obtain as
m mathematics. The magic and logic d mathematics in some
casesget mixed up ; but it issaneto keep them apart. You can
get a result by magic, but when you are called upon to prove,
you must have recourse to logic.

Even in this latter case, your logic (your formule and
applications) may be either simple and elegant or complicated
and cumbrous, The former is the ideal to aim at,. We have
classical instances of master mathematicians whose methods of
analysisand solution have been regarded as marvels of cogency,
compactness and clcgancc. Some have been 'beautiful’ as a
poem (e.g. Lagrange's 'Analytical Mechanics.")

The late Sankaricarya has claimed, and rightly we may
think, that the Vedic Sutras and their applications possessthese

Y
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virtues to a degree of eminence that cannot be chalenged.
The outstanding merit o his work ljes in his actual proving of
this contention.

Whether or not the Vedas be believed as repositories of
perfect wisdom, it is unquestionable that the Vedic race lived
not as merely pastoral folk possessing a half-or-quarter-devel oped
culture and civilization. The Vedic seers were, again, not mere
'navel-gazers or 'nosetip-gazers. They proved themselves
adepts in al levels and branches d knowledge, theoretical and
practical. For example, they had their varied objective science,
both pure and applied.

Let us take a concreteillustration. Suppose in a time of
drought we require rains by artificial means. The moden

scientist has his own theory and art (technique) for producing
the result. The old seer scientist had his both also, but
different from these now availing. He had his science and
technique, called Yajiia, in which Mantra, Yantra and other
factors must co-operate with mathematical determinateness and
precision. For thispurpose, he had developed the six auxiliaries
d the Vedasin each of which mathematical skill and adroitness,
occult or otherwise, play the decisive role. The Satres lay
down the shortest and surest lines. The correct intonation of
the Mantra, the correct configuration o the Yantra (in the
making of the Vedt ete., e.g. the quadrature o a circle), the
correct time or astral conjugation factor, the correct rhythms
ete., al had to be perfected so as to produce the desired result
effectively and adequately. Each of these required the calculus
o mathematics. The modern technician has his logarithmic
tables and mechanics manuals; the old Yajfiika had his Satras.
How were the Siitras obtained ?—by magic or logic or both 2—is
a vital matter we do not discuss here. The late Sankaracirya
has clamed for them cogency, compactness and simplicity.
Thisisan even morevital point, and wethink, he hasreasonably
made it good.

Varanasi, SWAMI PRATYAGATMANANDA
22-3-1965 SARASWATI

A HUMBLE HOMAGE

The late Sankardcarya’s epoch-making work on Vedic-
Mathematics brings to the notice o the intelligentsia most
strikingly a new theory and method, now amost unknown,
d arriving at the truth o things which in this particular case
concernsthe truth d numbersand magnitude, but might as well
cover, as it undoubtedly did in a past agein India, al sciences
and arts, with results which do not fail to evokea sense d awe
and amazement today. The method obvioudy is radicaly
differnt from the one adopted by the modern mind.

Musicand not Mathematics is my fidd (although the
philosophy of numbers, cosmic and metaphysical corres-
pondences with musica numbers, the relation of numbers
with consonant, dissonant and assonant tona intervas etc.,
closdly inter-relate music and mathematics), but study o the
traditional literature on music and fineartswith which | have
been concerned for the last few yearshasconvinced me o one
fundamental fact regarding the ancient Indian theory and
method of knowledge and experience »s a wvis the modern.
While all great and true knowledgeis born o intuition and
not o any rational processor imagination. there isa radical
difference between theancient Indian method and the modern
Western method concerning intuition.

The divergence embraces everything other than the fact
o intuition itsef —the object and fidd o intuitive vision, the
method of working out experience and rendering it to the
intellect. The modern method isto get theintuition by sugges-
tion from an appearancein life or nature or from a mental idea
and even if the source of the intuition is the soul, the method
at oncerelatesit to a support external tothesoul. Theancient
Indian method o knowledge had for its business to disclose
something of the Self, the Infinite or the Divine to the regard
o the soul —the Self through its expressions, the infinite through
its finite symbols and the Divine through his powers. The
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process was one of Integral knowledge and in its subordinate
ranges was instrumental in revealing the truths of cosmic
phenomena and these truths were utilised for worldly ends.

These two methods are based on different theories o
knowledge and experience, fundamentally divergent in outlook
and approach. The world as yet knows very little o the
ancient Indian method, much less of its secret techniques.
Sri Sankardcirya’s remarkably unique work of Vedic mathe-
matics has brought to popular notice demonstrably for the
first time that the said method was usefully employed in ancient
Indiain solving problems of secular knowledge just asfor solving
those of the spiritual domain.

I am happy that in the printing and publication of this
monumental work and the preceding spade-work | had the
privilege to render some little service.

PREM LATA SHARMA
Varanasi-5. Dean, Faculty d Music & Fine Arts,
23-3-65. Banaras Hindu University.

CONVENTIONAL TO UNCONVENTIONALLY ORIGINAL

This book Vedic Mathematics deals mainly with various
vedic mathematical formulae and their applications for carrying
out tedious and cumbersome arithmetical operations, and to a
very large extent, executingthem mentally. In thisfield of mental
arithmetical operations the works of the famous mathemati-
cians Trachtenberg and Lester Meyers (High Speed Maths) are
elementary compared to that of Jagadguruji.

Some people may find it difficult, at first reading, to understand
the arithmetical operations although they have been explained
very lucidly by Jagadguruji. It is not because the explanations
are lacking in any manner but because the methods aretotally
unconventional. Some people are so deeply rooted in the con-
ventional methods that they, probably, subconsciously reject to
see the logic in unconventional methods.

An attempt has been made in this note to explain the un-
conventional aspects of the methods. Once the reader gets
used to the unconventional in the beginning itself, he would
find no difficultyin thelater chapters. Thereforethe explanatory
notes are given for the first few chapters only.

Chapter |

Chapter | deals with a topic that has been dealt with compre-
hensively inthe chapter 26 viz. ‘Recurring Decimal’, Gurudeva has
discussed the recurring decimals of 1/19, 1/29, etc. in chapter
| to arouse curiosity and create interest. In conversion of
vulgar fractions into their decima equivalents Gurudeva has
used very unconventional methods of multiplicationand division.

Incalculation of decimal equivalent of 1/19, first method of the
‘Ekadhika Sutra’ requiresmultiplicationof 1 by 2 by a specia and
unconventional process. Inconventional method product of 1, the
multiplicand, by 2 the multiplier,is 2and that isthe end of multi-
plication process. Itis not so in the unconventional ‘Ekadhika’
method. Inthismethod, in the aboveexample, listhefirst multi-
plicand and its product with multiplier'2' is2 which in this specia
process becomes the second multiplicand.  This when multiplied
by the multiplier (which remains the same) 2 gives the product
as 4 which becomes the third multiplicand. And the process of
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multiplication thus goes on till the digits start recurring.
Similarly in the second method of the ‘Ekadhika Satra’ for
calculating the decimal equivalent of 1/19,7it is required to
divide | by 2 by an unconventional and special process. In the
conventional method when 1, the dividend, is to be divided by
the divisor ‘2’, the quotient is 0.5 and the process of division
ends. Inthe specid method of *Ekadhika Sitra’ for calculating
decimal equivalents, the process starts by putting zero as the
first digit of the quotient, 1 as the first remainder. A decimal
point is put after the first quotient digit which is zero. Now,
the first remainder digit '1' is prefixed to the first quotient digit
‘0’ to form “10" as the second dividend. Division of 10 by the
divisor 2 (which does not change) gives 5 as the second quotient
digit which is put after the decimal point. The second remainder
digit '0' is prefixed to the second quotient digit 5 to form 5 as
the third dividend digit. Division of 5 by 2 gives 2 as the third
quotient digit and 1 as the third remainder digit which when
prefixed to the third quotient digit 2 gives 12 as the fourth
dividend and so the process goes on till the digitsstart recurring.

Chapter Il ) ) ) ) o
Vinculum is an ingenious device to reduce singledigits larger

than 5, thereby facilitatingmultiplication specialy for the mental-
one-line method. Vinculum method is based on the fact that
18 issame as (20-2) and 76 as (100-24) or 576 as (600-24). Guru-
deva has made this arithmetical fact a_powerful device by writing
18as23, 76 as 124 aid 576 as 62 4. This device is specialy
useful in vedic division method.

A small note on ‘aliquot’ may facilitate the study for some.
Aliguot part is the part contained by the whole an integra
number of times, e.g. 12 is contained by the whole number 110,
9 times. or in simple wordsiit is the quotient of that fraction.
Chapter 1V

In the division by the Nikhilam’ method the dividend is divided
into two portions by a vertical line.  This vertical line should
haveas many digitstoits right astherecan bein the highest possi-
ble remainder. In genera the number of suchdigitsare thesame
as in the figure which is one less than the divisor. Needlessto
state that the vertical and horizontal lines must bedrawn neatly
when using this method.

WNG. Cov Visnva MOHAN TIWARI
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MY BELOVED GURUDEVA

SMTI. MANJULA TRIVEDI

[In the lines thatfollow the writer givesa short biographical
sketch G the illustrious author ¢ Vedic Mathematicsand a short
account G the genessd his work mew published, based on inti-
mate persona knowledge—EDITOR. ]

Very few persons can there be amongst the cultured people
of India who have not heard about HIS HOLINESS JAGAD-
GURU SHANKARACHARYA SRI BHARATI KRISHNA
TIRTHAJ MAHARAJ, the magnificent and divine personality
that gracefully adorned the famous Govardhan Math, Puri,
his vast and versatile learning, his spiritual and educational
attainments, his wonderful research achievements in the field
o Vedic Mathematics and his consecration of all these quali-
fications to the service of humanity as such.

His Holiness, better known among his disciples by the
beloved name 'Jagadguruji' or 'Gurudeva was born of highly
learned and pious parents in March, 1884. His father, late
Sri P. Narasimha Shastri, was then in service as a Tahsildar at
Tinnivelly (Madras Presidency) who later retired as a Deputy
Collector. His uncle, late Shri Chandrashekhar Shastri, was
the Principal of the Mahargjas College, Vizianagaram and his
great-grandfather was late Justice C. Ranganath Shastri of the
Madras High Court.

Jagadguruji, named as Venkatraman in his early days,
was an exceptionally brilliant student and invariably won
the first placein all the subjects in al the classesthroughout his
educational career. During his school days, he was a student
of National College, Trichanapalli; Church Missionary Society
College, Tinnevelli and Hindu College, Tinnevelli. Be passed
his matriculation examination from the Madras University
in January, 1899, topping the list as usual.

He was extra-ordinarily proficient in Sanskrit and oratory
and on account of thishewasawarded thetitled 'SARASWATI'
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by the Madras Sanskrit Associationin July, 1899 when he was
still in his 16th year. One cannot fail to mention at this stage
the profound impression left on him by his Sanskrit Guru
Shri Vedam Venkatrai Shastri whom Jagadguruji always
remembered with deepest love, reverence and gratitude, with
tears in his eyes.

After winning the highest place in the B.A. Examination,
Shri Venkatraman Saraswati appeared at the M.A. Examination
of the American College of Sciences, Rochester, New Y ork, from
Bombay Centrein 1903 ; and in 1904 at the age o just twenty
he passed M.A. Examination in further seven subjects simul-
taneously securing the highest honoursin al, which is perhaps
the al-time world-record o academic brilliance. His subjects
included Sanskrit, Philosophy, English, Mathematics, History
and Science,.

As a etudent Venkatraman was marked for his splendid
brilliance, superb retentive memory and ever-insatiablt curiosity.
He would deluge his teachers with myriads of piercing questions
which made them uneasy and forced them frequently to make
a frank confession of ignorance on their part. In this respect,
he was considered %o be a terribly mischievous student.

Even from his University days Shri Venkatraman Saras-
wati had started contributing learned articles on religion,
philosophy, sociology, history, politics, literature etc., to
late W. T. Stead's "REVIEW OF REVIEWS" and he was
specidly interested in al the branches o modern science. |n
fact, study of the latest researches and discoveriesin modern
science continued to be Shri Jagadguruji’s hobby till his uery
last days.

8ri Venkatrarnanstarted his public lifeunde the guidance
d late Honble Shri Gopal Krishna Gokhale, C.I.E. in 1905 in
connection with the National Education Movement and the
South African Indian issue. Although, however, on the one
hand, Prof. Venkatraman Saraswati had acquired an endless
fund of learning and his desire to learn ever more was still
unquenchableand on the other hand the urgefor selflessservice
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of humanity swayed his heart mightily, yet the undoubtedly
deepest attraction that Venkatraman Saraswati felt was that
towards the study and practice of the science o sciences—the
holy ancient Indian spiritual science or Adhyétma-Vidya. In
1908, therefore, he proceeded to the Sringeri Math in Mysore
to lay himsdf at the feet d the renowned late Jagadguru
Shankaracharya Maharg) Shri Satchidiinanda  Sivabhinava
Nrismha Bharati Swami:

But he had not stayed there long, before he had to assume
the post o the first Principal o the newly started National
College at Rajmahendri under a pressing and clamant call of
duty from the nationalist leaders. Prof. Venkatraman Saras-
wati continued there for three years but in 1911 he could not
resist his burning desire for spiritua knowledge, practice and
attainment any more and, therefore, tearing himsaf off suddenly
from the said college he went back to Shri Satchidénanda
Siviibhinava Nrisimha Bharati Swami at Sringeri.

The next eight years he spent in the profoundest study of
the most advauced Vedanta Philosophy and practice of the
Brahma-eadhnna. During these days Prof. Venkatraman
used to study Vedanta at the feet of Shri Nrisimha Bharati
Swami, teach Sanskrit and Philosophy in schools there, and
practise the highest and most vigorous Yoga-sadhana in the
nearby forests. Frequently, he was aso invited by severa
institutions to deliver lectures on philosophy; for example he
delivered a series of sixteen lectures on Shankarachnryas
Philosophy at Shankar Institute of Philosophy, Amalner (Khan-
desh) and similar lectures at several other places like Poona,
Bombay etc.

After several yearsd the most advanced studies, the deepest
meditation, and the highest spiritual attainment Prof. Venkatra-
man Saraswati wes initiated intothe holy order of SAMNYASA
at Banaras (Varanasi) by his Holiness Jagadguru Shankara-
charya Sri Trivikram Tirthaji Maharaj of Sharadapeeth on the
4th July 1919 and on this occasion he was given the new
name, Swami Bharati Krishna Tirtha.

-
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This was the starting point of an effulgent manifestation
of Swamiji’s real greatness. Within two years o his stay in-the
holy order, he proved his unique suitability for being installed
on the pontifical throne of Sharada Peetha Shankaracharya and
accordingly in 1921, he was so installed with al the formal
ceremonies despite all his reluctance and active resistance.
Immediately, on assuming the pontificate Shri Jagadguruji
started touring India from corner to corner and delivering
lectureson Sanétana Dharmaand by hisscintillating intellectual
brilliance, powerful oratory, magnetic personality, sincerity of
purpose, indomitable will, purity of thought, and loftiness of
character he took the entire intellectual and religious class of
the nation by storm.

Jagadguru Shankaracharya Shri Madhusudan Tirtha of
Govardhan Math Puri was at this stage greatly impressed by
Jagadguruji and when the former was in failing health he
requested- Jagadguruji to succeed him on Govardhan Math
Gadi. Shri Jagadguruji continued to resist his importunate
requests for along time but at last when Jagadguru Shri Madhu-
sudan Tirtha's health took a serious turn in 1925 he virtually
forced Jagadguru Shri Bharati Krishana Tirthaji to accept the
Govardhan Matl’s Gadi and accordingly Jagadguruji installed
Shri Swarupanandji on the Sharadapeeth Gadi and himself
assumed the duties of the ecclesiastical and pontifical head of
Sri Govardhan Math, Puri.

In this capacity of Jagadguru Shankaracharya o Govar-
dhan Math, Puri, he continued to disseminate the holy spiritual
teachings of Banatana Dharma in their pristine purity all over
the world therest of hislifefor 35 years. Months after months
and years after years he spent in teaching and preaching, talking
and lecturing, discussing and convincing millions o people all
over the country. He took upon himself the colossal task
of the renaissance Of Indian culture, spreading of Sanatena
Dharma, revival o the highest human and moral values and
enkindling of the loftiest spiritual enlightenment throughout
the world and he dedicated his whole life to this lofty and
noble mission.

g
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Prom his very early days Jagadguruji was aware o the
need for the right interpretation of **Dharma’ which he defined
as'thesum total d all the means necessary for speedily making
and permanently keeping all the people, individually as well
as collectively superlatively comfortable, prosperous, happy,
and joyous in al respects (including the physical, mental,
intellectual, educational, economic, socia, political, psyehie,
spritual ete. ad nfinitum)”. He was painfully aware of the
"escapiam’ of somefrom their duties under thegarb of spiritua-
lity and o the superficid modem educational varnish of the
others, divorced from spiritual and mora standards. He,
therefore, always laid great emphasis on the necessity of har-
monising the 'spiritual’ and the 'materiad’ spheres o daily
life. He aso wanted to remove the false ideas, on the one
hand, of those persons who think that Dharma can be practised
by exclusively individual spiritual Sadhané coupled with more
honest bread-earning, ignoring one's responsibility for rendering
selfless service to the society and on the other hand d those
who think that the S8adhana can be complete by mere service
of society even without learning or practising any spirituality
onesdlf. He wanted a happy blending of both. He stood for
the omnilateral and all-round progress simultenaously of both
the individual -and society towards the speedy realisation
of Indias spiritual and cultural ideal, the lofty Yedanticideal
of ‘Parnatva’ (perfection and harmony al-round).

With these ideas agitating his mind for several decades
he went On carrying on a laborious, elaborate, patient and day-
and-night researchto evolvefinally asplendid and perfect scheme
for al-round reconstruction first o India and through it of the
world. Consequently 8ri Jagadguruji founded in 1953 at Nagpur
an ingtitution named Sri Vishwa Punarnirmana Sangha (World
Reconstruction Association). The Administrative Board of the
Sangha consisted of Jagadguruji’s disciples, devoteesand admi-
rers of hisidealisticand spiritual ideals for humanitarian service
and included a number of high court judges, ministers, educa
tionists, statesmen and other personage o the highest calibre
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pleasure. To see him was a privilege. To speak to him was
a rea blessing and to be granted a speciadinterview—Ah! that
was the acme of happiness which people coveted most in all
earnestness.  The magnetic force o his wonderful personality
was such that one word, one smile, or even one look was quite
enough to convert even the most scepticinto his most ardent
and obedient disciple. He belonged to al irrespective o caste
or creed and he was a real Guru to the whole world.

People o all nationdlities, religions and climes, Brahmins
and non-Brahmins, Hindus and Mahomedans, Parsis and Chris-
tians, Europeans and Americans received equal treatment at
the hands o MisHoliness. That was the secret of the immense
popularity o this great Mahatma.

He was grand in his simplicity. People would give any-
thing and everything to get his blessings and he would talk
words of wisdom as freely without fear or favour. He was
most easily accessible to al. Thousands o people visited
him and prayed for the relief of their misertes. He had a kind
word to say to each, after attentively listeningto hisor her tale
o woeand then give them some ‘prasad’ which would cure their
malady whether physicd or mental. He would actually
shed tears when he found people suffering and would pray to
God to relieve their suffering.

He was mighty in kis learning and voraciousin hisreading.
A sharp intellect, a retentive memory and a keen zest went te
mark him as the most distinguished scholar of his day. His
leisure moments he would never spend in vain. He was always
reading something or repeatingsomething. Therewasno branch
o knowledgewhich hedid not know and that also ‘shastrically’.
He was equally |earned in Chandahsastra, Ayurveda and
Jyotish Sastra.  He was a poet of uncommon merit and wrote
a number of poems in Sanskrit in the praise o his guru, gods
and godesses with a charming flow of Bhakti SO conspicuous in
all his writings.

| have got a collection o over three thoussnd slokas for-
ming part of the variouseul ogistic poems composed by Gurudeva
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in adoration of various Devas and Devis. These Sokas have
been edited and are being trandlated into Hindi. They are
proposed to be published in three volumes along with Hindi
tranglation.

The book on “Sanatana Dharma” by H. H. Swami Bharati
Krispa Tirtha Mahardja has been published by Bharatiys
Vidya Bhavan, Bombay.

Above dl, his Bhakti towards his Vidygguru was some-
thing beyond description. He would telk for day -together
about the greatness o his Vidydguru. He would be never
tired of worshipping the Guru. His Gurn also was equally
attached to him and called our Swamiji as the own son of the
Goddess of Learning, Shri Sarada. Everyday he would first
worship his guru's sandals. His “Gurupaduké Stotra ' clearly
indicates the qualities he attributed to the sandals of his guru.

Shri  Bbarati Krisna Tirtha was a great Yogin and a
"Siddha’* of avery high order. Nothing wasimpossiblefor him.
Aboveall he was a true S8amnyasin. He held the world but as
a stage where every one had to play a part. In short, he was
undoubtedly a very great Mah&tma but without any display of
mysteries or oceultisms.

I have not been able to express hereeven one millionth
part of what | fed. His spotless holiness, his deep piety,
his endless wisdom, his childlike peacefulness, sportiveness
and innocence and his universal affection beggar all description.
His Holiness has left us a noble example of simplest |iving and
highest thinking. May all the world benefit by the example
of a life so nobly and so simply, S0 spiritually and so lovingly
lived.

Introductory Remarks on the Present Volume
I now proceed to give a short account o the genesis
of the work published herewith. Revered Guruji used to
say that he had reconstructed the sixteen mathematical
formulae (given in this text) from the Atharvaveds after
assiduous research and 'Tapas for about eight years in the
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forests surrounding Sringeri. Obvioudy these formulae are
not to be found in the present recensions of Atharvaveda ; they
were actually reconstructed, on the basis of intuitive revelation,
from materials scattered here and there in the Atharvaveda.
Revered Gurudeva used to say that he had written sixteen
volumes (one for each Siitra) on these Siitras and that the
manuscripts of the said volumes were deposited at the house
o one o his disciples. Unfortunately, the said manuscripts
were lost irretrievably from the place o their deposit and this
colossal |0ss was finally confirmed in 1956. Revered Gurudeva
was not much perturbed over this irretrievable lossand used to
say that everything was therein his memory and that he could
re-write the 16 volums!

My |ate husband Sri C. M. Trivedi, Hon. Gen. Secertary
V. P. Sangh noticed that while Sri Jagadguru Mahargj was
busy demonstratirig before learned people and societies
Vedic Mathematics as discovered and propounded by him,
some personswho had grasped a smattering of the new
Siitras had already started to dazzle audiences as prodigies
claming occult powers without aknowledging indebtedness
to the Stitras of Jagadguruji. My husband, therefore, pleaded
earnestly with Gurudeva and persuaded him to arrange for
the publication of the Siitras in his own name.

In 1957, when he had decided finaly to undertake a
tour o the U.8.A. he re-wrote from memory the present
volume, giving an introductory account o the sixteen for-
mulae reconstructed by him. This volume was written in
his old age within one month and a half with his failing health
and weak eyesight. He had planned to write subsequent volu-
mes, but his failing health (and cataract developed in both
eyes) did not alow thefulfilment of hisplans. Now the present
volume is the only work on Mathematicsthat has been | eft over
by Revered Guruiji ; al his other writingson Vedic Mathematics
have, alas, been lost for ever.

The typescript of the present volume was |eft over by
Revered Gurudeva in USA. in 1958 for publication. He
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had been given to understand that he would have to go to the
T.8.A. for correction of proofs and personal supervision of
printing. But his health deteriorated after his return to India

and finally the typescript was brought back from the U.S.A.
after his attainment o Mahasamadhi, in 1960.
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AUTHOR’S PREFACE

A—A DESCRIPTIVE PREFATORY MOTE
ON
THE ASTOUNDING WONDERS
OF

ANCIENT INDIAN VEDIC MATHEMATICS

1 In the course o aur discourses on manifold and
multifarious subjects (spiritual, metaphysical, philosophical,
psychic, psychological, ethical, educational, scientific, mathe-
matical, historical, political, economic, socia etc., etc., from
time to time and from place to placeduring thelast five decades
and more, we have been repeatedly pointing out that the Vedas
(the most ancient Indian scriptures, nay, theoldest " Religious”
scriptures of the whole world) claim to ded with all branches
d learning (spiritual and temporal) and to give the earnest
seeker after knowledgeadl the requisiteinstructions and guidance
in full detail and on scientificaly—nay, mathematically—
accurate lines in them all and s on.

2. Thevery word "Veda" hasthis derivationa meaning
i.e. the fountain-head and illimitable store-house of al know-
ledge. Thisderivation, in effect, means, convotes and impliesthat
the Vedasshould contain within themselves all the knowledge
needed by mankind relating not only to the so-caled 'spiritua’
(or other-worldly) matters but aso to those usually described
as purely "secular', ""tempord™, or “wordly”; and aso to
the means required by humanity as such for the achievement
of al-round, complete and perfect success in all conceivable
directions and that there can be no adjectival or restrictive
epithet calculated (or tending) to limit that knowledge down in
any sphere, any direction or any respect whatsoever.

3. In other words, it connotes and implies that our
ancient Indian Vedic lore should be all-round complete and
perfect and able to throw the fullest necessary light on all
matters which any aspiring seeker after knowledge can possibly
seek to be enlightened on.
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4. Itisthus inthefitnessd things that the Vedasinclude
(i) dyurveda (anatomy, physiology, hygiene, sanitary science,
medical science, surgery etc., etc.,) not for the purpose of achie-
ving perfect health and strength in the after-death future but
in order to attain them here and now in our present physical
bodies; (ii) Dhanurveda (azchery and other military sciences)
not for fighting with one another after our transportation to
heaven but in order to quell and subdue al invaders from
abroad and al insurgents from within; (iii) Gandharve Veda
(thescienceand art of music)and (iv) Sthapatya Veda (engineer-
ing, architecture ete.,and all branchesd” mathematicsin general).
All these subjects, be it noted, are inherent parts of the Vedas
i.e. arc reckoned as "spiritual" studies and catered for as

such therein.

5. Similar is the case with regard to the Veddrgas (i.e.
grammar, prosody, astronomy, lexicography etc., etc.,) which,
according to the Indian cultural conceptions, are aso inherent
parts and subjects of Vedi ¢ (i.e. Religious) study.

6. As a direct and unshirkable consequence of this
analytica and grammatical study of the real connotation
and full implicationsd the word "Veda" and owing to various
other historical causes d a personal character (into details o
which we need not now enter), we have been from our very
early childhood, most earnestly and actively striving to study
the Vedas critically from this stand-point and to realise and
prove to ourselves (and to others) the correctness (or otherwise)
of the derivative meaning in question.

7. There were, too, certain persona historical reasons
why in our quest for the discovering of al learning in al its
departments, branches, sub-branches etc., in the Vedas, our
gaze was riveted mainly on ethics, psychology and metaphysics
on the one hand and on the "positive’ sciencesand especialy
mathematics on the other.

8. And the contemptuous or, at best patronising attitude
adopted by some so-cdled Orientalists, Indologists, anti-
quarians, research-scholars etc.,, who condemned, or light-
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heartedly, nay; irresponsibly, frivolously and flippantly dis-
missed, several abstruse-looking and reegndite parts o the
Vedas as "'sheer-nonsensg” —or a8 "infant-humanity's prattle™,
and s0 on, merely added fuel to thefire (soto speak) and further
confirmed and strengthened our resolute determination to
unravel the too-long hidden mysteriesof philosophy and science
contained in ancient India's Vedic lore, with the consequence
that, after eight years of concentrated eentemplation in forest-
solitude, we were at long last able to recover the long lost keya
which aone could unlock the portals thereof.

9. And we were agreeably astonished and intensely gra-
tified to find that exceedingly tough mathematical problems
(which the mathematically most advanced present day Wes
tern scientific world had spent huge lots of time, energy and
money on and which even now it solveswith the utmost difficulty
and after vast labour involvinglargenumbersof difficult, tedious
and cumbeisome"steps” o working) can be easily and readily
solved with the help of these ultra-easy Vedic Siitras (or mathe-
matical aphorisms) contained in the Paridista (the Appendix-
portion) o the ATHARVAVEDA in a few simple steps and by
methods which can be conscientiouslydescribed as mere " mental
arithmetic”,

10. Eversince (i.e. since several decades ago), we have
been carrying on an incessant and strenuous campaign for
the Indiawide diffuson of al this scientific knowledge, by
means d lectures, blackboard- demonstrations, regular classes
and so on in schoals, colleges, universities etc., all over the
country and have been astounding our audiences everywhere
with the wonders and marvels not to say, miracles of Indian
Vedic mathematics.

11. We were thus at last enabled to succeed in attracting
the more than passing attention of the authorities of severa
Indian universitiesto this subject. And, in 1962, the Nagpur
University not me-ely had a few lectures and blackboard-
demonstrations given but also arranged for our holding regular
classes in Vedir mathematics (in the University's Convoeation
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Hall) for the benefit of al in general and especialy of the Uni-
versity and college professors of mathematics, physics etc.

12. And, consequently, the educationists and the cream
of the English educated section of the people including the
highest officials (e.g. the high-court judges, the ministers
etc.,) and the general public as such were all highly impressed ;
nay, thrilled, wonder-struck and flabbergasted! And not
only the newspapers but even the University's official reports
described the tremendous sensation caused thereby in superlati-
vely eulogistic terms; and the papers began to refer to us as
""the Octogenarian Jagadguru Shankaracharya who had taken
Nagpur by storm with his Vedic mathematics™, and so on!

13. It is manifestly impospible, in the course of a short
note [in the nature of a"trailer"), to give a full, detailed, tho-
rough-going, comprehensive and exhaustive description of
the unique features and startling characteristics of all the
mathematical lore in question. This can and will be done
in the subsequent volumes of this series (dealing seriatim and
in extenso with all the various portions of al the variousbranches
o mathematics).

14. We may, however, at this point, draw the earnest
attention of every one concerned to the following salient items
thereof : —

(i) The Siitras (aphorisms) apply to and cover each
and every part of each and every chapter of each
and every branch of mathematics (including ari-
thmetic, algebra. geometry —plane and solid, trigo-
nometry —plane and spherical, conics— geometrica
and analytical, astronomy, caculus— differential
and integral etc., etc. In fact, there is no part of
mathematics, pure or applied, which is beyond their
jurisdiction ;

(ii) The Satras are easy to understand, easy to apply
and easy to remember ; and the whole work can be
truthfully summarised in one word "mental™ !
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(iii) Even as regards complex problems involving a good

number of mathematical operations (consecutively
or even simultaneously to be performed), the time
taken by the Vedic method will be a third, a fourth,
a tenth or even a much smaller fraction of the time
required according to modern (i.e. current) Western
methods:

(iv) And, in some very important and striking cases,

)
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sums requiring 30, 50, 100 or even more NUMErous
and cumbrous ""steps” of working (according to the
current Western methods) can be answered in a
single and simple step of work by the Vedic method !
And little children (of only 10 or 12 years of age)
merely look at the sums written on the blackboard
(on the platform) and immediately shout out and
dictate the answers from the body of the convocation
hall (or other venue of the demonstration). And
thisis because, asa matter of fact, each digit automa-
tically yieldsits predecessor and its successor ! and
the children have merely to go on tossing off (or
reeling off) the digits one after another (forwards or
backwards) by mere mental arithmetic (without
needing pen or pencil, paper or slate etc)!

On seeing this kind of work actually being performed
by the little children, the doctors, professors and
other "big-guns” of mathematics are wonder struck
and exclaim :—"Is this mathematics or magic" 2 And
we invariably answer and say: "It is both. It is
magic until you understand it ; and it is mathematics
thereafter'; and then we proceed to substantiate
and prove the correctness of this reply of ours! And

As regards the time required by the students for
mastering the whole course of Vedic mathematics
as applied to all its branches, we need merely state
from our actual experience that & months (or 12
months) at an average rate of 2 or 3 hours per day
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should suffice for completing the whole course of
mathematical studies on these Vedic lines instead of
16 or 20 years required according to the existing
systems of the Indian and also o foreign uni-
versities.

15. In this connection, it is a gratifying fact that unlike
some so-called Indologists (of the type hereinabovereferred to)
there have been some great modern mathematicians and his-
torians of mathematics (like Prof. &. P. Halstead, Professor
@insburg, Prof. De Moregan, Prof. Hutton etc.,) who have,
as truth-seekers and truth-lovers, evinced a truly scientific
attitude and frankly expressed their intense and whole-hearted
appreciation of ancient India's grand and glorious contributions

to the progress of mathematical knowledge (in the Western
hemisphere and elsewhere).

16. The followingfew excerptsfrom the published writings
o some universally acknowledged authorities in the domain
o the history of mathematics, will speak eloquently for
themselves: —

(i) On page 20 d his book "On the Foundation and
Techniqued Arithmetic', we find Prof. G.P. Halstead
saying ""The importance o the creation o the
zero mark can never be exaggerated. This giving
of airy nothing not merely a local habitation and a
name, a picture but helpful power isthe characteristic
d the Hindu race whence it sprang. It is like
coining the Nirvina into dynamos. No single
mathematical creation has been more potent for the
genera on-go of intelligence and power".

(i) In this connection, in his splendid treatise on “The
present mode o expressing numbers” (the Indian
Historical Quarterly Vol. 3, pages 530-540) B. B.
Dutta says. ""The Hindus adopted the decima
scade vary early. The nuinerical language of no
other nation is so scientific and has attained as high
a state of perfection as that of the ancient Hindus.
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I n symbolism they succeeded with ten signsto express
any number most elegantly and simply. It is this
beauty o the Hindu numerical notation which attrac-
ted the attention of all the civilised peoples of the
world and charmed them to adopt it"
(iii) In this very context, Prof. Ginsburg says.—
"TheHindu notation was carried to Arabia about.
770 A.D. by a Hindu scholar named Kanka who
wasinvited from Ujjain to the famous Court of Bagh-
dad by the Abbaside Khalif Al-Mawsur. Kanka
taught Hindu astronomy and mathematics to the
Arabian scholars; and, with his help, they translated
into Arabic the Brahma-Sphuta-Siddhanta of Brahma
Gupta. The recent discovery by the French savant
MF. Nav proves that the Hindu numerals were well
knownand much appreciatedin Syriaabout the middle
d the 7th Century A-D"".  (GiNsBURG’s *NEw LierT
on our numeras"”, Bulletin o the American Mathe-
matical Society, Second series, Vol. 25, pages 366-369).
(iv) On this point, we find B. B. Dutta further saying:
"From Arabia, the numerals dowly marched
towards the West through Egypt and Northern
Arabia; and they finally entered Europe in the
11th Century. The Europeans calledthem the Arabic
notations, because they received them from the
Arabs. But the Arabs themselves, the Eastern &6
well as the Western, have unanimoudy caled them
the Hindu figures. (Al-Argan-Al-Hindu'.)

17. The above-cited passages are, however, in connection
with and in appreciation of Indias invention o the "Zero"
mark and her contributions of the 7th century A.D. and later
to world mathematical knowledge.

In the light, however, o the hereinabove given detailed
description of the unique merits and characteristic excellences
of the till earlier Vedic Satras dedt with in the 16 volumes d

|
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this series, the conscientious (truth-loving and truth-telling)
historians «f Mathematics (of the lofty eminence of Prof. De
Morgan etc.) have not been guilty of even theleast exaggeration
in their candid admission that "even the highest and farthest
reaches of modern Western mathematics have not yet brought
the Western world even to the threshold of Ancient Indian Vedic
Mathematics™.

18. It is our earnest aim and aspiration, in these 16
volumes?, to explain and expound the contentsof the Vedic
mathematical Siitras and bring them within the easy intellectual
reach of every seeker after mathematical knowledge.

B.—EXPLANATORY EXPOSITION
OF
SOME SALIENT, INSTRUCTIVE AND
INTERESTING ILLUSTRATIVE SAMPLE SPECIMENS
BY WAY OF
COMPARISON anD CONTRAST

Preliminary Note:—

With regard to every subject dealt with in the Vedic
Mathematical Siitras, the rule generally holds good that the
Siitras have always provided for what may be termed the
'General Case' (by means of simple processes which can be easily
and readily—nay, instantaneously applied to any and every
question which can possibly arise under any particular heading.

2. But, at the same time, we often come across specia
cases which, although classifiable under the general heading
1 question, yet present certain additional and typical charac-
terestics which render them still easier tosolve.  And, therefore,
special provision is found to have been made for such specia
cases by means of specia Siitras, sub-Siitras, corollaries etc.,
relating and applicable to those particular types alone.

1 Only one volume has been bequeathed by His Holiness to posterity
cf p. x above—General Editor.

( =z )

3. And dl that the student of these Siitras has to do
is to look for the specia characteristics in question, recognisc
the particular type before him and determine and npply the
special formula prescribed therefor.

4. And, generally speaking it is only in ecase no specia
case isinvolved, that the general formula has to be resorted to.
And this process isnaturally a little longer. But it need
hardly be pointed out that, even then, thelongest of the methods
according to the Vedic system comes nowhere (in respect of
length, cumbrousness and tediousness etc.,) near the correspond-
ing process according to the system now current everywhere.

5. For instance, the conversion of a vulgar fraction
(say g5 OF gy Or 25 etc.,) to itsequivalent recurring decimal
shape involves 18 or 28 or 42 or more steps of cumbrous work-
ing (according to the current system) but requires only one
single and simple step o mental working (according to
the Vedic Sitras) !

6. This is not all. There are still other methods and
processes (in the latter system) whereby even that very smali
(mental) working can be rendered shorter still! This and
herein is the beatific beauty of the whole scheme.

7. To start with, we should naturally have liked to begin
this explanatory and illustrative exposition with a few pro-
cesses in arithmetical computations relating to multiplications
and divisionsof huge numbers by big multipliersand big divisors
respectively and then go on to other branches of mathematical
calculation.

8. Rnt, as we have just hereinabove referred to a parti-
cular but wonderful type of mathematiral work wherein 18,
28, 42 or even more steps of working can be condensed into a
single-step answer which can be written down immediately
(by means of what we have been describing as straight, single-
line, mental arithmetic) ; and, as this statement must naturally
have aroused intense eagerness and curiosity in the minds of the
students (and the teachers too) and especially as the process is
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based ON elementary and basic fundamental principles and

no previous knowledge of anything in the nature

of an indispensable and inescapable pre-requisite ohapter,

subject and so ON, we are beginning this exposition here with

an easy explanation and a simple elucidation df that particular
illustrative specimen.

9. And then we shal take up the other various parts,

one by One, of the variousbranches o mathematical computation

and hopeto throw sufficient light thereon to enablethe students

to make their own comparison and contrast and arrive at
correct conclusions on &l the various points dealt with.

C. ILLUSTRATIVE SPECIMEN SAMPLES
(Comparison and Contrast)
SAMPLE SPECIMENS

oF
ARITHMETICAL COMPUTATIONS

7. Multiplication: The" Sanskrit Sitra” (Formula)ds—

( xxiii )
II. Division:
(2) Express g in its full recurringdecimal shape (18 digits) :
By the current method :  The" Sanskrit Sitra” (Formuda) is ;

@) Multiply 87265 by 32117

P
n FEdfadTaT i

gy Current method - By \edi ¢ mental oneline method :
y 87265 87285
32117 32117
610855 2802690005

87285 _—

87265 Notez Only the answer is writ-

174530 ten automatically down

261795 by Ordkwa  Tiryak

2802690005 Sara (forwards or back-

———— e

wards).

19) 1°00( 052631578947368421 N T T N
95 By the Vedic mental ong?rne methed
50 (by the Bkadkika-Pirva Sitra)
3 (forwards or backwards), e merely
120 write down the 18-deget-answer : —
14 *052631578) -
o0 947368421% 1
57
30
19
110
95
150
133
170
152
180
171
00
L6
70
57
130 '
114
160
152 33
-850 20
76 19
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Division continued :

Note: <5 gives 42 recurring decimal placesin the answer but
these too are written down mechanically in the same
way (backwards or forwards). And the same is the
case with al such divisions (whatever the number of
digits may be):

(3) Divide 7031985 hy 823:

By the current method - By the mental Vedic onelinemethod -

823)7031985(8544
6584

4479 8544(273
4115 -

3648
3292

3565
3292

273

. Q=8544

R= 273
(4) Divide 0003147 by 814266321 (to 6 decimal places) :
The current method is notoriously too long, tedious, cum-
brous and clumsy and entails the expenditure o enormous time
and toil. Only the Vedic mental one-line method is given here.

The truth-loving student can work it out by the other method
and compare the two for himself.

8/1425632)° 00034147
3295
-0000419...
(5) Find the Reciprocal d 7246041 to deven Decimal places:
By the Vedic mental one-line-method.
(by the Urdhwa-Tiryak Sutra)
7/246041)° 000001000000
374610

*00000013800...

8123)70319(85
675

N.B.:—The same —r_n_et—hod can be used for 200 or more places.
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III. Divisihility -
(6) And out whether 5293240096 ¢ divisible by 139 :

By the current method, nothing less than complete
division will give a clue to the answer (Yesor No).

But by the Vedic menta oneline method (by the
Ekidhika-Parva Sitre), we can at once say :—

for)5293240096'YES

139) 139 89 36 131 29 131 19 51 93 e :

IV. Square Root:

(7) Extract the square root d 738915489 -
By the current method - By the Vedic mental one-line method:

738915489(27183
4)738915489
47)338 35613674
329
—— 27183.000 Ans.
541) 991
541 (By the Urdhwa-Tiryak Siitra)
5428) 45054
43424
54363) 163089
163089
0

»"» The square root is 27183.

(8) Extract the squareroot of 19.70641281410 6 decimal places:

The current method is too cumbrous and may be tried by
the student himself.

The Vedic mental one-line method (by Ordhwe-Tiryak
Satra) is as follows; —

8)19:706412814
'351010151713

4-439100 . . .
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V. Cubing and Cube-Root : The " Sanskrit Satra”
(Formula) ©s = —
(9) Find the cube Of 9989, W — | T FTFTT ot 1 afvrsrg
The current method is too cumbrous.
The Vedic mental one-line method (by the Ydvadinam-
Tavadanam Sitra) is as follows:—
99893—9967/0363/1331=9967/0362/8669
(10) Extract the Cube-Rod d 355045312441.
The current method is too cumbrous.
The Vedic mental one-line method is as follows:—
2/355045319441 =7 . . 1="7081

SAMPLE SPECIMENS FROM ALGEBRA

. Swmple Equations : The' Sanskrit Satra’
(Formula) is:—
(11) Solve: 3x+4  x+I N YT RS 0
6x+77 2x+3

By the current method : By the Vedic method (by the
Stanyam-Samuccaya Sitra
L BX8+17X+12= oo 4x4H6=0 .. x=—1}
6x%+13x+7
oo 4x= —5
SO Xs= ~ll~
(12) 4x421 5x—69 3x—5 6x—4l
X5 | x—14=x—2t x—7
The current method is too cumbrous.
The Vedic method smply says: 2x—9=0 . x=4}
(13) (x—-5 3 x-3
i——7) “x=9
The current niethod is horribly cumbrous.
The Vedic method simply says: 4x—24=0 ..xx=8,
11 Quadratic-Equations (and Calculus):
The same is the case here.

( =xvil )
(14) 16x—8_ 2x—15
T Ix—25 x=1 or 10/9
(1 3 4 2 6
ot~ et
(16) 7x2—11x—7=0
By Vedic method (by “Calana-kalana” Sttra; Formula)
i.e., by Caculus-Formula we sap: 14x—1l= £ V317.
N.B.:—Every quadratic can thus be broken down into two
binomial-factors. And the same principle can be
utilised for cubic, biquadratic, pentic etc., expressions.

x=0 or —7/2.

I11I. Summation ¢ Series -
The current methods are horribly cumbrous. The Vedic
mental one-line methods are very simple and easy.
(17) 3ls+'rlr+g!u+r§'o=4/77
(18) o+ 1ot drsteifo=1drs

SPECIMEN SAMPLES FROM GEOMETRY

(19) Pythogoras Theorem is constantly required in al mathe-
matical work, but the proof of it is ultra-notorious for its
cumbrousness, clumsiness, ete. There are several Vedic proofs
thereof (every one of them much simpler than Euelid’s). 1
give two o them below:—

E, F, G and H are points
on AB, BC, CD and DA such
that AE=BF=CG=DH. Thus
ABCD is split up into the
square EFGH and 4 congruent
triangles. oy

Their total area =H3%+4x} X mn
->(H2+4-4x} mn)
=H242mn
But the area of ABCD is {m-n)?
=m24{2mn}-n?
e H24-2mn=m?+42mn-+n?
.. H2=m?4-n3. QE.D.
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(20) Second Proof: .
Drew BD L to AC. 2
Then ABC, ADB end
BDC are similar. J ~

ADB_ AB? and BDC__B(C?
ABC  AT: ABC AC:

. ADB+BDC. AB2+B(? ;

ST ABC . S RET— But : ADB+BDC=ABC

~ AB2LBO2=AC:. QED.

Note:—Apollonius  Theorem, Ptolemy's Theorem, ctc., etc.,
are al similarly proved by very simple and easy
methods.

SIMPLE SPECIMENS FROM CONICS AND CALCULUS

(21) Equation ¢ the straight line joining two points:

For findingthe equation of the straight line passing through
two points {whose co-ordinates are given).
Say (9, 17) and (7, —2).
By the Current Method :
Let the equation be y =mx-+ec.
. 9m-+e=17; and Tm-+c=—2

Solving this simultaneous-equation in m and e,

We have 2m=19; .. m=9} ... C=—68}

Substituting ; these, values, we have y=94x—683

-, 2y=19x—137 ... 192—2y=137. But this method ig
cumbrous.

Second method using the formula y— yl—y 1 > (x—x1)

is still more cumbrous (and confusing),

But the Vedic mental oneline method by the Sanskrit
Sttra (Formula), u awaed 2vaiq || (“ Pardvartya-Siitra”) enables
us to write down the answer by a mere lok at the given
co-ordinates.

{ ==xix )
(22) When does a general-equation represent two straight linest
Say, 12x? +7xy—10y2-+13x+45y—35=0

By the Current Method.
Prof. 8. L. Loney devotes about 15 lines (section 119,
Ex. 1 on page 97 of his"Elements of Co-ordinate Geometry"")
to hie "mode™ solution of this problem as follows:—
Here a=12, h=7/2, b=—10, g=13/2, f=45/2 and
c=—35.
‘. abc4-2fgh —af2—bg?—ch? turns out to be zero.

2x45 13 7 12(45) (13)%
=12(x—]0) (x—-35)+*“2— XgXg——g —(—10) 3
1690 lllo 7500

The equation represents two straight lines.
Solving it for x, we have:—

7y+l3 Ty+13 10y3—45y+35 (7y-‘-13)2
'+ -3 “'( 24 )“ 2 H 21
_23y—43)’
=(*%

'1y+13_23y—-43
Ve XTTRL T o

y;-7 or 52;1"5

‘v X=

*. The two straight lines are 3x=2y—7 and 4x=-—5 y+-5.
By the Vedic method, however, we at once apply the “ddyam-
adyena” Sitra and (by merely looking at the quadratic) write
down the answer :
Yes, and the straight lines are 3x—2y=-—7 and
4x+45y-=5.

(23) Deding with the same principle and adopting the same
procedure with regard to hyperbolas, conjugate hyperbolas and
asymptotes, in articles 324 and 325 on pages 293 and 294 of his
""Elements of Co-ordinate Geometry™ Prof. S L. Loney devotes
27-+-14(=41 lines) to the problem and says: —
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As 3x%—5xy—2y%4-5x—11y—8=0 is the equation to
thegiven hyperbola.

s 3(=2) et2. .5 (=5 — 3082 — (-2) (§?
—o(—§)2=0.

cooo= 12

.. The equation to the asymptotes is3x? —sxy—2y2+
5x—11y—12=0
and the equation to the conjugate-hyperbola is 3x2—s5xy —2y3+
5x+15y—16==0
By the Vedi ¢ method, however, we use the same (‘Adyam-adyena’)
Satra and automatically write down the equation tothe asymp-
totes and the equation to the conjugate-hyperbola

The Vedic methods are so simple that their very simplicity
is astounding, and, as Desmond Doig has aptly, remarked,
it is difficultfor any one to bdieve it until one actually sees it.

It will be our am in this and the succeeding volumes
to bring this long-bidden treasure-trove d mnthemetical
knowledge within easy reach of everyone who wishesto obtainit
and benefit by it.

1 This is the only" volume left by the author —Editor.

TEXT
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VEDIC MATHEMATICS
OR

SIXTEEN SIMPLE MATHEMATICAL FORMULAE
FROM THE VEDAS

SIXTEEN SOTRAS AND THEIR COROLLARIES

Satras Sub-Sitras o Corollaries
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a corollary)
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Kevalaih Saptakem Gun-
yit

Sanyam Samyasamuccaye Vestanam
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Parandparanabhydm Antyayordasoke'pi
. REEEATAR, HFRGRIA

Calana-Kalanabhyam Antyayoreva




10.

11.

12.

13.

14.

15.

16.
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Sitras
TEGTH
Yavadianam
sfeqmfez:
Vyastisamastih
TSI T
Sesinyankena Caramena
ATFAGTHAT,
Sopantyadvayamantyam
TFIAT A
Ekanytinena Pirvena
Tfaagsam:
Gunitasamuccayah
TFALAR:

Gunakasamuccayah

[Note—This list has been compiled from stray references
in the text—EDITOR.]

10.

11.

12.

13.

Sub-Siitras or Corollaries
Fgerf:
Samuccayagunitah
BT
Lopanasthapanabhyam
@iy

Vilokanam

freraeaa: weS:
Gunitamuooayalx
Samuccayagunitah

e sy
PROLEGOMENA

In our "Descriptive, Prefatory Noteon the Astounding
Wonders of Ancient Indian Vedic Mathematics*, we have
again and again, so often and at such great length and with such
wedth o detail, dwelt on the amost incredible simplicity
o the Vedic Mathematical Sitras (aphorisms or formulae)
and the indescribable ease with which they can be understood,
remembered and applied (even by little children) for the solution
o the wrongly-believed-to-be-" difficult problemsin the various
branches of Mathematics, that we need not, at thispoint, traverse
the same ground and cover the same field once again here.

Sufficeit, for our present immediate purpose, to draw
the earnest attention of every scientificadly-inclined mind
and researchward-attuned intellect, to the remarkably extra-
ordinary and characteristic—nay, unique fact that the Vedic
system does not academically countenance (or actualy follow)
any automatical or mechanica rule even in respect o the
correct sequence or order to be observed with regard to the
various subjects dedlt with in the various branches of Mathe-
matics (pure and applied) but leaves it entirely to the con-
venience and the inclination, the option, the temperamental
predilectionand even theindividual idiosyncracy of the teachers
and even the students themselves (as to what particular order
or sequence they should actually adopt and follow) !

This manifestly out-of-the-common procedure must
doubtless have been due to some specia kind of historical
back-ground, background which made such a consequence not
only natural but aso inevitable under the circumstances in
question.

Immemorial tradition has it and historica research
confirmsthe orthodox belief that the Sages, Seersand Saints of
ancient India (who are accredited with having observed, studied
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and meditated in the Aranya (i.e. in forest-solicitude)}—on physi-
ca Nature around them and deduced their grand Vedantic
Philosophy therefrom as the result not enly of their theoretical

reasonings but aso d what may be more fittingly described as .

True Redlisation by means of Actua VISUALISATION)seem
to have similarly observed, studied and meditated on the
mysteriousworkingsaf numbers, figuresetc. o the mathematical
world (to wit, Nature) around them and deduced their Mathe-
matical Philosophy therefrom by a similar process of what one
may, equally correctly, describe as processes o True-Realisation
by means o Actua VISUALISATION.

And, consequently, it naturally follows that, in-as-much
as, unlike human beings who have their own personal prejudices,
partialities, hatreds and other such subjective factors distorting
their visions, warping their judgements and thereby contri-
buting to their inconsistent or self-contradictory decisions and
discriminatory attitudes, conducts etc.), nwmbers (in Mathe-
matics) labour under no such handicaps and disadvantages
based on persona prejudices, partiaities, hatreds etc. They
are, on the contrary, strictly and purely ¢mpersonal and objective
in their behaviour ete., follow the same rules uniformly, consis-
tenly and invariatly (with no question of outlook, approach,
persona psychology etc. involved therein) and are therefore
absolutely reliable and dependable.

This seems to have been the rea historical reason why.
barring afew unavoidableexceptionsin theshape o elementary,
basic and fundamental first principles(cof a preliminary or pre-
requisite character), amost al the subjects dealt with in the
various branches of Vedic Mathematics are explicable and
expoundable on the basis d those very 'basic principles or
first principles, with the natural consequencethat no particular
subject or subjects (or chapter or chapters) need necessarily
precede or follow some other particular subject or subjects
(or chapter or chapters).

Nevertheless, it is aso undeniable that, athough any
particular sequence is quite possible, permissible and feasible

(1)

yet, some particular sequence will actually have to be adopted
by a teacher (and, much more therefore, by an author). And
so, wefind that subjectslike analytical conics and even calculus
(differential and integral) (which is usually the bugbear and
terror of even the advanced students of mathematics under the
present system al the world over) are found to figure and fit
in at & very early stage in our Vedic Mathematics (becauseof
their being expounded and worked out on basic first principles.
And they help thereby to facilitate mathematical study
especialy for the smdl children).

And, with our more-than-half-a-century's actual personal
experience of the very young mathematics-students and their
difficulties, we have found the Vedic sequence of subjects and
chapters the most suitable for our purpose (namely, the elimina-
ting from the children's mindsof al fear and hatred of mathe-
matics and the implanting therein of a positive feding of
exuberant love and enjoyment thereof)! And we fervently
hope and trust that other teachers too will have a similar
experienceand will find us judtified in our ambitious description
of this volume as “Mathematics Without tears'.

From the herein-above described historical back-ground
to our Vedic Mathematics, it is aso obviousthat, being based
on basic and fundamental principles, this system of mathe-
matical study cannot possibly come into conflict with any
other branch, department or instrument o science and
scientific education. TIn fact, this is the exact reason why all
the other sciences have different Theories to propound but
Mathematics has only THOEREMS to expound!

And, above dl, we have our Scriptures categroically
laying down the wholesome dictum :—

Afraad a= aTad ATeTaf gl

afrrdi aaemrsy gemEly gFRf
(ie. whatever is consistent with right reasoning should be
accepted, even though it comes from a boy or even from a
parrot ; and whatever is inconsistent therewith ought to be
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rejected, athough emanating from an old man or even from the
great sage Shree Shuka himself.

In other words, we are caled upon to enter on such a
soientific quest as this, by divesting our minds o al
pre-conceived notions, keeping our minds ever open and, in all
humility (ashumility alone behovesand befits the real seeker
after truth), welcoming the light of knowledge from whatever
direction it may be forthcoming. Nay, our scriptures go so far
asto inculcate that even thir expositions should belooked upon
by us not as ""teachings” or even as advice, guidance etc. but
as acts of “thinking aloud” by a felow student.

It isin this spirit and from this view-point that we now
address ourselves to the task beforeus, in thisseriesof volumes?
{i.e. a sincere exposition of the mathematical Sitras under
discussion, with what we may call our **running comments'
(just as in a blackboard demonstration or a magic lantern
lecture or a cricket match ete. etc.).

In conclusion, we appeal to our readers (as we always,
appeal to our hearers) to respond hereto from the same stand-
point and in the same spirit as we have just hereinabove
described.

We may also add that, inasmuch as we have since long

promised to make these volumes? " sdf-contained”, we shall .

make our explanations and expositions as full and clear as
possible. Brevity may bethe soul o wit ; but certainly not at
the expense d@ CLARITY (and especidly in mathematical
treatises like these).

nasgagn

1, * Unfortunately, only one volume has been left over by His Holiness.
-Hita.
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ACTUAL APPLICATIONS
OF

THE VEDIC SUTRAS

T0
CONCRETE MATHEMATICAL PROBLEMS

CHAPTER |
A SPECTACULAR ILLUSTRATION
For the reasons just explained immediately hereinbefore

let ustakethe question of the CONVERSIONd Vulgar fractions
into their equivalent decimal form.

First Example :

Cae 1. ) Andthere, let usfirst dea withthe case of afraction
1/19 (say 1/19) whose denominator ends in 9,

By the Current Method. By the Vedic oneline mental
19)1.00(.052631578 method.

95(947368421 A. First method.

50 170 10
TH=.052631578

38 152 11 1111 }
- 0 .
120 180 l4 713168421
114 171
T = B. .

60 00 160 4 Second method '

57 76 152 4=, 052631578/947368421
a0 aan I 1 1111/111

30 -

19 igg Thisisthe whole working.
—_— . ___  And the modus operand; is
110 70 40  explainedinthe next few pages.

95 57 38

20
19
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It is thus apparent that the 18-digit recurring-decimal
answer requires 18 steps of working according to the current
system but only one by the Vedic Method.

apla?‘ﬁﬁéopéevant Satra reads: orfdr g@w  (Ekddhikepa

Piirvena) Which, rendered into English, smply says: “By
one more than the previous one". Its application and modus
operandi are as follows :—

(i) The last digit of the denominator in this case being
1 and the previous one being 1, "'one more than the
previous one'" evidently means 2.

(ii) And the preposition ""by" (in the Sfitra) indicates
that the arithmetical operation preseribed is either
multiplication or division. For, in the case of
addition and subtraction, to and frem (respectively)
would have been the appropriate preposition to use.
But ""by"" isthe preposition actually found usedin the
Sfitra.  The inference is therefore obvious that
either multiplication or division must be enjoined.
And, as both the meanings are perfectly correct and
equally tenable (according to grammar and literary
usage) and asthereis no reason—in or from the text—
for one of the meaningsbeing accepted and the other
onergjected, it further followsthat bath the processes
are actually meant. And, as a matter o fact, each
d them actually servesthe purpose o the Siitra and
fitsright into it (aswe shall presently show, in the
immediately following explanation of the modus
operandi which enables us to arnve at the right
answer by either operation).

A. The First method:

The first method is by means o multiplication by 2
(whichis the “Ekadhika Pirva” ie. the number which is just
one more than the penultimate digit in this case).

(3)

Here, for reasons which will become clear presently,
we can know beforehand that the last digit of the answer is
bound to be 1! For, the relevant rule hereon (which wc shall
explain and éxpound at alater stage) stipulatesthat the product
o the last digit of the denomimator and the last digit o the
decimal equivaent of the fraction in question must invariablv
endin 9. Therefore, asthe last digit of the denominator in this
caseis9, it automatically followsthat thelast digit o the decimal
equivalent is bound to be 1 (sothat the product o the multi-
plicand and the multiplier concerned may end in 9).

We, therefore, start with 1 as the last (i.e. the right-hand-
most) digit of the answer and proceed leftward continuously
multiplying by 2 (which is the Ekadhika Pdrva i.e. One more
than the penultimate digit of the denominator in this case)
until a repetition of the whole operation stares us in the face
and intimatesto usthat we are dealing with a Recurring Decimal

and may therefore put up the usual recurring marks (dots) and
stop further multiplication-work.

Our modus-operandi-chart iS thus as follows: —
(i) We put down 1 as the right-hand most
digit 1
(ii) We multiply that last digit (1) by 2 and
put the ¢ down as the immediately

preceding digit 21
(iii) Wemultiply that 2 by 2 and put 4 down

asthe next previousdigit 421
{iv) We multiply that 4 by 2 and put it

down, thus 8421

(v) We multiply that A by 2 and get 16 as
the product. But this has two digits.
We therefore put the 6 down imme-
diately to theleft of the 8 and keep the
1 on hand to be carried over to the left 68421
at the next step (as we always do in 1
all multiplication e.g. of 69X 2= 138
and so on).
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(vi) We now multiply the 6 by 2, get 12 as
the product, add thereto the 1 (kept
to be carried over from theright at the
last step), get 13 as the consolidated
product, put the 3down and keepthel
on hand for carrying over to the left
at tho next step. 1316 8421

(vil) Wethen multiply the3 by 2, add the
onecarried over fromtheright one, get
7 as the consolidated product. But,
as this is a single-digit number (with
nothingto carry over totheleft), weput
it down as our next multiplicand. 71316 8421

(viii- We follow this procedure continualy

xviii) until we reach the 18th digit (counting

leftwards from the right), when we find

that the whole decimal has begun to

repeat itself. We therefore put up the

usual recurring marks (dots) on the first

and the last digits o the answer (for

betokening that the whole o it is a

Recurring Decimal) and stop the mul-
tiplication there.

Our chart now reads as follows: —

=.052631578/947368421
11 1111/1 11

We thus find that this answer obtained by us with the
aid o our Vedic oneline mental arithmetic is just exactly
the same as we obtained by the current method (with its 18
steps o Division-work).

In passing, we may alse just mention that the current
process not only takes 18 steps of working for getting the
18 digits o the answer not to talk o the time, the energy,
the paper, the ink etc. consumed but also suffers under the

(5.)

additional and still more serious handicap that, at each step,
a probable'"trial" digit of the Quotient has to be taken on trial
for multiplying the divisor which, is sometimes foundto have
played on us the scurvy trick of yielding a product larger than
the dividerid on hand and has thus— after trial —to be discarded
in favour o another "trial™ digit and so on. In the Vedic
method just above propounded, however, there are no subtrac-
tions at all and no need for such trials, experimentsetc., and no
scopefor any tricks, pranksand so on but only a straightforward
multiplication o single-digit numbers; and the multiplier
is not merely a simple one but aso the same throughout each
particular operation. All thislightens, facilitates and expedites
the work and turnsthe study o mathematics from a burden and
a bore into a thing of beauty and a joy for ever (so far, at any
rate, as the children are concerned).

In this context, it must also be transparently clear that
the long, tedious, cumbrous and clumsy methods of the current
system tend toafford greater and greater scopefor the children's
making of mistakes (inthe course o al the long multiplications,
subtractions etc. involved therein) ; and once one figure goes
wrong, the rest o the work mustinevitably turn out to be an
utter waste of time, energy and soon and engender fedlings o
fear, hatred and disgust in the children's minds.

B. The Second method:

As aready indicated, the second method is of division
(instead d multiplication) by .the self-same “Ekadhika Pirva”,
namely 2. And, as division is the exact opposite o
multiplication, it stands to reason that the operation of division
should proceed, not from right to left (asin the case of multi-
plication as expounded hereinbefore) but in the exactly opposite
direction (i.e. from left toright). And suchisactualy foundto
be thecase. Itsapplication and modus operandi are asfollows: —

(i) Dividing 1 (thefirst digit o the dividend) by 2, we

e the quotient is zero and the remainder is1. We,
therefore, set 9 down as the first digit of the quotient
and prefiz the Remainder (1) to that very digit of the
Quotient (as a sort o reverse-procedure to the
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carrying-to-the-left  process used in multiplication)
and thus obtain 10 as our next Dividend .10

(ii) Dividing this 10 by 2, we get 6 as the second digit
o the quotient ; and, as thereis no remainder (to be
prefixed thereto), we take up that digit 5 itself as
our next Dividend. {)5

(iii) So, the next quotient--digit is 2; and the remainder
is1. We, therefore, put 2 down as the third digit
o the quotient and prefix the remainder (1) to that
quotient-digit (2) and thus have 12 as our next
Dividend. .10 512

(iv) This gives us 6 as quotient-digit and zero as
Remainder. So, we set 6 down as the fourth digit
d the quotient; and as there is no remainder to
be prefixed thereto, we take the 6 itself as our next
digit for division. .10512 6311

(v) That givesus 1 and 1 as Quotient and Remainder
respectively. “We therefore put 1 down as the 5th
quotient-digit, prefix the 1 thereto and have 11

asour next Dividend. 0526315
1 1 11

(vi-xvii) Carrying this processdf straight, continuous division
by 2, we get 2 as the 17th quotient-digit and ¢ as
remainder. .

(xviii) Dividingthis2by 2, weget1as 052631578
18th quotient digit and 0 as 1 1 1111
remainder. Butthisis exactly 947368421
what we began with. This 1 11
means that the decimal begins
to repeat itsef from here.

So, we stop the menta-
division process and put down
the usual recurringsymbols(dots

(7))

on.the 1st and 18th digits) to
show that thewhole of it is a
circulating decimal.

Notethat, inthefirst method (i.e. of multiplication), each
surplus digit iscurried over to theleft and that, in the second
method (i.e. of division), each remainder is prefized to the
right (i.e. just immediately tothe left o the next dividend digit),

C. A Further short-cut. :

This is not al. As a matter of fact, even this much
or rather, thislittle work (of mental multiplication or division)
is not really necessary. This will be self-evident from sheer
observation.

Let us put down the first 9 digits of 052631578

the answer in one horizontal row above 9473684321
and theother 9 digitsinanother horizontal ————————
row just below and observethe fun of it. 999999999
We notice that each set of digits (in the ———m——
dpper row and the lower row) totals 9. And this means that,
when just half the work has been completed (by either of the
Vedic oneline methods), the other haf need not be obtained
by the same process but is mechanically available to us by
subtracting from 9 each of the digits already obtained ! And
this means a lightening of the work still further (by 50%).

Y es; but how should one know that the task is exactly
half-finishedso that onemay stop thework (of multiplication or
division, asthe casemuy be) and proceedto red off the remain-
ing half of the answer by subtracting from 9 each of the digits
aready obtained? And the answer is—as we shall demonstrate
later on—that, in either method, if and as soon as we reach the
difference between the numerator and the denominator (i.e.
19 —~1=18), we shall have completed exactly half the work; and,
with this knowledge, we know exactly when and where we may
stop the multiplication or division work and when and where
we can begin regling of the complementsfrom 9 (asthe remain-
ing digits of the answer)!




(8)

Thus both i nthe multiplicationmethod and i n the division
method, we reach 18 when we have completed half the work
and can begin the mechanical-subtraction device(for the other
half).

Details of these principles and processes and other alied
matters, we shall gointo, in due course, at the proper place. In
the meantime, the student will find it both interesting and pro-
fitable to know thisrule and turnit into good account fromtime
to time (as the occasion may demand or justify).

Second Example:

Case 2 Let us now take another case o a similar type (say,
1/29 ) 1/29) where too the denominator endsin 9.

By the Current method - — By the Vedic oneline

Mental method
29)1.00(.03448275862068
87 9655172413793 A. First Method

130 180 1 (3448275862068
16 174 TUUll1e 2121 222
140 60 150 96551724137931
116 58 145 111 2 1 122

240 200 50 110
232 174 29 a7 B. Second Method.

—_— — —— = A (3448275862068
T
gg ggg g(l)g Zgg 1112 2121 222

e e — 96551724 137931
220 280 70 270 11 21 122
203 261 58 26l

- This'is the whole working
170 190 120 90  (by both the processes). The
145 174 U6 8T -, cedures are explained onthe
next page.

250 160 40 30
232 145 29 29

180 150 110 1

{9)

A. Explanation ¢ the First Method:

Here too, the last digit of the denominator is 9; but
the penultimate one is 2 ; and one more than that means 3.
S0, 3isour common——i.e. uniform—multiplier this time. And,
following the same procedure as in the case of 1/19, we put
down, 1 asthe last (i.e. theright-hand-most) digit of the answer
and carry on the multiplication continualy (leftward) by
3 ("carrying" theleft-hand extra side-digit—if any— over to
the left) until the Recurring Decimal actually manifests itself
as such., And we find that, by our mental oneline process,
waget the same 28 digit-answer as we obtained by 28 steps of
cumbrous and tedious working according to the current system,
as shown on the left-hand side margin on the previous page.

Our modus-operandi-chart herein reads asfollows . —

$y=-08448275862068
1112 1 222
9655172413793,
111 2 1 122
B. Explanation d the Second Method :
The Division—process to be adopted here is exactly
thesame asin the case o 1/19 ; but the Divisor (instead of the
multiplier) is uniformly 8 all through.  And the chart reads as

121 222
9655172413793'1§
111 2 1 12¢2

€. The Complements from Nine:

Here too, we find that the two halvesare all complements
of each other (from 9). So, this fits in too.
ylv=0344827586206§

96551724137931

99999999999999
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By the current system.

49)1.00( 020408163265306122448
98 979591836734683877561

200
.196
400
392
80
49
310
294
160
147
130
98
320
294
260
245
150
147
300
294
60
49
110
98

120

120
98

220
196

240
196

440
392

480
441

390
343

470
441

200
245

450
441

90
49

410

410
392

180
147

330
294

360
343

170
147

230
198

340
204

460
441

190

190
147

430
392

380
343

370
343

270
245

250
245

50
49

(1)
By the Vedic one-lineMental Method
Our multiplier or divisor (as the case may be) is now 5

(1.e. one more than the penultimate digit). So, A. (By muilti-
plication leftward from the right) by 5, we have—

f7—.020408163265306122448

97959183673469387755i
3424 41331234143322

OR B. (By DIVISION rightward from the left) by 6:—

£7=.620408163285306122448
1 2 4 311321 3 112244

97959183673469387756.

Note —At this point, in all the 3 processes, wefind that
we have reached 48 (the difference between the
numerator and the denominator). This means that
half the work (of multiplication or division, as the
case may be) has been completed and that we may
therefore stop that process and may begin the easy
and mechanical process of obtaining the remaining
digits of the answer (Whosetotal number of digits is
thusfound to be 21421=42). And yet, the remark-
able thing is that the current system takes 42 steps
of elaborate and cumbrous dividing (with a series of
multiplications and subtractions and with the risk
o the failure o one or more "tria digits" o the
Quotient and so on) while a single, straight and
continuous process—of multiplication or division—(by
a single multiplier or divisor) is quite enough in the
Vedic method.

The complements from nine are also there.

But thisisnot all. Qur readers will doubtless be surprised
to learn—hut it is an actual fact—that there are, in the Vedic
system, still simpler and easier methods by which, without
doing even the infinitely easy work explained hereinabove, we
can put down digit after digit o the answer, right from the
very start to the very end.
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But, as these three examples (of #. s and ) have been
dealt With and explained at this stage, not in the contemplated
regular Sequence but only by way of preliminary demonstration
for the satisfaction of a certain, natural and understandable,
nay, perfectly justifiabletype o purely intellectual curiosity,
we do not proposeto go—here and now—into a further detailed
and €laborate, comprehensiveand exhaustive exposition of the
other astounding processes found adumbrated in the Vedic
mathematical Satras on this particular subject. We shall
hold them over to be dealt with, at their own appropriate place,
in due COurse, in a later chapter.

o W

ARITHMETICAL COMPUTATIONS
CHAPTER 11

MULTIPLICATION (by ‘Nikhilam’ etc. Sitra)

Pass we now on to a systematic exposition d certain
sdlient, interesting, important and necessary formulae d the
utmost value and utility in connection with arithmetical
calculations etc., beginning with the processesand methods
described in the Vedic mathematical Siitras.

At this point, it will not be out o place for usto repeat
that thereis a GENERAL formulawhich issimple and easy
and can be applied to al cases; but there are dso SPECIAL
cases--or rather, types of cases—which are simpler still and
which are, therefore, here first dealt with.

We may aso draw the attention o al students (and
teachers)  mathematics to the well-known and universa
fact that, in respect of arithmetical multiplications, the usual
present-day procedure everywhere (in schools, colleges and
universities) is for the children (in the primary classes) to be
told to cram up--or "'get by heart" —the multiplication-tables
(up to 16 times 16, 20x20 and so on). But, accordingto the
Vedic system, the multiplication tables are not really required
above 5x5. And a school-going pupil who knows simple
addition and subtraction (of single-digit numbers) and the
multiplication-table up to five times five, can <mprovise all
the necessary multiplication-tables for himsdf at any time and
ean himself do all the requisite multiplications involving bigger
multiplicands and multipliers, with the aid of the relevant
simple Vedio formulae which enable him to get at the required
products, very easly and speedily—nay, practicaly, imme-
diately. The Sitras are very short ; but, once one understands
them and the modus operandi inculcated therein for their
practical gpplication, the whole thing becomes a sort of
children’s play and ceases to be a "problem™.
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1. Let usfirst take up a very easy and simpleillustrative
example (i.e. the multiplication of single-digit numbers above 5)
and sce how this can be done without previous knowledge o the
higher multiplications of the multiplication-tables.

The Sitra reads: fafes qaqmw gz (Nikhilamh Nava
tadcaramam Dadatah) which, literally translated, means;
"al from 9 and the last from 10”1 We shall givea detailed
explanation, presently, d the meaning and applications of this
cryptical-sounding formula. But just now, we state and
explain the actual procedure, step by step

Suppose we have to multiply ¢ by 7. (10)

(i) We should take, as Base for our calcu- 9—1
lations, that power of 10 whichisnearestto ~ 7—3
the numbers to be multiplied. In this (13_
10itself isthat power ;

(ii) Put the two numbers 9 and 7 above and below on the
lefthand side (as shown in the working alongside
here on the right-hand side margin) ;

(ii1) Subtract each o them from the base (10) and write
down the remainders (1 and 3) on the right-hand
side with a connecting minus sign (— ) between them,
to show that the numbers to be multiplied are both
o them less than 10.

(iv) The product will have two parts, one on the left side
and one on theright. A vertical dividing line may be
drawn for the purpose o demarcation o the two
parts.

(v} Now, the left-hand-side digit (of the answer) can be
arrived at in one o 4 ways:—-

(a) Subtract the base 10 from the sum o the given
numbers (9 and 7 ie. 16). And put (16—10)
i.e. 6, as the left-hand part of
the answer ; 9+7—10=6
OR (b) Subtract thesum o thetwo defici-
encies(1+3=4) fromthebase (10).
Y ou get the sameanswer (6)again;

10—1—-3=6

(15

OR (c) Cross-subtract deficiency (3)onthe

second row from the origina

number (9) in the first row.

And -you find that you have got
(9—3)i.e. 6 again. 9-—3=6

OR (d) Cross-subtract in the converse

way (i.e. 1 from 7). And you

get 6 again as the left-hand side
portion of the required answer. 7—1=6
Note:—This availablity of the same result in severa easy
waysis a very common feature of the Vedic system
and is o great advantage and help to the student
(asit enables him to test and verify the correctness

of his answer, step by step).

(vi) Now, vertically multiply the two deficit figures
(1 and 3). The product is 8. And thisisthe right-

hand-side portion o the answer. (10) 9—1
(vii) Thus9x 7=63. 7—3
6/3

This method holds good in all cases and is, therefore,

capable of infinite application. In fact, old historical traditions
describe this cross-subtraction process as having been res-

ponsible for the acceptance d the x mark as the sign of
multiplication. (10)
9—1
X
7—3
6/3
Asfurther illustrationsof the same rule,note thefollowing
examples; —
9-1 9-1 91 93 g—o 8—2 8—2 7—3
9—-1 8-2 6-4 5—5 82 7-3 64 7-3
8/l 7/2 5[4 4/5 6/4 5j6 48 49

-
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Thisprovesthecorrectnessof theformula.  Thealgebraical
explanation for thisis very simple:—
(x—a) (x—b) = x (x—a—b)4}-ab.
A dlight difference, however, is noticeable when the
vertical multiplication of the deficit digits (for obtaining the
right-hand-side portion of the answer) yields a product con-

sisting of more than one digit. For example, if and when we
have to multiply 6 by 7, and write it down as usual :—
7—3
6—4

3/,2
we notice that the require/cli vertical multiplication (of 3 and
4) gives us the product 12 (which consists of 2 digits ; but, as
our base is 10 and the right-hand-most digit is obviously of
units, we are entitled only to one digit (on the right-hand side).
This difficulty, however, is easily surmounted with the
usual multiplicational rule that the surplus portion on the
left should always be "carried" over to theleft. Therefore,
in the present case, we keep the 2 of the 12 on the right hand
side and “cairy” the 1 over to the left and change the 3 into
4. We thus obtain 42 as the actual product o 7 and 6.

7—3

6—4

3/12 = 4/2

A similar procedure will naturally be required in respect
o other similar multiplications:—
8—2 7—-3 . 6—4 6—4
5—5 55 6—4 5—5

3,0 =4/0 2/5=23/5 2/,6=3/6 1/,0=23/0

Thisrule o multiplication (by means of cross-subtraction
for the left-hand portion and o vertical multiplication for the
right-hand half), being an actual application of the absolute
algebraic identity :~(x-Fa) (x+b)= x(x+a-+b)4ab, can be
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extended further without any limitation. Thus, as regards
numbers of two digits each, we may notice the following specimen
examples:—

N.B. The base now required is 100.

91-9 93~7 93—7 93—7 89—11 91—9 93-—7
91—9 92—8 93—-7 94—6 95— 5 96—4 97-—3

82/81 85/56 86/49 87/42 84/66 87/36  90/21

92--8 88—12 78—22 88—12 56—44 67—33 25-—75
98—2 98— 2 97— 3 9%6— 4 98— 2 97— 3 99— 1

90/16  86/24 75/66 84/48 64/88 64/99  24/75

Note 1:—n all these cases, note that both the cross-sub-
tractions always givethe same remainder (for the
left-hand-side portion of the-answer).

Note 2 .-—Here too, note that the vertical multiplication (for
the right-hand side portion o the product) may, in
some cases, yield a more-than-two-digit product ;
but, with 100 as our base, we can have only two
digits on the right-hand side. We should therefore
adopt the same method as before (i.e. keep the
permissible two digits on the right-hand side and
"carry' the surplus or extra digit over to the left)
(as in the case o ordinary addition, compound
addition etc.) Thus—

88—12 88—12 25—75
88—12 91— 9 98— 2

Note:—Also, how the meaning of the Stitra comes out in all
the examples just above dealt with and tells us how
to Write down immediately the deficit figures on the
right-hand side.  The rule is that all the other digits
{of the given original numbers) are to be subtracted
from 9 but the last (i.e. the right hand-most one)
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should be deducted from 10. Thus, if 63 be the
given number, the deficit (from the base)' is 37 ; and
so on. This process helps us in the work of ready
on-sight subtraction and enablesusto put thedeficiency
down immediately.

A new point has now te be taken ipto consideration i.e.
that, just as the process of vertical multiplication may yield
a larger number o digits in the product than is permissible
(and thiscontingency has been provided for), so, it may similarly
yield a product consisting of 2 smaller number of digits than we
are entitled to. What is the remedy herefore 2 Well, this
contingency t00 has been provided for. And the remedy is—es
in the case o decimal multiplications— merelythe filling up of
all such vacancies with Zeroes. Thus,

99—1 98—2 96—4 973
97—3 99—-1 98—2 97—3

96/03  97/02  94/08 94/ 09

With these 3 procedures (for meeting the 3 possible
contingencies in question i.e. o normal, abnormal and sub-
normal number o digitsin the vertical-multiplication-products)
and with theaid d the subtraction-rule (i.e. o all the digits from
9 and the last one from 10, for writing down the amount o the
deficiency from the base), we can extend this multiplication-rule
to numbers consisting o a larger number o digits, thus—

888—112 879—121 697—303 598—402
998—002 999—001 997—003 998-—-002

886224  878/121  694/909  596/804
988 —012 888—112 112—888
988—012 991—009 998 2

976/144  879/,008 =880/008 110/,776=111/776

(1)

988—012 998—002 9997—0003
998002 997—003 9997—0003

986/024  995/006  9994/0009

99979—00021 999999997—000000003
99999—00001  999999997—000000003

99978/00021  999999994/000000009

Yes; but, in all these cases, the multiplicand and the
multiplier are just a little below a certain power of ten (taken
as the base). What about numbers which are above it ¢

And the answer is that the same procedure will hold good
there too, except that, instead of cross-subtracting, we shall have
to crossadd. And al the other rules (regarding digit-surplus,
digit-deficit etc.,) will be exactly the same as before. Thus,

1242 13+3 1141 16+6 1848 108+8 111411
1141 1242 1545 1141 1141 10848 10949

13/2  15/6  16/5 17/6  19/8 116/64 120/99
166 1747 1848

124-2 1242 1242

18/,2 =19/2 19/,4 =20/¢ 20/,6 =21/6
1848 199 10055 1016416
184-8 19-}-9 100949 1006-+6
26/,4=32/4 28/4,1=36/1 1014/045 1022/096

In passing, the algebraical principle involved may be
explained as follows:—-

(~+a)Yx+b)=x(x+a+b)+ab.

Yes; but if one o the numbers is ubove and the other
is bdow a power d 10 (the base taken), what then ?

The answer isthat the plus and the minus will. on multi-

plication, behave as they always do and produce anunus-product
and that the right-hand portion (obtained by vertical multi-
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plication) will therefore have to be subtracted. A vinculum
may be used for making this clear. Thus, .

1242 10848 10747 10242

8—2 97-3 93—7 98—-2

10/4=96  105/24=104/76  100/49=99/51 100/04==99/96

1026426 103333
997— 3 977— 3

1023/078=1022/922 1030/099=1029/901

1000646
9999 —1

10005/00006==9994/99994
Note —Note that even the subtraction o the vinculum-

portion may be easily done with the aid of the Satra
under discussion (i.e. all from 9 and the last from 10).

Multiples and sub-multiples:

Yes; but, in al these cases, we find both the multiplicand
and the multiplier, or at least one o them, very near the base
taken (in each case); and this givesus a small multiplier and
thus renders the multiplication very easy. What about the
multiplication of two numbers, neither of which is near a con-
venient base?

The needed solution for this purpose is furnished by a
small ‘Upasiitra’ (or sub-formula) which is so-called because
o its practically axiomatic character.

This sub-shtra consists o only one word e
(Anurfipyena) which simply means " Proportionately™. In
actual application, it connotes that, in,all cases where there
is a rational ratio-wise relationship, the ratio should betaken
into account and should lead to a proportionate multiplication
or division as the case may be.

In other words, when neither the multiplicand nor the
multiplier is sufficiently near a convenient power of 10 (which
can suitably serve us as a base), we can take a convenient mul-
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tiple or sub-multiple of a suitable base, asour **Working Base™,
perform the necessary operation with its aid and then multiply
or divide the result proportionately (i.e. in the same proportion
asthe origina base may bear to the working base actually used
by us). A concrete illustration will make the modus operandi
clear.

Suppose we have to multiply 41 by 41. Both these numbers
are so far away from the base 100 that by our adopting that
asour actual base, we shall get 59 and 59 as the deficiency from
the base. And thus the consequent vertical multiplication
o 59 by 59 would prove too cumbrous a process to be per-
missible under the Vedic system and will be positively inad-
missible.

We therefore, accept 100 merely as a theoretical base and
take sub-multiple 50 (which is conveniently near 41 and 41)
as our working basis, work the sum up accordingly and then
do the proportionate multiplication or division, for getting
the correct answer.

Qur chart will then take this shape :—

(i) We take 50 as our working base. 41-9
(il) By cross—subtraction, we get 32 on  41-9

theleft-hand side. N
2)32/81

16/81

(iii) As 50 is a haf of 100, we therefore
divide 32 by 2 and put 16 down asthe
real left-hand-side portion of the
answer.

(iv) The right-hand-side portion (81)
remains un-affected.

(v) The answer therefore is1681.

OR, secondly, instead of taking 100
asour theoretical baseand itshalf (50)

-
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as our working base (and dividing 10x5==50
32 by 2), we may take 10, as our —
theoretical base and its multiple50as 41—9
our working base and ultimately — 41—9
multiply 32 by 5 and get 160 for the

left-hand side. And as 10 was our  32/1
theoretical base and we are therefore
entitled to only onedigit on the right 130/81,,1681
hand side, we retain 1 (of the 81) on
the right hand side, ""carry"* the 8 (of the 81) over
to the left, add it to the 160 aready there and thus
obtain 168 as our left-hand-side portion d the answer.
The product of 41 and 41 is thus found to be 1681
(the same as we got by the first method).

OR, thirdly, instead of taking 100 or 10 as our theoretical
base and 50 (a sub-multiple or multiple thereof) as
our working base, we may take 10 and 40 as the bases
respectively and work at the multiplication as shown
(on the margin) here. And we find 10x4=40
that the product is 1681 (thesameas 4141
weobtained by thefirstandthesecond 4343

methods).

42/1
X 4f

168/1

Thus, as we get the same answer (1681) by al the three
methods; we have option to decide—according to our own
convenience—what theoretical base and what working base
we shall select for ourselves.

As regards the principle underlying and the reason behind
the vertical-multiplication operation (on the right-hand-side)
remaining unaffected and not having to be multiplied or
divided ‘‘proportionately” a very smpl€ illustration will suffice
to make this clear.

(28)

Suppose we have to divide 66 successively by 2, 4, 8, 16,
32 and 64 (which bear a certain internal ratio or ratios among
themselves). We may write down our table o answers as
follows:—
65 1 65 1 66 1 65 1,
=%y =18 5= e e’
and

1
65 =232; and 64 lélR is constant.

We notice that, as the denominator {i.e. the divisor) goes
on increasing in a certain ratio, the quotient goes on decreasing,
proportionately ; but the remainder remains constant. And this
iswhy it isrightly caled the reminder (fasad dwgm: n).

The following additional examples will serve to illustrate
the principle and process of argesw (i.e. the selecting of a

multiple or sub-multiple as our working base and doing the
multiplication work in this way).

(1) 4949 (2) OR 49X 49
Working Base 100/2=50 Witk g Base 10 x5—=50
49—1 49-1
49—1 49-1
2)48/01 48 1/1
— X 5/
24/01 —
240 /1
(3) 46x 46 (4) OR 48x 46
\itki rg Base 100/2=50 Working Base 10 x5=50
46—4 46—4
46—4 46—14
2)42/16 42 /.8
- X E
21/16

210 / 16=211/6
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(6) 46x44 (6)OR 46x44
Working Base 10 X 5=50 Working Base 100/2=50
464 46—4
146 446
40 [ 54 2) 40 /24
x5/
20 /24
200 [ 44
= 202 /4
(7) 59x59 (8) OR 59x59
Working Base 10X 6=60 Working Base 10 X 5=50
59—1 5949
59—1 599
58/ 1 68 /1
X 6 x5 /8
73;7;_ 348 /1
(9) OR 59 x59 (10) 23X 23
Working Base 100/2=50 Working Base 10x2==20
59-+9 2343
5949 2343
2) 68 /81 26 /9
— X2
34 /81 P
_____ s2/9
(11) 54 x 46 (12) OR 54x46
Working Base 10X 5=>50 Working Base 100/2=50
5444 5444
46—4 46—4
50 /16 2) 50 /16
x b —
25 [ 16
250 [ 16 -
— = 24 [84

=24 | 84

(25)
(13) 19x 19 (14) OR 19x19
Working Base 10X 2=20 Working Base 10x 1
19—1 1949
19—1 19-+9
18 /1 28 [ g1
X2 [ +8/
=36 /1 =36 /1
(15) 62 48 (16) OR 62x48
Working; Base 10 x 4==40 Working Base 10 x 6==60
62-4-22 6241 2
48+ 8 48 —12
70/,,8 50/-24
x4 X6
280/,,6 300/-24
=29/ 76
=297/ 6

(17)OR 62x48
Working Base 10x §=50

(18) OR 62x 48
Working Base 100/2=50

62412 62-+12
48— 2 48— 2
60/~24 2) 60/—24
X5 ——
30/-24
300/-24 = 29/ 76
=208/ 76
(19) 23x21 (20) OR 23x21
Working Base 10x 3=30 Working; Baee10x 2=20
23— 2343
21-9 2141
14/63 24 /8
X3 x2 /[
42 /3 =48 /3
=48 /3
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(21) 249% 245 (22) 48x49
Working Base 1000/4=250 Working Base 10x 5=50
249—1 482
245—5 49—1
4) 244 /005 47 [ 2
- X6
=61 | 005 -
/ =236 | 2

(21 )

The following additional (worked out) exampleswill serve
to further elucidate the principleand processd multiplication
accordingto the Vedic Siitra (‘N¢khilam €tc) and fecilitate the

(23) OR 48%49
Working Base 100/2=50
48—2
49—1

2) 47 02

23} /02 = 23[52
Note —Here 47 being odd, its divison by 2 gives us a
fractional quotient 23} and that, just as haf a rupee
or haf a pound or haf a dollar is taken over to the
right-hand-side (as 8 annas or 10 shillingsor 60 cents),
s0 the haf here (inthe 233) istaken over to the right-
hand-side (as60). S0, the answer is 23/62.

student's practice -and application thereof : —

(1) 87965 x99998 (2) 4897
87965—12035 48— 52
99998— 2 97— 3

==87963 [ 24070 45 [ 456
- =46/ 56

(3) 712X 96 (4) 8899998
72—~ 28 0889—9111
9 — 5 9998— 2
67/ 140 887 /,8222
=68/40 _—

=888 /8222

(24) 249 x 248 (25) 229 X 230
Working Base 1000/4=250 Working Base1000/4=250
249—1 229—21
2464 230—20
4)245 /004 4)209 [ 420
61} /004 52} [ 420
=61/254 =52/670

Note :—In the above two cases, the } on the left hand side is
carried over to the right hand (as 250).

(6) 779088

(6) 299x 299

0077— 9923 W. B. 100 x 3=300
9988— 0012 209— 1
——ee 209— 1
65 /119076 —_—
—_— 298 [ 01
=76 | 9076 X3 |
=2804 / 01

(7) 687699
W. B. 100X 7=700
687—13

(8) 128X 672
W. B. 100X 7="700

128— 672
699— 1 672— 28
686 / 13 loo/ 18

x7/ X7 160
=4802 | 13 700 /16016
=860/ 16




(9) 231%582
W. B. 100 X 6=600
231— 369
582— 18

1o f iy
Z10 | ggts
X6 [

1278 | ggd2

=1344 | 42

28 )

10) 362 X785

10 B 00 x8=800
362—438
785— 15
347 [4570
x8 [

9776 [¢570

(11) 532X 528
W. B. 100X5=500
5324 32
528 28
560 | 496
x5 [

2800 | 496

=9808 | 96

(12) OR 532X 528
W. B. 1000/2=500

532+ 32

5284 28

2) 560 [ 896

=280 [ 896

(13) 532%x472
W. B. 100X 5=500
532+ 32
472— 28
504/ —896
x5/
2520/ —896

=251 | 104

(14) OR 532X 472
W. B. 1000/2=500
532+ 32
472— 28
2)504/—896
252/—896
=251 [ 104

(15) 235X 247

W. B. 1000/4=250
235— 16
247— 3

4)232 ] 045
=58 | 045

(16) 3998 4998

W. B. 10000/2=>5000

3998—1002
4998— 2

2) 3996 / 2004
=1998 | 2004

( 29 )
(17) 19%499 (18) OR 19x 499
W. B. 100 X5==500 W. B. 1000/2=500
19—481 19—481
499— 1 499— 1
18 / ,81 2) 18 [ 481
x5 _
- =9 | 481
=9 ] 481 f
(19) 635x 502 (20) 18x 45
W. B. 1000/2=500 W. B. 100/2=50
635--135 18— 32
5024 2 45— 5
2) 637 [ 270 2) 13/ ,60
318} / 270 6%/ 60
318/ 770 —8/ 10

(21) 389x516
W. B. 1000/2=500
380— 111
5164+ 16

2)405/—1776

202}/—1776

202—1276
=200/ 724

Note :—Most of these examples are quite easy, in fact much
easier-by the ssifrdvrarg (Urdhvae-Tiryagbhyam) Saire
which isto be expounded in the next chapter. They
have been included here, merely for demonstrating
that they too can be solved by the ‘Nikhilam’ Satra
expounded in this chapter.
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“Ordhva-Tiryak’
But before We actualy take up the

formula and explain its modus operandi for multiplication, we
shall just now explain a few corollaries which arise oub of the
‘Nikhilam’ Sttra which is the subject-matter of this chapter.

The First Corollary :

The first corollary naturally arising oub of the
‘Nikhilow’ Siitra reads as follows:—amg amgfed I
armrag 1 which means: —"'whatever the extent o itsdeficiency,
lessenit still further to that very extent ; and aso set up the
square (of that deficiency)".

This evidently deals with tho squaring o numbers. A
few elementary examples will suffice to make its meaning and
application clear :—

Suppose we have to find the square d 9. The following
will be the successive stages in our (mental) working : —
(i) We should take up the nearest power of 10(i. e 10
itself) asour base.
(ii) As9islless than 10, we should decrease it still
further by 1 and sct it (the8) down as our left-side

portion of the answer. 8/
(iii) And, on the right hand, we put down
the square of that deficiency (1%) 81
iv) Th 381 9—-1
(iv) Thus 9%=8 91
8/1
Now, let us take up the case d 8% As
8 is 2 less than 10, we lessen it still o/
further by 2 and get 8—2 (i. e 6) for the 8/4
left-hand and putting 22 (=4) on the 8—2
right-hand side, we say 8%:=64 8—2
6/4
In exactly the same manner, we say 3 /
72=(7—8) | 82:=4/9 =3
6%==(6—4) and 42=2/,6=3/6 a9

52—(5—35) and 52—0/,5=25; and so on

(3L

Yes; but what about numbers above 10 ¢ We work
exactly as before; but, instead of reducing still further by the
deficit, we increase the number still further by the surplus
and say :—

112=(1141) [12=12/1 1141
11+1
122=(124-2) [22=14/4 121

132=(134-3) /32=16/9
14%=(144-4) [42=18/,6=19/6
— 2 —
152=(15-+5) [52=20/,5=225 1849

192=(194-9) [92=28/g1=361 ; and s on. "28/41=361

Andthen, extending the same rule to numbers of twoor
moredigits, we proceed further and say : —

012=82/81 ; 922=84/64 ; 93°=86/49 ;

94%=88/36 ; 952=90/25 ; 962=92/16 ;

972=94/09 ; 982-==96/04 ; 992=98/01 ;

1082=116/64 ; 1032=106/09 ;

989%2=978/121 ; 9882=976/144 ; 9932=986/049 ;

89%==78/,21==79/21 ; 88%2==76/,44=T7/44 ;

9989%==0978/0121 ; 99842=0068/0256 ; 99932=
=0086/0049 ;

The Algebraical Explanation for this is as follows :—
(atb)?=a?+2ab-+b?
. 97%=(100—3)2=10000~600-+9=94/09 ;
922=(100~8)2=10000—~1600-+64=84/64
1082=(100+-8)?=100004-1600+-64=116/64 ; and so on

A Second Algebraical Explanation is as follows :—
a3—b2=(a+-b) (a—Db)

c.af=(a+b) (a—b)4b?

So, if we have to obtain the square of any numbper (a),
we can add any number (b)toit, subtract the same number
(b) from it and multiply the two and finally add the square
d that number (b) (on the right hand side). Thus, if 97 has
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to be squared, we should select such a number (b)as will, by
addition or by subtraction, give usa number ending in a zero
(or zeros) and thereby lighten the multi-multiplication work.
In the present case, if our (b) be 3, a-+b will become 160 and
a—b will become 94. Their product is 9400; and b?=9
~.973=94/09. This provesthe Corollary.
Similarly, 922=(92+8) (92—8)+-64=84/64 ;

932=(93-}-7) (93—17)--49=86/49 ;

988%=(988-12) (988—12)+144==976/144 ;

108%2=(108--8) (108—8)+64=116/64 ; and SO ON.

The Third Algebraical Explanation is besed on the Nikhilam
Siitre and has been indicated already.

91— 9
91— ¢
82 /381

The following additional sample-examples will further
serve to enlighten the student (on this Corollary):—

(1) 192 OR (2) 192 (3) 292
1949 19—1 2949
1949 19-1 2049
28/81 18/1 38 /g1
_— X2 X2
=36 /1 ——— ——
=36 /1 =84 [1
OR (4) 292 (5) 492 OR (6) 497
29—1 49— 1 49— 1
29—1 49— 1 49— 1
28 /1 48/ 1 2) 48 /01
X3 x5/
—— ——— =24 /01
=84 /1 =240/ 1

|

(8)

(7) 592 OR (8) 59 9y 412
5949 59+ 9 4141
5949 594 9 4141
68 /gl 2) 68 /81 421
X6 X 4

—_— =34 /81 _—
340 /g1 ==34/81 =168 /1

OR (10) 41? (t1) 9892 (12) 7152
41— 9 989— 11 W. B. 100 X8:=800
41— 9 989— 11 775— 25

— —_— 715— 25

2)32 /81 =978 [ 121 —

— 750 | 425
=16 / 81 X8

=6006 | 25

Note:—All the cases dealt with hereinabove are doubtless o
numbers just a little below or just a little above a
power of ten or of a multiple or sub-multiple thereof.
This corollary is specialy suited for the squaring of
such numbers. Seemingly more complex and *diffi-
cult"” cases will be taken up in the next chapter
(relating to the Urdhva-Tiryek Satre); and still
most "difficult” will be explained in a still later
chapter (dealing with the squaring, cubing etc., of
bigger numbers).

The Second Corollary.

The second corollary is applicable only to a specia case
under the first corollary (i. e. the squaring d numbers ending
in6and other cognate numbers). Itswording is exactly the
same asthat o the Sitra which we used at the outset for the
converson d vulgar fractions into their recurring decimal
equivalents (i. e TR gor), The Siitra now takes a totally
different meaning altogetﬂ‘ and, in fact, relates to a wholly
different set-up and context altogether.

[

Y
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Itslitera meaning isthe sameas before (i. e. by one
more than the previous one™); but it now relates to the
squaring of numbers endingin5 (e.g. say, 15). 1 s
Here, the last digit is5 ; and the ' previous'™ one —_——
is 1. 80, one more than that is 2. Now, the Sfitra 2/25
in this context tellsusto multiply the previous _
digit (1) by one morethan itself (i. by 2), Sothe
left-hand side digitis1x2 ; and the right-hand
side is the vertical-multiplication-product (i.e.

25) as usual.
'thus 152=1X 2/25=2/25.
Similarly, 25*=2x3/25=6/25 ;
352=3x4/25=12/25 ;
45%==4 X 5/25==20/25 ;
55%=5x 6/25=30/25 ;
65%=6X 7/25=42/25 ;
75%8="7,(8/25=56/25 ;
852=8x 9/25=72/25 ;
952=9 X 10/25=00/25 ;
1052=10x11/25==110/25 ;
115%=11 X 12/25=132/25 ;
1252=156/25 ; 1352=182/25 ; 1452=210/25 ;
155%=240/25 ; 1652=272/25 ; 1752=306/25 ;
185%=342/25 ; 1952=380/25 ; and so on.

The Algebraical Explanation iS quite simple and follows
straight-away fromthe Nekkilam Sitra and still more so from

the Urdhva-Tiryak formula to be explained in the next
chapter (q.v.).

Asub-corollaryto this Corollary (relating to the squaring
of numbers ending in 5) reads : sEERARsfr (Antyayor-
Dasake’pr) and tells us that the above rule is applicable
riot only to the squaring d a number endingin s but also to the
multiplication of two numbers whose last digits together total
10 and whose previous part is exactly the same.

(3%)

For example, if the numbers to be multiplied arenot 25
and 25, but, say 27 and 23 [whose last digitsi.e. 7 & 3 together
total 10 and whose previous part is the same namely 2], even
then the samerule will apply (i. e. that the 2 should be multi-
plied by 3 the next higher number. Thus we have € as our
left-hand part o the answer ; and the right-hand one is, by
vertical multiplication (asusual)

7x 3=21. And so 27x23=6/21. g;

We can proceed further on the same lines and say :—
96X 94=90/24 ; 97 X 93=90/21 ; 98X 92=90/16 ;
99x91=90/09 ; 37 x 33=12/21 ; 79X 71==56/09 ;

87 x83=72/21 ; 114 x116=132/24 ; and s0 on

This sub-corollary too isbased on the same Nikhilam Sfitra;
and harder examplesthereof will more appropriately come under
the Ordhva-Tiryak formula of the next chapter (or the still later
chapter on moredifficult squarings and cubings).

At this point, however, it may just be pointed out that
the above rule is capable of further application and come in

handy, for the multiplication d numbers whose last digits F(in
setsof 2,3 and s on) together total 100, 1000 etc. FOr

example—

191X 109=20/819

793X 707=560/651 }
884 X 816=720/,344="721/344.

N. B.—Note the added zero at the end of the left-hand-side of
the answer.

The Third Corallary -

Then comes a Third Corollary to the Nikkidar: Sitra,
which relates to a very specid type d multiplication and which
is not frequently in recuisition elsewherebut is often required
in mathematical astronomy etc. The wording of the sub-
sitra (corollary) wwgia gaw (Ekanydinena Pirvena) sounds as

g
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if it were the converse o the Ekddhika Sitra . 1t actudly is;

and it relates to and provides for multiplications wherein the

multiplier-digits consist entirely of nines. It comes up under
three different headings asfollows : —

The Ferst case .

The annexed table o products produced by the single-
digit multiplier 9 gives us the necessary clue to an under-
standing o the Satra :—
| We observe that theleft-hand-sideis invariably
ox 2=1 N s ' oneless than the multiplicand and that the

g—g ! right-sidedigit is merely the complement of the
9 X | .
2 4=3 ' left-bandside digit from9. And thistells us
X 6=4 5 what to do to get both the portions o the
9X 6=5 | 4| product.
8% 4=0 , The word ‘P@rg’ in this context has another
09X 9=8 |1 tecﬁnico-termm(?oglca} usage ané Slma[:s)ly means
9Xx10=9 | 0 - .
the “multiplicand” (while the word <Avara’
signifies the multiplier).

The meaning of the sub-corollary thus fitsin smoothly
into its context i. e that the multiplicand has to be
decreased by 1; and as forthe right-hand side, that is
mechanically available by the subtraction o the left-hand-
side from9 (which is practically a direct application of the
Nikhilam Siitra).

Asregards multiplicandsand multipliersof 2digits each,
we have the following table of products :—

11X 99=10 89 |=(11—1)/99—(11—1)=1089

12X 99=11 88
13X 99=12 87
14xX99=13 86
15X 99=14 85
16X 99=15 84
17X 99=16 83
18 X 99=17 82
19X 99=18 81
20X99=19 80

(37

And this table shows that the rule holds good here too.
And by similar continued observation, we find that it is
uniformly applicable to all cases, where he multiplicand and
the multiplier consist of the same number of digits. In fact,
itisa simple application of the Nikkilam Sutra and is bound
to apply.

7— 3| 77—231979-021
9—1]99— 1]999— 1

6/3‘76/23 978 /021

We are thus enabled to apply the ruleto al such cases
and say, for example :—

7717 9879 1203579
999 ‘ 9999 9999999
776/223 l 9878/0121 1203578 /8796421

! | R
9765431 1234567809
9999999 9999999999

9765430/0234569 t 1234567808 /8765432191

Such multiplications (involving multipliersof this special
type) come up in advanced astronomy etc; and this sub-

formula (Ekanyanenas Parvens) is df immense utility therein.

The Second Case :

The second case falling under this category is one wherein
the multiplicand consistsof a smaller number o digitsthan the
multiplier. This, however, is easy enoughto handle ; and all
that is necessarvisto fill the blank (on theleft) in with the
required number of zeroes and proceed exactly as before and
then leave the zeroes out. Thus—

7 79 798 79
99 999 99 999 9999999

?06/93] 078/921i 00797/99202 | 0000078/9999921
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The Third Case :
(Tobe omitted during afirst reading) .

The third case coming under this heading is one where
the multiplier contains & smaller number o digits than the
multiplicand. Careful observation and study of the relevant
table of products gives usthe necessary clueand helps us to
understand the correct application of the Satra to thiskind of
examples.

Gol um 2 @l unm 2 Gl um 3
11x9= 9 |9 21 xX9=18 { 9 37x9=33/3
12x9=10 | 8 22X 9=19 | 8 46X 9=41/4
13x9=11 7 23X 9=20 | 7 55 x 9=49/5
14x9=12 | 6 24x9=21 | 6 64 X 9—=57/6
15x9=13 | 5 25%x9—22 | 5 | 73X 9=65/7
16x9=14 | 4 26x9=23 | 4 82X 9=73/8
17x9=15 | 3 27x9=24 { 3 91X9-=81/9
18%x9=16 | 2 28X 9=25 | 2 and so on
19x9=17 | 1 20X 9=26 | 1
20x9=18 | 0 30x9=27 )0

We note here that, in the first columnd products where
the multiplicand starts with 1 as its first digit the left-hand-
sidepart (of the product) is uniformly 2less than the multi-
plicand ; that, in the second column (where the multiplicand
begins with 2,) the left-hand side part of the product is exactly
3less; and that, inthe third column (of miscellaneous first-
digits) the difference between the multiplicand and the left-
hand portion o the product is invariable one more than the
excess portion to the extreme left of the dividend.

The procedureapplicablein this caseis therefore evidently
asfollows:—

(i) Divide the multiplicand off by a vertical line—into
aright-hand portion consistingof as many digits as
the multiplier ; and subtract from the multiplicand
one more than the whole excess portion (on the left).
Thisgives ustheleft-hand-side portion o the product.

OR take the Bkanyiine and subtract therefrom the
previous (i. e. the excess) portion on the left ; and

(39)

(i) Subtract the right-hand-side part of the multiplicand
by the Nikhslasis rule.  This will give you the righs-
hand-side o the product.

The following examples will make the process clear :—

(1) 43x9 (2) 63%9 (3) 122x9
4: 3: 6: 3: 12:2:
:-5:3 -7:3 —1:3:2
3: 8:7 5: 6:7 10:9:8
(4) 112X99 (5) 11119x99 (6) 4599 x99
1:12: 111:19: 45: 99:
-: 2:12 -1:12:19 :—46: 99
1:10: 88 110: 07:81 45:53:01

(7) 15639 99

(5) 25999 X999

(9) 777999 x 9995

156:39: 25 : 999 : 77:7999 :
-1:57:39 1 —26 : 999 L =78 :7999
154 :82: 61 24 : 973 : 001 77 : 7921 : 2001

(10) 111011 x99

(11) 1000001 X 99999

1110:11: 10 : 00001 :
-11:11:11 : =11 : 00001
1699 : 00 : 89 9 : 99990 : 99999




Cuapter IIT

MULTIPLICATION
(by Ordhva-Tiryak Satra)

Having dealt in fairly sufficient detail with the application
of the Nikhilam Sutra efc., to special cases of multiplication, We
now proceed to deal with the s=ifriveamy (Ordhva Tiryagbhydm,)
Suatra which isthe General Formula applicable to all cases of
multiplication (and will also be found very useful, later on,
in the divisond alarge number by another large number).

Theformula itself is very short and terse, consisting of
only one compound word and means “vertically and cross-
wisg'. The applications o this brief and terse Satra are
manifold (as will be seen again and again, later on). First we
takeit up inits most elementary application (namely, to Multi-
plication in generd).

A simple example will suffice to clarify the modus
operands thereof. Suppose we have to multiply 12 by 13.

(i) We multiply the left-hand-most g
digit (1) d the multiplicand verti- 13
cally by the left-hand-most digit —
(1) o the multiplier, get their 1:3+2:6=156
product (1) and set it downasthe ———
|eft-hand-most part of the answer.

(i) We then multiply 1 and 3, and 1 and 2 Crosswise,
add the two, get 5 asthe sumand set it down asthe
middle part of theanswer ; and

(iii) We multiply 2 and 3 vertically, get 6 as their product
and putit down as the last (the right-hand-most,)
part of the answer.

Thus12 X 13=156.

( 41)

A few other examples may also be tested and will be
found to be correct : —

) 12 @ 16 3 2
0 11 11 14
1:142:2 1:146:6 2:8+1:4
=132 =176 =204 —_
4 23 03] 41
21 41
4:24+6:3 16:44+4:1
=483 =1681

Note:—When one o the results contains more than 1 digit,
the right-hand-most digit thereof isto be put down
there and the preceding (i. e left-hand-side) digit (or
digits) should be carried over to the left and placed
under the previous digit (or digits) o the upper row
until sufficient practice has been achieved for this
operation to be performed mentally. The digits carried
over may be shown in the working (as illustrated
below) :—

‘ 4) 35 5) 37 6) 49
on @en G® wg 05 0L

105 40 924 905 901 1621
12 225 1 32 32 78
225 625 1024 1225 1221 2401

The Algebraical gtinciple involvedisas follows:—

Suppose we have to multiply (ax-+b) by (czx-+d). The
product isacx2+x (ad-+be)+-bd. 1 n other words, the first term
(i. e. the coefficientof x2) isgot by vertical multiplication o a
and c; themiddleterm (i. e the coefficient of X) is obtained
by the crosswise multiplication o a and 4 and of band ¢ and
the addition of thetwo products; and the independent term
isarrived at by vertical multiplication d the absolute terms.
And, as al arithmetical numbers are merely algebraic expres-

6
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sions in x (with x=10), the algebraic principle explained above
isreadily applicable to arithmetical numberstoo. Now, if our
multiplicand and multiplier be of 3 digits each, it merely
means that we are multiplying (ax®bx+c) by (dx+ex+f)
(Wherex=10) :(—

ax&+bx+c

dx24ex--f

adx4+x3 (aet+bd)+x? (af+be-cd)+x (bf4-ce)-of

We observe here the following facts:—

(i) that the coefficientof x* is got by the vertical multi-
plication of thefirst digit (from theleft side) ;

(i) that the coefficient of x3is got by the crosswise
multiplication of the first two digits and by the
addition of the two products;

(iii) that the coefficient of x2is obtained by the multi-
plication of thefirst digit of the multiplicand by the
last digit of the multiplier, of the middle one by the
middle one and of the last one by thefirst one and by
the addition of al the 3 products ;

(iv) that the coefficient of x is obtained by the cross-
wise multiplication of the second digit by the third
one and conversely and by the addition o the two
products ; and

(v) that the independent term results from the vertica
multiplication of the last digit by the last digit.

We thus follow a processdf ascent and of descent (going
forward with the digitson the upper row and coming rearward
with the digitson the lower row). If and when this principle
(of ordinary Algebraic multiplication) is properly understood
and carefully applied to the Arithmetica multiplication on
hand (wherex stands for 10), the Urdhva Tiryak Satra may be
deemed to have been successfully mastered in actual practice.

9
(83
A few illustrations will serve to illustrate this Urdhva-
Tiryak processd vertical and cross-wise multiplications :—
f (1) 111 (2) 108 (3) 109
111 108 111
12321 10 60 4 11 099
16 1
11 66 4 12 099
(4) 116 5) 116 (6) 582
114 116 231
12104 12 32 6 101 3 42
112 113 331
13224 1345 6 13 4 4 42
(7) 532 (8) 785 (9) 321
472 362 52
207 9 04 216760 0 5 692
432 6741 11
251104 284170 16_69_2___
(lo) 795 {11y 1021 (12) 621
362 2103 547
219380 2147163 304587
6841 351
287790 3396 87
(13) 6471 (14) 87265
6212 32117
366 66 752 2478727575
35311 32396243
715?37g5g~ 2802690005

N.B.—It need h;rdly be mentioned that we can carry out this
(Ordhva-Tiryak) process of multiplication from left to
right or from right to left (aswe prefer). All the diffe-
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rence will be that, intheformer case, two-line multip-
lication will be necessary (at least mentally) while,in
thelatter ease, one-line multiplication will suffice,, (but
careful practice is necessary).

Owing to their relevancy to thiscontext, a few Algebraic
examples (of the Ordhva-Tiryak type) are being given.
(I) a-+b
a+9b
a?+10 ab--9b?
(2) a+3b
5a47b

5a24-22ab|-21b?
(3) 3x*+4-5x+7
4x24-7x-4-6

12x44 41x31-81%2 1 79x |-42

(9 x*43x446x343x3)xf1
7x545x4-4-3x8-x2}-3x+5

71{1"+‘z6x°-{-53x°-|--56!7—|—43x°-}-4;0x"-|--41X‘+.'38x3'+192{z
+8x-1-5

Note:—if and when a power of x is absent, it should be
given a zero coefficient; and the work should be
proceeded with exactly as before. For example, for
(1x%-4+5x+1)(3x3+x243), we work as follows:—
7234045241
3xd+x2404-3

21x8- 7x8 | 15x9{ 20x3 4 x%4-156x+3

[ L SRR R e S

|

(4)

The use of the Vinculum -

It may, in general, be stated that multiplications by digits
higher than 5 may some times be facilitated by the use of the
vineulum. The following example will illustrate this:—

() 576 (2) OR é2¢ : But the vinculum process is

214 214 : one which the student must
—_— : very carefully practise, before
109944 122446 : he resorts to it and relies
1332 +111  : on it
123264 123264 :

Miscellaneous Examples :

Therebeing s many methodsd multiplication oned them
(the Ordhva-Tiryak one) being perfectly general and therefore
applicableto all cases and the others (the Ntkkilam: one, the
Yavadinam etc.) being o usein certain specia casesonly, itis
for the student to think of and weigh all the possible alternative
processesavailable, make up hismind as to the simplest method
in each particular case and apply the formula prescribedtherefor.

We now conclude this chapter with a number of misce-
Ilaneous examples and with our own *‘running comments™
thereon giving the students the necessary experiencefor making
the best possible selection from amongst the various alternative
method, in question :—

(D 73x37
(i) By Urdhva-Tiryak rule, 73
37
2181
52
=2701
or (ii) by the same method but with 133
the use d the vinculum. 043
04519
12
2701

Buidently, the former 1s better. = =




(2) 94x81

(46 )

(1) By Ordhava-Tiryak, 94 (i) Or 114

81 121

(47 )

Therefore, the Urdhva (general) process is obviously the
best (in this case).

7214=76814 13794="7614

4
(i) By ibid (with the  ——
use of the Vinculum)

—— e

Evidently the former is better ; but Or
(i) The Nikhilam Method is still better :—81—19

94— 6

75/,14=T7614

(3) 123x89
(i) 123  Or (i) 123 Or (iii) 123423
089 111 89—11 3
F
08527 11053 112/253
242 ==10947 —_——
—— 110/53=109/47
=10947
(4) 652x43
(i) 652 (ii) The Vinculnm method is manifestly
043 cumbrous in thiscase and need not
—_— be worked out.
04836 -
232 (1352
—_— % 0043)
28036 —

(iii) The Nikhilam method may be used and will he quite
easy; but we will have to take a multiple of 43 which will bring
it very near 1000. Such a multipleis 43 x23=989 ;
and we can work with it and finally 652—348
divide the whole thing out by 23. 989—011
This gives us the same answer (23/036). -

641/,828
23) 644/828
28/036

(5) 123x112 (Nikhslam,)
(i) 123 (i) Asall thedigists (iii) 1234-23
112 are within 5, the 112412
_— Vinculum method —_——
13276 is manifestly out 135 /,76
6 of place. =137 176
_13776 o
Both the first and thethird methodsseem equally good.
(6) 99x99 (i) 101 (iii) 99—1 (iv) The
(i) 99 101 99—1 | (Yavadinam)
99 ——— ———— » method s
— 10201 =98/01 also  quite
8121 =9801 appropriate” appropriate
168 & easy
—_ 99208/01
=9801
(7) 246 &) 222 9 642 (10) 321
131 143 131 213
20026 20646 62002 67373
122 11 221 1

=3222 =68373
(In all these P oases (N 0s. 7— 10), the Geneml formula fits

in at once).
(11) 889X 898 ~
() 889 Or (i) 1111 Or (in)889— 111 | *111+11

898 1102 898— 102 | 102+ 2
646852 1202322 787 [ 322 | 113 /22
13047 -
21
T =798/322 =798 /322

=798322

Note ;—Here in (iii) Nikhilam method, the vertical multiplic
ation of 111 and 102 is aso performed in the same
manner (asshown in the*marked margin).




(12) (i) 576 Or (i) Vinculum

(48 )
Or (ii1)

X328 method 576—424 N.B. 984 being
inappro-  984— 16 328, we
151288 priate — havecfmaj(g
3764 3)560 /4784 use of it
1560 /s then  divi-
=188928 =188 | 928 ded out by3
(13) 817x332 Or
(i) 817 (i) Vinculum Or (i) .. 332x 3==996
332 method may ", 817—183
aso beused. 9964
247034
2421 3)813/732
=271244 =271 /244
(14) 989x989 Or (ii) Or (i) Or &V) (Ya-
(i) 989 Vinculum method 989— 11  vadiinam).
989 also useful — 989— 11  9892=978/
1011 — 121 Thisis
814641 1011 =978 [ 121  the best.
14248
21 1022121
=978/121
=978121
(15) 8989 X 8898 Or (l) e Or (iii)
i) 8989 11011 8989—1011
8898 11102 8898 —1102
64681652 120024122 7887 (4122*
1308147 —_— 11t
2921 =790084122 S
———— 7998 | 4122
=79984122 #1011+ 11
11024-102
1113/,122
=1114/ 122
(16) 213x213  Or (ii) Or 213413 N. B. The di-
(i) 213 Vinculum 213+ 13 gits being
213 method not —_ small, the
— suitable. 226 [ 469 eneral
44369 x2 [ ormula iS
1 S always
- 452 [ ,69 best.
=45369 =453 | 69

PRACTICAL APPLICATION
IN

" COMPOUND MULTIPLICATION”
A. Sguare Measure, Cubtec Measure Ete.

Thisis not a separate subject, al by itself. Butitisoften
o practical interest and importance, even to lay peopleand
deservesour attention on that score.  We therefore deal with it
briefly.

Areas of Rectangles.

Supposewe haveto know the area of a Rectangular piece
of land whose length and breadth are7’ 8 and6 11" respec-
tively.

Accordingto the conventional method, we put both these
measurementsinto uniform shape (either as inchesor as vulgar

fractions of feet-preferably thelatter) and say :—
92 71 6532 1633
Area=13 X134 = 38

36) 1633 (45 sq. ft 1
144

—

193
180

13
X144

36) 1872 (52 s0. in. |
36

s Area=45 5. ft. 52 5. in.

72
72

In the Vedic method, however, we make use of the

Algebraical multiplication and the ddyam S#tra and say :—

Area=5x+411

xTE+8 =35x24-117x 488
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Splitting the middle term (by dividing by 12), we get 9
and9asQandR
~E=35 xa+59 x124-9)x +88
=44 x€+(9 x12) x+88
=44 . ft.4-196 5. in.
=45 . ft*+4562 9. in.
And the whole work can be done mentdly -
(2) Similarly 3 7' \ =16 X366 x+-70
x510” § =20 x24(5x12)-+70
=20 0. ft.4-130 sq. in.

and (3) 7x +11 ) =35 x2-}-111 x 4-88
X6 X 48 § =44 s0. ft.+124 sq. in.

Volumes ¢ Parallelepipeds:

We can extend the same method to sums relating to 3
dimensionsaso. Suppose we haveto find the volume of a
parallelepipedwhose dimensionsare 3’ 7", 6 10" and 7° 2",

By the customary method, we will say :—-

00_4_3X7OX§§ (with all the big multiplication and
V=137 12712 divisionsinvolved). But, by the Vedic

process, we have i—
3x1+7 ] =20 22410 x+410
5x+10 7x +2
140x8+1 10x2+90x+20
=149x34-9x2+7x+8

=149 cub. ft and 1388 cub. in.

Thus, evenin thesesmdl computations, the customary
method seemsto have a natural or ingrained biasin favour of
needlessly big multiplications, divisions, vulgar fractions etc.,
etc., for their own sake. The Vedic Siitras, however, help us
to avoid these and make the work a pleasure and not an
infliction.

PRACTICE AND PROPORTION

IN
COMPOUND MULTIPLICATION.

The same procedure under the Fwdfi® (Urdhova-Tiryak
Saira) is readily applicable to most questions which come
under the headings ¢Simple Practice and "*Compound
Practice”, wherein "' ALIQUOT" parts aretaken and many steps
o working are resorted to under the current system but wherein
according to the Vedic method, all of it ismental Arithmetic,

For example, supposethe questionis:—

"In a certain investment, each rupee invested brings
Rupeestwo and five annas to the investor. How much will an
outlay d Rs. 4 and annas nine therein yield ¢”

THE FIRST CONVENTIONAL METHOD.
B/ Means of Aliguot Parts.

Rs. As. Pa
For One Rupee 2—5—0
For 4 Rupees 9—4—0
84z, =3 d Re 1 1-2—6
la=) of 8 As. —0-—2_3%
Total 10-8-—~9%
for Rs. 4 and
annas 9.
Second Current Method.
(By SimpleProportion)

Rs. 2—5—0=§%;

and Rs. 4—9—0=Rs. 1§

'"On Rel, theyield isRs. 3

~OnRe 1§, theyield isRs. $f X{§=Rs. 218}




(52)
266) 2701 (10—8—98
256

141
X16

266) 2045 ( 8
2304

208
x12

256) 2496 ( 9
2304

192
_ 256
By the \edi ¢ one-line method :

2x+5
4x + 9

8x? [ 38x/45

Splitting the middle term (or by simple division from
right to left) :

=3/t

1022621233
=Rs. 10 and 8%§ annas

A fewmoreinstances may be taken : —
(1) Rs. 2/5 X Rs. 2[5
2—5
25
4/20/26=Rs. 5[5 annas
(2) Rs. 4/9xXRs. 4/9
4—9

4—9
18/72/81=Rs. 20/13 ¢y annas
(3) Rs. 16/9xRs. 16/9
16—9
16—9
256/288/81==Rs. 274/ annas 53

( 53 )

(4) Rs. 4/13X Rs. 4/13
(i) By the current 'Practice’ method

Rs.—as
For Re. 1 4—13
For Rs. 4 19— 4
8annas=%} d Re | — 63
4 annas=3} of 8 As. 1— 3%
la=}d 4annas 0— 413

Total 23— 2¢%

(ii) By the current 'Proportion’ method.
Rs. 4/13=Rs. 'ﬁ

ST XTL=6922
16 16 256
256) 5929 (23 —2%
612

= 809
768

41
X16

256) 656 (2
512
“144
256 =916
(iii) By the one-line Vedic Method.

4—13
4-13

16/104/169==Rs. 23/2% annas
N.B.—Questions relating to paving, carpeting, ornamenting etc.,
ete. (Which are-under the current system usually dealt
with by the ‘Practice’ method or by the 'Proportion’
process) can al be readily answered by the Urdhva-
Tiryak method.
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For example, suppose the question is:—
Atthe rate of 7 annas ® pies per foot, what will be the
ost for 8 yards 1 foot 3inches ?
25—3
7-9

175/246/27
=195 annas 8% pies
=Ras. 12/ 3/ 83

CraPrER IV

DIVISION (by the Nikhilam Method).

Having dealt with Multiplication at fairly considerable
length, we now go on to Division; and there we start with
the Ntkhilam method (which is a specid one).

Suppose we have to divide a number of dividends (pf two
digits each) successively by the same Divisor 8 we make a
chart therefor as follows: —

® 9 12 @ 9) 2/ 3 9) 33
/1 /2 /3
1/3 2/3 3/6
(4 9) ¢/0 (6) 9) 52 (6) 9) 6/1
4 /6 /8
4/4 6/7 6/7

(7 9) 7/0 (8) 9) 8o
ki /8

77 8/8

L&t us first split each dividend into a left-hand part
for the Quotient and a right-hand part for the Remainder and
divide them by a vertical line.

In al these particular cases, we observe that the first
digit of the Dividend becomes the Quotient and the sum of
the two digits becomes the Remainder. This means that we
can mechanically take the first digit down for the Quotient-
column and that, by adding the quotient to the second digit,
we can get the Remainder.

Next, we take as Dividends, another set d bigger num-
bers of 8 digits each and make a chart of them as follows:—

1) 9) 103 2) 9) 11/3 3) 9) 12/4
1 9 1//1 @ 9) 1//2 ( s
11/4 12/5 13/7
4) 16/0 5 9) 21/l 6) 9) 31/
@ 9 1//7 ® 9) 2;3 ® 3

1771 23/4 34/5
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In these cases, we note that the Remainder and the sum
of the digits are still the same and that, by taking the first
digit of the Dividend down mechanically and adding it to the
second digit of the dividend, we get the second digit of the
quotient and that by adding it to the third digit of the dividend,
we obtain the remainder.

And then, by extending this procedure to still bigger
numbers (consisting o still more digits), we are able to get
the quotient and remainder correctly. For example,

(1) 9)1203/1 (2 9) 123001 (3) 9) 120021/2
133/6 136/6 13335/6
1336/7 1366/7 133356/8
And, thereafter, we take a few more oases as follows:—
(1 9) 18 2 9) 22/5 (3) 9) 13/6
/1 2/4 1/4
1/9 24/9 14/10
(4) 9) 23/7
2/5
25/12

But in all these cases, we find that the Remainder is the
same as or greater than the Divisor. Asthisisnot permissible,
we re-divide the Remainder by 9, carry the quotient over to
the Quotient column and rctain the finad Remainder in the
Remainder eloums, as follows:—

1) 9) s () 9) 225 @) 9) 13/6
i 2/4 1/4
1 240 1410
2/0 25/0 /1
() 9) 237
25
25/12
26 /3

(87 )

We aso notice that, when the Remainder is greater than the
Divisor, we can do the consequent final Division by the same
method, as follows:—

(1) o) 13/8 () 9) 23/7 (3) 9) 101164/9
1/4 2/5 11239/13

14/1/0 25/1/2 1123913/2/2

1 N /2

1 Y 2/4

5/ 26 | 3 112405 /4

Wenext take up the next lower numbers(8, 7 etc.) asour Divisors
and note the results, as follows:—

1 8) 23 @7 1/2 @) 6) 111
4 3 /4
2/1 1/5 1/5

Here We Observe that, on taking the first digit of the Dividend
down mechanicaly, we do not get the Remainder by adding
that digit o the quotient to the second digit of the dividend
but have to add to it twice. thrice or 4 times the quotient-
digit already taken down. In other words, we have to multiply
the quetient-digit by 2 in the case of 8, by 3 inthecase o 7,
by 4 in the case of 6 and so on. And this again means that
we have to multiply the quotient-digit by the Divisor's comple-
ment from 10.

And this suggests that the Nikhilam rule (about the sub-
traction of all from 9 and of the last from 10) isat work ; and,
to make sure o it, we try with bigger divisions, as follows:

(1) 89) 1/11 2) 73) /11 (3) 888) 1/234
nmn ju a7 [e1 112 /112
1/22 1/38 1/346
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9 {8) (6)
8888) 1/2345 7999) " 1/2345 8807) 1/2345
iz 12 3001 /2001 103 /1103
1/3457 1/4346 1/3448
1)) (8) 9
8897) 1/1203 7989) 1/0102 899997) 1/010101
i103 /1103 2011 /2011 100003 /100003
1/2306 1/2113 1/110104
(10) (11) (12)
89) 11/11 89) 100/13 882) 12/345
nm i n 12 1/12
i1 /336
/22 [22 _—
_— 13/801
12/48 112/45
(13) (14) (15)
8997) 21/0012 8998) 30/0000 8888) 10/1020
1003 2/006 ioo2 3/006 mez ine
/3009 /3006 /1112
23/3081 33/3066 11/3252
(16) (n (18)
8987) 20/0165 899) 10/102 89998) 20/02002
1013 2/026 ol 1jo1 10002  2/0004
/2026 /101 /20004
22/2451 11/213 22/22046
(19) (20) 1)
89997) 1616101  899%7) 12/34567 88987) 10/30007
10063 1/0003  fogo3 1/0003 61013 0/1013
/10003 /30009 /00000
11/20134 13/64606 10/40137
(22) (23)
99979) 111/11111 88) 110/01
60021  00/021 s 12/
/0021 2/4
J00021 /48
111/13442 124/89
=125/1

(%)

In al the above examples, we have deliberately taken as
Divisiors, numbers containing big digits. The reason therefor
is as follows:—

(@) It is in such divison (by big divisions) that the
student finds his chief difficulty, because he has to
multiply long big numbers by the "trid" digit of
the quotient at every step and subtract that result
from each dividend at each step ; but, in our method
(of the Nikhilam formula), the bigger the digits,
the smaller will be the required complement (from
9 or 10 asthe case may be) ; and the multiplication-
task is lightened thereby.

{ii) There is no subtraction to be done at al!

(i) And, even as regards the multiplication, we have

No multiplication of numbers by numbers as such
but only d a single digit by a single digit, with the
pleasant conseguence that, at no stage, is a student
caled upon to multiply more than 8 by more than
9. In other words, 9x9==81, is the utmost multi-
plication he has to perform.

A single sample example will suffice to prove this :

(4) 9819) 2 01 37
o181 02162

2 0499

Note:—In this case, the product of 8and 9 is written down in
its proper place, as 16 (with no “carrying” over tothe
left) and so on.

Thus, in our “division”—process (by the Nikkilam
formula), we perform only small single-digit multiplications;
we do ne subtraction and #e divisionat al ; and yet we readily
obtain the required quotient and the required Remainder.
In fact, we have accomplished our division-work in full, without
actually doing any division at all !
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As for divisors consisting of smdl digits, another simple
formula will serve our purpose and is to be dealt with in the
next chapter. Just at present (in this chapter), we dea only
with big divisorsand explain how simpleand easy such difficult
multiplications can be made (with the aid o the Nikhilam
Sitra).

And herein, we take up a few more illustrative examples
relating to the cases (already referred to) wherein the Remainder
exceeds the Divisor and explain the process, by which this
difficulty can be easily surmounted (by further application of
the same Nikhilam method) :—

(25) 88) 1 98
12 12

1 110

The Remainder here (110) being greater than the Divisor (88)
we have to divide 110 by 88 and get the quotient and the fina
remainder and carry the former over and add it to the quotient
already obtained. Thus, we say :—

88) 1 10

12 12

1 22

so, we add the newly obtained 1 to the previously obtained 1 ;
and put down 2 as the quotient and 22 as the Remainder.

Thisdouble processcan be combined into oneas follows: —
88) 1 98
12 12

1 1/10

/12
1 122
2 /22

( 61)

A few more illustrations will serve to help the student in

practising this method : —
(26) 89997) 12 94567

@ 971 o8

10003 1 0003 03 03
30009 _
—_— 11 01
13 1 24606 03

10003
————— 2 04
14 34609 —

(28) 99979) 111 99171
00021 Q0 021

0 0021
00021
111 1 01502
00021

112 01523

Thus, even the whole lengthy operation (of division of 11199171
by 99979) involves no division and no subtraction and consists
o a few multiplications of single digits by single digits and a
little addition (of an equally easy character).

Y& ; this is all good enough so far as it goes; but it
provides only for a particular type (namely, of divisionsin-
volving large-digit numbers). Can it help usin other divisions
(i.e. those which involve small-digit divisors)?

The answer is a candidly emphatic and unequivocal No.
An actual sample specimen will prove this:—
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Supposewe have to divide 1011 by 23. By the N¢khilam
method, the working will be as follows :—

(29) 23) 10 1 1
771 7

9 4 9

17 2 o
42 42

23 8 2
28 28

27 9 0
21 a1

30 2 1
21 2

33 5 2
14 14

35 0 6
14 4

37 6 0
7 7

38 3 7
7 7

3 4
4 -9 2
43 2 2

(4 times the divisor)

This is manifestly not only too long and cumbrous but much
more so than the current system (which, in this particular
case, is indisputably shorter and easier).

i )

(6)

In such a case, we can use a multiple of the divisor and
finally multiply again (by the Anurfipya rule). Thus,
(30) 23x4=92) 10 11

%8 0 8
10 91
x4
40 69
43 22

But even this is too long and cumbrous; and this is a suitable
case for the application Of the wwad (Pardwartys) method.
This we proceed to explain in the next chapter.



CHAPTER V
DIVISION (by the Pardvartye method)

We have thus found that, although admirably suited for
application in the specia or particular cases wherein the divisor-
digits are big ones, yet the Nikhilam method doesnot help
us in the other cases (namely, those wherein the divisor consists
of small digits). Thelast example (with 23 asdivisor) at theend
of the last chapter has made this perfectly clear. Hence the
need for a formulawhich will cover the other cases.  And thisis
found provided for in the Pardvartya Sitra, whichis a special-
case formula, which reads “Pardvartya Yojayet” and which
means " Transpose and apply"".

The well-known rule relating to transposition enjoins
invariable change of sign with every change of sde. Thus+
becomes—and conversely ; and x becomes+ and conversely. In
the current system, thislaw is known but only in its application
to the transposition of terms from left to right and conversely
and from numerator to denominator and conversely (in
connection with the solution of equations, the proving of
Identities etc., etc; and aso with regard to the Remainder
Theorem, Horner's process of Synthetic Division etc. etc)
According to the Vedic system, however, it has a number o
applications, one of which is discussed in the present chapter.

At this point, we may make a reference to the Remainder
Theorem and Herner’s process and then pass on to the other
most interesting applications of the Parcivartya Sara.

The Rematnder Theorem -

We may begin this part of this exposition with a simple
proof of the Remainder Theorem, as follows:
If E, D, Q & R be the Dividend, the Divisor, the
Quotient and the Remainder in a case of divisionand if
the divisor is (x—p), we may put this relationship
down agebraicaly as follows: —
E=D Q+R i.e. E=Q (x—p)+R.

(6 )

And if we put x=p, x—p becomes zero; and the
Identity takes the shape, E=R. In other words, the
given expresson E itsdf (with p substituted for x)
will be the Remainder.

Thus, the given expression E (i.e. the Dividend itself)
(with p substituted for x) automatically becomesthe remainder.
And p is automatically available by putting x—p=>0 ie. by
merely reversing the sign o the—p (whichis the absolute term
in the binomial divisor). In generd terms, this means that,
if ¢ be ax®4bx"14cx"24dx™3 etc. and if D be x—p, the
remainder is ap®+bp"~1+4-ep®-24dp™3 and o on (i.e. E with
p Substituted for x). This is the Remainder Theorem.

Horner's process of Synthetic Division carries this till
further and tells us the quotient too. Itis, however,only a
very smal part o the Pardvartya formula (which goes much
farther and is capable of numerous applications in other
directions also).

Now, suppose we have to divide

(12x2—8x—32) by (x—2). x—2 12x2—8x—32
- 24432

12x 4+16 0
We put x—2 (theDivsior) down on the left (asusual); just
below it, we put down the—2 with its sign changed; and we
do the multiplication work just exactly as we did in the
previous chapter.
A few more algebraic examples may aso be taken :—
(1) Divide 7x2+5x+3 by x—1 x—1 7x*45x + 3
1

7 +12

7x+4+12 15

~The quotient is 7x+12; and the Remainder is 15.
(2) x+1 7x*4+5x +3 (3) x—2 x%47x%4+ 6x + 5
ey -7 42 2 2 +18 48

77X —-2 45 x21.9x 424 53
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(4) x—3 x3-x24 7x 43
3 3+ 6 39

x242 413 42

(6) x-6 x>—3x24-10x 7
5 6 $10 100

x*4+2 +20 493

At this stage, the student should practise the whole
process as a MENTAL exercise (in respect of binomia divisors
at any rate). For example, with regard to the division of
(12x*—8x-32) by the binomia (x—2), one should be able
to say :(—

1_2}_2."_8?3_2:;12x+16 :and R=0

The procedure is as follows :—
(i) 222 gives 12 asthe first coefficientin the quotient ;
and we put it down;

(i) multiply 12 by —2, reve-sethe sign and add to the
next coefficient on the top (numerator). Thus
12x—2=—24, Reversed, it is24. Add—8 and
obtain 16 as the next coefficient of the Quotient.
multiply 16 by—2 ; reverse the sign and add to the
next coefficient on top. Thus 16x—2—=—32;
Reversed, it is 32; add—32 and obtain 0 as the

Remainder.
7x24-6x+3
Similarly, (1) ———— .~ Q=7x+12; and R=15
~_ 1
2 725X +3 | 0 _7z—2; and R=5
x+1
3 4 7x24-6x+5
(3) TEEHOFD . qextoxpa4;
. and R=53
5_x917x13
@ x—‘*zj;—x—t A Q=x?42x+13;

and R=42

{ 67 )

x3—3x2-}-10x—17

and (5) ~—5

*, Q=x212x4-20 ;

R=93
This direct and straight application
o the Pardvartye Satra should be so
well practised as to become very
simple MENTAL arithmetic. And
the student should be able to say
at Onoe:—

(8 ’i"_ﬁ7x:j§x+ll ~Q=x?109x+27;

R=65;

and (N X‘—3xs-§1§f+5x+7 5 Q=x3}x2
+11x449; and R=203.

Extending this process to the case of divisors containing
three terms, we should follow the same method, but should also
take care to reverse the signs o the coefficient in al the other
terms (exceptthefirst) :—

(1) x2—x—1 xf—x3+x? 43Ix+5

141 141
+ 0 490
2 +2
;—0_ 2 ——}:gx_—Jﬂ S Q=x2+2; and
ot R=5x+17
(2) x3—2x-9 Gx‘—l-llgx“_—tgzx“ +-37x+ 45
29 50 -+225
286-1-1287

6x2+25 +143  -£548-41332
.. Q=6x24-25x4143 ; and R=548x-1332
(3) x®+1  2x4—38x3+0 —3x—2

-1 0—2 Note the zero x*
0 +3 and the zero x
0 -+2 carefully.

2 —83 —2 0-+40 ..Q=2x%-3x—2nd R=0
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(4) x2—2x41 x*—3x% +3x—1

21 2 —1
—2 +1
1 -1 040 S Q=x-1; and R=0
(5) x?{2x4-4 2x319x? J-18x}20
—9—4 -4 — 8
~-10 —-20
2 +5 040 .Q=2x+5;&R=0
(8) x8B—x5+2x—3 x5404x® _ 7x2+0+9 Note the
1—-2+3 1-2 43 zero x4 and
1 -2 +3 the zero x

0 4040  carefully.

14140 —6 +3+9

S Q=x2+x; and R=—6x2+43x+9
(7) x2—x+41 x*4+0+4x* +0+1 Note the zero x® and
1-1 1—% zero x carefully.
-1
1-1
f——

14141 040 .".Q=x24x+1;and R=0

(8) x2—2x241 —2x5—7x%42x% +18x4 —3x— 8 Note
210-1 —4 40 2 the zero
—22 40 411 xinthe
—40 0420 Divisor
carefully
—2 —11 —-20 -20 + 8412

5Q=—2x%—1Ix— 20, and R=—20x?+8x-+12

In al the above oases, the first coefficient in the divisor
happened to be 1 ; and therefore there was no risk of fractional
coefficients coming in. But what about the cases wherein,
the first coefficientnot being unity, fractions will have to be
reckoned with ¢

(e )

The answer is that all the work may be done as before,
with a simple addition to the effect that every coefficient in
the answer must be divided by thefirst coefficient of the Divisor.
Thus, 2x—4 —4x3—7x*++9x —12

4 -8 —30 —4

- Q=—2x2—T§x—10} ; and R=—54

This, however, means & halving of each coefficient (at every
step) ; and this is not only more cumbrous but dso likely to
lead to confusion, reduplication etc.

The better method therefore would be to divide the Divisor
itself at the very outset by its first coefficient, complete the
working and divide it al df again, once for all at the
end. Thus:— 2x--4 —4x3—7x24+9x —12 N.B.—Note

X—2 —8 —30 —42 that theR
3 always
2) —4 —-15 -21 -5 remains

—2 —7} —21/2—54 constant.

Two more illustrative examples may be taken :—
(1) 3)3x—7 3x*~x — 6

x—2} 7 $14
2% 3)3x4+8 9 ..Q=x+2;and R=d
X+2 9

(2) 2)2x*—3x 41 2x8—9x%45x3+16x* —-16x-4-36

Rt S

13— —9 + 3
T 4o
2)2 —6 —5 +113 17}—53
1 —3—2}+5¢ 15/4-+30}

- Q=x%-3x*x2}x+5% ; and R=3§x+-30}
N.B.:—Note that R is constant in every case.
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Arithmetical Applications (Miscellaneous) -

Weshall nowtakeup a number of Arithmetical applications
and get a clueas to the utility and jurisdiction of the Nekhilam
formula and why and wherewe haveto apply the Parivartya
Stitra.

(1) Divide 1234 by 112
112 1 234
888 888

1 1 122

2 1 122

888

3 010

888

"~ 348 898
—896

11 2

But this is too cumbrous. The Parivartya formula will
be more suitable. Thus—

- 112 1 2 3+ 4
—1-2 -1 -2
—1-2
1 1 02 ..Q=11; and R=2

Thisis ever so much simpler.
(2) Divide 1241 by 112.

()12 1 241 (ii) This too is too long.
888 888 Therefore use Pardvartya
I 1129
888 112 1 2 41
T—-—l——— -1 —1—2
888 17 iRl
re— 11 09
3 905 -

8 —898
11 9

(1)

(8) Divide1234 by 160

(i) Nikkilam method is manifestly unsuitable. We
should therefore use the Pardvartya formula

(i) 160 1 2 84 But thisis a case where
850 - 0 (Vilokanenaiva) i. e. by
240  simpleinspectionor observa

e 272 tion, we can put the

1 —160 answer down.
7 114

(4) 11203 2 3 9 4 79
—1—2-0—3 —2 —4—0—6
—-1—2—0-3

21 4 21 6

(5) 112 1 3 0 4 5
12 —-1-2 —4

—2 448
124 53
=116 [ 53

Inall these cases (where the digits in the divisor are
small) the Nkhilars method is generally unsuitable: and the
Parivartya one is always to be preferred.

(6) Divide 13466 by 1123

1123 13 4 6 6
1-2—3 ~—1 —2-3
~2—4—0

12 0240
Here, asthe Remainder portionis a negative quantity, we
should follow the device used in subtractions o larger numbers
from smaller ones (in coinage etc).

Rs. as. ps. £ s d
7 6 3 7 6 3
9 9 9 9

6 11 6 816 6
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In other words, take 1 over from the quotient column
to the remainder column i.e. take 1123 over to the right side,
subtract 20 therefrom and say, Q=11 and R=1103

(7) Divide13905 by 113 (similar)
113 1 3 9 0 6

1= —1-3
-2 -6
—4 =12
1 2 4 — 107
08

N.B.:—Always remember that just as one Rupee=168 annas,
One Pound=20 shillings and one Dollar=100 cents
and so on, 0 one taken over from the quotient to the
Remainder--column stands, in concrete value, for the
Divisor.

(8) 1012 11 111
012 0 —1-2

11 —1—-142
+1012
10 991
(9) ,1133 12 3 49
H3o3 -1 —3-3
—1—3—3
1n —1—246 =—114
1133
10 1019

(10) Divide 13999 by 112
12 1 3 9 9 9
—1—2 —1-2
-2 —a
—~5-—10

1 2 5 4111

.Q=124 and R=111

(13)
(1) 1132 11 3 2 9 Alsoby Vilokanam (i.e. mere

1—3-—2 —1 32 observation).
000
10 0 0 9
(12) 82 1 03 Also by Vilokanam (ie. by

f T2 2-2
2—2 1 21

mere observation)

(13)(i) 819 2 3 41
181 2 16 2 Thisishy the Nekhslasi method
2 703

But 18 can be counted as 1048 or as 20—2. 8o, put
181 down as 2—241. We can thus ovoid multiplication by
big digits i.e. by more than five
(i) 819 2 3 4 1
181 4 —412
2-2¢1 4 T3

(14) Divide 39999 by 9819 or (ii)(by Vinculumand Pardvartya)

(i) 9819 3 9 99 9 9819 3990909
0181 0 324 3 10221 0 6—6 3

3 1 0542 0+2—241 "3 1 o642
0181 02—2+1

4 0723 3 073

(16) Divide 1111 by 839.
(i) 839 1 111 or (ii)But 838=1241; and (iii) 839 1 111

161 161~241 lﬁl 241

e 8% 1111 241 T

1272 T 3 1 332
lm 2 4 1 -

1 272

g=4—1_ 1332 — ==
=1 272

1o
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(16) 818 50 1 2 (by smple subtraction of the

182 6 40 10 Divisor asshn the case of 16
— annas, 20 shillings, 100 cents
6 922 eto.)
= 104
(17) 988 13 0 4 & (18)868 7 1 1 1
§iz 01 2 142 7 28 14
036 7 1 105
13 2 0 1 142
8 247
(19) (i) 82843 9 9 9 or(ii)y 828 43 9 9 9
i 4288 12 —12 8
74914 2312 22—33-{—2_2_
475 083 51 19—16+81
58510 51 1 771
52 943 —2—-32
N —828 52 943
53 115 —828
53 115
(20) Divide 1771 by 828
(i) 828 1 771 (i) _828 1 771
72 172 172 2—3+2
1 943 2-3+2 3 9 4 3
—828 —8 2 8
2 115 2 115
(21) Divide 2671 by 828
()s28 2 6 7 1 or(i)_88 26 7 1
i72 2 14 4 172 4—6+4
2 1 015 2—3+2 2 1 0 1 5
172 2—3%
3 187 3 187

or (iii) Subtract 828 straight off (in both cases) from 1015.

(%)
(22) Divide 39893 by 829

() 89 39 8 9 30r(i) 89 3 8 v 3
171 3 21 3 171 6—9-+3

12 84 12 7—3F1 30—45-+15

42 5075 452 5 8 8

5366 4—6—2

47 930 47 9 30

—829 -8 2 9

48 101 48 1 0 1

(23) Divide 21011 by 799 (24) Divide 13046 by 988

7921 0 1 1 988 13 0 4 5
201 4 0 2 02 0 1 2
10 0 5 0 3 6
25 1 036 13 2 0 1
201
26 237
; (25) Divide 21999 by 8819
g (i) 8819 21 9 9 9 or(i)8s19 2

1999
1181 .  2+4—412 1118 2 216 2
1+2—-2+149 4 3 ¢ 1 4361

(26) Divide 1356 by 182 Eventhisistoocumbrous. Anuripya
and Pardvartya willbe more suitable.

() 182 13 5 6(i) 182 13 6 6
“5-3 -8 -2 Pro—ote 11
40 10 —T=1r 44
54 4 6 14 248 2'2'0%';”'5
2 -8 _—
= 7 8 2
B 2 _—_
9 364
D2 B o s 3128
) 118 34-6—6

7 82 1+2-2 "3 4 g 2




(7))
(28) (1) (ii)

882 4 0 009 882 4 0 0
1—-1—242 44+8—8 118 4-+8—
1+2-2 4 4 g 1 14+2-2 ¢ 4 g

9
8

1

(29) Divide 4009 by 882

(i) 882 4 0 0 9 (i) 882 40 0 9
1-1=813 4488 I8 4488

1+2-2 4 4 g 1 122744 g 1

Note —In both these methods, the working is exactly the

same. -
(81)

(30))2) 224 2 6 9 9 2)223 169 9
ne ~2—4 1§ —1-1}
—1— —4—8 . —1—1% —5 -1}

— R is PP
2)24 11__ congtant 215 24+1}
1211 73 2k 6}

7 1114

2 138

(32)2)222 1 2 3 4 (33g7givide77685 by 672
6 8

11 —1 —1
" —1—1 328 21421 —14
211 1 3 33-2 45 9 9 g 71
5 111 6 +6 —4
- 9 1 6 3 7
5 124 343 2
10 9 6 5
-8 7 2
11 2 9 3

This work can be curtailed—or at least rendered a bit
easer —by the Anurpyena Sitra. We can take 168 (whichis
onefourth o 672) or 84 (which is one-eighth of it) or, better

(7))

till, 112 (which is one-sixth thereof) ; and work it out with
that Divisor and finaly divide the quotient proportionately.

The division (with 112 as Divisor) works out as follows:

- 872=6x 112 76 85
112 —~7  —14
12 iz
T—1 —547

6) =69 —5+7

113—5+47

=11 336—504-7=293

It will thus be seen that, in al such cases, a fairly easy
method is for us to take the nearest multiple (or sub-multiple)
to a power of 10 as our temporary divisor, use the N¢khilam or
the Pardvartye process and then multiply (or divide) the
Quotient proportionately. A few more examples are given
below, in illustration hereof :—

(1) Divide 1400 by 199 OR (it) Since 5x 199=995

) 199 1400 995 1 400
2)y20—-1 O ..006 0.0 5
1+0—1 0+2 140 5
0+%  2)14 342 X5 —3 9 8

7 3+2=17/7 7 7

(2) Divide 1699 by 223. (3) Divide 1334 by 439

- 4% 223=892 ‘. 2X439==878
892 1 699 . 878 1 3 3 4
1—1—-142 1+1-2 122 12 2
1+1-2 1 8 0 7 1 4 5 6
X4 —6 6 9 X2 —4 3 9
4 1 3 8 3 17
—3
7 188
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(4) Divide1234 by 511. (5) Divide1177 by 516

- 2% 511=1022 L 2% 516=1032
1022 1 2 3 4 L1032 11 77
0—2—2 0—2—2 T 0—3—2 0—3—2
1 21 2 11465
X2 X2
2 212 2145

Note:—The Remainder is constant in all the cases.

CrAPTER VI

ARGUMENTAL DIVISION
(By smpleargument per the Urdhva Tiryak Sitra)
In addition to the Nt¢khslar method and the Pardvartya
method (which are of use only in certain special cases) there is
a third method of division which isone d simple argumentation

(based on the ‘Urdhwa Tiryak' Sdtra and practically amounts
to a converse thereof).

The following examples will explain and illustrate it :—

(1) Suppose we have to divide (x3+4-2x+1) by (x+1), we
makea chart, asin the cased an ordinary multipli- X +1
cation (by the ‘Urdhva Tiryak’ process) and X +1
jotdown thedlyldend and the divisor. Then the X t2x+1
argumentation is as follows :—

(i) xS and x being thefirst terms o the dividend and the
divisor (or the product and the multiplier respectively),
the first term o the quotient (or the multiplicand)
must be X.
As for the coefficient of x in the product, it must come
up asthesum o the cross-wise-multiplication-products
o these. We have aready got X by the cross-
multiplication of the x in the upper row and the
1 in the lower row; but the coefficient of X in the
product is 2 The other x must therefore be the
product o the x in the lower row and the absolute
term in the upper row. ... Thelatteris1. And thus
the Quotient is x+41.
(2) Divide (12x2—8x—382) by (x—?2).
122°—-8%—32 _ 1o: 116
X—2
(i) 12xS divided by x gives us 12x.

(i

<=
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(i) The twelve multiplied by —2 gives Q=12x—16

us —24 ; but the actual coefficient of

X in the product (or the dividend) is

—8 ... We must get the remaining 16x by multiplying
the x o the divisor by 16. .. The absolute term
in the Divisor must be 16 .. Q=12x416. And
as —2x16= —32, .. R=0.

(3) Divide (x*+7x24-6x+4-5) by (x—2)
(i) x® divided by x gives us x2 x3-47x2-1-6x 45

which is therefore the first term xX—2
o the quotient. s Q=x24-9x+24
(i) x?2x —2= —2x2; but we have 7x% in the Dividend.

This means that we have to get 9x% more. This
must result from the multiplication of x by 9x. IIence
the second term o the divisor must be 9zx.
M‘S .'.Q=x2+9x+...
X—2

(iii) As for the third term, we already have —2x9x=
—18zx. But we have 6x in the dividend. We must
therefore get an additional 24x. This can only come
in by the multiplication o x by 24. .. Thisis the
third term of the quotient. .. Q=x*+9x-+24

(iv) Now this last term o the quotient multiplied by
—2 gives us —48., But the absolute term in the
dividendis5. We have therefore to get an additional
53 fromsomewhere. But thereisno further term left
in the Dividend. Thismeans that the53 will remain
as the Remainder. ... Q=x2{9x4-24; and R=53

Note:—All the work explained in detail above can be
easily performed by means o the ‘Pardvartye’
Sitra (as aready explained in the 'Pardvartya’
chapter, in connection with Mental division by
Binomial divisors).
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The procedure is very simple; and the following examples
will throw further light thereon and give the necessary practice
to the student :—

31 7x219x4-11
1) ’LXJ_FZ"JE_ <. Q=x2+9x+27 ; and R=65
w2
@) x3 % - Q=x24+2x—1; and R=O
__ a3 2
(3 Xo3x jji AT Qexd - h11x-49; & R=203
- 3__ 2 j—
{4) _4"2’;"___;:9"—12 o Q=—2x24-}4x4-5%; and R=10
3x2—x—5
6) Vo - . Q=x42; and R=9
2.
(6) 16X4:f:%1_ .. Q=4x+1 ;and R=0
4x%2-{12x -9
7 —~—£2X:%¢x3— N.B.:—Put zero coefficientsfor
absent powers.
. Q=x4+2x—3 ;and R=O
- x5 2x%3x45
(5) ﬁl .. Q:x+3 5 and R:7X+8
4 3 2
© = +4xx;f;xrix+l 1 Q=x%+2x+1; and R=0
4 3 2
(10) )},—1:2}3{;‘_5%2)(_'_1 . Q:)(2+X+| ;and R=0
—_3 2
a1 = *‘X +fx+5 - Q=x?+44; and R=9x+9
-—X—
4 S+30x2
(12) G)Efisz(,if’gféggfLS,f . Q=6x24-25%-1-143 ; and

R=548x4-1332
12x4 3 —
X —?:2(11-'1-?&*12 . Q=12x2—3x—12; and R=0

(14) 12x% 4 4Bx®| §kef 7 79x |- 42

(13)

. Q=4x2+7x+6 ;& R=0

4—4x24-12x—9
(15) g 2:;;(1%— . Q=x%—2x+43 and R=0

11
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12x4—3x3—3x—12

—x2 : =
(1) ~oe—3—12 =x%+1; and R=0O
12x%4-41x%4+81x24-79x 142 . _
(17) - 216 _——_-3x3+5x+7 3 andR=0

x3—4x24+12x—9

{18) o —2xi3 =x?+2%—3 and R=0

9 Zxﬁgw =x'+2x+4 ; and R=0

(20) Zﬁr% =x+5 ; and R=0

(1) SIS _gxi 3545 and R=O
(a) SIS yxe 2w 19 and R=0
(23) %l =4x2--6x4-9 ; and R=0
(24) % =4x24+6x+19 ; and R=0
(25) 16X‘;§(%?‘+9 —4x?—2x+9; and R=0O
(26) @%%iﬁ —4x24+2x+1; and R=O

x5 4-x3—7x249

(27) ¥ _ax7Fox—3 =x%42x+3; and R=—2x%+18
18x4436x2}-6x1-86 .
=4x2— & R= 5
(28) 22+ 6519 4x?—6x+9; & R=6x+
—2x5—7x4-+2x%18x?—3x—8 )
(29) i Xxj-_’gx_zi__i_l =—2x8—11x—20 ;

and R=—20x2}8x 412
443x3~16x24+3x+1
i x2+6x+:-ll_ +

(30) =x2—3x-+1; and R=0
x84-3x3—16x2+43x+1

(31) X2-3XF1 =x2+46x+1; and R=0
2x8—9x4-4-5x3-+-16x2—16x+36

=x%—3x2—24x 1 5% ;
and R=33x+30}

(32) x2—8x+1

( 8 )
21x84-7x81-15x4}-29%3 | x2
(38 T g g
21x8+7x54- 15281 20x3 x4+ 15343
(34) H7x af°j;<”+§ Rt 7xB+5x+1
(85)
7x1°+26x’—|—53x3+56x7+43x3+40x5+41x‘+38x°+19x3+8x+5
x84 3x44-5x3 [ 3x2f x+1
=7x515%44-3x3+-x2 4 8x+ 5
(36) (Same di vi dend as above)
7x545x44-3x3 4 x2 4 3x 4 5
= x54-3x4 523} 3x3f-x} ]



LINKING NOTE

RECAPITULATION & CONCLUSION
OF
(Elementary) DIvISION SECTION

In these three chapters (1V, V and VI relating to Division,
we have dealt with a large number and variety o instructive
examples and wc now fed justifiedin postulating the following
conclusions:—

(1) The three methods expounded and explained are, no
doubt, free from the big handicap which the current system
labours under, namely, (i) the multiplication, of large numbers
(the Divisors) by "trial digits”-of the quotient at every step
(with the chance of the product being found too big for the
Dividend and so on), (ii) the subtraction of large numbers from
large numbers, (iii) the length, cumbrousness, clumsiness etc,
of the whole procedure, (iv) the consequent liability o the
student t0 get disgusted with and sick o it all, (v) the resultant
greater risk of errors being committed and so on;

(2) And vyet, athough comparatively superior to the
process now in vogue everywhere, yet, they too suffer, in some
cases, from these disadvantages. At any rate, they do not,
in such cases, conform to the Vedic system's Ideal of ** Short and
Swest" ;

(3) And, besides, all the three of them are suitable only for
some special and particular type (or types) of cases; and none
o them is suitable for general application to all cases:—

(i) The 'Nikhilam' method is generally unsnitable for
Algebraicdivisions; and ailmost invariably, the ‘Pard-
vartya process suits them better ;

(ii) and, even as regards Arithmetical computations, the
‘Nikhilaw’ method is serviceable only when the
Divisor-digits are large numbers (i.e., 6, 7, 8 or 9)
and not at all helpful when the divisor digits are
small ones (i.e. 1, 2, 3. 4 and 5); and it is only the

( 8 )

‘Pardvartye” method that can be applied in the
latter kind of cases!

(ili) Even when a convenient multiple (or sub-multiple)
is made use of, even then there is room for a choice
having to be made—by the pupil —as to whether the
‘Nikhilar’ method or the 'Parcivartyd one should
be preferred ;

(iv) and there is no exception-less criterion by which
the student tan be enabled to make the requisite fina
choice between the two alternative methods;

(v) and, as, for the third method (i.e. by the reversed
‘Ordhva—Tiryak’ Shtra), the Algebraic utility there-
of is plain enough; but it is difficult in respect of
Arithmetical calculations to say when, where and
why it should be resorted to (as against the other
two methods).

All these considerations (arising from our detailed-
comparative-study of a large number of examples) add up, in
effect, to the simple conclusion that noned these methods can
be of general utility in al cases, that the selection of the most
suitable method in each particular case may (owing to want of
uniformity) be confusing to the student and that this element
of uncertainty isbound to cause confusion. And the question
therefore naturally—my, unavoidably arises as to whether
the Vedic Sitrag can give us a Genera Formula applicable
to all cases.

And the answer is:—Yes most certainly YES! There
s asplendid and beautiful and very easy method which conforms
with the Vedic idea o idea simplicity al-round and whirh
in fact gives us what we have been describing as**Vedic one line-
mental answers'™!

This astounding method we shall, however, expound in

a later chapter under the caption. “Straight-Division”—which
is one of the Crowning Beauties of the Vedic mathematics

Sitras. (Chapter XXVIL q.v.).



CHAPTER VII
I. FACTORISATION (& SimpleQuadratics)

Factorisation comes in naturally at this point, as a form
of what we have called ""Reversed multiplication™ and as a
particular application of divison. Thereis a lot d strikingly
good material in the Vedic Siitras on this subject too, which is
new to the modern mathematical world but which comesin at
a very early stage in our Vedic 'Mathematics.

We do not, however, propose to go into a detailed and
exhaustive exposition of the subject but shall content ourselves
with a few simple sample examples which will serve to throw
light thereon and especially on the Sitraic technique by which
a Satra consisting of only one or two simple words, makes
comprehensive provision for explaining and elucidating a pro-
cedure whereby a 80-caled "difficult” mathematical problem
(which, in the other system puzzles the students brains) ceases
to do so any longer, nay, is actualy laughed at by them as
being worth rgoicing over and not worrying over !

For instance, let us take the question of factorisation
o a quadratic expression inteé its component binomia factors.
Whenthe coefficientof x? is1, it is easy enough, even according
to the current system wherein you are asked to think out and
find two numbers whose algebraic total is the middle coeffi-
cient and whose product is the absolute term. For example,
let the quadratic expression in question be x2-+7x-4+10, we
mentally do the wwltiplication of the two factors x+2
(x4-2) and (x-+5) whore product is x2+47x+10 ; X+5
nd (by & mental process of reverting thereof), ~rai 7 71
we think of 2 and 5 whose sum is 7 and whose ——————
product is 10: and we thus factorise(x2+47x4-10) into (x-+2) and
(x45 . And the actual working out thereof is as follows:—
x24-7x410
=X2+2x+5x+10
=x(x+2)+5 (x+2)
=(x+2) (x+5)

(8 )

The procedure is, no doubt, mathematically correct; but the
process is needlesdy long and cumbrous. However, as the
mental process actually employed is as explained above, there
is no great harm done.

I n respect, however, of Quadratic expressions whose first
coefficient is not unity (e.g. 2x2+5x+2), the students do not
follow the mental processin question but helplessy depend on
the 4-step method shown above and work it out as follows: —

2x2--6x42

=2x34-4x-4-x+2

=2x(x+2)+1 (x+2)

=(x}2) (2x+1)
As the pupils are never taught to apply the mental process
which can give us this result immediately, it means a rea
injury. The Vedic system, however, prevents thiskind d harm,
with the aid of two small sub-Siitras which say (i) sEsaw
(Anuriipyena) and (i) smEwREwETET  (Adyamadyendntya-
mantyena) and which mean ‘proportionately’ and ‘the first
by the first and the last by the last’.

The former has been explained already (in connection
with the use of multiples and sub-multiples, in multiplication
and division) ; but, dlongside d the latter sub-Siitra, 1t acquires
a new and beautiful double application and significance and
works out as follows:—

(i) Split the middle coefficient into two such parts that
the ratio o the first coefficient to that first part is
the same as the ratio of that second part to the last
coefficient.  Thus, in the qundratic 2x3+5x+2, the
middle term (5) is split into two such parts (4 and 1)
that the ratio of the first coefficient, to thefirst part of
the middle coefficient (i.e. 2: 4) and the ratio o
the second part to the last coefficient (ie. 1 : 2)
are the same. Now, this ratio (ie. x42) is one
factor.

And the second factor is obtained by dividing the first
coefficientd the Quadratic by the first coefficient of the factor




(8 )

already found and thelast coefficient of the Quadratic by thelast
coefficient of that factor. In other words the second Binomial

fassor isobtained thus: 2;(-‘-24'% — 2x+41.

Thus we say : 2x>45x+2=(x+2)  (2x-}1).

Note:—The middle coefficient (which we split-up above
into (44-1) may also be split up into (14}, that the
ratio in that case is (2x-+1) and that the other
Binomial factor (according to the above-explained
method) is (x+2). Thus, the change d SEQUENCE
(in the splitting up of the middle term) makes no
difference to the factors themselves!

This sub-Sitra has actually been used already (in the
chapters on division) ; and it will be coming up again and again,
later on-(i.e. in Co-ordinate Geometry etc., in connection
with straight lines, Hyperbolas, Conjugate Hyperbolas, Asymp-
totes etc.)

But, just now, we make use of it in connection with the
factorisation of Quadratics into their Binomial factors. The
following additional examples will be found useful :—

(x+3) (2x—1)
(x+1) (2x+5)
(x+2) (2x+5)
(x—3) (2x+1)

I

(1) 2x%4-5x—3
(2) 2x*4-Tx+5
(3) 2x2+9x+10
(4) 2x®—53—3

(5) 3x24x—-14 = (x—2) (3x+7)
(6) 3x2+13x~—30 = (x-+6) (3x—5)
(7) 3x2—7x-42 = (x—2)(3x—1)

(2x-+1) (2x+5)
(2x+3) (3x+1)
(2x+5) (3x—2)
(2x-3) (32+2)
(x41) (6x—19)
(x+-6) (6x+1)

(x—1) (7x-+1)

(8) 4x2+12x+5
(9) 6x%+11x+3
(10) 6x2+411x—10
(11) 6x%413x 16
(12) 6x2—13x—19
(13) 6x2-+37x+-6
(14) 7x2—6x—1

I I |

oo

(8)

(2x—5) (4x—1)
(3x—1) (3x—4)
(3x-}-4) (4x—1)

(15) 8x2—22x+5

(16) 9x2—15x-}-4

(17) 12x2+13x—4

(18) 12x%—23xy--10y? (3x—2y) (4x—5y)

(19) 16x%—14xy—By? (3x—4y) (5x+2y)

An additional sub-S8iitra is d immense ultility in this
context, for the purpose o verifying the correctness of our
answers in multiplications, divisions and factorisations. It
reads : e aq=efa: and means:—

"The product ¢ the sum d the coefficients in the
factors is equa to the sum of the coeffictenis in the
product”.

In symbols, we may put this principle down thus:—-

S o the product=Product of the S, (in the factors).

For example, (x+7) (x+9)=(x2+16x+63) ;

and we observe that (14-7) (149)=14-164-63=80

Similarly, inthe case of Cubics, Bi-quadratics etc., the

same rule holds good. For example:
(x+1) (x+2) (x+3)=x3-+6x2+11x+6 ;
and we observe that 2X3X4=1+6--11-46=24.

Thus, if and when some factors are known, this rule
helps us to fill in the gaps.

It will be found useful in the factorisation of cubics,
biquadratics etc., and will be advertedto (in that context and
in some other such contexts) later on.

o
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CHAPTER VIII

FACTORISATION (of "Harder' Quadratics)

There is a class of Quadratic expressions known as
Homogeneous Expressions o the second degree, wherein
several letters (X, Y, z etc.) figure and which are generally fought
shy d by students (and teachers too) as being too "difficult”
but which can be very easily tackled by means of the ddyama-
dyena Sitra (just explained) and another sub-Siitra which
consists of only one (compound) word, which reads #eseamsret
and means :—*“by (alternate) Elimination and Retention™

Suppose we have to factorise the Homogeneous quadratie
(2x3+6ya+372+7xy+llyz+72x). This is obviousy a case
in Which the ratios o the coefficients o the various powers of
the various letters are difficult to find out ; and the reluctance
of students (and even o teachers) to go into a troublesome
thing like this, is quite understandable.

The 'Lopam— Sthipam' sub-Siatra, however, removes
the whole difficulty and makes the factorisation of a Quadratic
o thistype as easy and simple asthat of the ordinary quadratic
(already explained). The procedure is as follows:—

Suppose we have to factorise the followinglong Quadratic :

2x2-6y24-322+7xy+11yz-+Tzx.

(i) We first eliminate z (by putting z==0) and retain only
x and y and factorise the resulting ordinary quadratic (in
x and y) (with the ddyam Siitra);

(ii) We then similarly eliminate y and retain only x and a
and factorise the ssimple quadratic (in x and z);

(iii) with these two sets of factors beforeus, we fill in the
gaps caused bv our own deliberate elimination o z and y
respectively. And that gives us the rea factors of the given
long expression. The procedure is an argumentative one
and is as follows:—

(o)

If 5=0, then & (the given expression)=2x2+7xy+6y?2
=(x+2y) (2x+3y).
Similarly, if y=0, then E=2x?+17xy-32%==(x-+3z)(2x-}2)

.. Filling in the gaps which we ourselves had created by
leaving out z and y, wesay : BE=(x+2y-+3z) (2x+3y+2)
The following additional examples will be found useful :—
(1) 3x24y2—2z%—4xy+4yz—zx
E=(x—y) (3x—y) and dso (x—2) (3x+42z)
o B=(x—y—2) (3x—y+2z)
(2) 3xB+xy —2y2+19xz4-2822+9xy —30w2—yz+19wy
+46zw.
By eliminating two letters at a time, we get :
E=(x+v) (3x—2y), (83x+4z) (x+7z) and adso
(x—2y) (8x-+15w)
. B=(x1y+44z—2w) (3x—2y+42415W)
(3) 2x2+2y2+5xy +25—5y—12=(x+38) (2x—4) and
also (2y+3) (y—4)
- B=(x4+2y+3) (2x4+y7—4)
(4) 3x2—8xy-+4y2+4y—3=(x—1) (3x43) and dso
(2y—1) (2y+4-3)
. BE=(x+4+2y—1) (3x+2y—3)
(5) 6x2—8y2—6224-2xy-|-16yz—5xz
=(2x—2y) (3x-+4y) and also (2x+3z) (3x—22)
. E=(2x—2y--3z) (3x+4y—22)

Note —We could have €liminated x also and retained
only y and z and factorised the resultant simple
guadratic. That would not, however, have given us
any additional material but' would have only confir-
med and verified the answer we had aready
obtained. Thus, when 3 letters(x,y and z) are there,
only two eliminations will generally sufficee The
following exceptions to this rule should be noted :—

(1) x2+xy—2y%-+2x2—5yz—3z*
=(x—7y) (x+2y) and (X—2) (x+3z)
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But x isto befoundin all the terms; and thereis
no means for deciding the proper combinations.
In this case, therefore, x too may be eliminated;
and y and z retained. By so doing, we have :—

E= —2y*—5yz—322=(—y—z)(2y+32) FACTORISATION OF CUBICS ETC.
o B=(x—y—z) (x+2y+32).
OR, avoid the x? (which gives the same co-efficient)

CraPTER IX

(By Simple Argumentation e. t. ¢.)

and take only y2 or 28, And then, the confusion We have aready seen how, when a polynomial is divided
caused by the oneness of the coefficient (in all the by a Binomiad, a Trinomial etc., the remainder can befound
4 factors) is avoided; and we get, by meansd the Remainder Theorem and how both the Quotient
E=(x—y—z) (x+2y-+32) (as before). and the Remainder can be easily found by one or other method
(2) x2+2y%4-8xy+2x243yztz2. o divison explained aready.
(i) By eliminating z, y and X one after another, From thisit followsthat, if, in this process, the remainder
we have E=(x-+y-+tz) (x+2y+2) is found to be zero, it meansthat the given dividend is divisible
OR (1) By y or z both times, we get the same answer. by the given divisor, i.e. the divisor is a factor o the Dividend.
(3) x24-8y%4-22%4-4xy3xz-+7yz And this means that, if, by some such method, we are
Both the methods yield the same result : able to find out a certain factor o a given expression, the
E=(x+y+22) (x+3y-+2) remaining factor (or the product o &l the remaining factors)
2 2 2 can be obtained by simple division of the expression in question
(4) 3 17;};_025 ;;é;:;?x:az ;Nl: T;tt:f};—;l t:_;fﬁe by the factor already found out by some method o division.
and thus keep only one letter and the independent (In this context, the student need hardly be reminded that,
term, each time. in all Algebraic divisions, the 'Pardvartya’ method is aways to
Thus, E= 3x%+414x+8=(x+4) (3x+2) . be preferred to the ‘Nikhilam’ method).
2y24-8y +8=(2y+4) (y-+2) ; and aso Applying this principle to the case of a cubic, we may
6z2+14z+48=(3z+4) (2242) say that, if, by the Remainder Theorem or otherwise, we know
<o B=(x+2y+3244) (3x+y-+221+2) onc Binomia factor o a cubic, smple division by that factor
Note:—This  “Lopana—Sthipana” method (of alternate eli- will suffice to enable US to find out the Quadratic (which is the
mination and retention) will be found highly useful, product d the remaining two binomial factors). And these two
later on in H.C.F., in Solid Geometry and in Co- , can be obtained by the ‘ ddyamddyena’ method o factorisation
ordinate Geometry o the straight line, the Hyper- already explained.
bola, the Conjugate Hyperbola, the Asymptotes etc. A simpler and easier device for performing this operation
will be to writedown the firstand thelast terms by the ‘ddyamad-
dyena’ method and the middle term with the aid of the Gunita-
Samuccaya rule (ie. the principle—already explained with
—_— regard to the S, d the product being the same as the Product
d the 8, o the factors).
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Let ustake a concrete example and see how this method
can be made use of. Suppose we have to factorise x3+46x24
11x+46 and that, by some method, we know (x--1) to be a
factor. We first use the Adyamddyens formula and thus
mechanically put down x2 and 6 as the first and the last coeffi-
cients in the quotient (i.e. the product o the remaining two
binomia factors). But we know alresdy that the 8, of the
given expressionis 24 ; and, asthe 8, o (x—1)==2 we therefore

know that the 8, of the quotient must be 12. And as the
first and last digits thereof are already knownto be 1 and 6,
their total is 7. And therefore the middle term must

be 12—-7—=5. So, the quotient is x?5x+6.

This is a very smple and easy but absolutely certain
and effective process.

The student will remember that the ordinary rule for
divisibility of a dividend by a divisor (as has been explained
aready in the section dealing with the "' Remainder —Theorem'")
is as follows:—

If E=DQ+R, if D=x—p and if x=p, then E=R.

COROLLARIES
(i) So, if, in the dividend, we substitute 1 for X, the
result will be that, as all the powers of 1 are unity itself, the
dividend will now consist of the sum of al the coefficients.
Thus, if D isx—1, R=a+btc--d-4(where & b, C, d etc.,
are the successive coefficients) ; and then, if a+h4-c ete.,=0,
it will meanthat as R=0, E is divisibleby D. |n other words,
x—1 is a factor.

(i) If, however, D=x4-1 and if we substitute —1 for x in
E, then, inasmuch as the odd powers of —1 will all be —1 and
the even powersthereof will all be 1, thereforeit will follow that,
in this case, R—=a—b-c—d €tC.
So, if R=01i.e. if a—b+c—d etc., =0, i.e. if a~b4c—4 €iC,,
=0, i.e. a+c+... =b4d-...

(%)

i.e. if the sum of the coefficients o the odd powers of x and
the sum o the coefficients of the even powers be equal, then
x+| will be a factor.

The following few illustrations will elucidate the actual
application o the principle mainly by what may be caled
the Argamentation method, based on the simple multiplication-
formula to the effect that—

(x+a) (x+b) (x4-c)=x84x* (a+b+-c)+x(ab+ac+be)

+abe, as follows . —

(1) Factorisex3+4-8x3-+11X+86.
(i) Here, 8.=24; and % (the last term) is 6 whose
factorsare 1,2, 3 or 1,1, 6. Buttheir total should be
6 (the coefficient d x&. Sowe must reject thel, 1, 6
group and accept the 1, 2, 3 group. And, testing
for the third coefficient, we find ab4be+ca=11
o B=(x+1) (x+2) (x+3).
or (ii) 8, (the sum of the coefficients of the odd powers)
=1411=12; and §, (the sum o the coefficients of
the even powers)=6+6=12. And as §,=8,
.. x+1 is a factor.
.. Dividing E by that factor, we first use the ‘4dya-

madyena’ Sitra and put down | and 6 as the first
and the last coefficients. .. The middle coefficient

is - 12—(1-+6)=5 ... The Q=x%+5x+6 which (by
Adyamidyena) =(x+2) (x+3)-
Thus B=(x+1) (x+2) (x+3)-
(2) Factorisex® - gx2+11x—6 A
Here §,=0 .. x—1 isafactor. But as+i8 an inde-
finite figure, we cannot use the Gunita-Samuccayo
method here for the middle term but must divide out
(by mental ‘Pardvartye’) and get the quotient as
x2—5x+6 which (by the ddyamddye’ rule)
=(x—2) (x—3) o B=(x—1) (x—2) (x—3).
or (ii) argue about —1, —2 and —3 having —6 as the total
and —6 asthe product ; and test out and verify the 11.
And therefore say, BE=(x—1) (x—2) (x—3).

|
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(3) Factorise x3412x2}44x--48.

(i) Here 8.=105 whose factors are 1, 3, 5, 7, 15, 21, 35
and 105. And t; is 48 whosefactorsare, 1, 2, 3, 4, 6,8
12, 16, 24 and 48. ... x+41 and x—1 areout of court.
And the only possible factors are x+2, x+4 and
x+6 (verify).

(i) or, argue that 24+44+6=12 and 2x4x6=48; and
test for and verify 44 ... E=(x+2) (x+4) (x+6)

(4) Factorise x®—2x2—23x-1-60

(i) HereS,=36 (withfactors1, 2, 3, 4, 6,9,12,18and 36 ;
t;=60 (which is 1 X2X2x 3x5.)
.. Possible factors are 1, 2, 3, 4, 5, 6, 10, 12, 15, 20,
30 and 60. But the sum o the coefficientsin each
factor must be a factor of the total 8, (i.e. 105).
Therefore, al the italicized numbers go out, and
0 do x—1, x+4, x+{6 and x-+10.
Now, the only possible numbers here (which when
added, total —2) are —3, —4 and 5. Now, test for
and verify x—3
S E =(x-3) (x+x—-20)=(x—3) (x—4) (x+35).

(ii) or take the possibilities x—10, x—5, x5, x—4,
x+3, x—3, x+2 and x—2.

It x—2=g~ x3—2x2—23x 460
24 0—46
140+23 14 . R=14
. X—2is not a factor.
But if x—3, R=0 .. x—3is a factor.
Then, argue as in the first method.
(6) Factorise x3—2x%—5x+6=Here S,=0

(i) ... x—1 isafactor ; and the other part (by Division)
is x2—x—6 which =(x+2) (x—3)

oo BE=(x—1) (x+2) (x—3)

(ii) t1==6 (whose factors are 1, 2 and 3). And the only
combination which gives us the total —2, is —1, 2
and —3. Test and verify for —5. And put down the
answer.
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(6) Factorise x3-}-3x2—17x—38
Now Se==—51 (with factors +1, +3, +17 and +51
And —38 has the factors £1, £2, £19 and x38.
. x1, +19 and +38 are not possible.
And only +92 is possible. And if x=—2, R=0
. x+2 is a factor . E=(x+2) (x2+x—19)
which has no further factors.

(7) Factorise x3+8x8+19x+12.

(i) Here S,=8; and L;=12 ... 1+3+4 are the proper

numbers. Now test for and verify 19.

B =(x+1) (x2+7x+12) = (x+1) (x+3) (x+4)

OR (ii) *- 1+19=8+412 .. x+1 is a factor. Then the
quotient is obtainable by the ‘Adyamddyena’ and
‘Samuccaya’ Sitras. And that again can be factorised
with the aid d the former.

L B=(x+1) (x+3) (x+4)

(8) Factorise x3—7x+6
(i) = 8e=0, ... x—1 isafactor.
. By ‘Pardvartye’ method of division (mental).
B =(x—1) (x24X—6)=(x—1) (x—2) (x-+3)
OR (i) (by a different kind of application of Adyamadyena
X3 —7x+6=(X*—1)~7X+7=(x—1){x2+x+1—7)
) ) :(_x—l) (x—2) (x+3)
Note : (1) This method is aways applicable when x? is
absent; and this means that the 3 independent
terms together total zero.

(2) Nete the note on this and other allied points (in
the section relating to cubic equations) in a later
chapter.

(3) Note that this method of factorisation by Argu-
mentation isequally applicable to Biquadratics aso.

(4) The relationship between the Binomia factors
o a polynomial and its differentials (first, second
and S0 on) iSan interesting and intriguing subject
which will be dealt with in a later chapter.

{8) The use of different+-is for finding out repeated
factors will alse pe dealt with later.




CrapTER X

HIGHEST COMMON FACTOR

In the current system o mathematics, we have two
methods which are used for finding the H.C.F. o two (or more)
given expressions.

Thefirst is by means o factorisation (whichis not always
easy); and the second is by a process d continuous division
(like the method used in the GCM. chapter o Arithmetic).
The latter is a mechanical process and can therefore be applied
in dl cases. But it israther too mechanica and, consequently,
long and cumbrous.

The Vedic method provides a third method which is
applicable to al cases and is, at the same time, free from this
disadvantage.

It is, mainly, an application o the 'Lopanu-Sthipanu’
Biitra, the ‘Sankalana- Vyavakalan’ processand the ‘ddyamadya’
rule. The procedure adopted is one d alternate destruction d
the highest and the lowest powers (by a suitable multiplication
o the coefficients and the addition or subtraction o the multi-
ples). A concrete example will elucidate the process:---

(1) Suppose we have to find the HCF. o (x2+7x+6) &

(x2—5x—86)

(i) 224+7x+6=(x+1) (x+6); and x2—5x—6=
=(x+41) (x—6) .. The H.C.F. is (x+1).

(i) The 2nd method (the G.C.M. one) is well-known and

nee not be put down here.

(iii) The third process o ‘Lopana-Sthipena’ (i.e. o

Elimination and Retention, or Alternate destruction
d the highest and the lowest powers) is explained
below :
Let E; and E, be the two expressions.
Then, for destroying the highest power,
we should subtract E, from E;; and for
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destroying the lowest one, we should add the
two. The chart is as follows:

2
X TIx+6 i Subtraction %3 5%—6 E Addition

x2—5x—6 x24+7x4-6
12) 12x+12 2x) 2x242x
x+-1 x+1

We then remove the common factor (if any) from each;
and we find (x+1) staring usin the face.
.. x—1isthe H.C.F.

The Algebraica principle or Proof hereof is asfollows:—
Let Pand Q bethe two expressions; H their H.C.F. and
A and B the quotients (after their division by the H.C.P.)

. F=A; and 8-B .. P—HAand Q=HB

. P+Q=H (A+B); and MP+NQ=H(MA 4+ NB)
" The H.CF. f Pand Qisadsothe HC.P. & P+Q,
2P+Q, P4+2Q and MP+NQ
All that we have therefore to do is to sddect our M and

N in such a way that the highest and the lowest powers are
removed and the H.C.F. appears and shows itself before us.

A few more illustrative examples may be seen below :—
(1 (i) x3—3x2—4x412 = (x+2) (Xx—2) (x—3);
and x3—7x24+16x—12=(x—2)2 (X—23)
. the HCF. is (Xx—2) (x—3)=x2—5x-}6
But the factorisation of the two expressions will
be required.
or  (ii) The G.CM. method.
or (iii) The ‘Lopana-Sthipana’ method :—
x3—3x2—4x4-12 x3—7x%+16x—12
—(x8—7x2416x—12) +(x3—3x%2—4x+12)

4) 4x*—20x4+24  2x) 2x3—10x3}12x
x2—5x+6 x%2—5x+6
. The H.C.F. is(x3—5x+86)
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2) @ 4x34+13x2419x+4 =(4x+1) (x3+3x+4);
and 2x3+5x245x —4=(2x+1) (x23x+4)
-, The H.C.F.is x2+3x+4
But the factorisation o the two cubics will he
cumbrous.

(iii) The Vedic method :--

4x3--18x24-19x+4 2x3 4 5x24-5x—4
—(4x3410x2410Xx—8) - (4x3+4+13x24+19x+}4)

3) 3x2+9x+12 6x ) 6Xx3418x2424x
X2+3x+4 X8+3x+4
.~.The H.C.F.is (x2+3x+4)

or

(® () xt4+x3—5x2—3x+2:= (x+1) (x—2) (2 +2x—1) ;
and x4—3x34+-x243x~2=(x+1) (x—2) (x—1)2
. The H.C.P. is x2-—x—2
But this factorisation of the two biquadratics 1s
bound to be a (comparatively) laborious process.
(ii) The cumbrous G.CM. method.

(111) The Vedic method :—

x4+ x3—5x2—3x-L2 x4—-3x3+4x24+3x—2
—(x*—3x34+-x% 4-3x—~2) x4+ x3—5x2—3x+2
2) 4x3-6x2—6x+4  2X2) 2x8—2x3—4x?
2x3_3x2—3x +2 X2—xX—2
—(2x3—2x2—4x) (N.B.~mult1ply this by
t 0
—1(—x2-}-x+2) %O ef f\é)r
x2—x—2 subtractlon).

. TheH C Fisx2—x—2

) (i) The Vedic method : —
6x4— 7x3—-5x2414x4-7 3x3—5x2-+7
—(6x4—10x3 +14xz) (N.B.—multiply this by
2x & subtract from
L.H.S)

3x3—5x? +7

I,
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(ii) The factorisation o the big Biquadratic will be
""harder'?.

(iiiy The GCM. method is, in this case, easy. But how
should one know this beforehand and start tnonkeying
or experimenting with it?%

(5) (i) The Vedic method :—

6x+—11x3416x2—22x48  6x*—11x3—8x*422x—8
—(6x4—11x3—8x2422x—8) +(6x*—11x%+16x%—22x18)

4) 24x2—44x+}16 2x2%) 12x4—22x34-8x?
6x2—11x+4 6x2—11x-+4
. The H.CF. is 6x%—-11x44

(i) 6x4—11x3416x2—~22x }+8=(2x—1) (3x—4) (x2+2); &
6x4—11x%—8x%2+22x —8=(2x—1) {(3x—4) (x2—2)
. The H.C.F. is (2x—1) (3x—4)=6x?—11x+4

(iii) The cumbersome G.C.M. method.

(6) (1) 2x3+x2—9 =(2x~3) (x*+2x+3);
and x%4-2x249=(x344x+43) (x2—2x+3)
.. The H.C.F. is x2+2x+3
But the factorisation-work (especialy o the
former expression) will be a toughish job.
(i) The GCM. method will be cumbrous (as usud).
(iii) The Vedic method—

2x8+x3—9 2x4-4-4x2-+18
x44-2x%4.9 2x4-+x3—9x
x2) x4{2x3-43x? xi—%xz—gx—ls
—————e x3-4-2x24-3x
X+2x+3 _—
) —8) —6x2—12x—18
N.B.—As this hab no Xor o213

further factors, it

must be in the

R.H.8. Multiply it *
by x and take it

over to theright for

subtraction.

. The H.CP.isx?+2x43

P‘
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Y0 4x44-11x34-27x24-17x+ 5 and 3x4-+7x34+18x2+ 7x+5
(11)".%, 12x4+33xS+81x2+51x+15 4x5411x34-27x3417x+-5
12x44-28x3-+72x24-28x+20  3x*4 7x3-}18xE+ 7Tx 5

E;g+ Ox2+23x—5 X) x* +4x34-9x2+10x
5x3+20x*+45x+50 Xt 4+ 9x 110

—11) 11x?—22x—55 10x3418x24-46x—10
x24+2x+5 I1x) 11x34-22x%+55x
X3+2x+5

(ii) The G.CM. method will be cumbrous (as usual).
(i) 4x*+11x3+27x2+17x+B=(x2+2x+5) (4x2+3x+1) &
x84 7x3 4+ 18x24-7x+5=(x2+2x-+5) (8x2+4x+1)

But the factorisation of the two big biquadratics
into two further factorless quadratics each, will entail
greater waste of time and energy.

So, the position may be analysed thus:—

(i) The G.CM. method is mechanical and reliable but too
cumbrous ;

(ii) The Factorisation method is more intellectual hut
harder to work out and therefore less dependable;

(iii) The Vedic method is free from al these defects and
is not only intellectual but aso simple, easy and
reliable. And the beauty o it is that the H.CF.
placesitself before our eyes and seemsto stare usin
the face!

CuarrEr XI

SIMPLE EQUATIONS (FIRST PRINCIPLES)

As regards the solution of eguations o various types,
the Vedic sub-Sitras give us some First Principles which are
theoretically not unknown to the western world but are not
(in actual practice) utilised as basic and fundamental first
principles o a practicaly Axiomatic character (in mathe-
matical computations).

In order to solve such equations, the students do not
generally use these basic sub-Siitras as such but (almost invari-
ably) go through the whole tedious work of practically proving
the formula in question instead o taking it for granted and
applying it ! Just asif on every occasion when the expression
a3-4h3-+c3—3abe comes up ; one should not take it for granted
that its factors are (a-+b-+c) and (abB+c?—ab—bc—ca)
but should go through the long process of multiplying these two,
showing the product and then applying it to the case on hand,
similarly for Pythagoras Theorem etc. !

The Vedic method gives us these sub-formulae in a con-
densed form (like Pardvartya etc.,) and enables usto perform
the necessary operation by mere application thereof. The
underlying principle behind al o them 18 @& FEq
(Paravartya Yojayet) which means: " Transpose and adjust™
The applications, however, are numerous and splendidly use-
ful. A few examples of this kind are cited hereunder, as
illustrations thereof : —

(1) 2x+7=x+9 ... 2x—x=9—7 . x=2. The student
has to perform hundreds of such transposttion-operations in
the course o his work ; but he should by practice obtain
such familiarity with and such master over it as to assmi-
late and assume the genera form a that if ax+b=cx+d,

x=§1—_C_b and apply it by mexntal arithmetic automatically
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to the particular case actually before him and say :—

_ 9—-7 2 .
2x+7=x+49 .". X—f——i—T—z’ and

the whole process should be a short, and simple mental
process.
Second General Type

(2) The above is the commonest kind (of transpositions).
The second common type is one in which each side (the L.H.S.
and the R.H.8.) contains two Binomial factors.

In general terms, let (x-a) (x4 b)=(x+c) (x+d). The
usual method is to work out the two multiplications and do the
transpositions and say : —

(~+a)x+b)=(~+elx+d)
<. X2+ax+hx+ab = xZ+cx+dx+cd
‘. ax-}bx—cex—~dx=cd—ab
x(a+b—e—d)=cd—ab
cd—ab
at+b—c¢—d

It must be possible for the student, by practice, to

assimilate and assume the whole of this operation and say

LX=

immediately : X_ﬁgiglid
As examples, the following may be taken :—
(1) (x4+1) (x+2)=(x—3) (x—4).~. 1+;2+32+4 |8:
(@) (x—8) (D =(xF8) (x—11) v x= TR Ay
(8) (x—2) (x—3)=(x—1) (x—4) - x= AR =0
(4) (x—T) (x—9)=(x—3) (x—22) .~ x=;7§_(57__+{5§4:.2 . =g=:1;
() (x+7) (x-+9)=(x+3) (x+22) . x=; +‘;““‘3“3 T
(6) (x+7) (x+9)=(x—8) (x—11) .~ x—7+%3+86i“ =
Ay (x+7) (x+9)=(x-+8) (x+21) -, x=_ 92708 . 0y

719-3--21 —8

S

“
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This gives rise to a general corollary to the effect that,
if cd—ab=0 ie. if cd=ab i.e. if the product of the absolute
terms be the same on both the sides, the numerator becomes
zero ; and .. x=0.

Third General Type

The third type is one whirh may be put into the genera

form : — ax-=h P and, after doing all the cross-multiplication

ex+d qand transposition etc.. lie get- _bq—dp

The student should (by practice) be able to assmn— cp

late and assume this also and do it al mentally as a sungle
operation.

Note : -The only rule to remember (for facilitating this
process) is that all the terms involving x should be
conserved on to the left side and that al the inde-
pendent terms should be gathered together on the
right side and that every transposition for this
purpose must invariably produce a change of sign
(1e. from-}to—and conversely ; and from X into
=+ and conversely).

Fourth General Type

i — My
The fourth type is of the form: x+a+x+b 0
After al the L.C.M’s, the cross—multiplications and
the transpositionsetc., are over, we get . —mh—na ¢
is simple enough and easy enough for m-+n

the student to assimilate; and it should be assimilated and
readily applied mentally to any case before us.

In fact, the application of this process may, in duecourse,
by means oOf practice, be extended so as to cover cases involving
a larger number of terms. For instance,

m oL p
xFa x+b ' xte
. m(x+b) (x--¢)4-n(x4-c) (x4-a)4-p(x+a) (x+b)

(x4ay (x+-b) (x-+¢) =0

14
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.. m[x?4x(b o)} +be]+n[x?4x(c{-a)+cal+
+-plx? +x(a+b)+ab]=10
.. x%(m+n-+p)+x[m(b+-c)+n(c+a)+p(a+b)]+
{mbe-+-nca + pab)=0
If m4n4-p=0. then
- —mbc—nca—pab
~ m(b-+c)+n(c+a)+p(a+b)

Rut if m-+4-n+p40, then it will be a Quadratic equation
and will haveto besolved assuch (asexplainedin alater chapter).

And this method can be extended to any number of erms
(on the same lines as explained above).

LINKING NOTE
Special Types d Fquations

The above types may be described as General types, But
there are, as in the cave of multiplications, divisions etc,,
particular types which possess certain specific characteristics
o a SPECIAL character which can be more easily tackled (than
the ordinary ones) with the aid of certain very short SPECIAL
processes (practically What one may describe as mental one-linc
methods).

As dready explained in a previous context, all that the
student has to do is to look for certain characteristics. spot
them out, identify the particular type and apply the formula
which is applicable thereto.

These SPECIAL types o equations, we now go on to, in
the next few chapters.

X

CrarTEr XI1

SIMPLE EQUATIONS (by Siitra Siinyam €tc.,)

We begih this section with an exposition of several specia
types of equations which can be solved practieally at sight-
with the aid of a beautiful special Satra which reads: »@
weT=a (‘Sanyam  Sdmyasamuceaye’) and which, in cryptic
language (which renders it applicable to a large number o
different eases) merely says: ¢ when the Samuccaya isthe same,
that Sumuccays is zero™” i.e. it should be equated to zero.

‘Samuccaya’ is a technical term which has several mean-
ings (under different contexts); and we shall explain them,
one by one:

FirsT MEANING AND APPLICATION

"Xamuccaya' firstmeans a term which occursas a common
factor in al the terms concerned.

Thus 12x+43x =4x+5x .. 12X+3x—4x—5X =0

Lx=0 . x=90

All these detailed steps are unnecessary; and, in fact,
no one worksit out in thisway. The mere fact that X occursas
a common factor in all the terms on both sides [or on tbe
L.H.S. (with zero on the R.H.S.)] is sufficient for the inference
that X is zero ; and no intermediate Step is necessary for arriving
at this conclusion. This is practically axiomatic.

And thisisapplicablenot only to x or other such " unknown
quantity" but to every such case. Thus, if 9 (x4-1)=17(x+1),
we need not say: 9(x--1)=7(x-}+1)

O OXAH9=TXHT L 9X—Tx=T—9 .. 2Xx=-—-2 /. x=—1
On the contrary, we can straightaway say :  9(x-41)=7(x+41)
Vo xF1=0 Lo x=—1

SECOND MEANING AND APPLICATION

The word 'Samuccaya’ has, as its second meaning, the

product of the independent terms.  Thus, (x--7)(x-+9)=(x+3)
(x-+21) .-, Here 7X9=3 x21. Therefore x=0.
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This is also practically axiomatic, has been dealt with in a
previous section (of this very subject of equations) and need not
he gone into again.

THIRD MEANING AND APPLICATION

<Samucoaye’ thirdly means the sum of the Denominators
of two fractions having the same (numerical) numerator. Thus
2o+ 1o L5x—2=0
2x—1 3x—1
This is axiomatic t00 and needs no elaboration.

FOURTH MmuANING AND APPLICATION

Fourthly, ‘Semuccuys’ means combination (or total).
I'n this sense, it is used in several different contexts; and they
are explained below :—
(i) If the sum of the numerators and the sum of the
denominators be the same, then that sum—zero.
Thus :
2x+0_ 27
X417 2x49
o (2x4-9) (2x4-9) = (2x4+-7) (2x47)
o 4x24-36x 81 = 4x2-+28x 149
o Bx=—32
w X==—4

This is the current method. But the “Sanyam Simya-
Samuccaye” formulatellsusthat, inasmuch as N, +N,=4x+16
and D,+D, isaso 4x+16 .. 4x416=0 ... x=—4. In fact,
as soon as this characteristic is noted and the type recognised,
the student can at once mentally say : x=—4.

Note: —If in the algebraical total, there bc a numerical
factor that should be removed. Thus:
x4 xtl
6x-+7 2x13
Here N, 4N, =4x+5; and D, 4D, =8x+10. Removing
the numerical factor, we have 4x4-5 on both sides here too.
SoAX45=0 0 x=—5[4
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No laborious cross-multiplications of N, by D, and
N, by D, and transpositions etc., are necessary (in the Vedie
method).

At sight, we can at once say 4x-+5=0 and be done with it.

Firre MEawing AnD APPLICATION (for Quadratics)

With the same meaning (i.e. total) of the word ==
‘Semucoaya’, there is a fifth kind of application possible of
this Siatra. And this has to do with Quadratic equations.
None need, however, go into a panic over this. Itisassimple
and as easy as the fourth application : and even little children
can understand and readiiy apply this Siitra in this context,
as explained below.

In the two instances given above, it will be observed
that the cross-multiplications of the coefficients of X gives us the
same coefficient for x2. In the first case, we had 4x2 on both
sides ; and in the second example, it was 6x2 on hoth sides.
The two cancelling out, we had simple equations to deal with.

But there are other cases where the coefficients of x? are
not the same on the two sides; and this means that we have a
quadratic equation before us.

But it does not matter. For, the same Sitra applies
(although in a different direction) here too and gives us also
the second root of the quadratic equation. The only difference
is that inasmuch as Algebraic: ‘Samuccaye’ includes sub-
traction too, we therefore now take into account, not only
the sum of N, and N, and the sum of D, and D, but aso the
differences between the numerator and the denominator on each
side; and, if they be equal, we at once equate that difference
to Zevo.

Let us take a concrete exampie and suppose we have to
solve the equation 314 5%+86

6x+7 2x-+3
(i) We note that N, +N;=8x410 and D,-+D; is also
8x-+10; we therefore use the method described in
the fourth application given above and equate
8x+10 to zero and say : x=—5/4.
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(ii) But mental cross-multiplication reveals that the
x? coefficients (on the L.H.S. and the RH.S) are
6 and 30 respectively and not the same. So, we
decidethat it isa quadratic equation ; and we observe
that N; ~D,=38x+3 and that N,~D, is aso 3x+3.
And so, according to the present application d the
same Sitra, We at once say : 3x+3=0 ... x=—1.

Thus the two rootsarc -5 /4 and —1 ; and we have solved
a quadratic equation at mere sight (without the usual parapher-
nalia of crossmultiplication. transposition ctc.). Weshall revert
to this at a later stage (when dealing with quadratic equations
themselves, as such).

SixTH MEANING AND APPLICATION

With the same sense ‘total’ of the word ‘Semuccaya’
but in a different application, we have the same Siitra coming
straight to our rescue, in the solution of what the various
text-books everywhere describe as ""Harder Equations”, and
deal with in a very late chapter 'thereof under that caption.
I'n fact, the label "Harder™ has stuck to this type of equations
to such an extent that they devote a separate section thereto
and the Matriculation examiners everywhere would amost
seem to have made it an invariable rule of practice to includeone
question o this type in their examination-papers !

Now, suppose the equation before us is:—

1 1 1 1
7t "% im0

In all the text-books, we are told to transpose two o the
terms (sothat each side may have a plusterm and a minusterm),
take the L.CM. of the denominators, crossmultiply, equate
the denominators, expand them, transpose and so on and so
forth. And, after 10 or more steps o working, they tell you
that 8 is the answer.

The Vedic Siitra, however, tells us that, if (other elements
being equal), the sum-total o the denominators on the L.H.S.
and the total on the R.H.S. be the same, then that total is zero!

(1)

Inthisinstance, as D, +-D, and D;+D, both total 2x—16.
- 2x—16=0 ... x=8! And that is dl there is to it!

A few more instances may be noted :—

(v ¢ v v by
x+7 - x+9  x+6 +x+10 *

(2) 1 1 — 1 1 L X==—1
X1 + x+9  x+11 + X—90 X

™ 1 1 1 1 X8}

T8 T xe x s Taoiz
DISGUISED SPECIMENS

The above were plain, simplecases which could bc readily
recognised as belonging to the type under consideration. There,
however, are severa cases which really belong to this type but
come under various kinds d disguises (thin, thick or ultra-thick)!
But, however thick the disguise may be, thcre are simple devices
by which we ocan penetrate and see through the disguises and
apply the ‘Sinya Samuccaye’ formula:—

TaIN DI1SGUISES
(n 1 1 1 1

X—8 x5 x—12 x—9
Here, we should transpose the minwuses, so that all the
4 terms are plus Ones:—

1 1 1 1
=€ — . Lox=8
x—8 ' x—9 x—12 + x—5 4

The transposition-process here is very easy and can
be done mentally (in less than the proverbial trice).

2 1 1 1 x— 2
x+1  x+3  x+2  x+4 ) 2
(3) 1 _ 1 1 _ 1 ) X:3é
x+1 x—3  x—4 x—8 e
(4 1 1 1 1 i
x=b) x—=b—d ~x—=ctd  x=¢ ' $(b+-c)
¢y 1 1 1 1 re—3(bro)

x-+b —x+b-|—d =x+c—~d T X
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Note:—If the last two examples (with so many literal
coefficients involved) were to be done according to
the current svstem, the labour entailed (over the
L.C.Ms, the multiplications etc.,) would have been
terrific; arid the time taken would have been pro-
portionate too! Rut, by this (Vedic) method, the
equation is solved ut sight !

MepruM DiISGUISES

The above were cases of thin disguises, where mere
transposition was sufficient for enabling us to penetrate them.

We now turn to cases of disguises of medium thickness:—
1 2 — —
(1) x— L X8 x 1, x4

x—3  x—4 x-2 ' xX—5

By dividing the Numerators out by the Denominators,
we have:

1 1 . 1 1
14 — 1 =14 — F14 .=
+x—3+ +x—4 +x—2 + +x~5

Cancelling out the two ones from both sides, we have the
Equation before Us in its undisguised shape and can at once
say, .. X=3é.

Now, this process of division can be mentally performed
very easily, thus:—
@ TIXSELT (=14

X X X

(ii) Applying the Pardvartye method (mentally) and
transferring the independent term of the denominator
(with itssign changed) to the Numerator, we get 1 asthe
result in each of the 4 cases.

With the help of these two TESTS, we know that “the
other elements are the same" ; and, as D,4-D,=D,+D,, We
therefore identify the case before us as coming completely
within the jurisdiction of the “Sunyam Swmuccaye” formula

. 2x—7=0 ..x=3}
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{(2) =9 _ x4+1 , x-~8
X— + x—7 x—1 + x—6
Here, 141=141;
1'1 14

Secondly, by Pardvartya,
2
_—2 = 2 -
X2 X-7 x—1 Y%
We transpose the minus termsand find that all the TESTS

have been satisfactorily passed. (All this argumentation can
of course, be done mentally).

So, we say: 2Xx—8=0 .. X=4¢
(3) 2x—3 + 3x—20 _ x—3 4x—19

X—2 Tx—7  x—4 ' x5
Here $+§=%+4; the Numerators all become i ; and
Dy +Dy=Dy+Dy=2x—9=0 . x—4}

4 — 4x—35 X— —
(4) 3x 8+x . 2x 9+5x 34

x—3 x—9 x—5 x—7

Here, -|- =3-+§; and the other 2 testsareall

right too. .. x=6
(5) 3x—13 + 4x—41 _ 2x—13 | 5x—4l1
X4 x—10 X—6 x—8

All the TESTS are found satisfactorily passed.
2R—14=0 .. x=7
(6) 4x421 5x—69 _ 3x—5 + 6x—41
x5 | x—14 x—2 x—7
All the TESTS are al right ., 2x—9=0

(1) x143%43 | x2 16 _ x®47x411 | xP—d4x—20

x4-2 x—4 X435 x—7

Either by simple division or by simple factorisation
(both of them, mental). we note :—
(D) (XD H(x4-4)=(x--2)(x+3)
(i) the numerators are all unity; and
15(iii\ Dy bDy=D; +D,=2x—2=0 .. x=1
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THIOKER DISGUISES
(1 _2 3 _ 1 6

ran Ll a Sl G

(i) At first sight, this does not seem to be of the type
which we have been dealing with in this section.
But we note that the coefficientof X in the four de-
nominators is not the same. So, by suitable multi-
plication of the numerator and the denominator in
each term, weget 6 (theL..C.M. of the four coefficients)
uniformly asthe coefficientof x in all of them. Thus.
we have:— .

6 6 _ 6
e T eRed - a6 T exta
Now, we can readily recognise the type and say -
—13
12x+13=0 . LX=— o
But we cannot gamble on the possible chance
o itsbeingof thistype and go through all thelaborious
work of L.CM., the necessary multiplications etc,
(and perhaps find at the end of it all, we have drawn
a blank)! There must therefore be some valid and
convincing test whereby we can satisfy ourselves
beforehand on this point (and, if convinced, then and
thenonly should we go through al the toil involved).
And that test is quite simple and easy : —
3-+§=1=¢. But eventhen, only the possi-
bility or the probability (and not the certainty) of it
follows therefrom.

(ii) A secondkind of TEST—with guarantee of certainty—
isavallable too. And thisis by CROSS-multipli-
cation of N, by D, and o N, by D, onthe onehand
and o N, by D, and of N, by D, on the other. (And
this too can be done mentally).

Thus, in the case dealt with, we get from each
side—the same 12x+13 as the total .. 12x-+13=0
—13

e X=—
12
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2 _ 3 _ 6 _ 3 _ 2
3x+1  ex+1 3x+2  2x+1
(i) We transpose (mentally) and note:
$+3=2+¢ So, we may try the L.C.M. method.

6 6 _ 6 6
6x+2 +6x-|—3 T BxfI +6x+4“0
L 12XFE=0 .. x=p 0

) &N b4 o

(ii) Even here, after the preliminary testing of
being equal to §+4§, we may straight away CR@&
multiply and say: . 12x+5=0 .. x=—5/12

@ 3 . 2 _ 3 . 2
3x+1 ' 2x—1 3x—2+‘2'3;+‘1
-, By either of the two methods, UCcget 12x—1=0
1

L X=—
12
4) 1 3 _ 1 3
x+3 +3x~l X-+5 ~l-32(—7
. By ether method, 6x+4-8=0 .- x::g

(5) 2x411 9x+9 4x413 15x—47
x+5 3x—4 x+3 3x—10
Hrre $—$§=%-38 . YES

8
By simple division, we pot thisinto proper shape,
as follows:—
14 8 - 1 , 3
x+5 3x—10 x4-3  3x—4
Here }-+§=1i-+§ ... YES.

‘. By either method, 6x+5=0 ., x=_2°

6
(6) 5—6x_ 2x+7 =31—12x+4x+21
3x—1 x+43 3x—17 X-+5
1
y 3 1 3

RS L T L v
‘. By cither method, 6x+8=0 ., x=""3

wi
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FurTHER APPLICATIONS OF THE FORMULA

(1) In the case d a special type of seeming "cubics” :—
There is a certain type of equations which look like cubic

equations hut, which (after wasting a huge lot of our time and
energy) turn out to be simple equations of the first degree and
which come within the range of the “Sangem Samuccaye”
formula Thus, for instance—

(x—38)%+(x—9)2=2(x—6)3

The current system works this out at enormous length
(by expanding all the three cubes, multiplying, transposing
etc..) and finaly gives us the answer x=6

The Vedic Satra now under discussion is, however, appli-
cable to this kind of case too and says:-—

(x—3)+(x—9) =2x—12. Taking away the numerical
factor, we have s— 6. And x—& is the factor under the cube
on RH.S. .. x—6=0 .. x=86

The Algebraical proof Of it is as follows :
(x—2a)3+4(x—2b)%==2(x—a—b)?

.. x3—6x%h-|12xa?—8a34-x3—6x2b+12xb2—8b3=
=2(x%®—~3x% —3x%h [8xa?-}-3xb2+4-6xab -a3—-3Ja2b—3ab?—h3)
==2%%—6x% —6x2b +6xa®-L6x2h - 12xab —2a% —BaZh—6ab2—2b3
Cancelling out the common terms from both sides, we have:
12xa®4-12xb? —8ad—8§h3—gxa?4-6xh21- 12xab—2a% —6azh
—gah2--2b?
6xa2+-6xh2-~12xab = 6a3—6a2h — 6ab2--6b3
o 8x(a~—b)2==f(u-1 b) (a—b)?
. x=a-+bh

Obvioudly this particular oomhination was not thought,
of and worked out by the mathematicians Working under the
current system. At any rate, it is not found listed in their
books {(under any known formula or as a conditional identity"
and sn on). The Vedic mathematicians, howevor, seem to have
worked it al ont and given us the benefit thereof (by the appli-
cation of this formula to examples of this type).
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We need hardly point out that the expansions, multi-
plications, additions, transpositions, facterisations in each
particular case of this type must necessarily involve the ex-
penditure of tremendous time and energy while the Vedic
formula gives us the answer «¢ sight!

Three more illustrations may be taken :—

(i) (x—149)3-4 (x—51)3=2(x—100)3

The very prospect of the squaring. cubing etc., of these
numbers must appal the student. But, by the present Sitra
we can at once say . 2x—200=0 - x=100

(i1} (x—249)3 +(x +247)3=2(x—1)3

This is.atill more terrific.  Ris~with the aid of this Siitra,
we can al once say : x==]; and

(i) (x+a4-b ~e)34-(x+hfe—a)3 ==8(x-{-h)?

The literal coefficients make this still worse. But thg
Vedie one-line mental answer is: x=—b.

(2) Tn the case of a special type of seeming *“Biquadratics™ :
There is also similarly, a special type Of seemingly “Biqua-
dratie” equations Which are really of the first degree and which
the same Siitra solves for us, at sight. Than. for example :
(x43)3 _ x41
(x=+-6) x4
According 10 the current method, we crosssmultiply and
say . (x4 7) (x43)% =(x4-1) (x4-5)*

Expanding the two sides (with the aid of the usual formula
L a)(xAD)(x f-e)(x-+d)=xt 4 x¥a-f-bHe-+d)
+x%ab-Fac+t-ad-Fhe+bd+ed)4-x
X (abetabdHacd+hed)4-abed)]  (twice over),

we Will next say :—

x1-4-16x3 19052 1210x -+ 189 =x*4-16x34-9x24-200x-} 1 26

Cancelling ou! the common terms and transposing, we { hen sny :
Co 10X = —64 L X—=--4
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According to the Vedie formula, howevr, we do not crosse
multiply the binomia factors and so on but simply observe
that N;4+Dy* and Ny+D, are both 2x +8 and .. 2x-4+8=0

YX=—4

The Algebraic proof hereof is as follows:—
(x+a+d)® __x+a
(x+a+2d) x-+a43d
.. By the usual process of cross-multiplications,
(x+a+3d)3(x+a+d)=(x+a)(x+a-+2d)?
.. (By expansion of both sides)

x4 x3(4a 4 6d)-+x2(16a2-+ 18ad 4 12d2)4-x(4a3 4 18a2d +-24ad?
+10d3)+(a4+6a3d+12a’d2+12ard3+d4)=x‘+x3(4x+6d)
+x2(16a2-+18ad +12d2?) +x(4a%+18a2d +4ad?-}-8d3) t-ete., ete.
.". (Cancellingcommon terms out), we have :—
x(10d3)+10ad 3+ 3d4==-x(8d ?)-}-8ad3.
. 2d%x+2ad34-3d4=0
.. (Cutting d3 out), we have 2x-22+4-3d=0 .". x=—}(2a--3d)
At this point, the student will note that N, 4D, (under the cubes)
and N,+D, are both (2x+42a+3d). And this gives us the
required clue to the particular characteristic which characterises
this type o equations. i. e that N;+D; (under the cube)
and N,-+D, must be the same; and, obviously, therefore, the
‘Sitnyam Samuccaye’ Sttra applies to this type. And, while
the current system has evidently not tried, experienced and
listed it, the Vedic seers had doubtless experimented on,
observed and Listed this particular combination also and listed
it under the present Sutra.

Note:—(1) The condition noted above (about the 4 Binomials)
isinteresting. The sum of the first + the second
must be the same as the sum of the 3rd and 4th.

(2) The most obvious and readily understandable
condition fulfilling this requirement is that the
absolute terms in N, N;, D; and D, Binomials
should be in Arithmetical Progression.

*(within the cubes)
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(3) This may also be postulated in this way, i.e. that
the difference between the two Binomias on the
RH.S. must he equa to thrice the difference
between those on the L.H.S. This, however, is
only a coroilary—result arising from the A.P.
relationship amidst the four Binomials (namely,
that if Ny, Ny, D; and D, arein A.P. it is obvious
that Dg—N,=3(D,—N,).

(4) In any case, the formula (in this specia type) may
be enunciated—in genera terms—thus:—if N+D
on both sides be the same, N-+D should bc equated
to zero:

Two more examples of this type may be taken:—
1) (x—5)8  (x—3
) EX__7; :%:iT; oo 2X—12=0 ., X=@
(2) (x—a)®_x—2a—b
{=+p) . x+a+2b

Working al thisout (which al the literal coefficients and
with cross-multiplicatons, expansions, cancellations, trans-
positions etc., galore) would be a horrid task (for eventhe most
laborious labourer). The Vedic formula, however, tells us
that (x—a)+(x—b) and (x—2a—b)+(x+a42b) both total
up to 2x—a+b .. x=§a—b)

Note:—In all the above examples, it will be observed that the
4 binomials are not merely in Arithmetical Progression
but are also so related that their cross totals are also
the same.

Thus, in the first example worked out above, by Cross
multiplication, we have (x+7)(x+38)3=(x+1)(x+5)%; and
the CrosssADDITION o these factors gives us 4x-+16 as
the total on both sides; and this tallies with the value x=—4
(obtained above).

in the second example:—
(x4+-a43d) (x+a-d)d=(x+a)(x+a-+2d)®
And here too, CrosssADDITION gives us4x-4a +6d as the total
on both sides. And this too gives us the same answer asbefore.
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In the third example, we have : —
(x—9)(x—5)8=(x—3)(x—7)%.
And here too the CrosssADDITION Process gives us 4x—24 as
the total on both sides.  And we get the same answer as before.
11 the fourth case, we have :—
(x+a+2b)(x—a)3=(x—2a—Db)(x+b)3.
And cross-ADDITION again givesus the total 4x—2a4-2b on
both sides and, therefore, the same value of x as before.

The student should not, however, fal into the error of
imagining that thisisan edditional TEST (or suffieient condition)
for the application of the formula. This realy comes in as a
corollary-consequence of the A.P. relationship between the
Binomial factors. But it isnot a sufficient condition (by itself)
for the applicability of the present formula. The Rule about
N,-+D, and N,+D, being the same, is the only condition
sufficient for this purpose.

An instance in point is given below : —

(x+3)8  x--2

(x+5) x+8
Here, Cross-ADDITION gives 4x-+17 as the total on hoth
sides, and the condition D,—N,=3(D,—N,) is aso satisfied
(asG 2x3). BuUt3 {6248 ; and. as this essential condition
is lacking, this particular equation does rot come within the
purview of this Sitra.

On actual cross-multiplication and expansion etc., we
find :—
X3 H17x3 410522 +273x+250 =x* 17x3+99x24-243% 4216
" 6x%4-32x+434=0, WhiCh isa Quadratic equation (with the
+v52

two Trrational Roots — __6 } and not a sSimple cquation at

all. of the type we ave here dealing with.

And this is in confiormity with the lack of the basic
condition in question i.e. that N,+D, and N,+D, should be
the same.
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(3) In the case of ancther special type of seeming “Biquadraties”

There is also another special type of seeming “Biqua-
dratic~"which are really simple equations of the first degree.
which the “Sanyam Samuccaye' Sitra is applicable to and
which we now go on to. (This section may. however, be held
over for a later reading).

{zx41) (x49) _ (x+6) (x10)

(x4+9) (x+4) T (x5 (=41
or (x41) (x+9) (x+5) (x-+7) = (x-+2) (x+4) (x+6) (x+10)
We first note that crossADDITION gives us the same

total (4x+22) on both sides. This gives us the assurance
that, on cross-multiplication, expansion etc. the x4 and the x®

coefficients will cancel out. Rut what about the x2 coefficients?

For them too to vanish, it is necessary that the sum of
the products of the independent terms taken two at a time
should be the same on both the sides. And thisisthe case when
if (x4-a) (x+b) (x+c¢) (x+d)=(x+e) (x+f) (x+g) (x+h), we
have not merely a+b-+c-+d=e+f+g-+h but aso two other
conditions Fulfilled »—

(i) that the sum of any 2 binomials on the one side is
aal to the sum of some two binomials on the other :
and (i) ab+-cd on the left—=ef+4gh on the right.

I'n the example actually now before us. we find all these
conditions fulfilled :—

(1) (x41)-F(x4-9) = (x+4) +(x+6); (x+1)+(x+8) = (x+2)+
(x4-4) : (X4 (x+T7) =(x+2)+(x+86) ; (x+9)+(x+5)=
(x+4) +(x410) : (x+9) - (x+7) = (x-+6) +(x+10); and
(x+58)+(x+7) = (x+2)+(x-+10): and (ii) (5-+-63) and
(8-+-60) are both equal to 68.

So, by this test, at, sight, we know the equation comes
under the range of this Satra . 4x3+22=0 . x=-—5}

Similar is the case with regard to the equation :—
(2) {x42) (x-+4) _ (x—1) (x+7)

(x+1)(x-+3)" (x—2) (x+86)
16

s
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(x—2) (x+2) (x-+4) (x+6)=(x=1) (x+1) (x+3)
(x+7); and
(1) By cross-addition, the total on both sides is 4x-+10
(i) The sum of each pair of Binomials on the one sideis
equal to the sum of some pair thereof on the other ;
and
(iii) ab{-ed=ef+gnie. —é+424=—1421(=20)
The Siitra applies; and 4x-+10=0 x=—2}

Such however is nat the case with the equation :—
(3) (x=1) (x—6)(x+6) (x+5) = (x—4) (x—2) (x+3) (x+7)
Here, we observe:—
(i) The total on both sides is 4x-4;
but (ii) the totals of pairs d Binomials (on the two sides)
do not taly ;
and (ili) ab+cdzef4-gh

This equation is therefore a quadratic (and not within

the scope o the present Siitra).

The Algebraieal Explanation (for this type of equations)

18—

(~+ al®+b) (~+cKx+d)=(x+-e) (x+f) (x+g) (x+h)

The data are:—

(1) a+btot-d=e+f+g4h;

(ii) The sum o any pair of binomias on the one side
must be the sameas thesum of some pair o binomials
on the other. Suppose that a+b=e+-f; and c+d

(iil) ab4-cd=ef-+gh

' ox4x3 (a+b~-c+d)+x2 (ab+ac+ad+be-+bdtod)
~+x(ab¢+-abd +acd4bed) +abed
=x*+x* (e+f+g+h)x? (ef+eg+ehtfg+fh+gh)
+x(efg+efh+-egh+fgh)+-efgh
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The x4 and xScancel out ; and, owingto thedatain
the case, the x2 coefficients are the same on both sides; and
thercforc they too cancd out,, And there is no quadratic
equation (left for us to solve herein)

Proof: The x© coefficients are :—

L.H.S. ab-4-ac+ad+be-+bdf-cd

R .H.S. ef+eg+eh+fg--fh-tgh

Le. (ab+-cd)-+a(e+d) b(e+d)=ah+cd+(a+Db)c+d)
and (of+gh)+e(g+h)+f(g-+h)=ef-+gh-+(e+1)(g+h)
But (ab+-cd)=(ef+gh); and a+b=e-+f; and c+d
=g+h

the LH.8.=the RH.S.; and x? vanishes!

FURTHER EXTENSION OF THE SUTRA

In'the beginning of this very chapter, it was noted that
if a function (containing the unknown X, y etc.,) occurs as a
common factor in al the terms on both sides (or on the L.H.S.
(withzeroon the R.H S.) that function can be removed therefrom
and equated to Zero. We now proceed to deal with certain
types o cases which do not ssam to be of this kind but are
really so. All that we have to do is to re-arrange the termsin
such amanner asto unmask the masked terms, soto say and make
the position transparently clear on the surface. For example—

(1) xta - x+b | x+c¢ —_3

b4c¢ c¢c+a a+b

Taking — 3 over fromthe R.H.8. to the L.H.S. distributing
it amongst the 3 terms there, we have:

L—ta+1+§i—1}+l+xj‘c+] = 0

b4-c c+a a+b
1e. x+a+b+c+x+b+c+a+x+c+a+b —0
b+e cta atb

.. By virtue o the Samuccaya rule,
x-tat+bte=0 . z=—(at+b+c)
This whole working can be done, at sight i.e. mentally.

(2) x4a | x+b  xX+4c_ x+2 4 x+2b Xd-2¢
"atb b+c—a ~+a— ba+tb—c

b+c "c+a
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Add unity to each of the 6 terms; and observe :—
. Xtatbic xfaj-b—kc 4 xtatbte

n, - T, i
— I).h ¢ +_?&+<l+b+u+x+a H)—H,
oox+a )’b j-¢ =0 r:—(a—}—b—l—c)
(8) x—a | x—b, x—¢c X -+a X_Ul4 _3_‘;*'0

bFc ctfalath Zaibic Zhieta  fofath
Subtract unity from each of the 6 terms ; arid we have :
X—a—b—c=0 z=(a+b+c)
(9 _x4a® | xtb? L x4
(a b)Y (a+c)  (bic)(b+a)  (cta)(ctb)
_ X—be  x—ca x—ab
“a(b+c) bleta) ' clatb)
Subtracting 1 from each of the 6 terms, we have:
X—ab—ac—bc=0 - x=(ab+be+ca)
(5) x—bc | x—ca | x—ah
b+c c+a " atb
S x%42b%—ca | x24+22—ab
Za+b+c 2b-teo-ta Zc-ta+b
Subtracting a from the first terms, b from the second
termsand ¢ from the third terms (on both sides), we have:
x—ab—bc—ca=0 X=ab-+bc-}-ca
(6) x+a2+zcz+x—i—b2+2a2+x+02+2b270
b+-c - cHa atb
As (b—c)+(c—U) | (a—h)=0, we add b—c, c—a and
a—Db to the first, second and third terms respetively ; and we
have :
x+af4-h2 et =0 ., 2= —(a?4bi4cl)
(7) ax-fa( a2+ >bb)+bx+b(b2+2ca) Lx—l—c(cz—|—2ab)_0
b— —a Toa—bT T
As a(b —c)—l—-b(c—-a)-l—u(a—b):
.~ We add a(b—c) to the first term, h(c—a) to the second
and c¢(a—b) to the last ; and we have:

t, _&_Xj—_l(_az—{—zlm)_i_ a(b—c)
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_ax-+a(a?4-2be)+fa(b—c)?
- b—c
_axta(al+biic?)
T b=

Similarly, ty = (%a {x+(a2+b34c?)}

e (xHa b e}

and ty = a__f_b {x-+(a2+b2 et} =0

S oxtad4bi4e? =0 g=—(a?+b%4c?)
(8) x=kad2h? | Xx+b3¥c? | x+4-c?42ad
b—c + c—a + a—b
= 2321 2b24-2¢%}-ab4-ac+be

Splitting the R.ILS. into (b&+bc+cd)+(c2+ca+a?)+(a2+ab
+b®), transposing the three parts to the left and combining
the first with the first, the second with the second and the third
with the third (by way of application of the ‘Adymaddyena’
formula), we have :

t X+a‘*j-ib> (bz+bc+02)

_x;l—_a3+2b3-b3+c3 __x+aB+b3+c®

— L cC b—c
thesame N
Similarly, t = =
and t, ﬁthefagweN

' pe=—(ad 403 4-c?)



Cuaprer XI1II
MERGER TYPE

of
EASY SIMPLE EQUATIONS (by the Parivartya’ method)

Having dealt with various sub-divisions under a few
special types of simple equations which the Sanyam Simya-
samuccaye formula helps us to solve easily, we now go on
to and take up another special type of simple equations which
the Pardvartya Sutra (dealt with already in connection with
Division etc) can tackle for us.

Thisisd what may be described as the MERGER Type;
and this too includes several sub-headings under that heading.

Thefirst type:

The first variety is one in which a number of terms @n
the |eft hand side is equated to a single term on the right hand
side, in such manner that N;+N,+N, ete., (the sum o the
numerators on the Icft) and (thesingle nunierator on he right)
are the same. For instance,

x_i“ieri—E:i?Té Here Ny4+-N, ie. (344)=Nie. 7)
So the Siitra applies.

The procedure is one of merging o the R.H.S. fraction
into the left, so that only two terms remain. The processis
as follows:

As we mean to merge the R.ILS. into the L.H.S.,, we
subtract the independent term o the to-be-merged binomial
from the absolute terms in the binomias on the left and multi-
ply those remainders by the numerators of the terms on the
left. And the process is complete.

(i) We first put down the two to-be-retained denomi-
nators down thus:—

X1 X—2

{ 1271 )

(ii) Then, as 3(from the R.H.8) is to be merged, we
subtract that 3 from the 1 in the first term, obtain
+2 as the remainder, maltiply it by the numerator
(i.e. 3), get —6 as the product and put that down
as the new numerator for our first term.

(iliy And we do the same thing with the second term,
obtain —4 as the product and set it down as our
Numerator for the 2nd term of the new (i.e. the
derived) equation.

(iv) Asthe work of merging has been completed, we put
zero on the right hand side. So the resultant new
equation (after the merger) now reads:

—8_4
x+1 x+2
Then, by simple cross-multiplication, we say
S 4x+Hd = —6x—12 .. 10x=—16 . X=-—8/5

or, by the general formula (—mb—na)/(m-+n) explained

alreadv (in the chapter on simple equationsand first principles),

we sav at once:

1244
X = 8/5
The Algebraical Proof hereof is:—
3, & _ 71 _ 3 . 4
ST x3 x4 T
3 3 4 4

Tx1 xF37 x43 x2

- 3(x43—x—1)  4(x42—x—3)
(x+1) (x+3)  (x+3) (=+2)

. 6 _ —4 A d s —-

T 5gs o Sxtl2=dx—¢ o 10x=—16

A X:—-8/5

The Generd Algebraical Proof hereof is:

P 4 9 _pHq
x+a x+b x+tc




p(x+e—x—a)__ q(X+b—x—c)
" (xFa) (xFe)  (x+¢) (x+b)
. Ple=3) _q(b—oc)
x+a x+b
*. x{p(c—a)+-q(c—b)}=bp(a—c)+aq(b—c)
x _ bp(a—c)+aq{b—c)
p{c—a)+-gq(c—b)
Well ; the Algebraical explanation, may look frightfully long.
But the application of the 'Parcivartya’ Sitra (as just herein-
above explained and illustrated) is simple enough and easy
enough and should be welcomed by the student with delight.

A few more examples of this sort may be noted :
(1) 3 5 8
x—2+x—6—x—1—3
Here 3+5=—8 .:. The Siitra applies.
L (B)=5)  (—=9)B)_—15, —45_ . . __ —90—90 _
x—-2 5= x—6 x——"+\ 6 0..x-—_15~45—
@ 2 , 3 _ 5
x+2 x+3 x+45
Here 2+3 =5 .;, The formula applies.
=8 =8 4.
-~ m-}-m_o B < ¥
Note :—At this stage. when both the numerators are found to be
—6 and can therefore beremoved. the formula “Siinyam
Samuccaye” may be readily applied : and we may say :
(X+2)+(x+3)— © X =—2}

But, if _3_ ' 218=
u +2+X+3 +7, as 24 j-

the merger Sftra applies; but after the merger. the
numerators are different (i.e. —10 and — 12) and there-
fore the ‘Sunyam’ Siitra will not apply.
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DISGUISES

Here too, we have often to deal with disguises, by seeing
through and penetrating them, in the same way as in the
previous chapter (with regard to the ‘Sanyam Samuccaye’
formula).

A few illustrations will make this clear :

() 5 2 _ 3

X—2 3—X x—4
Here, mere transposition will do the trick. Thus:

“gg‘l‘ 3 —. 5 Now,2+3=5 . The Sutra applies.

X—3' ' X—4 x-—2
=2, 6. g=T20_13
Xx—3 X—4 —8 4

@ 4 4 9 _ 15
2xF1 ' 3xf2 3x+1
4-+9+£15 . Doubt arises; but the coefficients of x being
differentin the three denominators, we try the L.C.M. method
and get :
12 18 _ 30
6x+3 6x14 6x|2
And here, on noting N, (12)4-N, (18)=N; (30), we say :
"YES; the Siitra applies” and proceed to apply it :
©12/(6x+3)+36/(6x+4)=0 .. x==—13/24
But how should we know beforehand that the Sitra does
apply ¢ The TEST is very smple and merely consists in the
division of each numerator by the x—coefficient in the denomi-
nator (asinthe‘Sanyam’ case). Thus $+§=2+3 =5; and %:
is also 5.
Say, "YES" and go ahead, with the merging.
) 4 , 9 _ 25
2x—1 3x—1 Bx—1
Here (34+8) and 22 are the same (ie. 5) .. YES.

o 60+ %0 _ 150 NOTE, 60--90 =150
‘30}(—15 30X—lO 30X 6
+.3% - 5 _ NOTEe2+3=5,. YES

'30‘(——15 '3o’x—1o 30x—6
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Proceed therefore end say :

—18 12 _, .

30x—15 30x—10

@ _7 4 8 _ 15
Tx4-1  d4x41 6x+5

)

'.x:sf

Here 3}+§=1+1}=2}; and % is
Do the merging therefore and say:

84 126

210

* six+12 T ax 21 84z FT0

2 + 3

b

“BIXFT2 8AxFO1 84x4T0

- 116 | 147
-- B4x+12  84x-4-21

® ¢ o 7 3

<+

51 10x+1 2x+1
Here § 45 =35=3/2
. 8 7T _
"10x+2+
. =24, —28
"t 102 ' 10x+1
2 —B20x—80 =0
S X=—2/18

® 1_, 6 _ 15
TR dx+1  6xF1

. YES
15

also 24 .. YES

=_22_  YES
10x-+1 10x+5

Here 34¢=g}; and }&isadso2p .. YES

84 4126

210

* gaxTIR
2 + Fe]

§4x121

84x114
5

'.'84x+12
., A 42t
‘8axt12 " 94x+21
. 1428x 4168 =0

iy 168 =2
X= 1428 =47

84x1+21 8dxt14

0

. YES

» YE

EXTENSION OF MERGER METHOD
(MultipleMerger)

We now take up and deal with equations whereinN; 4 N,-+
Ng(of the LH.8.)=N o the RH.S and wherein the same
‘Pardvartys’ (Merger) formula can be applied in exactly the
same way as before. Thus:

m1,8 4,5 _ 9

x+2 " x4+3  x+5 x+4
TEST: 143+5=9 .. YES
. =2 . -
”m+x?éi+§ié—0 ~. YES, again.
ie. _2_4+.8 = 5
x+2 x+3 X+5

'-;;::ﬁ; +“—“‘6‘_..\ =0

x$+2 X+3

; . __ —mb—na
~. (i) By the Basic Formula (X—T_Hl—-)

or {ii) By ‘Sanyam Samuccaye’ formula:
(x+2)+(x+3)=0 .. x=—2}
Note -—These two steps (of successve merging) can be combined
into one by multiplying N, first by (2—4) and then
by (2—5) i.e. by 6 and similarly N, first by (3—4)
and then by (3—5) i.e. by 2 and proceeding as belore
.. By either method (Basic or Sianyam), x=—2%
The Algebraic Proof hereof is this:
n p __m+n+p

m
wta Txmp Tere T xjd
. ma—d) , n(b—dj_ ple—d) _
o x+a—+~“x+b + “x-c 0
. m(@=d) (a—g) , n(b—~d) (b—0)_,,
KH as

X+ta X
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which is the exact shape of the formularequired for the single-
step merger. (vide supra).

Snlarly, the merger-formula can be extended to any
number of terms as follows:

m

x+a x+ x+c x+d x+e

—m+4ntptgirt...

x+|w
.. ma—w) (- - ) (a—¢) (a=0d) (a=0)

x+a

ab—w) (- - -) (b—e)(b=d)(b=0)
x+b

(which is the general formula for the purpose). Thus, in the
above example—

- (——3)(—2)(—3)+(—3)(—2)(-—2)= —18—12=:fﬁ): —21
(=3)(—2(+1)+3(—1)(—2) 646 12
A fa/v more illustrations of this type are given below :
1 48 48
W X 1+Ix+l+8x+1=6x_+—l
Here §+4+48=8;and 42 =3 - YES
24 + 24 144 192

e 4 = .. YES
24x+4-8 ' 24x+6  24x}3 24x14 .
1

B + 1 4+ 8 8
T 24x+8  24x+6  24x-4-3 24x+4
. 4 2 _ 8
* '24x+s+24x+6_24x+3
.20 6
"@ﬂ‘s"’ﬂfﬁ"
. -7
;. 624x4168=0 7, x = =6
2 2 18 5 88

2x 1 3xa +5£¥1 dxl

Here §+32 4% =22 and %8 is also 22

. YES

- YES

.60 360 90 _ 1320
" G030 T B0x 120 T GOXTE — 60xFTs Y EO
1, 6 15 _ 2 . VES

" 60x+-30 60x+20+6'0‘{ﬁz"60x+15 .
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.601:i30+60x+20_60:112 “ YES
""&)’ilﬁO“Lmzﬁo:e'&%Tz " YES
" goayao T aox 13—

. 20405+840=0 .". x=_—132

Note:—Any change of SEQUENCE (of thetermson the L. H.8.)
will cause no changein the working or the result.

(3) 4 27 125 _ 144
2x— l+3x 1+5x—1 4x—1
Hefe4+ +12_5_2+9+25 =36,
and 124 isas036 .. YES
. 120 540 . 150 _ 2160 . YES
60x—30 ' BOx—0 60x—12 60x—156
. 2 + ] + 25 - 36 - YES
60x—30 ' 60x—20 60x—12 60x—15
—30 —45 —75
.. (By merger) 305=30 ﬁﬁx-— 0~ gox—I2 ~ YES
I2I_. + 3 .= 5 S YES
60x—30 60x—20 60x—12
e e
"60x 30 60x—20
.I —_— +“ 0

' 20x—10 ~O><—'1O
-, (By Badic rule or by crossmultiplication or by (‘Sanyam
Formula), 50x—20=10 ... x=§
OR (by Multiple simultaneous merger)
gox— (—20) (—18) (—15)+(—270) (—8) (—5) _
(—2) (—18) (—5)+(9) (—8) {(—5)

cox=2
Note:—Agan any change d SEQUENCE (of the termson the
L.H.S.) will cause no changein the working or the result.
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COMPLEX MERGERS

There is still another type—a special and complex type
o equations which are usually dubbed 'harder' but which can
be readily tackled with the aid o the Parcivartya Satra. For
instance :
10 3 _ 2 15

2x+l+3x-—2_2x-3 3x+2

Note the TESTS: (1) l_zo —§=3+12: and
10x3

@) =2 X15
te. 10:15::2:3 (or10:2:: 15 : 3)
Transposing. 10 45 2

2x+1 3x+2 2X—3 ixj‘z—
and taking the L.C.M.
. 3 3 g 6
"'8x{3 6x+4 6x—0 6x 4
Simple CROSS-MULTIPLICATION leads us to the main
TEST :
30 30
(6x+3) (6x-+4) (6x—-9) (6x—4)
Here comes the third TEST i.e. that the numerator (of the
fina derived equation) is the same on both sdes—
(6x+3) (6x+4) =(6x—9) (Ox—4)
S ravera- a5 TP
CLUE—This gives us the necessary clue, namely, that, after
putting up the L.CM. coefficient for x in al the
denominators. (D,) (Dy)=(Dy) (D). As the trans-
position, the L.CM. etc., can be done mentally, this
clue amounts to a solution of the eguation at sight.

I'n these examples, we should transpose the 4 fractions

in such a manner that, after ¢he crossmultiplication ete., are
over, all the four denominators (of the final derived equation)
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have the same(L. C M )coefficient for x and the numerator is
the same on the L. H S and the R.H.8 (of the same equation).
A few more illustrations will be found helpful :
1 2 2 _ 9 1
() 6x+1+2x—1"9x~5+3x+1
(i) Transposing etc., we have:
(] 6 18 18
18x+3 18x+6 18x—10 18x—9
Here the N on both sides (of the final derived equation) is 18
.. The Sitra applies.
. (18x43) (18x+6) =(18x—10) (18x—9)
1 90—18  _72 . 4_1

= sraTTore 28 XT38 7

Note:—In some cases (details o which we need not now enter
into but which will be dealt with later), the origina
fractions themselves (after the transposition) fulfil the
conditions of the Test. In such cases, we need not
bother about the L.C.M. etc., but may straightaway
transpose the termsand apply the'Parcivartya’ formula.
In fact, the case just now dealt with is of this type,
as will be evident from the following:

@ 2 1 _ 9 2
6x+1 3x+1 9x—~5 2x—1

Mere § =% $=4; and the numerator (on both sides of the

final derived equation) is 1.

. The Sutra applies and can be applied immediately
(without bothering about the L.C. M. etc.).
. (8x+1) (8x+1) =(9x—5) (2x—1)
L 18x249x 4+ 1 == 18x2—19x4-5 .. 28X =4 .. X
2 2 4 3 1 6
5x+3 3x42 X+ 8x+7
.2 1 8 3
*'9x+3 x-+1 6x+7 3x+2
(i) By L.CM. method, (6x+9) (6x-+6)=(6x+7) (6x+4)
—26 _~13

SoBx = T X
Bx 1

g



( 136 )

(ii) In this case, there is another peculiarity i.e. that
the transposition may be done in the other way too and yet
the conditions are satisfied. So, we have:

(6x+9) (6x+7)=(6x+6) (6x+4)

—39 . —13
Bx.---—8 SO X= 9

(iii) And even, by CROSS-multiplication at the very
outset, we get 12x+13 =0 (by Samye Samuccaye). .. x=-t%
In such cases, SEQUENCE (intransposition) does not matter !
(This will be explained later).

(3) 51 68 _ 52 _ 39
3x+5 4x+11 4x—15 3x—7
TESTS: %% and &8 are both 17; and £2 and 22 are both 13.

This equation can be solved in severa ways (all of them
very simple and easy):

(i) By the L.C.M. process:

204 204 _ 156 156
12x+4+20 12x+33 12x—45 12x—28

*. In the derived equation (initsfina form),

N, =204 x13=12X13X17;
and N, =156 x17=12X13X17
.. The Siitra applies.
e (12%4-20) (12x+-33) =(12x—45) (12x--28)
28X 45—20X33 __ 600 ... . _ 25

R Faatasts 16 C 63
(ii) or, removing the common factor (12):
17 17 13 13

" [2x420 12xT133 i2x—45 12x—28
In the (final) derived Equation,
=17x13; and Ny =13 x17 .". The Siitra applies-

. 600 25
. D1 XDy=DyxDy - l2x-—176 x—-6_3
(iiiy or, at the very outset (i.e. without L.CM. ete.) ;
51 68 __ 52 39

x5 dxJ11 4x—15 3x—7
.L.H.S. N=561—340=221; and
R.H.S. N=—364-+585 =22]
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.. The Siitra applies straightaway.
. (8%+5) (4x-+11) =(4x—15) (3x—T)
12x2+53x+55—12x’—73x+105
o 128x=50 .. x=4§§
Note:—In the second method, note that
N;=Ny=D,—D; and N, =N,=D,—D, TESTS
The General Formula applicable in such casesis:
m-—n p—q__m—n P—q

xtp x+n z+q xtm

. 1 1 1
- (m—n) (pr_Wq) =r—9 (x+m x+n)
., (m~n) {g—p) _ (p—q) m—m)
x+p) (xFq)  (xFm) (x+n)
As the numerators are the same,
... The Satra applies
" (x+p) (x+q)=(x+m) (x+8)
o x==_1000-Dq

p+q—m—n
@_1 ., 8 _ 6+
2x—1  4x—1 8x—1 6x—1
0 . 6 6 _ 24 24

‘18x—6 19x—2 I%x—4 12x—3
. In the final derived equation,

L.H.S N=24; and RH.S. Nisalso24
.. The Biitra applies.

L 12x = _B_ =0 ... x=0
(ii) ‘Vilokana’ (i.e. mere observation) too will sufficein this
case.
5) 3 2 3 2

311 '2x—1 3x—2 2x41
(i) Here the resultant N is the same (1) (on both sides)
.. YES
© OxI4-BX4- 1 =6x2—Tx+42 . 12x=1 ... x=g4
(i) or, by crossmultiplication at the very outset and
Sanyam Samuccaye, 19X —1=0 .. X= 14
18
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8 5 3 5 15
6x+2+3x+1 ‘5x+3+15x+2

Qy. 15 15 16 15

16X16 15%+9 15x12 I5%X+5
.. The resultant Numerator on both sidesis 45
.. The Siitra applies.
10—54——44 ., —11
'.15X=_8____§ S X = =
(ii) Or, by crossmultiplication at the very outset and
Sinyam etc., formula, we get 80x+11 and 150x-+-55 on the
L.H.8. and the R.H.8. respectively; and the uumerical factor
(5) being removed, both give us 80x+11=90 .. x=~}
(7) 22411, 6x11_ 4x+4 ) 3x+19
x5  2x+3  2x+1 ' x46
(i) - (By Pardvartya division):

1 2 2 1
15 Tox3 " gx 1 Tx 6
2 2 _ 2 2

9% 110 9x 112 9x il 2x18
.. 4 is the N on both sides (of the derived equation)
.. The Siatra applies.
- (2x410) (2x-+12)=(2x+1) (2x+3)
. 3—120—-117 . __ —13

2 — 117 L x_—18
=18 g ¥ Z

(i) or by cross-multiplication at the very outset and
Sanyam Sitra, we have:

4x+13=0 .. x="1%

(8) 2x+11 15x—47_9x~9+4x;|;13
X+5 +3x—10 3x—4 x-+3

. 3 3 3 3

... 2 =

( ) 3x+15+3x—-10 3x—4+3x+9
3 3 3 3

" 3xT 15 3x19 3X—4 3x—10
In the resultant equation,
—18 isthe numerator on both sides
.. The Siitra applies.
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- (3x-15) (3x4-9)=(3x—4) (3x—10)
oo 40—185_—5 ., __—5
RS 3X—‘—§{;’_‘— — X 3
(ii) or by crossmultiplication at the very outset and
Stnyam formula,

- 18x4+16=0 .. x— B

3x4-4 4x—1 12x+1 x+1
.. By (Pardvartya) devision twiceover.
3 .4 _ 12 .1
3x+4 4x—1 12x+41 " x+1
12 2 12 12

12x+16+12x—3vl2x+1 12x+12
. By ‘Sanyam’ Sitra, we immediately obtain :

(9) 12x*40x 47 12xP4x+3 24x*+14x43 , 5x246x+2

24x4+13=0 .. =5

Note :—The Cross-multiplication and ‘Singam’ method is so
simple, easy and straight before us here that there
isno need to try any other processat al. The student
may, however, for the sake o practice try the other
methods aso and get further werification therefrom
for the correctness d the answer just hereinabove
arrived at.
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SIMULTANEOUS SIMPLE EQUATIONS

Here too, we have the GENERAL FORMULA applicable
to all cases (under the ‘Pardvartya’ Sitra) and also the specia
Satras applicable only to special types of cases.

THE GENERAL FORMULA

The current system may congratulate and felicitate itself
on having a fairly satisfactory method—known as the Cross-
multiplication method—for the solving of simultaneous simple
equations, which is somewhat akin to the Vedic 'Parcivartya
method and comes very near thereto.

But even here, the unfortunate drawback still remains
that, in spite of al the arrow-directions etc., intended to
facilitate its use, the students (and sometimes even the teachers)
of Mathematics often get confused as regards the plus and the
minus signs (+and —) and how exactly they should be used ;
and, consequently, we find most of them preferring—in actual
daily practice—the substitution method or the elimination
method (by which they frame new equations involving only
x or only y). And this, of course, does not permit a oneline
mental-method answer ; and it entails the expenditure of more
time and more toail.

The Vedic method (by the Paravartya Rule) enables us
to give the answer immediately (by mere mental Arithmetic).
Thus— 2x--3y = SE

4x1-5y=14

The rule followed is the "Cyclic'" one:

(i) For the value of x, we start with the y-coefficients
and the independent terms and crossmultiply forward (i.e.
rightward) (i.e. we start from the upper row and multiply
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across by the lower one; and conversely ; and the connecting
link between the two cross-prodcts is always a minus).  And
this gives us our Numerator ;

(i) For finding the Denominator. we go from the upper
row acrossto the lower one (i.e. the x coefficient) but backward
(1.e. leftward). Thus,

2x+3y= 8] .. for the value of X, the numerator is3x 14—
4x+5y=14 5x8=2; and the Denominator is 8x4—
2X5=2

In other words x—=§=1.

And, as for the vaue o y, we follow the cyclic system (i.e.
start with the independent term on the upper row towards the
x coefficient on the lower row). SO, our Numerator is:

8x4—14x2=32—28=4

And NOTE that the Denominator is invariably the SAME as
before (for x) and thus we avoid the confusion caused in the
current system by another set d multiplications, a change of
sign etc. I n other words, y=%4=2

2 x —y=17 . —42—14 __—56

Sox= —, =8
5x+-2y =42 —5—2 -7
andy:?i,ﬁ?_ﬂ_l
(3) 2x+ y=5 i x = 24-20 _22 _ 2:
3x—4y =2 3+8 11
15—4
and y ==y —i
4) 5x—3y=11 . ox= —27+5_5*__
6x—5y= 9 —18+425 7
66—45 21
and y = —
7
(5) 1lx+6y=28] , . _ 604112 172
7x—4y=10) 42144 86
andy_.lfm:l,m @
86
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A SPECIAL TYPE

There is a specid type of simultaneous sSimple equations
which may involve big numbers and may therefore seem " hard"
but which, owing to a certain ratio hetween the coefficients,
can be readily i.e. mentally solved with the aid of the Satra
AET 0y (Siangam Anyat) (which cryptically says: If one
isin ratio, the other one is Zero).

An example will make the meaning and the application
clear :
6x-4+ 7y= 8
19x+14y =16

Here we note that the v-coefficients are in the same
ratio to each other as the independent terms are to each other.
And the Sitra saysthat, in such a case, the other one, namely,
x==0. This gives us two simple equationsin y, which give us
the same value § for y. Thus x=0;y=4%

N.B.:—Look for the ratio of the coefficients of one of the un-
known quantities being the same as that of the inde-
pendent terms (on the R.H.8.) ; and if the four are in
proportion, put the other unknown quantity down as
zero; and equate the first anknown quantity to the
absolute term on the right.

The Algebraical Proof is this:
ax-+by=bm E
cx-+dy =dm
*. adx+bdy==bdm
bex+bdy =bdm
nox(ad—be)=0 ', x=0

anti y=in
A few more illustrations may be taken:
(1) 12x+ 8y= 7; Here, - 8: 16 :: 7: 14 (mentaly)
16x-+16y = 14 - x=0Y
and y=3%
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(2) 122+ 78y=12§ Here -+ 12 : 16 :: 12 : 16 (mentally)
16x+ 96y=16 Soox=11
and y=0
3) 499x+172y=212§
0779+ 387y =477
Here 172=4 X 43 and 387 =9X 43 } .~ The ratio is the
and 212-=4%53 and 477 =9 x53 same
Sox=0 ;
and y =44
Note:—The big coefficients (of x=01) need not frighten us!)
N.B.:—This rule is also capable of infinite extension and
may be extended to any number of unknown

quantities.

Thus:

(1) ax+4by+cz=a O R=1
bx+cy-taz=Db )’=0}
ex+ay-+by=c and =0

ax+ay—+fz="Im y=0
mx+py+qz=qm- and z=m

(3) 97x+tay-+43z=am } x=0

(2 ax+by+cz=cm} M £ }

49979x+by-(p+q)z=bm y=v
49x(a—d)3+cy+(m—n)¥z=cml and z=m
N.B. :—The coefficients have been deliberately macfenblg
and complex but need not frighten us.

A Second Special Type

There is another special type of simultaneous linear
equations where the x-coefficients and the y-coefficients
arc found intcrchangcd. Xo elaborate multiplications etc.,
are needed here.  The (axiomatic) Upasiitra dse=-saasormat
(‘Sankalana-Viyavakalanibhyim’) (which means "By addition
and by subtraction) gives us immediately tWO equations giving
the values Of (x+y) and (x—x). And a repetition of the same
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process gives us the values o x and y! And the whole work
can be done mentaly. Thus:
45x—23y =113 }
23x—45y = 91
-~ By addition, 68x—68y=68(x—y) =204 . x—y=3]
And by subtraction, 22x+22y =22(x+y)=22 .. x+y=1
ox=2

Note —However big and complex the coefficients may be,
there is no multiplication involved but only simple
addition and simple subtraction.

The other special types of simultaneously linear equa-
tions will be discussed at a later stage.

CHAPTER XVI

MISCELLANEOUS (SIMPLE) EQUATIONS.

There are other types of miscellaneous linear equations
which can be treated by the Vedic Sitras. A few of them are

shown below.
FIRST TYPE

Fractions of a particular cyclical kind are involved here.
And, by the Paravartya Siitra, we write down the Numerator
o the sum-total of all the fractions in question and equate it
to zero. Thus:

1 1 2 3
W (EE YT i o) o S T

Here, each numerator is to be multiplied by the factor
absent from its denominator. This is usualy and actualy
done everywhere but not as a rule of mental practice.  This,
however, should be regularly practised; and the resultant
numerator equated to zero.

0

In the present instance,
(% ~ 3)+(2x—2)+(3x — 6) =6x—11=0 .", x=11

The Algebrateal proof is well-known and is as follows:
_|_

P + q r
(x+2) (xb) " (x+b) (x+e) ' (xTe) (x+a)
— P(x+0)+q(x+a)+1(x+b)
(x+a)(x+b)(x+c)
=X{pt+q+n+4(petqatrh)
(x+a)(x+b)(x+c)
- x=(petqatrb)
p+q+tr
In other words,
e Each N multiplied by the absent number reversed
N, +N,+N,
As this is simple and easy to remember and to apply,
the work can be done mentally. And we can say, x=11
IS
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A few more examples are noted :

(1 1

+ 3 4+ B =0
xX—1)(x—3) (x—3)(x—5) (x—5)(x—1)
o= 5+3+415__23
l+3+5 9
(2) 4+ 8 4 1 _
(X—l)(X+2) (x+?) x—=4) x=4(x=1)
. X_8+3—8=s=%
T 213yrg ¥
(3) 1 + +
xX=3) (x—4) (x— 4)(x 9) (Xx— 9)(x 3)
. __949420_ 38
T I43+5 9

A few disguised samples may aso be taken

m 1 . 5 , 3 _
x¥1-3x+2  x*15x1-6  x3+4x+3
i (rr.lcntally)

1

5 3 -
(x+1) (x+2)+(x+2) (i'+_3)+(x+3) (x+1)

_—3—5—6——14
145+ 9
(2) 1 + 1 + 1 _
6x3-+5x41  12x24+7x-+1 ° 8x34-6x+4-1
. (mentally)

1 1
(2x+1)(3x+1)  (3x+-1)(4x-} l) (4x+l)(2x+l)
9x4-83=0 .. x="%

(3) 3

2
(X—1—3)2 22+(X+4)2 12+(X+2)z 0
2 1
anta —— =)

.. {mentally} (xFD) (x+5) (x L5)(x+3) (x~l—3)(X+1)
|' X:_Q—Z—o_ —16 _ 8

34211 6 3

@) x+4 =le o xt6 3

(x+1)(x+3)

(XFIEFD) (x+8)EFT)

=
. (mentaly)
xt4ax g4 x248x —l+——xE 6% ~]1.-¢
I3 {(x+3)(x+5) (x+5)(x+1)

1272015 47
(8) _ abx423 63xt47  dox481 _ 3
(5x—1}7x—1) (7x—1)(9x—1)
. §35x2—12x—23

(9x—1)(5x—1)  x
63x2—16x—47
(5x—l)(7x—l)——1§+3(7x 0)(9x—1) }
45x2—-14x 31
(Fx—1)(6x—1) 5x—1) i
3 6

T(Bx—1)(7x— l)+(7x 1)( 9x-—-l) (9x— l)(5x—l) =0
,.85%x—13=0 .. x=13

SECOND TYPE

A4
wehaveAB AC AD+BC and the factors (A, B, Cand D)

tiie denominators are in Arithmetical Progression. The Satra

—1

A second typeo‘ such special simple equations is one where

{ 17 )
, + -5 -5 _
- (menaly) s T e T e
15415415 _ —45
T3 595-5 23
(5) x—3 x—5 x—4 _ 3
E—1)(x—2) +(x—z)(x—a)+(x—3)(x—1’) T x
) -2 -6 -3
< (mentdly) e =9 E—HE=D) "
 x6-6-6_18
T Te—8—3 11
(6) x—4 x—9 x—7 _3
(X—l)(xV3)+(x—v3)(x—6)+(x—6)(xAl) Tx
. _ -3 ~18 -6
- mend) o =3 T c=a—e) * —e—1) =
g —18—18—18 54
YT T35 18—6 21
(7) x—6 x—8 x—7 _ 8
—2x—3) == T x—Hx—2) " xFT
} —12  _ —20 _  —15
- (menAly) x5 P4 —a)x2)
o xo —48—40—45__133
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g (Sopdntyadvayamantyam) Which means “the ulti-
mat e and twice the penultimate™ gives us the answer immedi-
ately, for instance:
1 + 1 . 1 1
(=+2)(x+8) ' (x+2)(x+4) (x+2)(X+5)+(X+3)(x+4)

Here, according to the Siitra, L.4-2p (the last+twice the
penultimate) = (x+5)+9(x+4) =3x413=0 .. x=—4}
The proof o this is as follows:
1 + 1 _ 1 n 1
=+2)(=+3) ' xF2)F+4D) (x+2)x+5)  (x+3)x+4)
. 1 _ 1 _ 1
UE(x+3) (xF2)(EFE) EFINx+4) (x+2)x+9)

. —1— { —— } =_..1__ { —:._l__‘ E
x-4+2 | (x+3) (x-1-5) x+4 { (x-+2) (x+3)
Removing the factors (x4-2) and (x4-8)

2 _ -1 .2 _—1 . _
Fave x+4 ey =—p " L+2P =0

The Generd Algebmical Proof is as follows:
A
AB+KC AD+ 1 (whereA,B, Cand D arein A.P.)
Let d be the common d|fference
. 1 1
"K(A+d)+A(A+2d) A(A+3d) (A+d)(A+2d)
. 11
"TA(AHd) A(A+3d) (A+d)(A+2d) A(A+2d)
L1 2d _ 1 —d
A (A+d)(A-|—3d)§ A+-2d A(A+d)§
Cancellingthe factors A(A+-d) o the denominators and d
o the Numerators:

2 -—1

A+3d A+ad

In other words gz—_]}; - L42P =0

[l

{ 19 )

Ancther Algebraical proof. :
1,1
BT a0~ ap B0

11 _1_1

""AB AD BC AC

DB _LyAE
BD | ci AB f

But . A,B, C and D are in AP

.-.D«—B—-—2(A B)
. 2C4+D=0; ie. 2P4+L=0

’ 'ﬁ"‘@
A few more samplesmay be tried :
) 1+ 1 1
x34+7xF+12 x2}8x-+15 x349x-+18 Xxa+9x+20
(mentlally) . . .

GF9)atd) T EFIET) F a0 GFOETs)

o 2P+ L=(2x+10)+(x+6)=0 .. x= -5}
@ 1 " 1 _ 1 +
(2x+1)(3x+4-2) " (2x41)(4x4-3) (2x+1)(6x+4)
1

EFDET
<. 2P+L=(8%+6) = (5x+4) =13x+10=0 . .x=%)

THIRD TYPE
A third type of equations are those where Numerator
and Denominator on the L.H.S. (barring the independent
terms) stand in the sameratio to each other asthe entire Numera-
tor and the entire Denominator of the R.H.S. stand to each
other and these can bereadily solved with theaid of the Upasiitra
(subformulaor corollary) s=mard@ (Antyayoreva) which means,
"only the last terms' i.e. the absolute terms. Thus:
xA4x+1 _x41
x24-8x-+3 x-+3
Here, (x2+x)=x (x+1) and (x5+3x) =x(x+3)
.. The Rule applies; and we say :
x+1_1 |
XFiy x==0
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The Algebraical proof ts as follows :
ACHD_A_AC_D i
BOTE =B~ BC"F (by Dividend)
Another Algebraic Proof is this

ACHD A | _
BOFE—p - ABC-FAE=ABC+BD

A D
. AE= e e T e
BD B E
A few more examples may be taken :
(1) 3x*45x+ 8_ 3x45_ o
5m 5X+6 ﬁ . 4x=12 .. x=3
(2) 2—2x—3x2_3x42 2
2—5x—6x% 6x+5 2
(3) 81x*4108x42_3x+4_2 . —18
54x2427 x-}5 9x+1 5 11
(4) 58x2487x + 7 _2x43

7
87x3+146x1-11 8x+5 1L
(5) 158x24-237x+4_2x+3 4

305x3{474x |4 5x16 i
(6) 1—px_ 2+pgx—piqx?
I—qx ¢Fpax—pg>® 2 .
(1) (2x43)°_x43 | 4x*412x+ 9 _x+43_9 . 15
(2x+5) x+5 ' 4x?4+20x425 x+456 25 8
(8) (x+1)(x+46)_ x+7
(x+3)(x+5) x+8
. x247x4 6 _x+7_86
U x*8x 115 x+8 15
Note:—By cross-multiplication,
(1) (x+6)(x+8) = (x+3)(x+5)(x+7)
Here, the total of the Binomiasis 3x-+15 on each side.
Bui the Sunyam Samuecaye Sitra does not apply
beacuse the number of factors (in the origina shape)
is2 on the L.H.S. and only oneon the R.H.S. ‘4ntyayo-
reva IS the Sttra to be applied.

H

SoXx=—1

Il

X=0

x=—6}

( 181 )

@) (x+1)(x+2)(x-+9) = (x+3)x+4)(x+5)
Thetotal (oneach side) isthe same (ie. 3x412). But
the ‘Sinyam Samuccaye’ Sfitra does mot apply. The
‘Antyagyoreva’ formula is the one to be applied.
(x+)(x+2) _x+3__2 . _ -7
(x+9)x+5 x+9 20 3
(10) (x+2)(x+3)(x+ll)——(x+4)(x+5)(x+7)
The case is exactly like the one above.
L1248 _x+5_6 ., —74_—37
U EFaEFT) xFit 28 22 11
FOURTH TYPE

Ancther type o special Fraction-Additions (in connection
with Simple eguations) is often met with, wherein the factors
o the Denominatorsare in Arithmetical Progression or related
to one another in a special manner as in SUMMATION OF
SERIES. These we can readily solve with the aid of the
same “dntyayoreva” Siitra [but in a different context,and in a
different sense). We therefore deal with this special type here.

(1) The first sub-section df this type is one in which the
factors are in AP. Thus:

L S SRR
(x+1)(x+2)  (x+2)(x+3)  (x+3)(z+4)

The Sfitratells us that the sum o this aeriesis a fraction
whose numerator isthe sum o the numerators in the series and
whose denominator is the product of the two ends i.e. the first
and the last Binomials!

So,inthiscase, ¢ _ 8  andsoon

8 x 1)z +9)
The Algebraical proof of this is as follows:
byFtg= 1 + 1 —  X43+x+41
(x+1)(x+2) ' (x+2)(x+3) (x+1)(x+2)(x+3)
2(x-+2) 2
TEFDEFDETFD  (xF)EFI)
wherein the Numerator is thesum o the originad Numerators
and the Denominator is the product o the first and the last
Binomia factors.
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Adding tg to the above, we have 2 + 1
(x+1)(x+3) (x+3)(x+4)
o _ 2x484x+1 3(x-+3) = 3

EHDEFIEFY)  EFDEFIETE) E+HI)N(xT4)

Continuing this process to any number of terms, we
find the Numerator continuously increases by one and the
Denominator invariably drops the middlebinomia and retains
only the first and the last, thus proving the correctness o the
Rule in question.

=1 1 1
VTEFNETY) T 21 52
1 1 1

e e o

and vo on to any number of terms

Note:—The second term of each step on the RH.S. and
the first term on the next step (of the L.H.8) cancel
each other and that, consequently, whatever may be
the number of terms which we take, al the terms
(on the R.H.S) except the very first and the last
cancel out and the Numerator (being the difference
between the first and the last binomia i.e. the only
binomias surviving) is the sum o the original Numera-
tors (on the L.H S'). And this proves the proposition
in question.

A few more illustrations are taken.

n 1 1 )
EF ) T EFOETH T

°. 84: ;—1__.__.
(x+3)(x+T7)
(2) 1 1
x2;3x+2+£f—§?é
_ 1 4 1 .
(x=Dx=2)  x=2)x=3) "
g 1

5= GohE—e)

Fee
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1
x2-411x+28

® 4

— l l “ee
_(x+1>(k’+4)+(x+4)(x+7)+
4

.'.s‘=m

(4) 1 1
(x+a)(x+2a)+(x+2a)(x+3a)+"'

4
(x+-a)(x-+5a)

NS S S———— S

EFNEx+Y)  (3x4-1){5x+1)  (5x1){Tx+1)

Here, there is a dight difference in the structure of the
Denominator i.e. that the A.P.is not in respect of the indepen-
dent term in the binomials (asin the previous examples) but in
the x-coefficient itself ~ But this makes no differenceas regards
the applicability o the Siitra.

.

1
x34-5x+4

8=

e__ 3
T EHDIx4D)
The First Algebraical Proof of thisis exactly as before:

ty+ty= t +tz+t3=-—-3—-_— and so on

2 .
(=+1)(x+1)’ (x+1)(7x+1)

The addition o each new term automatically esteblishes
the proposition.

The second Algebraical proof is dlightly different but
follows the same lines and |eads to the same result:

- 1 =L(_1_.__1_\
1= EF)EEFL) Zx\xF1 8x+1)

1 11 1
Klacrasy ey 53{(31{—{-1 5x+l) and so on

Note .—The cancellations take place exactly as before, with
the consequence that the sum-total of the fractions=
1 (2lex) _ 1 1 8
2% D,xD, ~ D.xD, (Where 1 stands for Sg)
(which proves the proposition)

(8) 1 1
(x+a)(2x+3a) +(2x+3a)(3x+5a)+ "
2
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Here, the progression is with ‘regard to both the itemsin
the binomials (i.e. the x-coefficients and the absolute terms).
But this too makes no difference to the applicability of the
formula under discussion.

Q. 3
5y " (xFa){dx+Ta)
(7) 1 + 1 +
(3x+a)(5x+a)  (5x+a)(7x+a)
3

i Il sy Ty
(8)

1 + 1 +

(3 Hx+1)(EE+2x+2) | (x24+-2x+-2)(x3 3%+ 3)
Seemingly, there is a still greater differencein the structure of
the Denominators. But even this makes no differenceto the
applicability o the aphorism. S0 we say :

. 4
S"“(x’f-';-x+1)(xﬂ+5x+5)
Both the Algebraica explanations apply to this case

adso. And we may extend the rule indefinitely to as many
terms and to as many varieties as we may find necessary.

We may conclude this sub-section with a few examples

of its a.pplica.tion to Arithmetical numbers:
1 1 1 1

() m+8x9+9x10+10x11+

I'n a sum like this, the finding of the L.C.M. and the multi-
plications, divisons, additions, cancellations etc., will be tire-
some and disgusting. But our recognition of this series as
coming under its right particular classfication enables us to
say at once: 4 4

S=__
YUAx1l 77 and so on,

Nte:—Ire principle explained above is in constant requisi-
tion N connection with the ""Summation of Series
in Higher Algebra ete., and therefore of the utmost
importance to the mathematician and the statistician,
in generd.
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FIFTH TYPE

There is also a fifth type o fraction-addition$ (dealing
with simple equations) which we often come across, which are
connected with the " Summation of Series” (as in the previous
type) and which we may readily tackle with the aid of the same
{Ansyayoreva) formula.

The characteristic peculiarity hereis that each numerator
is the difference between the two Binomid factors of its Deno-
minator.  Thus,

(1) a—b +~ o—d

(xFa)=+Db) ' (x+b)(x+c) xFo)=+d)™

_ a—d

S = ErarTa

Both the Algebraical explanations hereof are exactly as
before (and need not be repeated here).

2) —z P
(a+x)(a+y) (a+y)(a+z) taroem T
“ S R
(3) 1 2 14
(x+7)(x+8)+(x+8)(x+10)+lx+10>(x+24>
La 17
‘ 'S"(x+7)(x+24)
(4) + 27
Yx+7)(x+10) (x+10)(x+19) (x+19)(z+46)
99
(x+46)(x+145)+
o8y = 138
VT EENEFI45)
(6) a—b + b—c¢ + c—d
(pxta)(px+b) ' (pxt+b)(px+to) (px-+e)(px+d)
a—d

' pxta)pxtd)
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Nte -— (i) If, instead of d, there bea in thelast term (inthis
case), the Numerator in the answer becomes zero;
and consequently the L.H.S. (i.e. the sum of the
various fractions) is zero.

(i) The difference between the Binomia factors of
the Denominator in the L.H.S. is the Numerator
o each fraction; and this characteristic will be
found to charscterise the R.H.S. aso.

(iil) The note at the end o the previous sub-section
(re: the summation of series) holdsgood here too.

CHAPTER XVII

QUADRATIC EQUATIONS

In the Vedic mathematics Satras, CALCULUS comes
inatavery early stage. Asit sohappensthat DIFFERENTIAL
calculusis made use o in the Vedic Satras for breaking a qua-
dratic equation down at sight into two simple equations of
the first degree and as we now goon to our study o theVedic
Siitras bearing on Quadratic equations, we shall begin this
chapter with a breif exposition o the caculus.

Being based on basic and fundamental first principles
(relating to limiting values), they justifiably eome into the
picture at a very early stage. But these have been expounded
and explained with enormous wealth o details covering not
merely the Satras themselves but aso the sub-siitras, axioms,
corollaries, implications etc. We do not propose to go into
the arguments by which the calculus has been established
but shall content ourselves with an exposition of the rules
enjoined therein and the actual Modus Operandi. The principal
rules are briefly given below :

(i) In every quadratic expression (put in its standard form
i.e. with 1 asthe coefficient o x®), the sum dof itstwo Binomial
factors is its first differential.

Thus, as regards the quadratic expression x2—5x+-6,
we know its binomial factors are(x- 2) and(x-3). And there-
fore, we can at once say that (2x—5) (whichisthe sum d these
two factors) is its Dy (i.e. first DIFFERENTIAL).

(ii) This first differential (of each term) can also be
obtained by multiplying its =@ (Dhwagja) w@ (Ghata) (ie. the
power by the srg (Aftkai.e. its coefficient) and reducing it by
one.

Thus, as regards x2—5x-+-6

x? gives 2x; —5x gives—5; and 6 gives zero.

A D1= 2x—5.
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(iii) Defining the DISCRIMINANT as the square of the
coefficient of the middle term minus the product of double the
first coefficientand double the independent term, the text then
laysdown the very important propositionthat thefirst differential
is equal to the sguare root o the discriminant.

I|n the above case x3—5x+6=0

v 2x—5 =3 UB—20 = 41

Thus the given quadratic eguation is broken down at
sight into the above two sSimple equations i.e. 2x—5=1and
2x—§=—1 . X=2 or 3

The current modern method (dealing with its standard
quadratic equation axf4-bx--c¢=0) tells us that:

. —bd+/bE—dac Thisisnodoubt al right, sofar as it goes;

2a butitis still a very crudeand clumsy way
o stating that the first differential is the square root of the
discriminant.

Another Indian method (of medieval times wel-known
as Shree Sbreedharacharya's method) is a bit better than the
current modern Methods; but that too comes nowhere near
the Vedic method which gives us (1) the relationship d the
differential with the origina quadratic (asthe sum of itsfactors)
and (2) its relationship with the discriminant as its square root !
and thirdly, breaks the origind quadratic equation-at sight-
into two simple equations which immediately give us the two
vaues of x!

A few more illustrations are shown hereunder :
(1) 4x*—4x4-1=(2x—1)(2x—1)=0 .", 8x—4=0
(2) 122—5x—2=(x—1)(7x+2)=0 ., 1ax—5=44/81 =49
(3) x2—11x+10=(x—~10)(x—1)=0 .. 2x—11=44/81—=+9
(4) 8x24-5x—3=0 ., 128+5=44/07
(5) Tx2—9x—1=0 - 14x—9= 4 /109
(6) 5x2—7x—5=0 .. 10x—7=2+/149
(7) 9x%—18x—2=0 ..18x—18 = £./241
(8) L1x24+7x4+7=0 ., 22x+7= 4,/ 259
(9) ax*>+bx+c =0 .. 2ax+b = 44/bT"dac
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This portion of the Vedic Siitras deals aso with the Bino-
mid theorem, factorisations, factorials, repeated factors,
continued fractions. Differentiations, Integrations, Successive
Differentiations, Integrations by means of continued fractions
ete. But just now we are concerned only with the just here-
inabove explained use of the differential calculusin the solution
of quadratic equations (in general) because o the relationship
D, = + +/the discriminant. The other applications just
referred to WI be dealt with at later stagesin the student's
progress.

II This calculussmethod is perfectly GENERAL i.e. it
appliesto all casesdf quadratic equations. There are, however,
certain special types of quadratic equations which can be till
more easily and still more rapidly solved with the help o the
special Sitras applicable to them. Some of these formulas
areold friendsbut in a new garb and a new set-up, a new context
andsoon. Andthey are so efficientin the facilitating of mathe-
matics work and in reducing the burden o the toil therein.
We therefore go on to some o the most important amongst
these special types.

FIRST SPECIAL TYPE
(Reciprocals)
This deals with Reciprocals. The equations have, under

the current system, to be worked upon laboriously, before they
can be solved. For example:

117
M) =+=7

According to the current system, we say:

SRR 17
=7
o 4x2p4=1Tx

. 4x2—17x44==0
co(E—4) (4x—1)=0 . x=4 or 1/4.

or (i) .. x = 17*‘/289_64—_—17:‘;15 =4or /4
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But, according to the Vilokanam sub-Siitra of Vedic
mathematics, we observe that the L.H.S. is the sum o two
Reciprocals, split the 3 o the RH.S. into 44} and at once
say :

x+;=4+} <. X=4 or 1/4. It is a.matter of simple
observation and no more.

@ x+l=?§=5% S.Xx=5or ¢
3 1
( )X+l+XJF =82/9=9} ... +1 =9 or 1/9
(4) x41 ,x42_ 37 _ . x4l
X+2+m—?—6§ "I =6 or}
5 4 —4_ 10
®) xi_4+§+4~?=3§- §4=3 or}
(6) (4 1_13
x 6

Here the R.H.S. does not readily seem to be of the same
sort as the previous examples. But a little observation will
suffice to show that %2 can be split up into §+3%

X+§=§+§ Sx=jorg

@ X+£=¥§=§—|—% Sox=%or}

8 5 [
® §i6+§i5—13 i+ . !ig=§or§

x-+6

9) i+x+l 169 _
x-4-1 X 60 6
(10) 2x+411 , 2x—11_ 193 . 2x411

zx-11 2xFI1 84 7 Tis a1 ¥ i3
(CR Y

=%
X

Here the connecting symbol iS @ minus. Accordingly, we

say:. X = =g—§.-_ X:.g. 01'_%

Xi | -

]
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MB. -—Note the minus (of the second root) very carefully.
For, the value x =48 will giveus not § but “§ on the
R.H.S. and will therefore be wrong!

(12) x-_1=§ =]—% .x=}or—}
X

(18) x _x+3 _a5_8_ o X =2 or—3
S A

(14) x47_x49_ 95 s 1 - EtT_g or ]
x+9 X417 §=1—3 x19

(15) 52+9 5x—9__ 4,4 5. 60X gor— %
Bx—9 sxto BT ¥ 5=

Note :—In the above examples, the LS. was of the form
a , b, and, consequently, we had to split the R.H.S,

B a’ into the sameform sa b

(Bi a)

2 2
And this, when simplified, = 285"

In other words, the Denominator on the R.H.S. had to he
factorised into two factors, the sum of whose squares (or their
difference, as the case may be) is the Numerator.

As this factorisation and theaddition or subtraction o the
squares will not always be easy and readily possible, we shall,
at alater stage, expound certain rules which will facilitate this
work of expressing a given number as the sum o two squares
or as the difference of two squares.

SECOND SPECIAL TYPE.

(Under the Siingam Samuccaye Formula)

We now take up a second special type of quadratic equa-
tionswhich a very old friend (the Sanyam Samuccaye Siitra)
can help us to solve, at sight (asort of problem which the
mathematicians all regard as ""Hard") !

We may first remind the student of that portion of an
earlier chapter wherein, referring to various applications of
the Samuccaye Siitra, we dealt with the easy method by which

the onenessof the sum of the numerator on the one hand and the
21



( 162 )

denominator on the other gave us one root and the oneness of
the difference between the Numerator and the Denominator
(on both sides) gave us another root, of the same Quadratic
equation. We need not repeat al of it but only refer back to
that pottion of this volume and remind the student o the
kind o illustrative examples with which we illustrated our
theme:
(1) 3x+4 _5x+6
éx+7 2x+3
() Tx+5_ 9%+ 7 . 14x412=0; or 2x—10=0
9x—5 Tx+17 :
(3) 7x—9_ 9x—-T7
9x—9 I14x—17
(4) 16x—8 _ 2x—15
TTxHT TIiIx—25

. 8x-+10=0; or 3x+43=0

. 16x—16=0; or 5x=0

. 18x—18=:0; or 9x—10=0

THIRD SPECIAL TYPE

There is a third special type of Quadratic Equations which
Isalso generally considered **very hard" but whereof one root is
readily yielded by the same ancient friend (the “Samya Semu-
ceaye” Sitra and the other is given by another friend-not so
ancient, however but still quite an old friend i.e. the “Sanyam
Anyat” Sutra which was used for » special type of simultaneous
equations.

Let us take a concrete instance of this type. Suppose

we have to solve the equation:
2 3 _ 4 1
P Aan R

The nature o the characteristics of this specia type
will be recognisable with the help of the usual old test and an
additional new test.

The TESTS are: $+4+&=4%+1; and 3+8=4+1

In al such cases, “Sinyam Anyat” formula declares
that one root is zero ; and the “Sanyam Samuccoye” Siitra says :
Di+Dy=0 .. 2245=0 . y=—2¢

B |

-
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The Algebraical Proof hereof is as follows :

—2— (by simple division) =1—.*_, and so on,
x+ X-H

So, {1 — . +hi—-_*1_ X
{ +2} { x+3}*{l x+4}+{ =i

. (Removing 1—1 and I—1 from both sides) X, (the
common factor of all term):—_O‘

N
i = E T
.. (By the Samuocaye formula) 2x45=0;

and on its removal,

Note:—In &l these cases, Velokanam (i.c. mere observation)
gives us both the roots.

A few more illustrations of this special type are given:

n 3 4 2 5 ..
‘—x+3+m—m+r~{-5 Sox=0o0r—3%
@ I 1 _ 2 1
2x+1+3§?1 —3x+2+€x'-'[-'1'
Now. -~ .1 2x  and SO on,

"U149x Ti—l4tox
2x 3x 3x 6x
B e R |
S.X=0
or (by cross-multiplication) 12x-+5 or (36x4-15)=0
CoX=—5/12
@ »a 4 b _ a—c RER
x4a x4b x{a—ec x+bilc
" x=0 or—}(a-}-b)
(4 a — 4 b—c _ a4b _ bie
Xta—b x4+b-—c¢ x Fatb x—b—¢
S x=0 or Hec—a)

(8) a+b b4-¢ 2b at-e

x+atb xFbfc¢ xf2b x-+atec
Sox==0 or —}{a-+2bd-c)
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FOURTH SPECIAL TYPE

And again, thereis still another special type of Qu@‘dra‘“CS
which are "harder" but which our old friends “Sanyam Anyat”

and “Pardvartya”” (Merger) can help us to solve easily.

Note:—Apropos o the subject-matter of the immediately
preceding sub-section (the 3rd special type), let
us now consider the equation _ 2 3 5
This may look, at the outset, x4+2 =~ x+3 =x+5
alike, but really is not, a quadratic equation d thetype
dealt with in the immediately previous sub-section
(under Sanyam Angyat and S@ Samya Samuccaye)
but only a smple MERGER (because not only isthe
number of terms on the R.H.S. one short of the number
required but also 3+4-3#§ It is realy a case under
Stanyam Anyat and Pardvartya (Mmerger).
Here, the TEST is the usual one for the merger process
ie. N;+N, (on the LH.8.)=N, (on the R.H.S.) Thus:
2 4 3 -5
xF2 ' xf3  x+5

. (By merger method) —6 —6 s _
(By =0 =0
S X=—23
A few true illustrations are given below:
W 4,9 _ 2%
x4+2  x+3 x+5
Here v §1+-§=%% . YES
.~ (By Division) -
2 +3 +3 =5 x_&zL+5
. x=0. (This can be verlfled by mere observation)

or 2 3 _ 5 . (by merger), x=-—2}
x12 'x43 x+5
This result can be readily put down, by putting up
each numerator over the absolute term of the Denominator
as the Numerator o each term of the resultant equation and
retaining the Denominator as before. [Or by taking the Square

Root of Each Numerator] (in the present case).
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Thus §=2; §=3; and 3%=5And these will be our
new Numerators. Thus, we have the newly derived Equation :
2,8 5
x+2 x+43 x5
(By merger) x=—2}
@ _2 , 9 _ 2
x41 x43  x+b
Here * $+§=2¢ .. YES

The derived equation is:
2 4.3 -2
x4+l " x+3 x45
(whichis the same asin al the three preceding cases).
Sox=6 or —2}

Note:—In the last two cases, the first term aone is different
and yet, since the quotients § and 4 are the same,
therefore it makes no difference to the result; and
we get the same two roots in al the three cases!

@ 6 | & _ 4

2x+3 " 3x+4-2 4x-+1

Here - §+4=% . YES .wx=¢

» or(By Division), -4 +6 _ +16
2x+8 3x4-2 4x+1

N. B. Note that 2x6__ ,%"‘_Md"“ 18

3 2
and that these are the new Numerators (for the derived
Equation)
. (By L.CM) 24 + 24 __ 48 . YES
12x-1-18 " 12x-}8 12x43

or 1 + 1 2 . YES
12x-F18 ' 12x+8 l2x+3

... (By merger) 15 =7
12x 18 12x+8
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N.B.:—The remaining examples in this chapter may be held-
over (if deemed advisable) for a later reading.
4 a b _ 2
x+a x+b  x4c
Here - 24D _20 . yEg - x=0

" a C
o1 1 2
. .m+;‘ﬁ_;_‘l‘(: .. YES
. (By merger) a_—_c_i_ﬁ_0
x+a ' x+B
. x = bo{-ca—2ab
afb—2¢c

(6) a*—ht | bA—(2 a?—c?

x+a+b x+b+c x+atc
Here - 3=biMpbi—c? al—c* . VES . ;g
atb  bfc atc o
a—b + b—¢ _ a—c
X+a+b x+b+te xFtate .. YES
.. (By Merger) (a—b)(b—c) , (b—e)(b—a) _, andso on.
(xFfa+by ' x+b+c
® 1 4 1 =2
ax+d bx+4d ex-+d
Here (by division), we have: d4-ax)1 %

ax
142
—8X
1
LBy b _ 2
"ax-f-lc)i bx+d~ ex+d
. abe abc 2abe
"ab0x+brca+abcx+acd abex+ahd | YES
Alpr_2
‘D, D, Dy

. I)qq”—abd‘ acd —abd —0
“abex+bed ' abex+acd
. bd{c—a) _ ad(b—c)

““befax+-d)  ac(bx+d)
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.c—a_Db —e
=

""ax+d bxid
% = ad-+bd—2cd
ac+bc—2ab
() ax+2d+bx+3d=20x+5d
ax-+ d bx+ d ex4d
20435 ype o
Here " FRlP it 0..YES ...x=0
Or (by division)

1 .2 . 3
abex-Fbed ' abex+acd  abex--abd
. (By merger), lmd_—;ahd_l_acd—ahd_o
D D,
-, bda—c) | 2ad(b—0) _ ¢
bd(ax+d) ' ac{bx-+d)
@ —c¢ 2(b—c) _
CaFa rrd)
= ad-4bd —2cd
ac+bc—2ab
OR (by mere division Pardvartya) at the very first step.
. d + d _ ad
"'axtd  bxt+d ex+d
(which is the same as No. 6 supra)
N ad4be—2cd
.7 ac+bc—2ab

CONCLUDING LINKING NOTE
(On Quadratic Equations)

In addition to the above, there are several other specia
types o Quadratic Equations, for which the Vedic Siitras have
made adequate provision and also suggested several beautifully
interesting devices and so forth. But these we shall go into
and deal with, at a later “stage.

Just at present, we address ourselves to our next appro-
priate subject for this introductory and illustrative Volume
namely, the solution of cubic and Biquadratic Equations etc.
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CUBIC EQUATIONS

We solve cubic equations in various ways:

(i) with the aid of the Parcivartya Satra, the Lopnna-
Sthipana Sitra, the guomgamrai formula (Parana- A pirnabhaydm)
which means by the completion or nun-completion” of the
sguare, the cube, the fourth power ete.}

(ii) by the method of Argumentation and Factorisatiori
(as explained in a previous chapter).

The Parane Method

The Pirane method is well-known to the current system.
In fact, the usualy-in-voguegeneral formula — —b/bi—dac
for the standard quadratic (ax?+bx-+c _0) 2a
has been worked out by this very method. Thus,
ax¥4-bx4c=0
.. (Dividing by @), a+ +
X2+b_x= =C
a a
(completing the square on the L.H.S)
+- _©6, b? bf-dac
422" 3 " 4a®  4a?
. b 2 b2_4ac
. .(x + é;,) gt
. ++/b¥"—dac
B ¢ + R e
:—_b‘ _ —b++/b¥—dac
2a 2a
This method o **completing the square™ is thusquite well-
known to the present-day mathematicians, in connectionwith the

solving of Quadratic Equations. But thisisonly a fragmentary
and fractional application of the Genera Formula which (in

GO X=
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conjunction with the Pardvartya, the Lopana-Sthapana etc.,
Siitras) is equally applicable to cubic, biquadratic and other
higher-degree equations as well.

Completing the Cubic

With regard to cubic equations, we combine the Parcivartya
Siitra(as explained in the 'Division by Pardvartya’ chapter) and
the Pirana sub-formula. Thus,

(1) x3—6x?411x—6=0
o X3—6x2=—11x}6
But (x—2)3=x3—6x%|12x—8
. (Substituting the value of x3—6xafrom ahove herein),
we have: (x—2)=-—11x+46+12X—8=x—2
Let x—2=3 (and - let x=y+2)
- yS=y .- Yy=0oO0r#l = x=3orlor 2
N.B. :—It need hardly be poirted out that, by argumentation
(re: the coefficients of x3, x® etc.,) we can arrive at the
same answer (asexplained in a previous chapter dealing
with factorisation by Argumentation) and that this
holds good in al the cases dealt with in the present
chapter.

(2) x34-8x2411x4+6=0

©, x34-6x2=—-11x—6

But (x+2)®=x%46x2+412x}8 = —11x~—0+12x+8=x+2

.. yS=y (where y stands for x+2)

Soy=0or#l . x=-—2 —3 or —1
(3) x%46x3—37x180=0

‘. x3-4-6x2=37x—30

s (x+2)8=x+46x2+412x} 8 =49x — 22 —49(x}2) — 120
N.B.:—The object is to bring (x-+2) on the RH.S. and thus

help to formulate an equation in Y, obtain the three
roots and then, by substitution o the value d x (in
terns of y), obtain the three values of x.
y3—49y+120=0 ., (y—3)(y*+3y—40)=0

. (y—3)(y—b)(y+8)=0 .. y=3 or6or -8

x=1 or 8 or —10.
22
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(4) x*+9x24-23x-+15=0
. x3—|—9x2=—23x—15
o (x4+3)%=(x34-9%34-27x—27) =4x+12 = 4(x+3)
o y3=4y J.y=0or &2 . x=—3or —1 or —b
(5) x3+49x2424x4+16=0
v x34-9x2=—24x—16
(x_|_3)8-—(x3+9x2+27x+27)~- 3x+4+11 =3(x+3)4
y3=3y+2 ..y*—3y—2=0
L (y+1)? (y——2)—-0 Jy=—1lo0r2 x=—4o0r —I
(6) x34-7x2}14x4-8=0
x4 7x3=—14x—8
" (x4-3)%=(x34-9x2+ 27x4-27) =2x24-13x 19 ==
(x+3)(2x+7) —2,
=y(@2y+1)—2 " y3—y(@y+1)+2=0=(y—1)(y+1)
(y—2)
y=lo 1o 2 . x=-—20 —4o0 —1
(1) x3+48x%4-17x+10=0 . X348x%=—17x—10
(243 = (x34-9x24-27x 4-27) = x24 10x 17 ==
(z+3)(x+7)—14
=y(y+4)—4 -y -y —dy—4=0 . y=1 or =2
o X=--20r —1 Or -5
(8) .. x34+10x34-27x+4-18=0
Now ... (x44)3=(x3412x2}48x-}-64)
Hencethe L.H.S. =(x+y)3—(2x2+21x-}-46) = (x-}y)3
{(z+4)(2x-+13)—6}
L Y=y (2y+5)—6 .. (y—1)(y+2)(y—3)=0
. y=1or —20r3
W X=—3 0r —6 or —|

Note: —Expressons of the form x®—17x+6 can be split into
x8—1--7x-7 €tc., and readily factorised. Thisisalways
applicable to al such cases (where x2is absent) and
should be fully utilised.

The Parana method explained in this chapter for the
solution of cubic equations will be found of great help
in factorisation ;and vice-versa
"Harder" cubic equations will be taken up later.

CHAPTER XIX
BIQUADRATIC EQUATIONS

The procedures (Pirana etc.,) expounded in tho previous
chapter for the solution of cubic egquations can be equally well
applied in the case of Biquadratics etc., too. Thus,

(1) x4-4x3—25x2—1651-84=0
L x4+ 4x3=25%%416x—84
»(®41)8=x44-4x34-6x 24 4x+1
=(25%24-16x—84) - (6x2+4x+1) = 31x24-20x—83
=(x+41)(81x—11)—72

. =y(31y—42)—72

oo y=-—1, 3, 4 or —6

. X=—2, 2, 3 or —7

yi—31y2+4+42y+72=0

(2) x‘+8x3+14x2—8x—15 0
o x4 48x% == 14x%4-8x 115
©. (x4-2)% = x4 8x324x2 4 32x+16=10x"}4x+31
=(x+2)(10x420)—9 == 10(x+2)2—9
L yi=10y*—9 ..y =lor 9 ..y=4#£1or 43
*“X=-—lor —3orlor —5

(3) x‘——12x“+49x‘“—78x+49=0
oo x4—12x3 = —49x2+ 78x—40
- (x—3)4=x1—12x3{ 54x2—108x |81
=5x3—30x+41 = (x—3)(5x—15)—4 =5(x—3)2—4
yt—5y2+4=0 ..y?=1lor4 ..y==L1or £2
s.x=4orbor2orl

(4) x4+16x3486x2+176x+105
. x44-16x8 = —86x2—176x—105
o (x4-4)4=x4416x31-96x21-256x-}-256
=10x2-}-80x+151 = (x-|-4)(10x}40)—9
=10(x+4)2—9
—10y24+9=0 ..y?=1o019 ..y=zH1lor +3
. X=-—3 or —5 or—1 or—7
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(5) x4—16x%+-91x2—216x+180=0
X4_16x3=_91xi+216x—-180 ,
(x__4)4=x4_16x3+96x’-—256){+256

— 5x—40x +-70 = (x—4)(5x—20)—4="5 (x—4)*—4
o yt—5yt44=0 .. y'=lor4 soy=F1or #2,
Xx=3or50r6or 2

(6) x%--20x3-1-137x2—382x+360=0
. x420x3 = —137x24-382x—360
(2 —8)4=x4—20x3150x2—500x 1625

=13x2—118x+2656 — (x—5)(13x—53)
Coyt=y(13y+12) .. y=0 or y3—13y—12=0
<. y=0 or (y-+1) (y+3)(y—4)=0
. y=0 or—1 or—3 or 4
cox=5, 4, 2 or 9.

Nte:—The student need hardly be reminded that all these
examples (which have al been solved by the Parana
method hereinabove) can also be solved by the Argu-
mentati on-cam-factorisation method.

A SPECIAL TYPE

There are several specia types of Biquadratic equations
dealt within the Vedic Siitras. But weshall here deal with only
one such special type and hold the othersover to a |ater stage.

This type is one wherein the L.H.S. consists of the sum
of the fourth powers o two Binomials (and the RH.S. gives us
the equivalent thereof in the shape of an arithmetical number.)
The formula applicable to such cases is the =afee-gafe (Vyast
Samastt) Siitra (or the Lopana Sthdpana one) which teaches us
how to use the average or the exact middle binomial for break-
ing the Biquadratic down into a smple quadratic (by the
easy device of mutual cancellation of the old powers i.e. the
x3 and the x).

A single conciete illustration will suffice for explaining
this process :

(x+7) 44 (x+5)4="706.

Let x+6 (the average of the two Binomials)=3

( 173 )

s (a1)44-(a—1)4="706
.. owing to the cancellation of the odd powers x3 and x,
2a44-12a24-2=706 .. a*}+6a2—352=0
al=16 0r—22 .. a=F4ord+/—22
o x=—2 0r—10 ort+/—22—6
N.B.:—=n simple examples like this, the integral roots are
small ones and can be spotted out by mere inspection
and the splitting up of 706 into 625 and 81 and for this
purpose, the Vilokanam method will suffice. But,
in cases involving more complex numbers, fractions,
surds, imaginary quantities etc., and literal coefficients
and so on : Vilokanam will not completely solve the
Equation. But here too, the Vyasti-Samasti formula
will quite serve the purpose. Thus,

The Generd Formula will be as follows:
Given (x-+m-4n)d(xFm-n)t=p
. _ Py
< adt-6a24(nt By=0

» g3 —6f 4/36—4nt{2p

-~ 3

.o 4 —BE4/36—dni+2;

S a :L-\, P

e | —6++/36—4nTr2p
~X m;{;\J —

Applying this to the above example, we have:
¢ —6-44/1444 _ — 6438
x = 61\]__2._ =6 20 3

= — @£ 4/T6 0r4/—222= —6(L 4 or +4/—22)—6
(which tallies with the aobve)
N.B.:—"Harder” Biqudratics, Pentics etc., will be taken up
later.
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MULTIPLE SIMULTANEOUS EQUATIONS.

We now go on to the solution of Simultaneous Equations
involving three (or more) unknowns. The Lopam-Sthipanu
Sitra, the Anuripye Sitra and the Pardvertya Sitra are the
ones that we make use of for this purpose.

FIRST TYPE

In the first type thereof, we have a significant figure on
the R.I1.8. in only one eguation (and zeroes in the other two)
From the homogeneous zero equations, we derive new equations
defining two of the unknowns in terms o the third; we then
substitute these values in the third equation; and thus we
obtain the values of al the three unknowns.

A second method is the judicious addition and subtract-
ion o proportionate Multiples for bringing about the elimina-
tion o one unknown and the retention of the other two.

In both these methods, we oan make our own choice of
the unknown to be eliminated. the multiplesto be taken etc.,
Thus:

(1) xty—z=0 (A)
4x—5y+2z=0 (B)
8x42y+z=10 (€)
(i) A+C pives us: 4x+38y=10;] .. 10x=10
& 2A4-B gives US: 6x--3y=0{ .. x= 2
y= 2
and z= 3

(i) from A, we have x-+y=1z
and from B, we have 4x —5y = —2z E

.. By Poravartya, x=% z; and y=§-z

. (by substitution in b z—13 g+z=10 coz=3)

and ;jéj
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(2) 7y—11z—2x=0 .. A
8y— z—6x=0 ... B
3x+4y+-52=35 .. C

(i) Adding Band 2€, wehave 16y-+3z=70
Subtracting B from 3A, 13y—26z=0

_1820_4; and z=9._1g=2
455

. (Substituting these values in ) . X=3
(i) .. Ty—1lz=2x } v = _52x=1§x;}

LT,
8y — Tz=6x . —28x__
dz=—g=}x
- 3x4-6}x+433x =35 .. x=3)
y=4§
and z=2
(3) 2x—3y+4z= 0 .. .. (A)
7x+2y—62= 0 .. .. (B)
4x48y+ 2=37 .. .. (C)

(i) A+C gives us: 6x+ 5z=387
2A--3B gives us: 25x—10z= 0
=3812—9;and z=23%=5; and y=8§

L X=33F =
From (A) and (B) we have
(i) ... —3y+4z=—2x E
2y—6z=—7x ) .. v= =40x= . _ —25x
—_10 4x; andz_m_
=2§x

oo 4x4-12x4-23x =37 . x=2; y=8; and z=5

SECOND TYPE

Thisis one wherein the R.H.8. contains significant figures
in al the three equations. This can be solved by Pardvartya
(CROSS-multiplication) so as to produce two derived equations
whose R. H. S. consists of zeroonly, or by thefirst or the second
of the methods utilised in the previous sub-section. Thus,

2x— dy+ 92 =28) .. .. A
7+ 3y— 6x = 3} . B
9x+10y—11z = 4 . C
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(1) (i) . 196x+84y—140z=84
and 6x—~12y+ 272284%

28x+-12y—20z =12
and 27x-4-30y— 83z = 12 f

" 190x+96y 1675 =0

" x—18y-413z=0 -
Having thus derived two e i is ki i
i quations of this kind (i.e.
the first special type), we can now follow the firgt rﬁetrllmd(lu;dgf
that . i ;
type; and, after a lot of big multiplications, subtractions

and divisions, we can obtain the answer : x

and Z=4 =2,Y=3

(i1) or, (adopting the first method adopted in the last sub-
section), we have:
<. 3y— 5z=3—-7x
and 10y —11z=4—9x
By CROSS-multiplication,
y o —204+45X4-33—77x _ 32x—13 .
—17 ST
and z _ 30—«70x_12+27x:43§—;g
T &7 17

} 128x—52 | 387x—162
L 2x—2Tn ve =
T+ 728

- 34X—128x +524-387x—162 =476 .. 203x =586
. x=2; y=3; and z=4

This method too involves a lot of clumsy labour.

(iii) or, (adopting the Lopana-Sthipana method), we say :
C—A—B gives us 11y—15z = —27
and 9B--7C givesus —43y4 395 _ 1 E
s y=3, z=4 and - x =2
(2) x+2y+3z=12 .. A
2x43y+4z=18 .. B
4x-+3y+52=24 - ... (O
i .. 24x1-36y4-48z=216
18x+36y+ 542216
Similarly 48x4-36y 460z = 288

e 68—62=0 ., x—z==0

S 24X —12y —127=0

24x 448y 1727 == 288 { ... 2X— y— z=0
CX=ya=p=2 )
(i) ... 2y+3z=12—x; and 3y+4z=18—2x 'y =6_2x;
andz=x .. X=y=z=2

(17 )

il

=4

|

(ili) 2A—B gives us: y+2z= ¢ ~y 2}
2B—C gives us: 3y+3z==1,2§ and %z 3
or (iv) by mere observation.
(3) x+2y+3z=14 .. A
9x 43y 442 =20 B
3x-+ y+6z=23 ... ¢
G ARy =
842 == 322
and %%’éii%% 69z =322
and SO on as before.

- =)4— . — AN __RAv AR Ay =—=4—2X
() . ’gﬁzéo—z’i} - %:42-3x-—40+4§=x+%

- 3x+4-4—2x-6x+12=23 . Xx=1,y=2 and 2=3

(i) 9A—B gives us: y+2zf 8 E
and 3A- Cgives ug; 8y+3z=19

8x- 2y— 42:3‘
oo 19x—382y152=

2x+3y+4z=16 ... B
3x4-5y+6z2=25 ... C
(i) (16x+32y+48z)—(22x+33y+44z);76;7y+§§ =0g
and (33x-}-55y 4-662)—(25x-+50y -+76z)=8x+5y — 92 =0
and 80 on.
i) o, oy tez==11— Xi and so on, as before.
. 8y +47= 16—2x {xbams
i) x4 y+ zs=5] y+z=4‘;e_m xtz=
( gndx+2y+2z=9§ o ox=1, y=2 and 2=2

In al these processes, there is an element, moze or less,
of clumsiness and cumbrousness which renders them unfit
to come under and fit satisfactorily into the Vedic category.
Methods expounded in the Vedic Sitras and free from the said
draw-back and aso capable of universal application will be
explained st a later stage.

(4) x+2y+3z=11 ... A}

23

 ———————————— .
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SIMULTANEOUS QUADRATIC EQUATIONS

The Sitras needed for the solution of smultaneous
Quadratic equations have practically all been explained already.
Only the actual applicational procedure, devices and modus-
operanii thereof have to be explained. Thus:

() x+y =51." x342 1_95] . (x—y)i= 1

& xy =6} 4§§+y =24 i (x—z) =41

e X==2 or Xx=3

6=3 =9

Thisis readily obtainable by Vilokanam (mere observation)
and also because symmetrical values can aways be reversed.

(2 x=y=1 v ¥=3 —g) Notetheminus
and xy=6 y=2f° —3

(3) 8x— y=s177 .- 25x2—10xy+y2=289) . 2.
and xy=12§ and 20xy = =240 '(gfi'}’,') e

o 10x=40 O —6 ., x..-4}
or 20}

N.B.:—L. When the value of x or y has been found, xv at
once gives usthe value o the other. Thys  if,
here, x=4, y=38, no other substitution ete., is
necessary.

2 One set of values can be found out by Vilokanam
aone.

3. The internal relationship between the two Sets of
Vadues will be explained later.

(4) tx—g5_ 7} o x=t and y=3 by (ere ¥ iokupyps

and xy=12
(il) (4x—3y)2=49 .. 4x43y=+425 822 or —18
. X=4 }
y=3 —5}
5) %3 — 8
(5) x3-—y =191. x4 xv+v2—19 c3xy=18.".xy=6
X =y =1 and X%3—2xy +y2= )

. x—3} . ~2}
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8) xd+y3=61}.. 38— xy-+y?=6} 3xy=—-60 sxy=—20
© ;-})-Iy= x342xy+yi= 1J.. zx=b Sor —g}
y==

N.B.:—There is plus sign all through. Thereforeit can al be
simply reversed (i.e. one by Vilokanam and the other by
rever&al).

(7 x 2 -, ()By Vilokanam, x==3 and y=1

and x‘+X‘)’ +4x=24
Secondly x(x4y)+4x=8x=24 - §§§§

8) x+2y="5
® and x=+3xy+2y’+4x-1 10 %
" (x4+Y) (X4-2y)H4x—1=5%+45y +4x—y=10
o 9x-4y=10
But x+2y=
-. (By Pardvartya or by Sunyam Anyat) x=0 & y=2}
(8) x+2y=>5
and x2-+3xy —2y%+44x-4-3y=0
o (342y) (x-+y) —ayi+4x43y=0
5x+5y—4y“+4x+3y—9x+sy—4y’-—0
- 4y2410y—45=0 .. 8y+10=1,/820
§20—10__—5F /205
:i\/szﬁs-,-_—_ 4\/
_ 15T /205

- . 3x2 (x+y) (3X~3y)+4y
(10) x+y=5 E x24y® ——15x—-15y+4y o

- 75—15y—18y+4y?=19

3x2}y2=19
* 4y2—30y+56—0
. By—30=4r/4=4+2 . —320r28 .. y—4or3}
o By—R0=kyVaTE ﬂnd }.~ 1orl1d
2 —2y=4 . 7x2—X—8=0 } x=—1_8/7
(1) =+3x—2y o (x41)(7x—8)=0] y=—3 0r18:44

2xﬂ—5x+3y* —2
-, 2510y —yI=1

12y x + ¥y ——5} 5X’— by —y’= R 10
= 4+10v—24=0 .. y=2{ or —I=
x2—2y?=1 . y310y ,}(_3% or 17§
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(13) 224 y=3] .. lix+2ly—Jyi= 3) .. y?-2y+1=0
x242xy=3 § .. 6x+ 9y-3y2=12§.‘.y=1 and x=I
or (i) 4x2+2xy=6x

X2+2ry=3 i 3x2—6x-+3=0 . x:li
amd y=1 )

(14) x+y=2 coAx4y42y2=T - 88y |-2yi=

x84y +2x43y=T7 { .". 2y2—3y+1=0 .- y 1} 1%}

(15) 2x?+xy+ yi= 8 o x2py3=5
3x2—xy+4yi=17 ’
And (by CROSS— multiplication)

34x?+17xy 17y 2=24x2—8xy 1-32y2

- 10xE4+25xy —16y2=0 .. 2x24-5xy—38y2=

S (x43y) (2x—y)=0 oox=—38yorfy
Substituting in x24y2%==5, we have
9ye+y2=5 or §y2=5 .. ye=}or4

'-Y=ﬂ:«/—;_ or # 2

and . x=43vFor £3/§ or £6or =1,
N.B.:—Tet for the correct sign (plus or minus).
x24 x; 277 1842(2 2 2
00 L S e S e e
. (5x——4y) (6x——23y) 0 . g_gyor !aiy
.. (By substitution),
y=45] . 2£/6]7

x=+4 LrVT
(17) 3x*~axy 2y2=] b -(By siibtrastion), 4x2—4xy 4-2y°=16
yi—x? =—15}.2x—~y=+4

*. (By substitution), 4x2F16x+16—x2=—15
.3%x2T16x+31==0 & So on.
(18) 2x2—T7xy+3y>= 0} ... x=3y or §y
x3+xy4 ye=13{ . s
and x=+3 f{ or :1:\/—.,—}
T +24/12
(19) 3x2——4xy+2y2—-1f o X=4y.
y2—x? =0 - 3xF—4xpoxt=1 .. X

11
1§

Il

or 3x244y? 4 2y2=1 . y=44/1/3
and X=:|:\/1/3 }

( 18 )

(20) x2—-xy:12y2% . X=4y or —3y

x%:+y2=68

By substitution, 17y2==68or 10y*=68
- y=144/2 Or £4/34/5
and x=d4+/80r £3 4/34/5

(21) x*—2xy+yi=2x—2y+3

xB4xy+2y*=2x— y+3 i
(i) By Sinyam Anyat . y=0
Let x—y=a .. a’—2a—3=0 .. a=3o0r —1
x—y=3o0r £1.
Now, substitute and solve.
or (ii) By subtraction, 3xy+y*=y
. y=0or 3x+y=1
Substitute and solve

N.B.:—The Sunyam Anyat method is the best.
(22) 3x2+42xy—y2=0 } x=—y or }y
x”+y"“ 2x(y+2x)
. Substitute and solve
or (i) By transposition,
—3x2—2xy+y?=0
This means that the two eguations are not independent ;
and therefore. any value may begiventoy and a corresponding
set of values will emerge for x!
(“Harder” simultaneous Quadratics will be taken up at a

later stage).



Cuarter XXII

’
FACTORISATION AND DIFFERENTIAL CALCULUS

In this Chapter the relevant Satras (Gunaka-Samuccaya
etc.,) dealing with successive differentiations, covering Leibnity's
theorem, Maclaurin's theorem, Taylor's theorem etc.,, and
given a lot of other material which is yet to be studied and
decided on by the great mathematicians Of the present-day
western world, is also given.

Without going into the more abstruse details connected
herewith, we shall, for the time-being, content ourselves with
a very brief sketch of the general and basic principlesinvolved
and a few pertinent sample-specimens by way of illustration.

The basic principle is, of course, elucidated by the very
nomenclature (i.e. the Guneke-Samuccaya) which postulates
that, if and when a quadratic expression is the product of the
Binomials (x-+a) and (x+b), its first differential is the sum of
the said two factors and so on (as already explained in the
chapter on quadratic equations).

I't need hardly be pointed out that the well-known rule of
differentiation of aproduct (i.e. that if y=uv, when u and v be
the function of x, a;( =V d—+ ugf? and the Gupaka-Samuccaya
Siitras denote, connote and imply the same mathematical truth.

Let us start with very simple instances :
b
2 -
B e 4ox 2= 0 g
., D, (the first dlﬂ(‘!’entlal**2x+3:(X+2)—+»(X+]):Za
v 3 2_ . @ b
(2) x®+6x2-F11x-+-6 &) 6T (x+3)
D, =3x2-12x - 11=(x2+3x+2) + (x2+5x-1-6)
+(x%+4x+3)=ab +bet-ac==Zab.
o Dy=6x412=2(3x4-6)=2(x -+ 1) H(x -+ 2) F(x+3)=
=2(a+-b4c)=2 Ta=12 Za

(18 )

(3) x4+10x34-35x24-50x+2¢=(x+1) (x+2) (x-+3) (x-+4)
=4x3}-30x24-70x4-50= EZabc
D,y==12x34-60x+70=2, Zab=|2. Zab.
Dy=24x-460=6(4x410)=3 Ea
(4) x84+ 15x44-71x34+178x%+214x 120
=(x+1) (x+2) (x43) (x+4) (x+5)
oo D, =5x4-+80x34213x2+358%+214= Zabed
. Dg=20%3-180x%4426x+356=[2 Zabe
. Dy=00x3--360x+426==3 Cab
o Dy==120x+-360=24 (6x+15)=|¢ Za
(5) x‘-l-19x3+234x’+284x+240—(x+2) (x+38) (x14) (x+10)
. Dy=4x3{-57x%{468x -} 284==Zabe
‘. Dg=12x24114x4-468=(2 Xab
oo Dy=24x+4114=6(4x+19)=[3 Za

These exampleswill sufficeto show theinternal relationship
subsisting between the factors of a Polynomial and the success-
ive differentials of that Polynomial ; and to show how easily,

on knowing the former, we can derive thelatter and vice versa

There is another relationship too in another direction

wherein factorisation and differentiation are closely connected
with each other and wherein this relationship is of immense
practical help to usin our mathematical work. And thisiswith

regard to the use of successive differentials for the detection
of repeated factors.

The procedure hereof is so simple that it needs no ela
borate exposition at all. The following examples will serve to
show the modus operands in question :

(1) Factorise x3—4x2-+45x—2
" g¥=3x2—8x +5=(x--1)(3x—5)
Judging from the first and the last coefficients of E(the given
expression), we can rule out (3x—5) and keep our eyeson (x—1).
.. Dyg=6x—8=2(3x—4) .. We have (x—1)?
*. (Accordingtothe Adyam Adyene Sutra) E=(x—1)% (x—2)
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(2) Factorise 4x%—~12x2—~15x—4.
© Dy=12x?—24x —15=3(4x2—8x —5)=3(2x —5) (2x-+-1)
<o Da=24x—24=34(x—1) .. As before, we have, {2x+1)?
E =(@x+41)2 (x—a)
(3) Factorise x*—-6x8+ 13x2—24x}-36
" Dy=4x3 18524265 — 24 =2(2x® —9x%}-13x —~12)
=2(x—38) (2x2—3x+-4)
-+ Dy=122%--36x 426 (which has no rational factors)
" B=(x—3)% (x3+4)
(4) Factorise: 2x%—23x31-84x2—80x —64
v Dy=8x%—-69x24-168x—80
o Dy=24x2—138%+168=6(4x? —23x +28)=6(x—4) (4x—7)
o Dg=48x—138=6(8x—23)
oo Dg=6(x—4) (4x-—-7)
. Dl-(x 4)? (8x—5)
. E =(x—4)® (2x+1)
(5) Resolve x4 —5x3—9x24-81x—~108 into factors,
o Dy=4x3—-15%3—18x 481
. Dy=12x2—30x—18=6(2x*—5x ~3)=6(x—3) {2x-+1}
o Dyg=24x—30=6(4x—5)
', Dy==(x—3) (12x+86)
D1=(x—-3)'(4x+9)
E =(z—3) (x-+¢)
(6) Resolve 18x#—24x--16x—3 into factors.
S Dl-_64x°-—48x+16--16(4x3—~3x+1)
Vo Dy=10283-~48=48(4x?—1)=48(2x—1) (2x+1)
.. Dy=384x
. Dy=(2x—1) (96x+48)
" Dy=(2x—1)? (x+1)
2B o==(25—1)% (2x+3)
(7) Resolve x5-~5x%+10x3—10x24-5x—1 into factors.
. D, =5x%—20x3430x2 —-20x+5
=5(x4—4x34-6x2—4x 1 1)
. Dzz20x3——60x2+60x—20=20(x3~—3x2+3x—l)
. Dy=3x2—634-3=3(x2—2x41)

)

( 185 )

. D‘—Gx-—6-6(x—1)
. Dy=3(x—1)?
D,=4(X—-l)3
- Dy=3(x—1)
- B =(x—1)
(8) Tactorise x5 —15x3-+10x24-60x 72
- Dy —5x—45%2 20X 60 =5(x* —9x3+-4x+- 12)
D,—20x3—90x+20+—10(2x3—-9x+2)
. Dy=60x3—00=30 (2x3—3)
. Dy=120x;
. D,=20(x—2)? (x+1)
-~ D, =5(x—2)® (x+1) (x+3)
. E =(x—2)? (x-+3)?

Many other such applications are obtainable from the
Vedic Stitras relating to sewsew (Calana-K alano—Differential
Calculus). They are, however, to be dealt with, later on.
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Cuaprer XXII11

PARTIAL FRACTIOl\lS

Ancther subject o very great importancein variousmathe-
matical operations in generad and in Integral Calculus in
particular is " Partial Fractions™ for which the current systems
have a very cumbrous procedure but which the ‘Pardvartya’
Sitra tackles very quickly with its well-known MENTAL ONE-
LINE answer process.

We shall first explain the current method ; and, along-side
of it, we shall demonstrate the “Pardvartya” Sitra application
thereto. Suppose we have to express 3x&+12x+11
in the shape of Partial Fractions. (x-+1) (x+2) (x+3)

The current method is as follows:

Let— 3x3+12x+11 _ A + B 4 C
(x+1) (x+2) (x+3) x+1 x+42 x+3
2
e fi‘) ;; ‘j;)ﬁ;;ﬂ = A(X?+45x+6)+ B(x2+4x+3)
_+C(x +3x42)
{(x+1) (x+2) (x+3)
. x3(A4+B4-C)+x(5A+4B+4-3C)+-(6A4-3B+-2C)=
(8x2+12x+11)
.. Equating the coefficientsd like powers on both sides,
A+ B4 C= 3}

5A+4B-+3C=12
6A+3B+4-20=11

.Solving  these three simultaneous equations involving
three unknowns, we have, A=l ; B=I ; and C=1
1 1 1
P ita e
In the Vedic system, however, for getting the value o A,
(i) we equate its denominator to zero and thus get the
Paravartya value o A(ie. —1);
(i) and we MENTALLY substitute this value —1 in the
E, (but without the factor which is AS denominator
on the RH.S) &

(187 )

(iii) we put thisresult down asthevalue o A.  Similarly

for B and C.
Thus, _3x2419x4 113194 1,
(x+2) (x+3) 1x2 ’

- 3x%2 — .
and C_3x9+12x+11_27—36-|-11_2_l
(x+1) (z+2) (—2)(—-1) 2

=i

1,1 .1
3

+ et

x}2

Note—All  this work can be done mentally ; and al the
laborious work o deriving and solving three simul-
taneous equations is totally avoided by this method.

A few more illustrations are shown below:

(1)  2z43

1

N S
(x+1) (x+2) x+1 x42
@) 7 _ 7 _ 1
GFDETE  xF1 x+2
(3) 2x—5 _1 1
(x—2) (x—3) x—2'x—3
() 3x+13 _ 10 7
(x+1) (x+2) x}+1 x42
(8) 2x+1 . -5, 7
x2—5x+6 x—2 ' x—3
6  7x—1 —5 + 4
1—6x+6x¢8 1-2x ' 1—3x
@ __9 =3 3
xTFx—-2 x—1 x+2
(8) _x—13 _ 2 1
x*—9x—15  x+3 X—5
9) _x—5 -2 1
xXE—x—2 X1 Xx=2
(1) x+37  _ 4 _ 3
x*+4x—21  (X—3) x+7

(11) 5+2x—3x?

__(14-x) (3—3%)

®=1) (x+1)

—8-—=3x
x2—]

(x+1)? (x—1)

A 4.
x=—=1 x+1

(also available by mere
Vilokanam)
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(12) 5x 18 _ 8 2
—7x+12 x—3 ' x—4
(13) 3x=—10x—-4_ 8x—28 _ ., 6 2
(xT—6x-1-8) +(x—~2) (x—4)‘3+§1’2+;—‘4
(14) x%4-x49 9 11 15
x3+6xf+11x+6 2(x+1) T x12 Hx+-3)
(15) 2x+1 3 5 7

x3—6x’+11x——6_2(x——1)_x—2+2(x—3)
(16) 2x0—LIx412x41 _p —10x+13
x2—6x3L11x—6 (x— 1) x—2) (x—3)
2

3 4
=24 2 4 —_ = _
+x—1+x——2 x—3

Therefore, the GENERAL FORMULA is:

_6x*tmxin
‘(x—a) (x—b) (x—¢)

A la®4ma+n . _ Ib?4mb-4n, and C lc2+me-n
(@=by(a—c)' ({®—c)(b- a) ~(c—a)(c=h)

If and when, however, we find one or more factors of the
Denominator in repetition (i.e. a square, a cube etc,,) aslight
variation of procedure is obviously indicated. For example,
let E be 3x45

(1—2x)?

According to the current system, we say :

Let ;. gx—p (sothat x=122)
3-3
S E="""P
~ 5 _13-sp
pi_‘ sz
13 3 13 3

T2pF Zp 2(1—2x)® 2(1—2x)
This is no doubt a straight and simple procedure. Rut
even this is rather cumbrous, certainly not easy and certainly
not mental arithmetic! And, with bigger numbers and higher

numbers (as will be the case in the next example), it will he
still worse !
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The Vedic system however, gives US two very easy

Pardavartya methods whereby the whole work can be done
mentally, easily and speedily. They are as follows:

() sx+5 _ A& _ B
(—2z? (I—zxp 1 2x

. 3xA45=A+DB (1—2%).iiiiiinen

. —2Bx=3:and A+B=5
B=—1% and A=6}

(ii) 3x4+5=A+DB (1—2X)..cccovernn M

By Pardvartya (making 1—2x=0, ie. x=%),

we have A==6} ; and (asthisisan absolute identity)
(i.e true for al valuesof x), let us put x=0

. A+B=5 .. B=-—1}

Two more examples are taken by way of Illustration :

(1) x34+3x+1
(1—x)*

According to the current system, we say:

let 1 —x=p (sothat x=1—p)
CE= (1—P)3+3(1"P)+1

1—3p—|—3p2 3+3——3p+1

p?
5 6 ,3 1
=2 T 4Z -
pt P p* p
5 6

+ 3

1

TA—Rr —xp (1—x

(1—x)

But according to the Vedic procedure, we say :
(1) A+B (1—x)4+-C(1—x)24-D(1 —x)3=x34-3x 41
-, (A+B+C+D)4x(—B—-2C—3D) 4 x2(C—3D)—Dx®

. —D=1
. C—3D=C—3=0

. _B_2C—3D=—B—6+3=3
. AtB+C+D=A—64+3—1=1 .-,

— X2+3x+5
o D=—1
U= 3
. B=—6
A= 5
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Or, secondly, (by Pardvartya),

Put x=1 A=

Put x=0 .. A4+B4+C4D= 1) ... H=—

Put x=2 ... A~B+C—~D=I5E C= 3
D=—1

(@l of which can be done by mental Ar.i{hmetic).
(2) S42x~ox* A , B _ ¢ *
EE-D) x+1) &1 xF1

x+1
< A(x—1)4B(x2—1)4+-C(x—1)2 S A4+BC—=-5
=(—A—B+0)+x(A+20)+x¥(B4C) A+2C = 2
=542 —2x2 B4+C =—2
oo A=—4; B=—3}; and C=1
or, secondly (by Pardvartya),
Put x=1 .. 4e=5 s C= 1%
x=1 ., —2A=1 . A=— ﬁz
x=0 P B='—3i)

N.B.:—1. It need be hardly pointed out that the current
method will involve an unquestionably cumbrous
and clumsy process of working, with all the atten-
dant waste of time, energy etc.

2. Other details of applications o Pardvartya and
other Sutras to partial fractions, will be-dealt
with later.

3. Just now we take up an important part of Integral
Calculus wherein, with the help o partial fractions,
we can eagily perform difficult integrational work.

Cuaprer XXIV
INTEGRATION
By
PARTIAL FRACTIONS

In this chapter we shall deal, briefly, with the question
of INTEGRATION by meansof Partial Fractions. But, before

wetake it up, it will not beout of placefor usto give a skeleton-
sort of summary o thefirst principlesand processdf integration
(as dedlt with by the Ekddkike Sutra).
The original process of differentiation is, asis wellknown,
a process in which we say :
Let y=x3% Then D, (i.e. dTX).—_Bx" ;
Dy=6x; and Dy=86
Now, in the converse process, we have :
d_}_]—_-s 2 . dv=3 2dx
& T

Integrating, .. Jdy=f3x%dx .. y=x%

Thus, in order to find the integral of a power of x, we
add unity to the g& (Pérve ie. the original index) and divide
the coefficient by the new index (ie. the origina one plus
unity).

A few specimen examples may be taken :

(1) Integrate 28x3. [28x3dx=238x4="Tx*

(2) f(x4+48x34-6x247x—9)dx
=2x84-§x4-2x34-34x2—0x+K(where K is an in-
dependent term)
3f(x*4-x#~14-xe~2 etc)

(@) _xt  x X Fte

Rt
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(4) j(axm*l{bxmtcx®-1)dx,
_axmte bxm+1+cxm

m+2 m--1

Thisis simple enough, so far asit goes. But what about
complex expressions involving numerators and denominators ?
The following sample specimens will pake the procedure (by
means o Partial Fractions) clear :

(1) Integrate 7x—1

....Ete.

6x2—5x+1
. (By Paravartya), 7x—1 7x—1
Bx2—3x+1 (2x~—1) (3x—1)
_ 5 4
T9x—1 8x—1
(7x—1)dx
6xﬂ-5x+1_5f2x—1 3x 1

—g (1) _, (dBx)

¥ ex §- 3x—1
=§ log (2x—1)—#% log (3x—1)
_log (2x—1)5/2

(3«—-1)4/3
2) Integrate —7x+1
6x"‘+ll\: 6
(ByPavatya), x2—7x4+1 _ x2-7x41
—6x2411x—6  (x—1)(x—2)(x—3)
~_=5 .9 _ 1
2(x—1) x—2 2(x—3)
(x2—Tx41)dx __ —5 9 11
_—_Exﬁ—i-ux 6 {mx'Tl)+:<_:?z_§({l—3)}dx

=—§j‘x j‘X_Q 5 d\c

="§ log (x—1)+9 log(x— 2)‘12} log(x—S)

(3) Integrate 1
x3—-x2—x+1
Let 1 A B C
X _xz_x+1 ]—]—(x——l—)z—}—%{ ...... M

" U=AX—1) (1) 1 B(xt 1)L Cx~1)2
=A(X2—1)+Bx+1)+Cx—1)2 .o N

( 198 )

Now, let x=1 .~ 1=2B .. B=}

Differentiating (M),
0=2Ax+B4+20x—2c............... P

Now put x=1 * 2A=—4 . A=-—1}

Differentiating (P), 2A+20=0 .. 2C=} .. C=%

\Ee—l 1,1

4(x-—1)‘_2(x D" fxF1)

. dx
) -’x’——x’-—x—l—l_—kf —1)-_”@ 1‘2+i.f(x+l)

=~} log (x—1)=% log (x—1)+} leg (x+1)



for this purpose) isin the natural order and can be immediately
interpreted, is clear proof that the code language was resorted
not for concealment but for greater ease in verification etc,,
and the key has also been given in its simplest form:

CHAPTER XXV
THE VEDIC NUMERICAL CODE

It isa matter of historical interest to note that, in their
mathematical writings, the ancient Sanskrit writers do not
use figures (when big numbers are concerned) in their numerical
notations but prefer to use the letters of the Sanskrit (Deva-
nagari) alphabet to represent the various numbers! And this
they do, not in order to conceal knowledge but in order to
facilitate the recording o their arguments, and the derivation
conolusions ete. The more so, because, in order, to help
the pupil to memorise the material studied and assimilated
they made it a general rule of practice to write even the most
technical and abstruse text-books in Siitras or in Verse (which
is so much easier—even for the children—to memorise) than
in prose (whichisso much harder to get by heart and r ber).
And this is why we find not only theological, P I%E%ﬁmal),
medical, astronomical and other such treatises but even huge
big dictionaries in Sanskrit Verse! So, from this stand-point,
they used verse, Siitras and codes for lightening the burden and
facilitating the work (by versifying scientific and even mathe-
matical material in a readily assimilable form)!

The very fact that the alphabetical code (as used by them

sqrfx 7a, @fx a4, T qeaw, amees and & TR which
means:
(1) ka and the following eight letters;
(2)ta and the following eight letters;
(3) pa and the following four letters;
(4) ya and the following seven letters; and

(5) ksa (or Ksudra) for Zero.
Elaborated, this means:

(1) ka, ta, pa and ya all denote 1;

(2) kha, tha, pha and re all represent 2;

( 195 )

(3) ga, da, ba and la al stand for §;
(4) gha, dha, bha and va al denote 4
(5) gna, na, ma and sa al represent 5;
(6) ¢a, ta, and éa al stand for 6;

(7) cha, tha, and sa all denote 7;

(8) ja, da and ke all represent 8;

(9) jha and dha stand for 9; and
(10) Ksa (or Ksudra) means Zero!

The vowels (not being included in the list) make no differ-
ence; and in conjunct consonants, the last consonant is alone
to be counted.

Thus pa pa is 11, ma ma is 55, ta ta is 11, ma ry is 52 and 8o
on!

And it was left to the author to select the particular
consonant or vowel which he would prefer at each step. n
generally, the poet availed himsdlf of this latitude to so frame
his selections as to bring about another additional meaning
(or meanings) of his own choice. Thus, for instance, kapa,
fapa, papa and yapa al mean 11; and the writer can (by a
proper sdection of consonants and vowels) import another

meaning also into the same verse. Thus "'l want mama and
papa” will mean " | want 55 and 117!

Concrete, interesting and edifying illustrations will be
given later on (especialyin connection with recurring decimals,
Trigonometry etc. wherein, over and above the mathematical
matter on hand, we find historical alusions, political reflections,
devotional hymns in praise of the Lord Shri Krishna, the Lord
Shri Shankara and so on!)*

Thisdeviceis thus not merely a potent aid to versification
(for facilitating memorisation) but has aso a humorous side to
it (which adds to the fun of it)!

*The hymn (in praise of the Lord) gives us the vaue
o {3 to 32 decimal places (in Trigonometry).



\

CuaPTER XXVI

RECURRING DECIMALS

I t has becomea sort of fashionablesign o cultural advance-
ment, not to say up-to-datism, for people now-adays to
talk not only grandly but also grandiosely and grandiloguently
about Decimal coinage, Decimal weights, Decimal measurement6
etc.; but there can be no denying or disguising of the
fact that the western world as such—-not excluding its mathe-
maticians, physicists and other expert scientists-seems to have
a tendency to theortse on the one hand on the superiority of
the decimal notation and to fight shy, on the other, in actual

practice*—of decimalsand positively prefer the*vulgar fractions"
to them!

In fact, this deplorable state o affairs has reached such
a pass that the mathematics syllabus—curricula in the schools,
colleges and univorsities have been persistently "*progressing”
and "advancing” 1n this wrong direction to the extent of
declaring that Recurring decimals are not integral parts o the
matriculation course in mathematics and actually instructing the
pupils to convert all recurring decimals AT SIGHT into their

equivalent vulgar fraction shape, complete the whole work
with them and finally re-convert the fraction result back

into its decimal shapel

Having invented the zero mark and the decimal notation
and given them to the world (as described aready from the
pages o Prof. Halstead and other Historians of Mathematics),
the Indian Vedic system has, however, been advocating the
decimal system, not on any apriori grounds or because of
partiality but solely on itsintrinsic merits. 1ts unique achieve-
mentsin this direction have been of a most thrillingly wonderful
character : and we have already—at the very commencement of
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this illustrative volume—given a few startling sample-speci-
mens thereof. The student will doubtless remember that, at
the end of that chapter, we promised to go fnto fuller details of
thissubject at a later stage. In fulfilment of that promise, we
now pass on to a further exposition of the marvels of Vedic
mathematics in this direction.

Preliminary Note
We may begin this part o this work with a brief reference

to the well-know1 distinction between non-recurring decimals,
recurring ones and partly-recurring ones.

(i) A denominator containing only 2 or 5 as factors
gives us an ordinary (i.e. non-recurring Of non-circulating)
decima fraction (each 2, 5 or 10 contributing one significant
digit to the decimal). For instance,

1
t=sit= =25, 3=__1 125,

1 1 _. R |
T oxaxa 0% dr=

3=2; fo="1; gg="05; y’x=é§='04 B

] 1 1

Tk 0% P g0

=1 _ o105 1 _ ..
o 1028 0125 ’I%uzm— 01 ; and so on.

(i) Denominators containing only 3, 7, 11 or higher prime
numbersas factors (and not even asingle 2 or 5) giveus recurring
(or circulating) decimals whicn we shall deal with in detail in
this chapter and in some other later chapters too.

$=:3;3=-142857; }="1; ft="09;
Fo="076923 ; = 05882352/94117647 ;
fs= 052631578/947368421 ; and so on.

Ty
(iii) A denominator with factors partly of the former type

(i.e. 2 and 5) and partly of the latter type (ie. 3, 7, 9 etc.,)
givesus a mixed (i.e. partly recurring and partly non-recurring)
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decimal, (each 2, § or 1¢ contributi ng one non-recurring digit
to the deci mal)

2X3 x5
=1 05 a—=_1 —-045
=g~ 05 g M
,:,:23;3:0416; and so on.

N.B.:—(i) Each 8 or 9 contributes only onerecurring digit ; 11
gives2 o them ; 7 gives 6 ; and other numbers make
their own individual contribution (details of which
will be explained later).

(i) In every non-recurring decimal with the standard
numerator {i.e. 1), it will be observed that the last
digit of the denominator and the last digit of the
equivaent decimal, multiplied together, will aways
yield a product ending in zero; and

(iti) In every recurring decimal X with the standard
numerator (i.e. 1}, it will besimilarly observed that
g will invariably be thelast digit of the product of
the last digit o the denominator and the last digit
o its Recurring Decimal Equivaent (nay, the
product is actually a continuous series of NINES)!

Thus, 4=-5;3="2;fp='1;}="25;%="125;

Te="0625; gg="04; i5=="008; etc.

And  $=-3; }="142867; }="1; fp="00;
F5=="676923 ; etC., elc.
And this enables us to determine beforehand, the last digit of
the recurring decimal equivalent of a given vulgar fractlon
Thus-ﬁ,lnltsdecnmal shape must necessarily epd in 7 ; ¢y in 1;
Frin 8; g% in 3; and so on. The immense practical ut|I|ty of
thisrule in the conversion of vulgar fractionsinto their decimal
shape has already been indicated in the first chapter and will

be expatiated on, further ahead in this chapter and in subse-
guent chapters.

]
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Let usfirst take thecasedf % and its conversion 7)1.0(.1:4285";
from the vulgar fraction to the decimal shape. 7
We note here: 30

(i) that the successve remainders are 28
3,2 6 4,5and 1 and that, inasmuchaslisthe  ~20
original figure with which we started, the same 1_4.

remainders are bound to repeat themselvesin a0
the same sequence (endlessly). And this is 56
where we stop the division-process and put the ~0
usual recurring marks (the dots on the first 36
and the last digits) in order t¢ show that the 60
decimal has begun its characteristic (recurring) 49
character. -

1

At this point, we may note that inasmuch as the first
dividend 10 (when divided by 7) gives ua the first remainder 3,
and, with a zero affixedto it, this 3 will (as 30) become our
second dividend and inasmuch as this process will be continuing
indefinitely (until a remainder repeats itself and warns us that
the recurring decimal'srecurring character has begunto manifest
itself, it stands to reason that there should be a uniform ratio
in actual action. In other words, because the first Dividend
10 gives us the first remainder 3 and the second dividend 30,
therefore (danurapyena i.e. according to the ratio in questior
or by simple rule of three), this second dividend 3 should
give usthesecond remainder 9! In fact, it is a “‘Geometrical
Progression” that we are dealing with!

And when we begin testing the successive remaindersfrom
this standpoint, we note that the said inference (about the
Geometrical Progression with the common ratio ! : 3) iscorrect
For, although, when welook for 3X 3=9 asthe second remainder,
we actually find 2 there instead, yet as 9 is greater than 7 (the
divisor), it is but proper that, by further division of 9 by 7,
we get 2 as the remainder. And then we observe that this
second remainder (2) yields us the third remainder 8, and
thereby keeps up the Geometrical Progression (with the same
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ratio 1 : 3). |n the same way, this6 gives us 18 which (being
greater than the divisor and being divided by it) gives us 4 as
the fourth remainder. And 4 gives us 12 which (after division
by 7) gives us § as the fifth remainder ! And, by the same
ratio, this 5 gives us 15 which (when divided by 7) gives us 1
as the sixth Remainder. And as this was the dividend which
we began with, we stop the division-process here!

The fun o the Geometrical Progression is no doubt
there; but it is not for the merefun 7)1.0(G.P. 1, 3,2, 6,4,5
of it, but also for the practical utility 7
of it, that we have caled the 73
student's attention toit. For, inthe
actual result, it means that, once we know the ratio between
the first dividend and the first remainder (I : 3 in the present
case), we can—without actual further rlivison—automaticaly
put down al the remainders (by maintaining the 1 : 3 Geo-
metrical Progression). For example, in the present case,
sincetheratio isuniformly 1 : 3, therefore the second remainder
is 9 (which after deducting the divisor), we set down as 2;
and so on (until wereach1). Thusour chart readsasfollows:

1, 3,26, 4,5

Yes; but what do we gain by knowing the remainders
beforehand (without actual division)? The answer is that,
as soon as we get the first remainder, our whole work is practi-
caly over. For, since each remainder (with a zero affixed)
automatically becomes the next dividend, we can mentally do
this affixing at sight, mentally work out the division at each
step and put down the quotient automatically (without worrying
about the remainder) ! For, the remainder is aready therein
front of us!

Thus the remainders 1, 3, 2,6, 4 and 5 give us (Dividend digits)
the successive dividends 10, 30, 20,60,40 and 1, 3, 2, 6, 4, 5

50 ; and, dividing these mentally. by 7, wecan T 4 2 8 5 7

go forward or backward and obtain al tlie (Quotient-digits)
quotient-digits 1, 4,2, 8, 5, and 7. And, asit

is a pure circulating decimal, our answer is 112857 !

o
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Thereis, however, a still. more wonderful Vedic method by
whieh, without doing even this little division-work, we can put
down the quotient-digitsautomatically (forward or backward,
from any point whatsoever)! The relevant Sitra hereon
says: fwreag T (Sesdnyankens Caramena and means: The
Remainders by the last digit):

As explained in another context (in the very first chapter
of this volume), the word by indicates that the operation is not
one of addition or of subtraction but of divison and of
multiplication !

The division—process(whereby weaffix azero to1, 3, 2 etc.,
divide the product by 7 and set down the quotient) has been
shown just above. We now show the reverse process of multi-
plication, which is easier still.

In so doing, we put down not the dividend—nucleus
digits but the remainders themselvesin order : 3,2,6,4,5,1.

And, as we know from a previous paragraph that 7 is the
last digit, we multiply the above-given remainders by 7 and put
the last (i.e. the right-hand-most digit) down under each of the
remainders (totally ignoring the other digit or digits, if any,
of the product)! And lo! the answer is there in front of us
again, (realy looking more like magic than like mathematics) !
Thus, (Remainders)
3,2,6,4,5,1
142857
(Quotient-digits)
3 multiplied by 7 givesus 21 ;
and we put downonly 1 ;

2 X 7 givesus14; and we put downonly 4 ;

6 X 7 givesus42 ; and we put down only 2 ;

4 X 7 gives us 28 ; and we put down only 8 ;

5 X 7 givesus 35 ; and we put down only 5; and

1 x 7givesus 7;and we put down 7,

And the answer is «142857
81
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At this point, we may remind the student of a very
important point which we have aready ex- 7)1-0 {-142
plained in chapter | (regardingthe conversion 7 ( 857
of v g and gy to their recurring decimal 30
shape). Thisisin connection with the facts 28
that thetwo halvesdf these decimastogether —_
total a seriesof N NES; that, once half the 20

answer is known. the other half can be had 14
by putting down the complements (from 60
nine) of the digits already obtained; and 56
that, astheending o thefirst half of theresult 40
synchronises with our reaching of the 3
difference between the numerator and the 60
denominator as the remainder, we know when 49
exactly we should stop the division (Or multi- 1

plication, as the casemay be) and begin the
mechanical subtraction from 9 of the digits already found!

The student can easily realise how, inasmuch as this
rule is applicable to every case (wherein D« N comes
up as a Remainder), it therefore means an automatic reduction
of even the little labour involved, by exactly one-half!

Going back to the origina topic (re: the converson o
vulgar fractions into their equivalent decimal shape and how
the Geometrical Progressional ratio can give us beforehand—
without actual divison—al the remainders that will come up
in actual division), we now take up ¢; as another illustrative
example and observe how the process works out therein :

(1) (i) ¢ Herethe successive Dividends— 13)1-00 (076

hucleus—digitsare 1, 10, 9, 12, 3 and 91 ( 923
4. Affixing a zero to each of them 90 999
and dividing the dividends by 13, %go
weget9, 7, 6,9 2and 3 asthefirst 117
digits of the quotient in the answer. -0
26
40
0
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(if) Or, secondly, re-arranging 13)L-00(G.P.1,10,9,12,8,4

9 the remainders so as to 0 76 923
start from the first actual remainder, we have:

10, 9, 12, 3, 4 and 1. And multiplying these by

(the lost digh of the . 160,012,341

4 answer in the present case), 07 6923

we put down merely the

right—hand—most digit of each product ; and these

are the successive quotient—digits! Here too, as

usual, we go forward or backward (or in any sequence

which we may choose). And the answer is -076923

(iii) And here too we observe, in operation, the rule about
complementsfrom NINE | And it commences 076
fromthe point st whioh we obtain 12 (the differ- gog
ence between the Numerator and the deno- 999
minator) as the Remainder.

(iv) In the above charts, we may avoid big numbers by
using aminus wherea big number isthreatened. Thus,
instead of taking 8 (asin the 3 Q=27

" case o 7), we may take —38 as GP. 1, {09, "3 cte.
the common geometrical ratio and will find the
Geometrical Progression intact; and naturaly the
product o each _ 8 09 a1 —838 —9 ~1
remainder-digitby the ‘0"’3’ gé’ 5 ﬁ §
last digit remains in- R .
tact too and gives us the same answer: 0769231

We pass now on to still another and easier method which
comes under the Ekadhikd Sutre which we have expounded
and explained at sufficient length already (in the first chapter)
and which therefore we need only summarise and supplement
here but need not elaborate again.

The Ekadhika Sutre (Which means 'by the preceding one
increased by one’) has aready been shown at work in a number
o ways and in a number o directions and on a number of
occasions and will similarly come into operation still further,
in many more ways and in many more contexts.

- ——————
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Numbers ending in Nine
(i) If and when the last digit of the denominator is 9, we
know beforehandthat the equivalent recurring decimal endsin 1.
(i1) In thecase of ¢, thelast but onedigitis1; weincrease
it by 1 and makeit2. In g% wework with 24-1=3. In ¢ and
in #y, We operate with 4 and 5 respectively and so on.

(iii) In the multiplication-process (by Ekidhika Phrva),
in al these cases, we put 1 down as the last digit (i.e. in the
right-hand-most place); and we go on multiplying that last
digit (1) from the right towards the left by 2, 8, 4 and 5 respec-
tively ; and when there is more than one digit in that product,
we set the last of thosedigits down thereand carry therest of it
over to the next immediately preceding digit towards the left.

(iv) When we get D » N as the product, we know we have
done half the work ; we stop the multiplication there; and we
mechanically put down the remaining half o the answer (by
merely taking down the complements from NINE).

(v) The division-process (by Ekddhika Sutra) follows the
same rules (vide Supra).
(1) We may first consider the fraction % as our first illus-
tration of the method described :
(i) Putting 1 asthe last digit and continually multiplying
by 2 towards the left, we get the last four digits (towards the
left) without the least difficulty.

(i) 8X2==16. Therefore put 6 down immediately to the
left of 8 (with 1 to carry over). 6 x2--the 1 carried over—13.

Put the 3 to the left of the 6 (with 1 to carry over). 3x24+1=7
Set it down beforethe 3 (with nothing to carry over). 7x2=

14. Therefore put the 4 before the 7 (with 1 to carry over)
4x2+the 1 carried over=9.

(iii) We have thus got 9 digits by continual multiplication
from the right towards the left. And now 9 x2=18 (whichis
D« N). This means that haf the work is over and that the
earlier 9 digits are obtainable by putting down the complements
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(from NINE) o the diaits alreadv defermined. So, we have
&=0052631578/947368421

(2) Let us now examine the case of y:

Begin with 1 (asusud) at the extreme right end and go
on multiplying by 3 each time, "'carrying over" the surplus
digit or digits (if any) to the left (i.e. to be added to the next
product to be determined. Thus, when we have obtained 14
digits i.e.

..................... 96551724137931,
we find that we have reached 28; we know we have done half
the work ; and we get the first 14 digits by simply subtracting
each o the above digits from NINE.
-034482758620681
3ygso03448275862068&6551724137931
(3) Next let us take #7

Take 1 again at the extreme right end and continually
multiply by 4 from the right to the left. Thus, we have:

dy="025641.

Note in thiscasethat *.* 39 is a multiple d 3 and 13 and
not a prime number (like19 and 29) and '+ 3 and 13 give only
1 and 6 recurring decimals, there is a differencein its behaviour
i.e. that the two halves are not complementary with regard to
9hut only inrelationto 6! In fact, D “ N (i.e. 38) doesnot come
up at al as an interim product (as 18 and 28 did). And so,
the question of complementsfrom 9 does not arise at all ; and
the decimal equivalent has only 6 figures (and not 38)!

The reason for thisis very smple. Asgy=1%~+3,as{ghas
only 6 recurring decimalsin its decimal equivalent and because,
for reasonsto be explained a little later, this decimal equivalent
of 2 isexactly divisibleby 9, much morethereforeisit divisible

by 3. And, consequently, when we divideit by 3 and exhaust
the six digits, we find that there is no remainder left. In other
words, ¢ has only 6 digits in its recurring decimal shape.

These have been obtained by the self-same Ekadhike pro-
cess as served our purpose in the case o & and #¢
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We next take up and examine thecase df 2, which, besides

following the rules hereinabove explained, has the additional
merit of giving us the clue to a still easier processfor the con-

version of vulgar fractionsinto their recurring decimal shape:
(1) 5, _ 1 _ -ido857

k1 "‘"—‘x7— 7

(i) If =~ wegoondividingl by 49 or .1a2857 by 7
(until the decimal begins to recur), we shall doubtless
get our answer. But this will mean 42 steps of |abo-
rious working and is therefore undesirable.

(ii) We therefore adopt either of the Bkddhika methods
and go on multiplying from right to left by 5 or
dividing from left to right by 5.

(iiiy On completing 21 digits, wefind48 (i.e. D «» N) coming
up and standing up before us; and we mechanically
put down the other 21 digitsas usua (by the subtrac-
tion, from 9, of the digits aready obtained). And
the answer is:

2, =0'020408163265306122448

979591836734603877551

(iv) And this gives us the clue just above referred to about
astill easier method (than even the Ekadhika ones) for the con-
verson o vulgar fractions into recurring decimals. And it is
as follows:

By actual division (of 1 by 49), we 49)1-00 ( +20408
observe that the successive remainders 98
arein Geometrica Progression (with the 200
commonratio 1: 2) that the dividendsare 196
similarly related and that each set of two 200
digits in the quotient is also sorelated to
its predecessor. In other words, this connotesand impliesthat,
after putting down 02, we can automatically put down 04,
08, 18 and 32 and so on.
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But when we reach 64, we find that 2x84==128 i.e. has
3 digits. All that we have to do then isto add the 1 of the
128 over to the 64 already there, turn it into 65 and then put
down not 28 but the remaining part of double the corrected
figure 85 (i.e. 30) and carry the process carefully on to the very
end (i.e. until thedecimal startstorecur). Wethereforehave:

0~020408163265306122448

2oz

0= 970501836734693877551

This new method does not apply to all cases but only to
some specia cases where the Denominator of the given vulgar
fraction (or an integral multiple thereof) is very near a power
o ten and thus lendsitself to thiskind of treatment. !N such
cases, however, it is the best procedure of al.

Note:—The rule o complements (from 9) is actualy at work
in this case too; but, inasmuch as (for reasons to be
explained hereafter), the actual total number o digits
is 42, thefirst half of it ends with the 21st digit and as
we have been taking up a group of two digits at each
step, we naturally by-pass the 2lst digit (which is
conceded, so0to speak, in the middle of the iith

group). But, even then, the double-digit process is
so very Smple that continuation thereof can present

no difficulty.
Other Endings

So far, we have considered only vulgar fractions whose
denominators end in 9. Let us now go on to and study the
casesd §, 45, ¥4, 9% and other such fractions (whose denomina-
tors end not in 9 but in 1, 3 or 7).

(i) Here too, we first make up our minds, at sight, as
regards the last digit o the decima equivalent.
Thus, Denominatorsending in 7, 3 and 1 must neces-
sarily yield decimalsendingin 7, 3 and 9 (so that the
product o the last digit of the denominator and the
last digit of the decimal equivalent may end in 9.)
Let us start with the case of %.
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(ii) Put down % in the shape =
(iii) Teke 5 (one more than 4) as the Ekadhkike Pirva
for the required multiplication or division (as the
cae may be).

(iv) Thus start with 7 at the right end 857
23

(v) Multiply it by 5 and set down 36 as shown in the
marginal chart.

(vi) Multiply 5 by 5, add the 3 to the product and
set 28 down in the same way.
Now,5X 84+2=42. ButthatisD. N 142 857
Therefore put 142 down as the first 25
half (accordingto the complements
rule) . 3='142/857
O 3=y
The Ekadhika being 5, divide7by5 42 /85
and continue the division as usual gy 4 4
(with the same rule of procedure).
After getting the three quotient-digits 1, 4 and 2

you find 42 as the remainder before you. Sotackle
the last 3 digits (accordingto the complementsrule)

and say :
3= Jy="142/857

(2) Let us now take thecase of ¢y =g :
(i) The last digit is 3the last digit .55 g /923
(in the answer) will be 3. 076/923
23
(ii) The Ekadhika (multiplier or divisor) is .4,
(i) pg=45. After 3digits (whether by multipliction or
by division), 36 (Dw N) comes up. gg the other
haf is mechanicaly set down. apq we say:

£5—"076/923
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(3) Next, let ustake fy=fy -
(i) The last digit is 1. The last digit 0/9
(of the answer) will be 9. 9/

(ii) The Ekddhika (in both ways) is 10.

(iii) Immediately after the very first digit, we get 90
(which is 90+~ 9) before us. So, the complementst
rule operates.

(iv) And, in either case, we get Jy=-0/9
(4) fy=4% (giving 7 as Ekadhika) and 3 asthe |ast digit of the
answer.
~ (By both methods, Multiplication and Division).

004347826086
IS~ 95652173913

(5) Pr=1x¥9 (0iving 12 as Ekidhika and 7 as the last digit)
.~ By both the methods (multiplication and division).
we have: .
Fr=yly=05882852/94117647

The Code Language at Work.

Not only do the Vedic Sitras tell us how to do al this
by easy and rapid processes of mental arithmetic; but they
have also tabulated the results in the shape of special sub-Sitras
(containing merely illustrative specimens with a master-key
for ""unlocking other portals" too). The abstruser details
(and the master-key) are not given here ; but a few sample-spe-
cimens are given of the way in which the code and the Eka-
nyiina Satra (explained in Chapter 2) can be utilised for the
purpose o postulating mental one-lineanswers to the questions
in question. The three samples read as follows :

(1) s wd T (Kevalash Saptakam Gunydt) ;

@) 7ot e (Kalau Ksudrasasaih) - and

(3) %% sTrTTESRS: (Kamse Ksamadaha-khalairmalaih)

Inthefirst of these, Saptaka means 'seven' ; and Kevalath
represents 143 ; and we are told that, in the case of seven, our
multiplicand should be 1431

21
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In the second, Kalau means 13 and Ksudrasasaih repre-
sents 077 ; and we are told that the multiplicand should be
077! and,

In thethird, Kamse means17; and Ksama-dihe-khalair-
malaih means 05882353 ; and we arc told that the multiplicand
should be this number of 8 digits!

Now, if we advert to the “Ekanyana” corollary of the
Nikhilam chapter (on multiplication), we shall be able to
remind oursleves of the operation in question and the result
to be achieved thereby. Let us do the multiplications accord-
ingly (as directed) and see what happens.

(1) In the case o 7 (asdenominator), 143x 999=142/857 ;
andlo! these are the six recurring decimal digitsin the answer !

(2) Inthe case df 13,077 x 999=076/923 ; and these are the
six digits in the recurring decimal equivalent of ! and

(3) In the case o 17, 05882353 99999999=05882352/
94117647 ; and these are the 16'recurring digits in the recur-
ring decima equivaent o £5!

In all the 3 cases we observe the Rule o Complements
(from 9) at work. And the sub-Siitra merely gives us the
necessary clue to the first half of the decima and also a smple
device (Ekanytunena) for arriving at the whole answer! And
al this is achieved with the help o the easy alphabet-code!

These results may therefore be formulated as follows:

143999 __ 142857 __ .| -
Y="go0995 000000 |00

077 x999__076923__ .. 2.
= "Goo000 —oomoo 0 o0 24
1 05882353 X 99999999

17 9990999999999999
= -05882352/94117647 !
And, by CROSSmultiplication, we get from the above,
the following results:
(1) 7x142857 =999999 ;
(2) 13x076923=999999 ; and

(3) 17X 05832352194117647
=9999999999999999 (16 digits in all)!
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And, just in passing, we may note that thisis the reason
why, in the case of al these vulgar fraetions, the last digit of
the denominator (9, 3, 7 or 1, as the case may be) gives, 1,3,7
or 9 before-hand as the last digit of the equivalent recurring
decimal fraction !

The binder-Quotient Complements-Cycles.

We have already - again and again - noted the fact that,
in the various typical cases observed and analysed by us, the
two halves d the quotients (added together) give us a series
of NINES. We shall now proceed alittle bit further and try to
seeif there beany such (or similar) rulegoverningthe remainders.
For the purpose of the necessary experimentation and investi-
gation, let us take up a more detailed consideration of the
remainders obtained in each case by successive divisions of
the numerator by the denominator ; and let us start with .

We know the successive Remainders are 3, 2, 6, 4, 6 and
1. We know already that, on reaching 6 (i.e. D «N) as the
remainder, half the work has been completed and that the
complementary half is about to begin. Putting the
above 6 figures, therefore, into two rows of three 2{25?
figureseach, we have:
and we observe that each vertical column (of one digit from the

upper row and of one from the lower one) gives 3 2 6
us the same total (i.e. 7) ! 471——9—%

N.B. :—As our divisoris 7, it is but natural that no remainder
higher than 6 is permissiblei.e. that the only possible

remaindersare 1, 2, 3, 4, 5 and 6. (And these are the
ones we actually find).

Let usnow take up the cave of 4 and note what happens.
The successive remaindersare 10, 9,12, 3,4 and 1 (the highest
of whichis12). And whenthey areplaced 10 9 12/3 4 1
in two rows, we find here too, that the last

three remainders are complements—from lg 2 1?_
13—af the first three remainders. 13 13\13
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In the oase of # the successive remainders are:
10 15 14 4 6 9 5 16/72313118121
7 2 31311 812 1

17 17 17 17 17 17 17 17

The last 8 remainders are thus complements—from 17--of
the first eight ones!

Yn the case of 19, the Remainders are:
10 15 12 6 3 11 15 17 18
9 4 7 13 16 8 4 2 1
19 19 19 19 19 19 19 19 19

Here again the first nine remainders, when added
successively to the next nine, give 19 each time.

Thus, it is clear-that, whereas the quotient-halves are
uniformly complements from nine, the remainder-halves are
complements from the individual divisor in each case. And
this further reduces our labour in making out a list o the Re-
mainders.

Multiples of the Basic Fractions.

Thus far, we have dealt with vulgar fractions whose
numerator isunity. But what about fractions which have some
other Numerator 2 And the answer is: "There are severa
simple and easy methods by which, with a tabulated list before
us d the results obtained by one or more o the processesabove
expounded, or even independently, we can readily put down
the Recurring Decimd equivalents o the vulgar fractions o the
type just under discussion.

Let us, asusual, start with 3 and framea chart asfollows-

L==.,142857
3985714
$=-428571
$=-571428
§=-714285 ; and
$=-857142
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In this chart, we observethat, in all the'* proper' fractions
having 7 as their Denominator,

(i) The same six digits are found as in the case o ¥:

(ii) they come up in the same sequence and in the same
direction as in the case of %;

(i) they, however, start from a different starting-point
but travel in "Cydic" order (in what is well-known
as the "Clock-wise'" order).

(iv) and with the aid of these rules, one can very easily
obtain the recurring decimal equivaent of a vulgar
fraction whose numerator is higher than 1.

In fact, a person who is actually looking at a statement
(on a board a piece of paper, a slate etc.,) to the effect that

=.142857, has several easy alternative processes to choose
from for determining the decimal equivaents d al the other
five possible fractions having the same denominator (i.e. 7).
They are as follows:

The First Method.

1. The verious digits can be numbered and marked
in ascending order of magnitude, thus:

(i) Unity being the least o (1) (3) (2) (6) (4) (5)
them, thecyclefor )starts 1 4 2 8 & 7
with one as its starting
point, travels in clock-wise cyclic order and reads:

142857 ;

(ii) 2 being the second, % starts with 2 and gives us the
answer -285714 ;

(iil) There being no 3 at all, the third digit in ascending
order |s4 S0 # beginsfrom 4 and reads:

428571

(iv) The next digit (ie. the 4th) in ascending order
actually bemg 5, 4/7 begins with 6 and gives:
671428
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(v) Thefifth digit actually being 7, 5/7 commences with 7
end reads:
-571428 ; and
(vi) The 6th and last digit being 8, the sixth and last

fraction (i.e. $) starts with 8 and says:
857142

Thid*is the first method.

Yes, but what about those casesin which the number of
decimal placesis morethan 10and thus, in the tabulated answer
before us, some digits are found more than once?

Yes, it is perfectly true that, just as some digits are found
absent [as in the case of % (just seen)], there are other cases
where the same digits are found more than once. In fact, in
every case wherein the number of decimal places is more than
10, this is bound to happen; and provision too there must be
against it. In fact, the remedy is very simple i.e. that, even
where digits occur more than once, there still are gradations;
and, if these are taken into account, the cyclic order and the
ascending order of magnitude will still operate and serve their
purpose.

For example, in the case of 4, we have ,05882..... atthe
very commencement ; and there are two eights before us.  Yes,
but 88 is greater than 82; and therefore we should take 82 first
and 88 afterwards and do our numbering accordingly:
M=0 58 823529411 7 6 4 7

(1) (10) (13) (14) (4) (6) (9) (5) (16) (7) (2) (3) (13) (11) (8) (12)
Thus, ¢, startswith zero; o with 11; % ; with 17 ; & with 23;
#r With 29; f with 3; % with 41; % with 47; & with 52; ¢
with 58; 3% with 6; 13 with 70; 1§ with 76; 14 with 82; 15 with
88 and }§ with 9. Thearranging in ascendmg order of magni-
tude has, of course, to be done carefully and correctly. But it
must be admitted thst, although the procedure of counting and
numbering is quite reasonable and scientificaly correct, yet
it is rather cumbrous, clumsy and tiring. Hence the need for
other methods.
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Yes; but what again about the cases wherein the number
o digits in the decimal equivalent is much less than the deno-
minator of the vulgar fraction in question and has thus no
scope for meeting all the possble demands?

Yes, fg issuch acase. The number of possible multiples
is 12; and the number of digits in the decima equivaent is
only 6. (for #g=-076/923). What is the remedy ?

The remedial provisionisthat a multiple or two will do the
trick quite satisfactorily and neatly.

Now, 5= 076923

*, (By simple multiplication by 2),

£5='153846

And now, there are twelve digits in al; and these can
meet the needs of al the possible multiples.

Thus—g="076923 ; and fy=="153846

& 15="230769 ; and ,4,~ *307692
o Py==384615; and ,__ -461538
S fg==:538461; and = -815384
. f5=-692307; and }$=-769230
o 13=-846153; and 1§="-923076

The procedure isthere and is quite correct.  But, after al,
one must confess that, even with this device, this counting
and numbering procedure is still a cumbrous, clumsy and
tiring process. Hence, let usrepeat, the need for other methods.

The Second Method

The second method is one wherein we avoid even this num-
bering and marking etc., and (in accordance with the ddyam
Adyena rule), multiply the opening digit or digits of the basic
decimal fraction (- 142857) and determine, therefrom the starting
point for the multiple in question. Thus, -142857

', 1 starts with *14...... ... 2 should start with -28 etc., and
(in clockwise cyclic order) give -285714 ;

$ ought to startwith -42 etc.,and give 428571 ;
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$# must start with -38 ; but there is no ‘56 but only -57
before us; and so (making alowance for a possible nay, the
actual—earrying over of asurplus digit from the right leftward),
we start with 67 and say: #$=-571428;

Similarly § should start with +70 ; but (for the same reason
as in the immediately preceding case), it actualy starts with
71 and giyes us: -714285; and ¢ should start with -84,
actually starts with -85 and yields the answer: 857142 !

This is the Second method.

The Third Method
The third process is very similar; but it basesitself not
on Adyam Adyena but on Antyam Antyena. |n other words,
it deals not with the opening digit but with the closing one.

Thus,
& }endswith 7, .142857°
 pmust end with 4 . Itis -985714
.~ § should end with 1 =, It is +428571
. % oughttoend with 8 .. It is -571428
. & should end with 5 = It is -714285
and .~ ¢ must end with 2 . Itis 857142
This is the third method and the easiest and therefore
the best of the lot.

I ndependent method

The above described methods are al for the utilisation
o our knowledge of the decimal shape of a fraction whose nume-
rator is unity, for deriving the corresponding decimal form
d any multiple d that fraction. This is al right, so far as
itgoes. But what about a person who hag not got such a ready-
to-hand table to refer to? In such a case, should one newly
prepare the basic chart and then manipulate it--cyclically —
(in one o the ways just explained), for getting the required
result ¢

That would, of course, be absurd. For use by such
persons, we have too, a totally indépendent method, by which,
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without resorting to any such previously prepared (or newy
prepared) table, one can readily deal with the particular fraction
on hand! And the whole modus operandi is exactly the same
as has been aready explained in respect of the basic fraction
and without the slightest difference or deviation in any particular
whatsoever therefrom.

For example, supposeyou haveto decimdise 4. Your last
digit will be 1. and as §=4}. your Ekddhika Piarva will be
5 Now, go on dividing by 5, in the usual manner; and you get

the chart, as explained in the margin: §=$3= '144227/57i

After you get the first three digits 4 2 and 8, you find that

your dividend is 28 ; but thisis D wN (i.e. 49—21). So you

may stop here and put the last three quotient-digits down as

5 7 and 1 (the complements, from nine, of the digits already

found).

Or you may continue the division till you get 21 as the
dividend; and as this was your starting-point, you may put
the ¢ digits down as a “Recurring” decimal.

Thus §=-428571

Try this With %, 34, ¥ and o on, with any number of
cases. And you will alwaysfind the samething happening right
through all of them. Thus, for those who do not have a tabu-
lated schedule before them, this absolutely independent method
is also there: and you can make full use o it.

Note :—1, In this independent method, it should also be noted
that if wehavetodecimalise ¥, %, %, %, §, etc.,we
havemerely to divide 10, 20, 30, 40, 50 etc.,, by 7
and put down that remainder as the first remainder
in each particular case and that: the work can be
done automatically thereafter.

9. Of, we may pre-decide the last digit in each case by
taking the last digits of 7. (1) 4, (2) 1, (2) 8, 3(5),
(4) 2 as the last digits of the decimal equivalent of
» 4 84 §and gl

28
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Recapitulation (and Supplementation)

Over and above the ones expounded and explained herein-
above, there are several other very instructive and interesting
principles, features and characteristics characterising this
guestion of the conversion of vulgar fractions into decimal
ones (in respect o the remainders, the quotients etc.). For
the benefit of the students, we propose now to recapitulate,
summarise, supplement and concludethis portion of the subject :

(1) As regards the remainders, we have noted that, as
soon as Dw N comes up before us as a remainder, the remaining
remainders are al complements—from the divisor (i.e. the
denominator) —of the remainders already obtained ;

(2) This automatically means that the quotient—digits
already oObtained and the quotient--digits still to be found,
are complements from Nine!

(3) If we take any remainder and multiply it by the
Caramdnke (the last digit), the last digit of the product is
actually the quotient at that step.  (The formulahere is Swifs
#%7 w3 (Sesons Ankena Caramena) which is therefore of
the utmost significance and practical utility in mathematical
computations.  For instance,

(1) ) Theremaindersare 3, 2, 6, 4, 5 and 1. Multiplied by
7 (the Caramanka) these remainders give successively
21, 14, 42, 28, 35 and 7. Ignoring the left-hand side
digits, wesimply put down thelast dight (Charamarka)
o each product ; and lo! We get 3=-142857!

(2) #5 Theremaindersare10, 9,12, 3,4and 1. Multiplied
successively by 3 (the last digit), these remainders
give 30, 27, 36, 9, 12 and 3. Ignoring the previous
digits, we write down merely the Caramankas the
last digit) of each product; and 10! 2 ="0796231

(3) v Theremainders are 10, 15, 14, 4, 6, 9, 5, 16/7, 2,

3,13, 11, 8,12 and 1. Multiplied by 7, they give us
successively :

e
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70, 105, 98, 28, 42, 63, 35, 112, 49, 14, 21, 91,71
56,84 and 7. Dropping thesurplus (i.e. |eft-side)
digits and putting down only the Carmankas
(the right-hand most digits), we have

+= - 05882352/94117647

In fact, the position is s6 simple and clear that we need
not multiply the whole digit, write down the product and then
drop the surplus digit (or digits). We need only put down the
Charamanke (the right-hand-most digit) at the very outset
(as each step) and be done with it!

(4) The Geometrical-Progression= character o the
Remainders gives us a clue to the internal relationship between
each remainder (and its successor) (or its predecessor)! Thus,
as we know one remainder, we practically know all the rest of
them Thus,

Inthecase of ¥: As we know the first remainder is 3,
we can multiply any remainder by 3, cast out the sevens (if any)
and immediately spot out and announce the next Remainder.

3%x3=9 ; 9—7=2; . 2 isthe second remainder

2x3=86. This is the third rdmainder.

As 6isDw N, we may stop here and (by the rule of com-
plements from the denominator), we may put down 4, 5 and 1 as
the remaining three remainders.

Or, if weoverlooktheD » N ruleor prefer to go on with our
multiplication by 3 (the Geometrical ratio), we get :

6x3=18; 18—14==4; and thisis the 4th remainder.

4%x3=12; 12—7=5; and this is the 5th remainder.
5x3=15; 16—14=1; and this is the 6th (and last)
Remainder.

We have thus obtained from the first remainder, al the
remainders:

3,2 6,4, 5and 1.

And from these, by multiplication by the Caramdrika (7),
we get al the 6 quotient-digits (as explained above):

1,4,2,85and7
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This is not al. Instead o using the first remainder
(3) as our Geometrical Ratio, we may take the second one (2),
multiply each preceding group of 2 remainders by 2 and get
32, 64 and 51 (for, by casting out the sevens, 6 x2—7=5; and
4x2-—-7=1). And multiplyingthese 6 digitsby 7, weagain get
the Caramankas 1 4 2 8 5 7 (as before).

Or we may take help from the third remainder (i.e. 6),
multiply the precedinggroup of 3remaindersand get 326, 4 5 1
(for, by casting out the sevens, 3X6—14=4 ; 2x6—7=5 ; and
6x6—-35=1. And, multiplying these (same) 6 digits by 7,
we again obtain the Caramankas 142857 as before.

This procedure is of course, equally applicable to the
fourth and fifth remainders (i.e. 4 and 5) and can get us the
same result as before Thisis doubtless purely academical and
of no practical utility. But we are discussing a principle, nay
a universaly operating mathematical law and must therefore
demonstrate its actual universality of application.

So, if we take the 4th remainder (i.e. 4) and multiply the
preceding group of four remainders by 4, we again get 3264 /51
(For, 4X3—7=5; 4X2—T=1; 4X6—21==3; 4X4—14=9);
and the only differenceis that the first two digits are found to
have aready started repeating themselves!

If we now take the 5th remainder (i.e. 5) and multiply the
preceding group of 5 remainders by 5, we again get 32645/1...
(for 3xX3—14=1; 2x5—7=3; 5X6—28=2; 5X4—14=6;
8X5—21=4 ;

And, if we follow the same procedure with the 6th
remainder (i.e. 1) and multiply the group d preceding remainders
by 1, we will, of course, get the same preceding remainders over
again!

(5) In the case of 17, the first four remainders are:
10, 15, 14and 4. As4 isa manageable multiplier, we may make
use d itasaconvenientand suitable remainder for this purpose.
L et us therefore multiply the group of four Remaindere (already
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found) by 4 and cast out the seventeens (wherever necessary).
And then we find :

4%10—34=6 10, 15, 14, 4

4x15—561=9 10, 15, 14, 4, 6

4%14—-51=5 10, 15, 14, 4/8, 9, 5, 186/

4X4=16. But as D« N=16, we can stop here and set
down all the other remainders by subtracting each o the above
digits from17: 7,2, 3,13/11, 8, 12and 1 And, multiplying
each of these 16 remainders (or rather their Caramankas i.e.
units digits) by 7, we get:

2r: "05882352/94117647

Still another method

Besides (1) the corollary-Sitra (2) each remainder X the
last digit method, (3) the Ekddhika process from right to left
and (4) the Ekadhika method from left to right, there is till
another method whereby we can utilise the Geometrical-Progre-
ssion relationship and deduce the same result by asimpleand
easy process. And it is this, namely, that a8 soon aswe come
across a clear ratio between one remainder (or dividend) and
another, we cantake that ratio for granted (asbeing o universal
application) and work it out all through. For example,

In the case of 19, we have 10 and 5 as the first two
remaindersand we note that 5 is just one-half of ten. Keeping
thisratio in view, we can deducethat the next remainder should
be one-half of 5. But, as5 isnot exactly divisibleby 2, we add
19 toit, makeit 24 and put down its half (i.e. 12) as the next
remainder. The 12 10, 5 12, 6, 3, 11, 15, 17, 18
gives 6, 6 gives 3, 9 14, 7,13, 16, 8 4 2 1
3(+19) gives 11,
11(419) gives 15, 15(+19) gives 17 & (174-19) gives 18. And
we stop there and put down the remaininghalf of the remainders
by subtractions from 19. Having thus got the remainders, we
multiply the Caramdnikas by 1 (the last digit of the answer)
and we get the quotient-digits automatically.
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N.B..—The ratio in question may be noticed at any stageof the
work and made use of at any point thereof.

In the case of ¢, We have the remainders 16 and 15 a
the very start. We can make use of this ratio immediately
and throughout, with the proviso that, if and when a fractional
product isthreatened, we can take the denominator (or as many
multiples thereof as may be necessary) for making the digit on
hand exactly divisble by the divisor on hand.

Thus, in the ::ase of ¢, we have the remainders 16 and
15 to start with (theratio being1to1)). So, whenever oneodd
number crops up, its successor will be fractiona. And we
get over this difficulty in the way just explained.

And when we get a remainder which is numerically greater
than thedivisor, wecast off the divisor and put down the remain-
der.  Thus,

10 givesus15s; 15(+17) gives 10,15,14, 4, 6,9, 5,16
us48ie.14; 14 givesus 21 ie. 4; 7, 2, 3, 13,11, 8,12, L
4 givesus6; 6 gives us 9;

9(+417) givesus 9 i.e. 5; (5+17) gives us 33 ie. 16. And
there we can stop.

Number d Decimal Places

Students generally fed puzzled and non-plussed as to
how to know beforehand the number of decimal places which, on
division, the decimal equivalent o a given vulgar fraction
will actually consist of. In answer hereto, we must point out
that, having—in the immediately preceding sub-section on this
subject—made a detailed, analytical study of the successive
remainders, we have, in every case before us, practicaly a
tabulated statement from which (without actual divisionto the
very end) we can postulate beforehand al the forthcoming
remainders. And the tabulated statement has the further
merit that it can be prepared, at any time, at a moment's
notice
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All this means, in effect, that,

(i) As soon as 1 (or other starting point) is reached (in
our mental analysis), we will have completed the whole
work of-decimalisation and therefore know the actual
number d decima places coming ahead. The rases
3, &9 T {5 etc., have all proved this.

(i) As soon as we reach the difference between the
numerator and denominator, we know we have done
half the work and that the other half is yet to come.
The casesd % etc., (which we have dedt with in
extenso) have proved this too.

(iif) As soon as we reach a fairly small and manageable
remainder (in our mental calculation), we know how
many more steps we should expect.

Let us again take the case of ¥ by way o illustration.

The first remainder is 3; and used as a successive multiplier
(with the provision for the casting out of the sevens), that
first remainder—multiplicr brings us on to 1.

When we have done two steps and got 1 and 4 as the
fird two quotient-digits, we find 2 is the remainder. Multi-
plying the first group of two digits (14) by 2, we get 28 as the
second-group (with the remainder aso doubled ie. 2x2=4).
14/28/.

Multiplying 28 by 2, we get 28 x2=>56 as the third group
and 4Xx2=8 as the remainder. And then, by casting out
the sevens, we obtain 57 as the quotient-group and 1 as the
remainder! And as this was our starting-point, we stop further
computations and decide that %, when decimalised, has 6
decimal places in the answer.

Going hack to the case of %, the student will remember
that, after 4 steps, we got.0588 as the quotient-digits and 4 as
the remainder. Multiplying the former by the latter, we
obtained 2353 as the second quotient-group and 4x4==16;
as the remainder ; and there we stopped, (because we had the
first 8 digits on hand and knew the other 8 digits). Thus ¢+
gave us 16 digits.
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{As a(leometrical series i Of theatandard form 1, r, r¥ang

S0 on, we are able to utilise 2 and 22 (in thecase d }), ¢ and ¢2

(in the case of ) and so on for helping us to pre-determine the

number o decimal placesin theanswer. Thisisthe Algebraioay

principle Utiliied herein.

Note »—1. Weneed hardly point eut that the ExadAika method
has the sipreme and superlative merit of lighteriing
our divison (and multiplication) work. For ins-
tance, in the Caseof ¢, § etc., Wehaveto do oyr

e divison-work, at stage after stage, by suceessive
division, not by 19 or 29 ete., (the origina deno-
minator) but by 2 or 3 etc. (the Etidkika-phirva).
And thisis the case with regard to every ¢age i.e.
that we perform all our operations—inthissystem—
with much smaller divisors, multipliers eto.,, and
thisruleisinvariable. What a tremendous saving
in effort, labour, time and cost!

2. We have purposely treated this subject at great
length and in elaborate detail, because it is very
essentia that the whole matter should be clearly
understood, thoroughly assimilated and closely
followed so that, even without the help of a teacher,
the student may be enabledto work out these
methods independently in other similar cases and
to know— with absolute certainty ~that ANY and
EVERY vulgar fraction can be. readily tackled
and converted into the corresponding recurring
decimal (whatever may be the complexity thereof
and the number of decimal places therein). |,
fact, in as muchas these smple and easy processes
are avalable—and suitable-for ALL poeqple
denominators and for all possble numerators,
the decima (and especialy the recurring decimal)
should no longer be a bugbear to the student.
On the contrary, they should be the most welcome
of al wecome friends

1
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Some Characteristic features (General and Special)

(1) In the cases of fractions with préme numbers (hkg 19,
g, 59 etc.,) as denominators, the maximumnumber of decimal

z Thisis self-evident

places is one less than the denominator!
and requires No elaboration.

(2) Usually, i, or a sub-multiple thereof, is the actual
number. s
(3) Generally, the rule o complements(from nine) ~ found
in operation amongst them. .

(4) For fractions like ¢y 7, oy ete., (Wherethe denominator
are products of prime numbers), the number of digits depends
on the various respective factorsin each case (aswill be presently
elucidated). _ ) .

5) I and When the decimal-fraction obtained from one of
the factors of the denominator is exactly divisible by the other
factor (or factors), the division by the second factor leaves no
remainder. And therefore the number of decimals obtained
by the first factor is not added to'! Thus,

1 - 142857

W 7353

Here, the numerator on the R. H. 8. being exactly
divisible by 3, it divides out and haves no remainder. There-
fore, the number of digits continues the same.

This means that, i every case wherein the complementary
halves (from nine) are found, the numerator on the & H S
must necessazily be divisble by 3, 9 etc. And by multiplying
the denominator in such a case by such factors, we cause
difference to the number Of decimal places in the answer. And
consequently, we have:

L 11492857 4
TETT%0 9
Going back to the Ekanyiine S@ra (as explained in con-
nection with the Sanskrit Alphabetical code), we know that
142857143 < 099==11X13x 8% 87. This means that since
the numerator isdivisble by 11.13, 3, 9, 27, 37, 33, 39, 99, ’
297, 351 and 999, the multiplication o the Denominator (7)
29

15375; and 0 on.
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by anyone of these factors will make no difference to the
number of decimal placesin the answer.

-076923
() o 13><3 3

Here too, al the above considerations apply. And, since
76923=77 X 999=3% X 7x 11 X 37, therefore these factors (and
combinations of factors) will, by multiplying the denominator,
make no difference to the number of decima places. (Note.
999999=999 X 1001 =999 X7 X 11 X 13).

*

1

1 T e
© 2 23%3
22 digits in the answer (just like #4

and comes under the same category (with

(7) &% isaspecial case and stands by itself. Naturally it
should have been expected to provide for 48 places. But,
as a matter of fact, it gives only 42; and for a perfectly valid
and cogent reason i.e. that, out of the 48 possible multiples,
SiX (i.e. ¢, 14, 2%, 23, 8% and $3) gointo adifferent family, as
it were-and take shapeas 3, 2, %, % % and $; have their places
there as .142857, 285714 and so forth and need no place in the
£ €tc,, group! And thus, since 6goout of the 48, the remaining
42 account for the 42 places actually found in the decimal
equivalent of ;! This isnot a poet's mere poetic phantasy but
a veritable mathematical verity !

(8) % is, in a way, an exception, as it containsonly 13
digits. And, as thisisan odd number, the question of the two
complementary halves does not arise! 13, however, ¢ a sub-
multiple of 78; and there is no deviation from the normal in
this respect. An at-sight-one-line mental method will soon be
given for 45 (in this very chapter).

(9) Similarly &5 has 44 digits and thus conformsto the sub-
multiple rule. And thisimpliesthat, like $=,it will need another
complete turn o the wheel (in one of its multiples) in order to
meet the needs of all the multiples ! (An incredibly easy method
will be shown in this very chapter for reeling off the answer in
this case).

ot
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(10) # has only two recurriig places (-01) ; but the whole
gamut can be and has been provided for, therewith.

(12) Inthe case of basic fractions ending in 3, the denomina-
tor s first multiplied by 3 and gives us the Ekadkika, and the
last digit in the answer is aso 3.

(12) ¢ (like ¢5) has only two decimal places (' 03).

(13) 25 has only 91 digits. 21 is a sub-multiple of 42 but js
odd and gives no scope for the complementary halves.

(14) ¥ has only 13 digits (a sub-multiple but odd)
(15) &5 has only 41 digits (similarly).
(18) & is special. Since 73x137=10001 and since

ki
137 _ 1379999
_ o e 00 IOl ATIY
10001 X 9999=99999999 .. +% 10001 99999999

='0136/9863 (by Ekanyina Sitra)

(17) And, conversely, . 73 _73x9999 _ 00007
8T 0001 99999999 00729927

(18) & will be discussed a little |ater.

(19) In the case of fractions whose denominators end in
7, the last digit is also 7 ; and the Ekddhika is obtained from the
denominator multiplied by 7.

(20) % arid $ have been dealt with in detail already.

(21) 4 and gy are special (because 27x37=999). And
their decimal forms are. 037 and -027.

(22) #¢ has 46 digits.

(23) e 1 and has only 18 digits

19x3
(24) & has 33 digits (odd)
(25) # has been discussed aready (number %)
1 and has 28 digits.
(26) S1=5553
(27) 4 hasits full quota of 96 digits.
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(28) In the case of fractions with denominators ending in
1, the Ekadhika comes from the denominator multiplied by 9:
and the last digit is 9.

(29) #r="00
(30) fe=1 and has been discussed under 7.
I3

(31) #y will come up a little later.
(32) ¢ isspecia ' 41x271=11111
. L 211 _211Xx9 . .
P “ =177 pogep = 02439 (odd)
(33) And, conversely, 1 __ 41 _41X9_00369 . .
271 11111 99999 poggp— 00369
1 and has 16 digits.
3 -
(34) & 53
(35) #¢ has 80 digits.
(36) #¢ has 85 digits (odd)

(37) =1 =937 _ 012845070

(a very interesting

27X3 3 number).
(38) =y o e already beey doussad yndey 7.end
11 11x999

9 = 501 — 9ogoee = 010/989

But

But here a big BUT butts in and exclaims: *Yes; all
thisis al right in its own way and s far asit goes But, as
our denominators go on increasing, we note that, athough the
last digit of the decima fraction is 1,3,7, or at the most 9 and
no more, yet, the Ekadhika Pi@rve goes an increasing steadily
al the time and we have to multiply or divide successively by
bigger and bigger Ekadhikas, until, at last, with only two-digit
denominators like 61, 71 and 81 and so on, we have now to ded
with 55, 64, 73 etc.,, as our multipliers and divisors, and
surely thisisnot such an easy process.
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The objection is unobjectionable; nay, it is perfectly
correct. But we meet it with quite a variety of sound and
valid answers which will be found very cogent and reasonable.
They are as follows :

(i) Even thebiggest of our Ekddhikas are nowhere—in res-
pect of bigness—near the original divisor. In every case
they are smaller. But thisis only a theoretical and dialectical
answer from the comparative standpoint and does not really
meet the intrinsic objection (about the Vedic methods being not
only relatively better but also being free from al such flaws
altogether)!  We therefore go on and give a satisfactory
answer from the positive and construotive stand-point.

(ii) Even though the Ekadhska is found to beincreasingly
unmanagesbly big, yet the remainders give us a simple and
easy device for getting over this difficulty. This we shall
demonstrate presently.

(iii) The Ekddhika (so far explained and applied) is not
the whole armoury. There are other Auxiliaries too, wherein
no such difficulty can crop up. These we shall expound and
explain in a subsequent, but sufficiently near chapter o this
very volume; and they will be found capable o solving the
problem ¢n toto ; and

(iv) Above dl, there is the CROWNING GEM of al
coming up in a near chapter and unfolding before our eyes a
formula whereby, however big the denominator may be, we
can—by mere mental oneline Vedic arithmetic—read off
the quotient and the remainder, digit by digit| This process
of "Straight Divison™, we have already referred to and shall
explain and demonstrate, in a later chapter, under this very
caption "' Straight (or Instantaneous) Divison™.

In the meantime, just now, we take up and explain the way
in which the remainders come to our rescue and solve this
particular problem for us.
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Let us take first, the cae of
that the last digit of the decimal Tg 3 avr\lld lt‘}?;’tw tﬁ?‘%%}:ﬁfﬂ
is 7. And then we work as follows:
(i) Multiplying digit after digit (a8 usua) by 7, wehave :
Fo=o5="04347826086 /95652173913
6 /34311526 2
or (ii) dividing digit by digit (as usua) by 7, we have:
fe—ey="04347826086/95652173013
235514 646
These are the usua Ekadkhika Parva methods. But

(i) we observe in the first chart, after two digits (1 & 3
have been obtained), the next leftward group (39)
is exactly three times (the extremeright-end one)
and we can immediately profit by it. Thus 39 gives
us 117, out of which we put down 17 and keep 1 to
carry over; 17 gives us 51-41==52. 52 givesus156,
out of which we set down 56 and keep 1 to carry over.
56 gives us 168-1=169. o these, we put 69 down
and keep 1 to be carried over ; and so on. In fact,
the whole procedure is exactly like the one which
we followed from left to right in respect of
(=-020408 16 32.....). Thus we have:

Fa=y="0434782608, 69, 56, 52, 17, 39, 18

or(iv) if we wish to start from the left end, go on to the
right, that too is easy enough.

We note that, the first digits being completed, we get
8 as the Remainder. We can immediately work out this
process by multiplying each two-digit group by 8 (as we did in
the case of # by 2) and frame the following chart :
‘04 1 32:72:24:08:64:and soon

12 6: 2: : 5

© 34 :78 126 : : 69 :
These multiplications by 3 to the left and by 8 to the right
are easy enough. Aren't they ?
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Let us now take up and try £ (as promised at an earlier
stage). Obvioudly, the last digit is 7 and the Ekddhike is 33.
Thisisrather unwieldy asamultiplier or asdivisor. We should
thereforetry and see what we can get from the Remainders.
We find them to be 10, 6 etc. We can immediately pourice up
on this 6 for our purpose and work in this way:

-02 being the first two digits of the quotient and 6 being
our ratio, the next two digitsare obviously 12. These % 6 should
give us 72 ; but as 4 will be coming over from the right, we add
the 4 and put down 76. This should give us 456, of which the
first digit has already been taken over to the left. So 56 remains.
But this will be increased by 8 (comingfrom the right) and will
become 59—This gives us 57, 44 and 68 for the next three 2-
digit groups and 08 for the one thereafter. The 08 group of
two digits gives us 48 which, with the carried digit becomes 51.
Thisgivesus 06 and 36 (which becomes38). And then we have
28 (turning into 29, then 74 which becomes 78) and so forth.

Thuswehave: =102 12 7659 44 68 08 51 382/
97 8

Here we notice that, exactly after 23 digits, the comple-
merits (from nine) have begun. So, we can complete the second
half arid say : g% ="02 12 76 59 57 44 68 08 51 06 382

97 87 23 40 42 55 31 91 48 93 617

We have thus avoided the complicated divisions by the
origina divisor 47 and aso the divisions and multiplications
by the unmanageable Ekddhika 33 ; and, with the easy remainder
6 asour multiplier, we have been ableto obtain all the 46 digits
o the answer!

This merely shows that these are not cut-and-dried
mechanical processes but only rules capable of being applied
to the specia kind of cases which they are particularly designed
to meet and fit into.

And, as for a cut-and-dried formula capable of universal
application, that too is forthcoming (as already indicated) and
will be dealt with, very soon.
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Let us now take up #y which, a little earlier, we promised
to deal with soon afterwards. |n this case, the last digit is g ;
and the Ekadhika is 28 (which is nearly as big as the original
denominator itself)! We should therefore sift theremainders
and find a suitable auxiliary therefrom.

In this case, we find 7 is the first significant remainder.
So, leaving the Ekadhika process out of account for the moment,
we may use the Geometrical Progression principle and achieve
our purposethereby (aswedid-with 6-inthe cased 2,;). But let
us proceed further and seewhether a still more easily manageable
remainder is avaiable further up.
Wdl; we observe:
#r=-032258 (withremainder 2). The actual remainders
(in order) are: 10, 7, 8, 18, 25 and 21
This suits us most admirably, and we proceed further
with the help of 2. Thus:
*032258/064516/129,032/258064......
But this meansthat, after only 15 digits (an odd number),
the decimal has already begun to recwr ! So, we simply say :
Fr="032258064516 129 |
What a simple and easy devicel
Let us now take up ¢4. The last digit is 7; but the
Elkddhika will bo 681 So, we seek help from the Remainders.
They are: 10, 3 etc,, and thequotient-digits are -0103...
So, multiplying each quotient-group (of 2 digits each)
by 3 (as we did, by 2, in the case of ), we get:
F="010309 27 8%

83 etc. etc!

L et us take one more example (i.e. y&+) and conclude. The
last digit is 7; but the Ekddhika will be 6981 It will surely
not be an enviable task for even the most practised and expe-
rienced statistician to multiply or divide, at each step, by
such a big figure! We therefore again seek help from the
remainders and the Geometrical Progression Rule.

aj
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The Quotient-digits are 001 etc.,, and the successive
remainders are 10, 100, 3 etc. ! This means that we should
multiply each group of three quotient-digits by 3 and get our
answer (to any number of decimal-places). We thus have:

ge7=="001 : 003 : 009 : 027 : 081 : 243 : 72%

732 efc. eto.
The Converse operation.

Having dealt, i n extenso, with the conversion of vulgar
fractions into their equivalent recurring decimas, we now
take up the CONVERSE process i.e. the conversion of decimals
into the equivalent vulgar fractions. We do not, however,
propose to go into such a detailed and exhaustive analytical
study thereof (aswe have done in the other case) but only to
point out and' explain one particular principle, which will be
found very useful in this particular operation and in many
subsequent ones.

Tho principle is based, on the simple proposition that
§=8=1; -99=82=1; -999=33%=1; and so forth ad
infinitum. |1 therefore follows that &l recurring decimalswhose
digits are al ninesare 7pso facto equal to unity ; and if a given
decimal can be multiplied by a multiplier in such a manner as
to producea product consisting o only ninesas its digits, the
operation desired becomes automatically complete.

For instance, let us first start with the now familiar deci-

mal -076923. Inorder to get 9 asthe 076923
last digit, we should multiply thisby 3. 13
Setting this product down (-230769), 230769

we find that, in order to get 9 asthe 076923
penultimate digit, we should add 3 to ™ o0 g g g g —1
the 6 already there. And, in ordqy —m™ —
to get that 3, we should multiply thegiven multiplicand by 1.
On doing this, we find that the totals (of the two rows) are all
nines! So we stop there and argue that, because the given
decimal X13=999999 (i.e. 1), therefore the fraction should
be 5. In fact, it is like saying 13x=1 , x=4¢

80
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(2) Secondly, let us take the 'case of 037 and see how this
works. Here as the last digit is 7, s0, in order t0 get 9 g
the last digit o the product, we should multiply .
it by 7. And, putting 259 down, we should add 4 ‘0
to obtain 9 as the penultimate digit. And, in order
to get that 4 there, we should multiply the multi- 259
plicand by 2. And, on domg so, wefind that the Q-LL
product is 999 (=1). Therefore, the fraction 0:999=1
X27=1 .. X=qg4

(3) When wetry the caseof 142857 ; wefind that multi-
plication by 7 gives us the al-nine product. -999999 (=1); and
therefore we say 142857==}

(4) 047619. Wefirst multiplyby 1, seel 947619
in the penultimate place, have to add 8thereto, 21
multiply by 2 (for getting that 8) and thus find
that the required answer is gy.

o7

0'95238
‘999999=1
(5) Similarly, we may take up various other decimals
(including the long big ones likethe equivalents of %, g, 2y,
% 117 I Yoo 18 wv ete, and invariably we find our
purpose achieved.
(6) But, what about decimals ending in even numbers or
52 Well; no integral multiplier can possibly get us9 asthe last
digit in the product. And what we do in such a caseisto divide
off by the powersof 2 and 6 involved and use this new method
with the final quotient thus obtained. Thus, if we have to
deal with 285714 we divideit off by 2, get 142857 -2)-285714
asthe quotient and find that multiplication thereof 142857
by 7 gives usthe product -999999=1. And therefore we say :

X " g
E-X7=l s l:;

(7) Let us now try the interesting -
decimal. 012345679. On applying this new 81
method, wefind that multiplication by 81 012345679
givesus 1 asthe product .\, x=+¢ ‘98765432

[—
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N.B. 1. The student should also make use o the Ekanytina
formula.  This is readily applicable in every case
o "' Complementary halves" (including %, 5. 1, v

etc.
Thus. ‘149857~143%999_ 11438 J1xd3 . 3
999 999
77 %999

Similarly. ‘076923 =1g015c 998 — 1%’ and 50 on

2 Similarly, with regard to other factors too, it goes
without saying that the removal, in general. of
common factors (from the decimal and the denomi-
nator) facilitates and expedites the work.

3. The subsequent chapters on "AUXILIARY FRAC-
TIONS" and "DIVISIBILITY" etc., will expound
and explain certain very simple and easy processes
by which this work (of arithmetical factorisation)
can bc rendered splendidly simple and easy; and

4 Above all, the forthcoming "Straight Division”
method will not merely render the wholething simple
and easy but also turn it into a pleasure and a
delight (even to the children)

Some Salient Points and Addstional Traits.

Thus, the Ekddhike process (forwards and backwards)
and the Geometrical Progression relationship between the
remainders have given us the following three main principles:

(i) The quotient-complements (from 9);
(11) The remainder-complements (from the Denominator) ;
& (iii) The multiplication o the Caramdnka (last digit) of
the remainders by the Caramdnke ((thelast digit) of
the decimal, for obtaining each digit of the quotient.
Now, apropos d and in connection with thisfact,
the following few important and additiona traits
should also be observed and will be found interesting
and helpful :
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(1) Inthe case of 4%, theremainders are (1), 10, 5, 12, g,
3, 11, 15, 17, 18/9, 14, 7, 13, 16, 8, 4, 2, 1 and the quotient
digits are: 052 631578/947368421.

(i) Each remainder by itself, if even; and with the
addition of the denominator, if odd, isdoublethe next
remainder. Thisfollowsfrom the Ekadhika being 2.

(i) Each quotient-digit is the last digit of its corres-
ponding remainder. This is because 1 is the last
digit of the decimal.

(2) In the case of,, the remaindersare: (1) 10,13, 14,
24, 8, 22, 17, 25, 18, 6, 2, 0, 26, 28/19, 16, 15; 5, 21, 7, 12, 4,
11, 23,27, 9, 3, and 1
(i) The quotient-digits are the last digits thereof (for
the same reason asabove)
(ii) Each remainder (by itself or in conjunction with the
denominator or double of it)==thrice itssuccessor ; and
(i) Each remainder plus ita SUOCESIOr's successor==the
next remainder thereafter.  Thus 10+14=24 ; 18+
24—-29=8; 14-1-8=92; 244922-290=17;8+17=25;
224-25—29=18 ; 174+18—29=6;
25+6—29=2; 1842=20; 6420=26; and so on!
N.B. Note the casting off o the denominator al through.
(3) In the case of g, the quotient-digits are:
0112 3595 5056 1797 752 808
9887 6404 4943 8202 247 191
and the remaindersare (1), 10, 11, 21, 32, 53, 85, 49, 45, 5,
50, 55, 16, 71, 87, 69, 67, 47, 25, 72, 8, 80, 88, 79, 78, 88, 57,
36, 4, 40, 44, 84, 39, 34, 73, 18, 2, 20, 22, 42, 64, 17, 81, 9 and
1. (Note the Ratio 9: 1.)
The remarkaole thing here is that the numerator-+the
first remainder==the second remainder and that al through,
the sum of any two consecutiveremaindersis the next remainder

thereafter! Thus 1410==11; 10+411==21; 11421=32; and
so on to the very end.
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The generd form herefor is a, d, a+d, a+2d, 2a+3d,
3a--5d, 5a+8d etc. The student who knowsthissecret relation-
ship (between each remainder and its successor) can redl the
44 digits of the answer off, at sight, by simple addition!

(4) In the case of . the remainders are:

(1) 10, 21, 52, 46, 63, 18, 22, 62, 67, 38, 64, 8 and 1.

The general form herefor is a, d, a--2d, 2a4-5d etc. Know-
ledge of this relationship will be o splendid practical utility in
this case. (Note the Ratio 8: 1.)

(5) In the case of #5 the remaindersare:
(1) 10, 31, 34, 64, 18, 52, 37, 25, 43, 18, 22, 13, 61, 58,
28, 4, 40, 55, 67, 49, 7and 1. (Notethe Ratio7: 1.)
Thegeneral formhereforis obviously a, d, a4-3d, 3a+10 d,
10a-{-33d etc.

(6) In the case d 69, the remaindersare:
(1) 10, 41, 56, 29, 54, 9, 31, 15, 32, 25, 14, 22, 43, 17, 62,
48, 8, 21, 33, 35, 65, 19, 13, 12, 2, 20, 23, 53, 58/49, 18, 3, 30,
5, 50, 28, 44, 27, 34, 45, 87, 18, 42, 7, 11, 51, 38, 26, 24, 4, 40,
40, 47, 57, 39, 36, 6 and 1 (Note the Ratio 6 : 1).
Here the general form is a, d, a+4d, 4a+4-17d etc.
Inductive conclusion

Having thus examined the cases of &' 7> 2y a0d g, we

note tho following :

(i) In every case, we start with 1 (the basic numerator)
as a sort d pre-natal remainder (which 13 perfectly
justified because we are dedling with a recurring
decima), and we cal it a;

(i1) In every case, the first actual remainder 1 10; and
we cal it 4;

(iii) And then the successive remainders are a, d, a-+d,
a-4-2d, a43d, a-4d respectively (wherein the co-
efficient of x isobviously the deficit of the penultimate
digit from 9
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Thus for g, we have a-1d;
for vy, we have a4-2d ;
for g%, we have a+3d;
for g%, we have a--4d ; and so on.

(iv) And this relationship is maintained systematically
all through. In other words, each remainder--the
next one or doublethat or thricethat etc.=the further
subsequent remainder.  Arguing thus, let us try g,
As 3 is 6 less than 9, .. the general form should
be a4-6d. This means 1, 10, 61 (i.e. 9), 64 (i.6. 12).
3, 30 (i.e. 4) and 27 (i.e. 1). And we find this to be
actually correct.

And, in case the penultimate digit is more than 9,
we should react by subtracting d (and not add to it)
at the rate of 1 for each surplus. Thus, our chart will
now read-a, d, a—d, d- (a—-d) i.e. 2d—a, and S0 on.
For instance, for 1§, the remainders will be (1) 10,
—09, 19,—28, 47 and so on.

(vi) And, over and above all these details which are
different for different numbers (as explained above),
thereis one multiplier (namely 10) which is applicable
to al cases! And thus, whatever fraction we may
be deding with, 2, 4, 5, 8 or any remainder what-
soever Can be safely put in into the next place with
a zero added! The student will observe that, in
all the examples dealt with hereinabove (not only
in this particular subsection), every such remainder
of twn digits (ending in zero) has been invariably
preceded hy the same number (without the zero)!

<
=

With the help of this rule applicable in all cases and the
special rules (shout d, 2d, 3d, 4d etc.,)enjoined for the different
individual cases, the student should easily now bc in a position
to make a list of the successive remainders in each case and
therefrom, by Caraminke multiplication, put down the succe-
ssive quotient-digits without further specia labour !
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These and many more interesting features there are in
the Vedic decimal system, which can turn mathematics for the
children, from its present excruciatingly painful character to
the exhilaratingly pleasant and even funny and delightful
character it really bears!

We have, however, already gone into very great details;
and this chapter has already become very long. We therefore
conclude this chapter here and hold the other things over for
a later stage in the student's progress.
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GTRAIGHT DIVISION

We now go on, at last, to the long-promised Vedie process
of STRAIGHT (AT-SIGHT) DIVISION which is a simple and
easy application of the URDHAVA-TIRYAK Sitra which is
capable of immediate application te afl cases and which we have
repeatedly been describing as the ""CROWNING GEM o all”
for the very simple reason that over and above the universality
of its application, it IS the most supreme and superlative mani-
festation of the Vedic ideal of the at-sight menta-one-line
method of mathematical computation.

Connecting Link
In order to obtain a correct idea of the background, let
us go back, very briefly, for a very short while, to the methods

which we employed in the earlier chapters on division; and let
us start with the case of 283582,

According to the first method According to the second
{under the Nikkilam etc., Sitra), method (by Pardvartya for-
our chart will read as follows: mula), we say :

73:3 89 : 8 2: 7313 8 9. 8 2
27: 621: : 0 27: 9—;? : “
28: 98 0 Q=534 e s :
. 116406 : ] 33: 7 1563—153 @
. :andR:oI :§ 17 61 : 23 949

13 14 58 (26) 28:
534 :(36) 10 :

5 38 4: 0 0:

We have felt, and till fed, that even these comparatively
short, intellectual and interesting methods are cumbrons and
clumsy (from the Idedistic Vedic standpoint). And hence the
clamant need for a method which in free from all such flawsand

R A
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which fulfils the highest |dedlistic ideal ot the Vedic Satras.
And that is as follows: 3.:38 9 8: 2
Out o the divisor 73, weput down 7 : 3 3 :1

only the first digit {i.e. 7) in the Divisor- . § 3 4: o

column and put the other digit (i.e. 3) "on -

top o the flag" (by the Dheejanke Sitra), as shown in the
chart aongside.

The entire division is to be by 7; and the procedure is
as explained below :

As one digit has been put on top, we alot one place tat
the right end of the dividend) to the remainder portion o the
answer and mark it off from the digits by a vertical line.

(i) Wedivide 38 by 7 and get &, asthe quotient and 3 as
the remainder. We put 5§ down as the first quotient-
digit and just prefix the remainder (3) up before the
9 o thedividend. In other words, our actual second-
step Gross Dividend is 39. Prom this, we, however,
deduct the product of the indexed 3 and the first
quotient-dight & (i.e. 3X5=15). The remainder
(24) is our actual Nett-Dividend. It isthen divided
by 7 and givesus 3 asthe second quotient-digit and
3 as the remainder, to be placed in their respective
places (as was done in the first step). From 38 (the
gross dividend thus formed), we subtract 8 Xxthe
second quotient-digit 3i.e. 9, get the remainder 29 as
our next actual dividend and divide that by 7. We
get 4 as the quotient and 1 astheremainder. This
means our next Gross Dividend is 12 from which,
as before, we deduct 3 Xthe third quotient-digit 4
(i.e. 12) and obtain 0 as the remainder. Thus we
say: Q is 534 and R is zero. And this finishes
the whole procedure; and all o it is one-iine mental
Arithmetic (in which all the actual Division s done
by the simple-digit Divisor 7)!

The Algebraical Rodf hereof is very simple and is based

on the very elementary fact that all arithmetical numbers are
31
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merely Algebraical expressions wherein X stands for ten. For
instance, 3x24-5x+-1 is merely the algehraical general expression
of which (with x standing for 10) the arithmetical valye is 351.

Remembering this, let us try to understand the steps by
means o which 389 82 issought to be divided by 73, Alge-
braically put (with x standing for 10), this dividend is 38x34-
9x2-+8x4-2: and this divisor is 7x+3. Now, let us proceed
with the division in the usual manner.

When we try to 7x+3) 88x34 9x%24-8x4-2(5x2}-3x}-4

divide 38x3% by 7x, our 35x3415x%
first quotient-digit is 3x3— 6x2
5x%; and, in the first

> e =24x2+8
step of the multipli- 21)1((2+!))(x
cation of the divisor —=;
bv 5x%, we get the 8xf—x
product  35x3+16x? ; =29x4 2
and this gives us the 28x+12
remainder 3x3}9x%— x—10
15x2,  which really —10—10—0

means 30x2+9x2—15x2 —
=24x? This plus 8z being our second-step dividend, we
multiply the divisor by the second quotient-digit 8x and subtract
the product 21x2-+9x therefrom and thus get 3x2—x as the
remainder. But this 3x2 is really equal to 80x which (with
—x+2) gives us 29242 as the last-step dividend. Again
multiplying the divisor by 4, we get the product 28x+12;
and subtract this 28x+-12, thereby getting x—10 as the Remain-
der. But x being 10, this remainder vanishes! And there
you have the whale thing in a nut-shell.

I't wiil be noted that the arithmetical example just here-
above dealt with (i.e. 2£2882) ismerely the arithmetical form of
38x%4-9x24+-8x+2 and the Arithmetical chart has merely

7213 shown the above given algebraical opera-
tion in its arithmetica shape (wherein 3 :38 9 8: 2
x=10) and that, whenever the algebraical 7 :: 3 3 : 1
working has taken a remainder-digit 1563 4: 0
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over to the right with a zero added, the arithmetical chart
showsthat particular remainder prefixed to the dight already
there.

Thus, where 8x3 has been counted as 30x? and added to the
9xSalready thereand produced 39x2 as the result, thisalgebraical
operation has been graphically pictured as the prefixing of
3to 9 and making it 3! And similarly, in the next step
o the division, the remainder 3 is prefixed to the 8 already
there; and we have to deal with 38; and similarly, at least,
the 1 prefixed tO the 2 gives us 12 (which the 3X4 subtracted
therefrom cancels out) !

In other words, the given expression 38x%4-9x%4-8x-+2
(with 10 substituted for x) isactually the same as 35x3+36x8+
37x412. And we say:
38x3+9x248x-2 _ 35x3+30x2+87X+12 e 9714 And,

T 7x+3 %43
graphically, this algebraical operation 3:38 9 8: 2
is demonstrated arithmetically in the p 3038 21
manner shown in the margin.

;.5 3 4. O

The procedure is very simple and needs no further ex-
position and explanation. A few more illustrative instances
(with running comments, as usual) will however, be found useful
and helpful and are therefore given below:

(1) Divide 529 by 23. 23 16 1 2 : 9
The procedureis exactly the same © =~ *9 0
and is simpleand easy. 12 8 :0

(2) Divide 4098 by 64. (3) Divide 16384 by 128

4: 40 9 : 6: 8:16 3 8: 4

At 4 :1: 12: 4 11 L.G__

6 4 : —(;—: 1 2 8: 0
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(4) Divide 7632 by 94

(ii) New Nikhilam method or (ii) Newest Vedic method
94:7 6 :3 2

i : 4:76 3: 2
06 : 0 :42 : 9 ! 4 :2 ;1 Q=81
: 0 36: —— " R=I8
—_— 81 :18:
7% : 488:
81 : 18

(5) Divide 601325 by 76.

Here, inthefirst division by 7, wecan
put 8down asthefirst quotient-digit ;
but the remainder then left will be 17 912 :13
too small for thesubtraction expected
at the next step. So, we take 7 as the quotient-digit and prefix
the remainder 11 to the next dividend-digit. [N.B. For
purposes o reference and verification, it will be a good plan to
underline such a quotient-digit (because the chart offersitself
for verification at every step and any reconsideration necessary
at any stage need not involve our going back to the beginning
and starting the whole thing over again)]

{6) Divide 3100 by 25. 5:3 1 0: 0:

2 : 1 2 2 :

Note—In  agebraic  terminology, 3100=3%31-x%==
2x5+9x3+8x+20 and the above example is the arithmetical
way of stating that 2x3+4-9x% 8xy2+420y°=(2x-+5y) (X242xy
+4y?) (i.e. 25X124=38100)

(7) Similar is the case with regard to the division o
38x349x24+8x+2 by (x-1), wherein Q=38x2+47x+55 and
R=57.

(8) Divide 695432 by 57. (9) Divide 3279421 by 53.

7:69543: 2 : 3:327942: 1:
5 :1210 :3 : 6 : 2465 :6

:12200: 32: D 61875:46:

6:% 1 3 2% 5
7 : 116 2 :2
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(10) Divide 7777777 by 38 (11) Divide 500001 by 89.

8:771T71T77: 7: 9:500 00: 1

3 : 11578 :7 : 8 : 10,8 :15
:204678:13: : 5617 : 88

(12) Divide 37941 by 47. (13) Divide 745623 by 79
7:37 9 4: 1: 9:74 5 6 2: 3:

4 5 3 :6 : 7 116 9 :9
: 80 7:12: : 9 4 3 8:21:

(14) Divide 7453 by 79 (to 8 (15) Divide 710 014 by 39 (to 3
places of decimals) places of decimals)
9:7 5 30 0 : 9:7 10.0 1 4 :

7 116 6 50: 3: 4 82 2 64:
9 4-3 4 20: 1 8.2 0 5 5

(16) Divide 220 by 52 (to3 (17) Divide 73 by 53 (to 5
places of decimals) places of decimals)

2:2 2 6000 3: 7.3 0 0 0 O:
5 : 2 21 4 5 2 56 4 4 :
4.2 3 0 8: 01 8 7 7 3 6:

(18) Divide 71 by 83 (to 5 places of decimals)

3: 71 0 0 0 O
8 : 7 6 5 3

0.8 6 4 2.

(19) Divide 1337 by 79
(i) By the Neyw Nikhilam (i) By the newest Vedic

method method
79: 13 : 3 7 9: 13 3 : 7
21: 2 : 1 7 6 :12
10 5 : —
1 6 : 73:
15 1 : 52 —
21 :
16 T 73
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(20) Divide 1681 by 41.
1: 16 8 1 : N.B..—The Algebraical form is:
4 00O : .
_— 16x24-8x-f1
41 0: _Z:_?—Tt=4x+‘
(21) Divide 115491 by 137.
7: 115 4 9 : 1 :
13 : 11 6 : 2 :
8 4 3 : 0

or in Algebraica form:
13x47 : 115x3+ 4x3{9x}-1(8x%4-4x—3
: 104x3—56x2
11x3—52x34-9x=58x%-}- 9x
~ E=104x34-108x2}-67x21 52x2428x%

6x2—19x--1
s Q=8x%44x43 =4lx4 1
. (i.e. 843) & R=0 39x--21
2x—20=0
(22) Divide 7458 by 127 (to (23) Divide 3517 by 127 (to 3
3 places of decimals) places of decimals)
7:74 5 80000 7:3 1 7 0 0 O
12: 14 148784 12 : 11 13 16 10 13
5 8 7244.. 1276 9 2 ...

(24) Divide 7031985 by 823
Here, the Divisor is of
3 digits. All the difference
which this makes to us is
that, instead of putting one 86 4 4 33 R=2713
extra digit on top, we put -
both the extra digits (23) there; and, we adopt a dightly
different modus operandi (on the URDHVA-~TIRYAK lines)
in respect of the subtraction- portion o the work.
In this instance, for instance, we divide 70 by 8 and set
8 and 6 down in their proper placesasusual. Thus, our second

Gross Dividend is now 63. From that, we subtract 16 (the
product of thefirst of the flag-digits i.e. 2 and thefirst quotient

25:70 3 1 9:85
: 6 7 5 :443 and
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digit i.e. 8) and get the remainder (63—16=47) as the actual
dividend. And, dividingit by 8, we have 5 and 7 asQ and R
) respectively and put them down at their proper places. So
now, our Gross Dividend is 71 ; and we deduct, by the Urdhva-
1 Tiryek rule, the cross-products of the two flag-digits (23) and
i

[

the two quotient-digits (85) i.e. 104-24=384 ; and our remainder
; is 71—34=37. We then continue to divide again by 8 and
i subtract etc., in the same manner (by cross-multiplication)
‘ as (just now explained) by the Urdhva-Tiryak method (until
‘ the last digit of the dividend) isreached. And that finishesthe
task.

And, in other divisions too, irrespective of the number
o digits in the divisor, we follow the same method. And, in
every case, our actual divisor isd one digit only (or at the most,
a small two-digit one (like 12, 16 and so on) which one can
easily divideby)! And al the rest of the digits (of the divisor)
are hoisted on the flag-top. And thisis the whole secret of the
""Straight Divison" formula.

Note:—f instead of the decimal placesin the Quotient, you
want the remainder, you can haveit in the usual way.
In this case, 23 and 44 (by cross-multiplication) give
us 20, which (when taken to theright) means 200; and
3 X 4 (thelast flag-digit x the last obtained quotient-
digit)=.12.  Subtracting the total o these two
(i.e. 212) from 485, we have R=273. (i.e. R=485~-

200—12=273).
Some more instances (of division by three-digit divisions

etc.) are cited below :

(1) Divide 1064321 by 743 (to (2) Divide 222220 by 735 (to

4 placesdf decimals) 3 places of decimals)

43:106 432100 : 35:22 22200 :

7 1 34457765: 7 1335383:
1432.4643 : : 302340

o R=521--170—6=345 R=320—60—10=250

——
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(3) Divide 888 by 672 (to 3 places of decimals)
72:8 8800 or732: 8 : 8 g
6 : 23342: : t 1
:1.8215 ¢ : 1 : R=216:
or by mere Vilokanam (Inspection)
(49 28:863818: 2 7: or32:63818: 2 7.
5 : 1165 : : 5 :1045 :4 12 :
:12086:R=419: :12086:R=419:

(5) Divide 13579 by 975 (6) Divide 513579 by 939

75:18 5° 7 9: 39:51 3 5: 7 9:
9 4 11 : 9 . 6 12 :14

13: : 54 6
R=1179—260—15=904 R=1479—540—54=594
(7) Divide 7143 by 1171
(i)By the new Pardvartya (ii) By the new Pardvartya
method (Vinculum) method:

nmm :7:1 4 3: 1171 :7: 1 4 3:
—1-7—1: —=7—49—T7: Ty 57 :—14 —21—7:
1 7T: 6 45 4 __—2—_;‘::1—:7: 18 +25—4:
R 17 —1054 :
: 7 :—1054 : —
:6: 117 '_E'__lﬂ

(ii1) By the newest Vediclmethod

71:71: 4 3:.. Q=6
1n : 5 1 : and R=543--543—426=117

6: 1 O:

(9) Divide 46781 by 1483(to
3 places o decimals)

(8) Divide 4213by 1234 (to 4
places o Decimals)

34:42: 1 3 0 0 9 83:46: 7 8 1 0
12 6 4 7 3 2 14 4 9 11 123
3:4 1 4.1 0 t'8:1.5 45
(10) Divide 3124 by 1532 (to3  (11) Divide - 333333 by 1782

places d decimals) (to3 placesd decimals)

3R2:31: 2 4 6 82:83: 3 333
15 1 6 O 17 116198
:2: 0 4 O 1. 8 7

= e e
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(12) Divide 46315 by 1054 (to (13) Divide 75313579 by 1213

3 places ot decimals).
54:46: 3 1 5 0
: 161310 8
4: 39 4 2

R—1315—310—12
(14) Divide 135791 by 1245
46:13: 5 7 91
12 i1 11 4
:1: 09
R=491—405 or 130—44—86

(16) Divide 135791 by 1632
32:136 7: A
16 : 7 :5

8 3

10

(17) Divide 97531 by 1627
2r:97 5: 31
16 : 17 : 21
5§ 9:

R=2131—593
=1538

(18) Divide 97531 by 1818
18: 97 5: 31

18:75: 31 3 5 79
D33 111111

:6:20 8 8
R=1179—344=835

(15) Divide 13579 by 1616
16 :135: 79
16 7

8:
R=779—128 or 690 —39=651

R=591—250--6==335

or 27 97 5: 31

6 : 1:3
6 0:

and R=331—420——89
ie. Q=59 and R=1638

18 . 7 :16
. 5 3: .. R=1631—454 (o 1200—23)=1177
(19) Divide 13579 by 2145
45:135: 79
21 . -9
6 :  And R=979—270 or 930—221=709

(20) Divide 135791 by 2525
252135 7 : 91
25 : 10 :22

5 3
2

And R=2291 325 or 1980—14
—=1966
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(21) Divide50X11 by 439 (to three places dof decimals),

39 :50 ‘11 0: 41 : 50 : 110 : R=195=
4 1 33 6:0r 4 : 1:°222: or 311~1£2
: 11 -415 B S O '413“: And=182

(22) Divide 15x861 by 349 (to three places of Decimals).

49: 15X 61 51:15 .6 10:
3 38 8 10 or 3 : 344 :
4. 475 277 1447277 :

And R=361—196
or 200—35=165

(23) Divide 47 by 798 (to five places of decimals).
98 : 4700 00 02:4 17 00 0 0

And R=3861—196=165

7 : 4= 121915 or 8 : 4 7 @
058 9 0 0 5 8 9 ¢
(24) Divide 1111 by 839
39 :11: 1 1: or
8 13 4
1: 3 : BymereVilokanam (Inspection)

And R=311—39=272

We now extend the jurisdiction of the Sitre and apply
it to Divisors consisting of a large number of digits. The
principle involved being the same, the procedure ig also
identically the same as in the foregoing examples. And the
division by a singledigit (or a small two-digit divisor) continues
exactly the same. A few illustrative instances are given
hereunder :

(1) Divide7031.95by 8231  (2) Divide 995 311 by 16123

(to5 decima places). 122:99 5: 3 1 1
231 :70 319500 16 : 3 :13
8 : 67.5469 61

1854 32

R=13311-1503 (or 12004190
+2)=11808
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(3) Divide 975 311 by 16231
281 :97 5:3 1 1
16 : 1:3

6 0: R=1500+50-+1 or 3311—1860=1451

(4) Divide 975 311 by 16 333
333:97 5 : 3 11
16 = 17 :16 R—16311—4647=11664
5 9 : or 12100+410-+26=11664

(5) Divide 975 311 by 18123

123:97 5: 311
: 7 . 16 —
18 R—15000--200+8

5 3 : (or 16311—1519)=14792

(6) Divide 995311 by 20321
321:99 5: 311

20 : 19 23  R-00100—190—7 (=23311—
4 8: 3408)=19903

(7) Divide 997531 by 30321
321:9 7 531
3 9 8  p—2r300—40—1
32 (or 28531—1272)=217259

(8) Divide 137 294 by 5749 (to 6 places o decimals).

749 : 18 7 2 9 4 0O 0 O
5 : 3813 13 14 14 8

23 8 8 1370

or

351 :137° 2 9 4 0 0 0
6 : 1 53 2530

23 -+ 88 1370
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(9) Divide53 247 by 4999 (tofive plac&eof dectmals).
999 : 53, 2 4 7 ¢
4 1 49 11 1412
10, 6 515 3

or
01— 5 3.2 47 000
6 : 0 320210

N.B.
1 06 51 5 3 .. gIVIBd%te);igg

(10) Divide 13 8462 by 39898 (to 3 places of Decimals).
9898:13 8 4 6 2 0 O
3 : 491314 O

3.4 7 0 03

or

0102 :13.8 4 6 2:
4 : 12 3 4

3. 4 7 039 : N.B. Better todivideby 40

(12) Divide 131 by 19799 (to 5 places of decimals).
9799: 1 3 1 0 0 O

1 : 1 7 11 13 19
:00 6 6 1 6....
or

020 : 1 3 1000
a : 1

:00 6 616 N.B. Better to divide by 20

(12) Divide 76432 by 67998 (to 5 places of decimals).
7998 : 7 6 4 3 2 O
6 : 1 36 7 910

11 2 4 0 3

902: 17 6 4 3 2 0 0
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(13) Divide *2537 by 48329
8329: 258 7 O o 2331: 2 § 3 7 00

4 : 551016 5 : 20311
:. 0624 9 .06 2 49..

(14) Divide 371628.112 by 12734 (to 6 decima places).
2784 : 371628° 112

1 : 14 87 11 8128111111 \B Retter
: 201839 25868 divide by 12
or
334:37 1 6 2 8 112 00
13 11014 314 586

2 9 1 8 39 268638

N B Here we have divided by 13

(15) Divide 41326 by 31046 (to 5 decimal_places).
1046:4°1 3 2 6 0 O 1064:4° 132600
3 : 111 2 4 or 3 ;111111

:1-3 3 1 1 2 ... (133 11 2.

(18) Divide -20014 by 137608 (to 5 decimal plac&e)
37608 : 200140 or 42412: 2 0 1 40
1 : 3689 1 T 1 2 1 0

<146 44 .. ;01 4 5 44 ..

N.B. Better divideby 13

(17) Divide .0034147 by 814256321 (to 6 decimal places).

14266321: 0 0 3 4 1 4 7
8 3 2 95

N.B. TheVinculum method isalways available but will not
make much difference.  Infact,it may provestiffer.

(18) Divide *200103761 by 9371836211 (to 3 places).
371838211: 2 O 01 0 3 7 6 1
9 : 2 6 7 7
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(19) Divide74. 5129 by 9314
314:74° 5 1 29 00 0 o
: 2 130099 99

8- 0 00O O 966

(20) Divide 71324 by 23145
3145 :7: 1 3 2 4 « 145 : 71 : 3 2 4

9

2 ol 2 4 4 23 : *2 20 818
:3: 0 8 1.. :3: 0 8 1

(21) Divide 137426 by 743-2x 1242 X 80-04(t0 4 places of
decimals).

432 113 7: 4 2 6 0 O

7 6 :7 11 7 5 4 8
1184 : 91 11 9
42 : 6 12 15 15 7 11
12 : 14 8 8 8 17
004: 6 4 0 4 9
8 A 86 009
:=1- 86 01 (approximately)

CHAPTER XXVIIT

AUXILIARY FRACTIONS

In our exposition o vulgar fractions and decimal fractions,
we have 0 far been making use of processes which help to
give us the ewact results in each case. And. in s doing, we
have hitherto (generally) followed the current system whereby
multiplicationsand divisions by powers o ten are mechanicaly
effected by the simple device d putting the decima point
backwards or forwards (as the case may be).

Conventional Method
For instance, we manipulate the decimal point thus:
(1) 1.0l (2 32_39, (8) 17 _1-7,
800 8

0 7 30 13°
(4) 3741 _ 3741 and (6) 97654 __ 0097654
110000 11 ° 90000000 9

But after this has been done, the other operations—of
divison etc.,—have had to be carried out in the usual
manner.
Auxiliary Fractions

There are certain Vedic processes, however, by which,
with the aid o what we cal SAHAYAKS (AUXILIARY
fractions), the burden of the subsequent operationsis also consi-
derably lightened and the work is splendidly facilitated.

First Type

The first (and commonest) type thereof is a very smple
and easy application of our self-same old friend the Ekddkika
Pirva. And the whole modus operandi is to replace the Deno-
minator by its Ekadhika (i.e. to drop the last digit and increase
the penultimate one by 1) and make a consequential alteration
in the divison-procedure (as in the case of other Ekddhika
operations).

N.B.:—Tre student will remember that, in these operations,
the remainder at each step (of adivision) ‘s not prefixed
to a series d zeroes from the right-hand side, but to
each quotient-digit.
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Augiliary Fractions‘(4.F.) (First type)
(1) for ¢4, the Auxiliary fraction is}

*, fp==-052631578/947368421
(2) for g, the AF.is}

. v . .
. 2 =3 aAn= 03448275862068/96551724137921

(3) for 3 AFis3-7/6

(4) for %, AFis-g2

(5) for 33, AFis1z%

(6) for £}g, AF is %

(7) for ¢k, AF is 1%

(8) for 514, AF="4%

(9) for #7%, AF=272
(20) for %%, AFis 2g2
(1) for g§3%s AFise3t
(12) for 8Py AF is=9f
(13) tor s AFis o2
(14) for yz5dgvss AR ="0303¢f==
(15) for 45355 5gy, AF="00GHES
(16) for 554§, AF=-R1ge8

1n the above oases, the first eight denominators end in
asinglenine ; the remaining eight terminatein 2, 3, 4, 3,4, 6, 7
and 4 nines respectively. The queation now is: Doesit stand
to reason that the Bkddhike should be the same in g35 and in
z9gs (irrespective of the difference in the number of nines) ?
That would be tantamount to declaring that the same (signi-
ficant) numerator tor dividend) with two different denominators
(or divisors) will yield the same quotient! And that would be
palpably absurd!

Yes; the objection is perfectly valid; and the relevant
Satra has surmounted this difficulty beforehand, by providing
for groups o quotient-digits (to which the remainder at each

stage of the mental division should be prefixed)! And that
golves the whole problem.
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Modus Operandsi

For instance, let us take the sixteenth example supra
(namely, 233%8 whose A.P. is 31222 and whose denominator
ends in four nines) :

Here, Fis21882; and AFis 2:182%; and we have to make
5 (inlieu d 49999) our working divisor. As we have dropped
4 nines from the original denominator and have 5 as our Ekd-
dhika in the Denomiuator of the Auxiliary fraction, we have
to divide the nmnerator of the latter in bundles, soto say, of
4 digits each by 5 ; and, whatever remainder thereis, hasto be
prefixed not to any particular quotient-digit but to the bundle
just already reached.

Thus, We take Up 2-1863 to start with and divide it by 6.
We get 5)-2-1863

-4372 asthe fiest [Q:'4372 —~R=3
quotient-group and 3 as the remainder. We prefix this remain-
der to that group and say :

-4372 and we divide this dividend (namely, 34372)
3 by the same divisor 5 ; and we get :
4372 © 6874 | 5374
4 1 2 4

i.e. 6874 is the second quotient-group; and 2 is thesecond
remainder, which therefore we prefix to the second quotient
group. And we continue this process with as many groupsas
we need.

Thus we have: +4872, 6874, 5374, 9074 and so on
3 2 4 4

{to any number, or tens, or hundreds or thousands etc., o Deci-
ral places) !
The PROOF hereof is very simple:
0007 : 2-1863 000
5 : 3
" 4372

o T=-4372, 6874, 5374, 9074

......
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N.B.:—The prefixed re mainders are not parts of the quotient
but only prefixes to the quotient-group in question
and are therefore to he dropped out of the answer!

This is a simple method by which we avoid divisions by
long big divisors and have small and ecasy denominators to
deal with.

The student will note that division by big denominators
(with a continuous series of zeroes on the right-hand side) and
division by the Ekadhika (with the prefixing of the remainder
at each step) yield the sameresult! And thisiswhy the Auxi-
liary Fraction scheme has been incorporated for lightening the
burden of long big divisions.

A few more examples are given below:

(1) Express 6 in its decima shape.

29
Here 6 ‘6
’ F:—_ R d o=
. 3 - AF 3
.« F=-20689655172413
79310344827586
(2) F=;_; AF—_—%} .. F=-79775280898 etc., etc.
3) F=17 . ap=L7 . F=-12230216827......
139 7 14 33403
98 . _9'8 -, F=-5174860335, 1955......
(4) F= o A= )
5) F=L=3 . ap=3 F="023255813953488...
43 129 i3
_ _ . AR5l . Fi=-395 348 837
(6) F=17/43=51/129 ., AF=" 209...
18_54 . ,p_54 - F=-24657534.
=8 9% . Ap=2'% - F=-24657534......
™ F=35=om5 22
(8) F=93 . Ap=93 .. F="06 63 32 91 61 45 18...
799 *° 8 5 2 7 4 3 1

N.B.:—The upper row ('06633291614518......) is the answer
and the lowerone (52743 1...... )y isa mere scaffol-
ding and goes out.
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15 ‘15 ., F= 01 66 85 20 57
9) F=_-2 A =
®) 809 AF 9 6 7T 1 5 17
2 . 02 - F= 0011 11 7287
—— o AR=92 0
(19) F=y755 13 2 2 13 15 6
100_ 300 , 3 . F= 42 91 84 54 93 56 22
1) F=2="" * AF=
an 233 699 ¥ 6 5 3 631 2
£:3 TR
5
! 444 444 - F= 031 716 551 182...
= AF:‘« .
(12) ¥ 13999 14 0 1 2 3
97017 - 0097017
NTFP=r —— S AF=——
(13) ¥ 29999999 3
F= 00323391 00107791 6670259 etc., etc
0 2 2

The student will have noted that the denominators in al
the ahove Cases ended in 9 (or 3 which could be so multiplied
as to yield an easy multiple ending v 9). But what about
those ending in 1 which would have |o be multiplied by 3 for
this purpose and would, therefore, as already pointed out (in
the chapter on Recurring Decimals) yicld « rather unmanagcable
Ekadhika ?  isthere any provision for this kind o tractions

Yes ; thereis. And this takes us on to the eecond type nf
Auxiliary fractions.

Auziliary Fractions (Second Type)

1f and when F has a dencminator ending wn 1, drop the 1
and DECREASE the numerator by unity — This 1s the required
second type of Auxiliary Fractions. Thus,

(1) for 3/61, AF=2/60— 2

(2) for 36/61, AF==35/60=3 &5/6

(3) for 28/71, AF=27/10=2"7/7

(4) for 73/91, AF=172/90=7:2/9

(5) for 2/121, AF=1/120=="1/12

(6) for 14131, AF=13/130=13/13

(7) for 1/361, AF=0/300="00/3

(8) for 1/901, AF=0/200="00/9

(9) for 17211301, AF=171/1800=1-71/13
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(10) for 2743/7001, AF==2742[7000=2"T42/[7

(112) for 6163/8001, AF=6162/8000=6"162/8

(12) for 1768/9001, AF=1767/9000=1"1767/9

(13) for 56/16001, AF=55/16000=055/16

(14) for 50/700001, AF=49 /700000~ 000497

(15) for 2175/80000001, AF =2174/80000000= 0002174 /8
{16) for 1/900000001, AF=0/900000000= 00000000/9

Modus operandsi

The principles, the prefixing (to the individual quotient-
digits or to groups of quotient-digits) etc., and other detailsare
the same as in the Ekadhikae Auxiliary fraction. BUT the
procedureis different, in a very important (nay, vital) particular.
And thisis that after the first division (or group-division is over)
we prefix the remainder not to each quotient-digit but to its
COMPLEMENT from NINE and carry on the division in this
way all through.

An illustrative ingtance will clarify this:

Let FbeL3 R AF:LQ:I_'2
3t 30 3
(i) Wedivide1.2 by 8 and set 4 down asthefirst quotient-
digit and 0 as the first remainder. -4
0
(i}) We then divide not 04 but 05 (the complement of 4
from 9) by 8 and put t and 2 as the second quotient-
digit and the second remainder respectively. There-
forewe have -4 1
0 2
(i) We take now, not 21 hut 28 as our dividend, divideit
by 3and get: 4319
021
(iv) Thus, dividing 10 by 3, we have: 4193
9 0- 211 and
so on, until finaly our chart reads:
F(ie 3§)= -419354837096¢€lc, etc. !
0 211121220222
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Always, therefore, remember to take the complement {from
9) of each quotient-digit (and not the quotient-digit itself) for
the purpose of further division, subtraction etc. This is the
whole secret  of the second type of Auxiliary Fraction.

Some more illustrative examples are given hereunder :
1
(1) F_Zi AF~_—
W F=024 3}5/0 }SO, thisis a definite recurring
01130/0 decimal.

2 T=70 .. AF=B.9
71 7

S F=98501549295774647887323...
64613362645534356652126

. 90 " F=582 16 374 2 6
(3)F“171 o AR=q1 53210612741115

10_30 _ 29 ..-370/3 Evidently are-
@ F_27 a1 AF_-§' 502/5 cwring decimal.

) F_;!Sl - AF=L30 (with groups of 2 digits)

. F=-18 68 75 89 15 83......
4 56 6 1 5 3

(6) =489 . Ap=1339 (with two-digit groups)

F ... =99 92 86 22 41
13 12 3 &6 38

@) F:-@ . AF—E:L%% (withgroups o two digits)

. F=-15 17 8 1374 1411 61 79......
212 2 11 21 9 12 ¢

5 14 (with groups o two digits)
(8) F=g7= 201 - AF=

.. F= -07 46 26 86 56
0 0111
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©) = 2743 AF=2742 (with 3-digit groups)

7001 ° 7
.. F= -391 801 171 261 248 393 086
5 1 1 1 2 0 4
Proof: 001 :2 742 999
7 : 5

5391
393 92 ~F=402/597
F="="2 . ==
(19) 77 231 AR 23 0
OR F=31_403 . -402 (with three-digit groups)

71001 .7 -t
.. F=-402/597 (evidently a recurring decimal)

_ 29
1) F=r501

- 1?2= 001 933 204 453 036 etc., etc.
1 3 3 6 0

e AT 0128 (with three-digit groups
AF_._H( git groups)

137 000136 (with 6-digit groups)
12) F=———2r .. =
(12) ¥ 13000001 AF 13

.. F=-000010: 538460 : 727810: 713245 etc., €tc.
6 19 :0 4

Other Astounding Applications

Yes; but what about still other numbers which are neither
immediately bdow nor immediately above a ten-power base
or amultiple of ten etc., (asin the above cases) but a bit remoter
therefrom? Wadl ; these too have been grandly catered for, in
theshape of asimpleapplication of the Anuripya Stitra, whereby,
after the prefixing of each' Remainder to the quotient-digit
in question, we have to add to (or subtract from) the dividend
at every step, as many times the quotient-digit as the divisor
(i.e. the denominator) is below (or-above) the NORMAL which,
in the case of al these Auxiliary fractions, is counted as

ending, not in zero or a number o zeroes but in 9 Or A series
o nines!

( 23 )

For example, let F he ¢ and suppose we have to express
this vulgar fraction in its decima shape (to, say, 16 places o
decimals).

Lest the student should have, in the course ot these
peregrinations into such very simple and easy methods of work,
forgotten the tremendous difference between the current method
and the Vedic method and thereby deprived himsdf of the
requisite material for the purpose of comparison and contrast,
let us, for a brief while, picture the two methodsto ourselves
side by side and see what the exact position is.

According to the Vedic method, the process whaly mental
is as follows:

F=}§, .. AF.=15. But 68 being one lessthan 69 (the
normal ending in 9) we shall have to add to each dividend, the
guotient-digit in question. Thus

(i) whenwedivide1-5 by 7, we get 2 and 1 15

as our first quotient-digit 7
and our first remainder. 1'2
(ii) our second dividend will not be 12 hut
124-2=14; and by division of that by 22
7, our second Q and R are 2 and 0. 10
(iif) our next dividend is 02f 2=04; and 1'20240
this givesus0 and 4 as Q and R.
(iv) our fourth dividend is40+0, giving us 2205
6 and 5 as our fourth Q@ and R. 1045
(v) So, our next dividend is 55--5(=60); ‘22058
and our Q and R arc 8 and 4. 10454

We can proceed on these linesto as marly placesof decimals
as wemay need. And, in the present case (wherein 16 decimal-
placeshave been asked for), we toss offdigit after digit (mentally)
and say :

F='2205882352941176 etc., ete.
1045402316101532
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Over againgt this, let us remind oUrselVeS of the gyurrent
method for answering this question :

68)15°0( 2205882352941176 etc., EtC.
136

140

136
400
340

600
544

560
544

160
136

240
204

360
340

e

200
136

P

640
612

280

272
80
68

120
68
520
476
7440
408
Aloné;

side o this cumbrous 16-step process, |et us once again
put down the whole working by the Vedic method and say :

F(8)= 22058823529411764 ete., ete.
10454023161015324
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A few more illustrative examples are given hereunder :
(1) Express 101/138 in its decimal shape (20 places)
(i) Routine Method—

138)101° O(" 73188405797101449275
966

7440
414
260
138
1220
1104
1160
1104
560
552
800
690
1100
960
1340
1232
980
966
140
138
200
138
620
552
680
552
1280
1242
380
276
1040
966
740
690

50
34
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(ii) Vedic Method.

AF =182

( 267 )
. .
=192 (with one below the normal 139) (8) Express 44’y 8 a decimal (20 places).
- F=73 1 884057971014492 74ete Current method—
32121040810128002661221065 127)17- 0( - 13385826771653543306 eto., eto,
Note: —More-than-one-digit quotient if any, should 2
be carried over (as usual) to the left. 430
(2) Conventional method : 381
97)73- 0(* 75257731958762886597 €tC., ELC. 490
679 381
510 1090
485 1016
250 740 740
194 679 635
560 610 -i&i.o
485 582 1016
750 280 340
679 194 254
710 860 ) 450
679 776 762 381
310 840 980 690
291 716 889 635
190 640 Tol0 550
97 582 889 508
930 580 210 “420
873 485 127 381
570 950 830 " 300
485 873 762 381
850 770 680 900
716 L 635 882
. . - 91 - —
(i) Vedic (at-sight) method 18
Data - F=3%% .. AF="%$ (but with 2 bdow the normal 99).
.~ Add twice the Q-digit at each step.
Actual Working:

'.F=3.75257731958762886597etc.,et0.
156511937541864485

(if) Vedi ¢ at-sight method—

— 21
F“I'ﬂ‘!'

AF=¥¢ (butwith 2 below tne normal 129)

. Double the Q-digit to be added at every step.

~F=13 38582677165354330 6etc.
4410591887085364330912
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(4) Express §838 in decima form (21 decima places)
(i) Bud method—
8997)5236- 0(- 581/971/768/367/233/522/285 eto., etc.
44985

73750
71976

- What a TREMEND-
17740
8997 DOUS mass and
87430 21010 mess of - multi
plications,  sub-
80973 17994 .
Ea— tractionsete. |

64570 30160
62979 26991

15910 31690
8997 26991

69130 46990
62979 44985

— —

61510 20050
53982 17994

75280 20560
71976 17994

33040 25660
26991 17994
60490 76660
53982 71976
65080 46840
62979 44985
1855
(i) Vedic at-sight method -

v+ §=5236 . 4p_5'236 (but with 2 below the

8997 '° T 9 normal 8999 and aso
with groups of 38 digits
at a time).

s Add twice the Q-digit at every step.
S F=-581: 971: 768: 367: 233: 522: 285 etc., €tC.
7 4 1] H 4 1 ;1

( 269 )

(5) Express 218832 asadecimal (16 places)

Conventional method

49997121863 0(- 4372/8623/7174/2302/etc., etc.

199988

186420
149991

364290
340979

143110
99994

431160
399976

311840
299982

118580
99994

185860
149991

358690
349979

87110
49997

371130
349979

211510
199998

115120
99994

151260
149991

126900
99994

26906

What a horrible
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(ii) Vedic At-sight method—
o 21863 . o 2-1863
P=loosr ~ AF="225

(with 2 below the normal 49999 and with
groups o four digits each).

62

~ Add double the Q-digit at every step)
71 4
s F= 4372

2 30
1 85(12)8: 678 : (12 2(0)2
3 01 14 14
N.B. : very carefully that the extra (or surplusi.e. left-hand
Sde) parts of Q-digits have been **carried over' to the
| eft.

This excess is due to the additional multiplication and
can be got over in the manner just indicated. A method for
avoiding this difficulty altogether is aso available but will
be dealt with at a later stage.

(6) Express 3z as a decima (eight places)
Current method—

76)17- 0(* 22368421 eto., €tC.
152
180
152 N.B—Note 84 :21::4:1
280
228

520

Even thisisbad enough.

818818

160
152

80
76

{ 211 )
(i) Vedic At-sight method :

© F=3%. AF=23L (but with 3 less than the

normal 79)
Thrice the Q-digit is to be added at every step.

s F=22368421 e, etc.
12440000

Thed

(7) Express § as a decimal (12 places)
(i) Usual method—

59998)17125 - 0(- 2854 /2618 /0872
119996

512540
479984

325560
299990

255700
239992

157080
119996

370840
359988

108520
59998

485220
479984

523600
479084

436160
419986

161740
119996

41744
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(i) Vedic At-sight method:.
o p.17125 pl7125  (with 1 less the
59998 ° 6 norma and with
4-digit groups)
>, only one Q-digit is to be added.
~ F=-2854: 2618: 0872e€tc, €tc.
1 ;0 14

These examples should suffice to bring vividly home to
the student the extent and magnitude o the difference between
the current cumbrous methods and the Vedic at-sight one-line
process in question.

Yes; but what about other numbers, in general, which are
nowhere near any power or multiple of ten or a *"norma** deno-
minator-divisor ending in 9 or a seriesdf nines? Have they
been provided for, too ¢

Yes ; they have. Thereare methodswhereby, as explained
in an earlier chapter (the one dealing With recurring decimals)
we can easily transform any miscellaneous or non-descript
denominator in question—by simple multiplication ete.,—to
the requisite standard form whiceh will bring them within the
jurisdiction o the Auxiliary Fractions hereinabove explained.

In fact, the very discovery of these Auxiliaries and of
their wonderful utility in the transmogrification of frightful
-looking denominators of vulgar fractions into such simple and
eagy denominator-divisors must suffice to prepare the scienti-
ficaly-minded seeker after Knowledge, for the marvellous
devices still further on in the offing.

We shall advert to this subject again and expound it
still further, in the next two subsequent chapters (dealing with
DIVISIEILITY and the application of the Ekadhika Pirva ete..
as positive and negative OSCULATORS in tliat context).

CuarrEr XXIX

DIVISIBILITY AND SIMPLE OSCULATORS

We now take up the interesting (and intriguing) question
as to how one can determine before-hand whether a certain
given number (however long it may be) is divisible by a certain
given divisor and especially as to the Vedic processes which
can help us herein.

The current system deals wth this subject but only n an
ultra-superficial way and only in relation to what may be termed
the most elementary elements thereof. Into details o these
(including divisibility by 2, 3, 10, 3, 6, 9, 18, 11, 22 and so ¢n),
we need not now enter (as they are well-known even to the

mathematics-pupils at a very early stage of their mathematical
study.) We shall take these for granted and start aith the

intermediate parts and then go on to the advanced portions of
the subject.
The Osculators

Aswe have to utilise the “dwms” (Vestanas =Osculators)
throughout this subject (of divisibility), we shall begin aith a
simple definition thereof and the method o their application.

Owing to thefact that our familiar old friend the Ekadhika
is the first of these osculators (i.e. the positive osculator), the
task becomes all the simpler and easier. Over and above the
huge number o purposes which the Ekddhika has already been
shown to fulfil, it has the further merit of helping us to readily
determine the divisibility (or otherwise) of a certain given
dividend by a certain given divisor.

Let us, for instance, start with our similar familiar old
friend or experimental-subject (or shall we say, " Guineapigs"
the number 7. The student need hardly be reminded thatthe
Ekadhike for 7 is derived from 7x7=49 and is therefore 6.
The Ekadhika isa clinchingtest for divisibility ; and the process
by which it serves this purposeis technically caled Vestana
or ""Osculation™.

36
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Suppose we do not know and have to determine whether
21 is divisble by 7. We multiply the last digit {i.e. 1) by the
Ekadhika (or Positive Osculator ie. 5) and add the product
(i.e. 5) to the previous digit (i.e. 2) and thusget 7. Thisprocess
is technically called "Osculation”. And, if the result of the
osculation is the divisor itself (or a repetition of a previous
result), we say that the given original dividend (21) is divisible
by 7.
A trial chart (for 7) will read as follows:
14; 4x5+1=21; and 1x6+2=7 .. YES.
21 (already dealt with) ;
28 8x51-2=42; 2X514=14 (aready dedlt with)
35; 5x5+3=28 (aready dealt with) ;
42 (already dealt with) ;
49 ; 9x5+4=49. (Repetition means divisibility).
56; 6x5-15=35 (aready dealt with) ;
63; 3x5-+6=21 (already dealt with);
70; 0x5+7=7.. YES
77; TXxX5+4+7=42 (already done);
84; 4x5-+8=28 (aready over);
91; 1 x51+9=14 (already dealt with);
98; 8x5+9=49 (already done);
Now let ustry and test, say, 112.
112; 2X6+1=11; 11 xX5+4+1=56 .. YES.
OR 2xs+11=21 . YES

We next try and test for 13; and we find the repetitions
more prominent there. The Ekddhika is 4. Therefore we go
on multiplying leftward by 4. Thus,

13; 3X441=13

26; 6X4+2=28
39;9%x4+3=39 The repetition etc., is uniformly
52;2x4+4+5=13 there and in correct sequence
65; 5xX4+4+6=26 too ti.e. 13, 26, 39)! ., YES.
78; 8 X4+7=39

91; 1X44-9=13
104; 4X44+10=26

- ————————————————————

(20 )

Examples of the Osculation Procedure (V estana)
A few examples will elucidate the process:
(1) 7 continually osculated by 5 givés 35, 28, 42, 14, 21
and 7.
(2) 5 0 osculated by 7 gives 35, 38, 59, 68, 62, 20, 2 and
SO on.
(3) 9 (by 7) gives 63, 27, 51, 12, 15 ete.
(4) 8 (by 16) gives 128, 140, 14 etc.
(5) 15 (by 14) gives 71, 21, 16 ete.
(6) 18 (by 12) gives 97, 93, 45, 684, 64, 53, 41, 16 ete.
(7) 36 (by 9) gives57, 68, 78, 79, 88, 80, 8 ete.
(8) 46 (by 3) gives 22, 8 ete., ete.
(9) 49 (by 18) gives148, 142, 48, 100, 19, 1 ete., eta.
(10) 237 (by 8) gives 79, 79 etc., and is .. divisible by 79.
(12) 719 (by 9) gives 162, 33, 30, 3 €ic., ete.
(12) 4321 (by 7) gives 439, 106, 52, 19, 64, 34, 31, 10, 1 etc.
{13) 7524 (by 8) gives 784, 110, 11, 9 ete., etc.
(14) 10161 (by 5) gives 1021, 107, 45, 29, 47, 39, 48, 44,
24, 22, 12, 11, 6 etc.
(15) 35712 (by 4) gives 3579, 393, 51, 9 etc.
(16) 50720 (by 12) gives 5072, 531, 65, 66, 78, 103, 46,
etc., etc.

N.B..-\e need not carry this process indefinitely on. We

can stop as soon as we reach a comparatively small
number which gives us the necessary clue as to
whether the given number isdivisible(or not) by the
divisor whose Exddhika we have used asour osculator |
Hence the importance of the Ekddhika.

Rulefor Ekadhikas
(1) For 9, 19, 29, 39 etc., (al endingin 9), the Ekddkikas
arel, 2, 3, 4etc.
(2) For 3,13, 23, 33 ete., (all endingin 3) multiply them by
3;and you get 1, 4, 7, 10 etc., ae the Ekadhikas.
(3) For 7,17, 27, 37 ete., (all ending in 7) multiply them by
7;and you obtain 5, 12, 19. 28, ete., asthe Ekadhikas.
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(4) For 1, 11, 21, 31, etc., (alending in 1), multiply them
by 9; and you get 1, 10,19, 28 etc., asthe Ekadkikas.

Osculation by own Ekddhika

Note that the osculation of any number by its own Fkd-
dkika will (as in the case o 7 and 13) go on giving that very
number or a multiple thereof. Thus,

(1) 23 osculated by 7 (its Ekadhika) gives 7x3+2=23;

46 (osculated by 7) gives 7TXx6-+4==46 ;

69 (similarly) gives 7x9-4-6=69;

92 (likewise) gives 2 X74+9=23;

115 (similarly) gives 7x5-+11==46 And so on.

Now, 276 (osculated by 7) (by way o testing for divisi-
bility by 23) gives 7x6-+27=69 which again gives 69!
& YES. Thus, al the multiples o 23 fulfil this test i.e. of
osculation by its Ekadhike (7). And this is the whole secret
of the Vestana sub-Sitra.

Modus Operands ¢ Osculation

Whenever a question of divisibility comes up, we can
adopt the following procedure. Suppose, for instance, we wish
to know—without actual divison—whether 2774 is divisible
by 19 (or not). We put down the digits in order as shown
below. And we know that the Ekdadhkika (osculator) is 2.

(i) We multiply the last digit (4) by 2, add the product

(8) to the previous digit 7 and put 577 4
the total (15)down under the second 15
right-hand digit.

(1) We multiply that A5 by 2, add that 30 to the 7 on

the upper row, cast out the nineteens 2774
(fromthat 37) and put down the 3715
remainder 18 underneath that 7. (18)

N.B.—This casting out of the nineteens may be
moreeasily and speedily achieved by first osculating the
15itself, getting 11, adding it to the 7 27 7 4
(tothe left-hand) on the top-row and 18 15
putting the 18 down thereunder.
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(iii) Wc then osculate that 18 with the 2 to the left on
the upper row and get 38; or we may osculate the
18itself, obtain 17, add the 2 and get
19 as the fina. osculated result. @9 1815 43
And, as 19isdivisible by 19, we say
the given number (2774) isaso divisible thereby.

This is the whole process; and our chart says:

By19¢ 2 7 7 4 } YES.
. Theosculator is2 {19 18 15

OR Secondly, we may arrive at the same result-as effectively
but less spectaculariy by means o a continuous series of oscula-
tions of the given number (2774) by the osculator (2) as here-
inbefore explained. And we can say :
*,- 2774 (osculated by the osculator 2) gives us 285. 38
and 19
.~ 2774 isdivisible by 19.

N.B. :—The latter method is the shorter but more mechanical
and cumbrous of the two; and the former procedure
looks neater and more pictorially graphic, nay,
spectacular. And one can follow on¢’s own choice
as to which pocedure should be preferred.

Note —Whenever, at any stage, a bigger number than the
divisor comes up, the same osculation-operation can
always be performed.

Some more specimen examples are given below :

(1) By 29% . Theosculatoris3.§3 28 9 6 } .". No.
327 8 31 27

ORE (osculated by 3) gives 3307 351, 38, 27, etc. _ .. No.

(2) By 297 .* The osculator isS.{ 9 31 48} " YES
29 26 27 28

OR The osculation-results are 9338, 957, 116 and 29
.. YES
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(3) By29? ., Theosculatoris3. §2 43 45 21} .~ YES
20 921 620 5-
OR The osculation-results are 243455, 24360, 2436 261
and 29 .', YES

(4) By39? .', Theosculator is4.§ 4 9 1
39 38 17

OR The osculation-results are 507, 78 and 39 . YES
(5) By49? .., The osculatoris5. 5 3 3 2
51 19 13 .. No.
(10)
OR The osculation-results are 543, 69, 51 and 1(i = No
(6) By 59 ? .*, Theosculator iS6. {1 9157 3
5949 46 37 25
08 Theosculation-resultsare 19175, 1947, 236 and 59
.. YES

(7) By 592 .-. The osculator is 6.{ %9 £219 g7 28 7 } YES

4}1 YES

OR The osculation-results are 1298, 177 and 59 .'. YES.

(8) By 597 .. The osculatoris6. f4 0 17 9 1} No.
4717523815

OR Theoscul ation-resultsare 40185,4048,452 and 57 -*.No.
(9) By 79? .-. The osculator iss.{e 309 4 82 1} .*. No.
1370386476 910

OR The osculation-resultsare 6309490, 630949, 63166,
6364, 668, 130 and 13 .*. No.

(10) By 43 ? .-, Theosculator is13. {1 4 0 8§ 1}.~.YES
129 119 118 19
OR The osculation-resultsare 1419,258 and 129 ... YES
(11) By 531 .. The osculator is 16. { 2,1 953 No.
149 39 62 53
OR Theosculation-resultsar 2243, 272 and 59 .. No.
(12) By179?.-. Theosculatorisi8. 7 1 45 5 0 1}..YES
(179 109 6 2015018
OR The osculation-results are 714668, 71600, 7160, 716
and 179 .". YES

(2 )

(13) Determinewhether 5293240096 is divisible by 139 (or not)
(A) By thecurrent method (just by way of contrast) :

139)8293240096(380864

1123
1112

1124
1112

1200
1112

889
834

556
556

0 .. YES
(B) By the Vedic method -
By 1392 ... The Ekddhika (osculator)is 14.

5 2 9 3 2 4 0 0 9 6) YES
139 89 3613129 131 19 51 93

OR The osculation-results are 529324093, 62932451
5203259 529451,52959, 5421, 556 and 139 -*. YES

Note:—n  al the above cases, the divisor either actually ended
in g or could—hy suitable multiplication—be made to
yield a product ending in 9 (for the determination of
the required Fhkddhika or Osculator in each case).
But what about the numbersendingin 3,7 and 1 (whose
Ekadhika may generally be expected, to be a bigger
number) ! |s there a suitable provison for such
numbers being dealt with (without involving bigger
Ekidhika-multipliers) ?

Yes; there is; and this we proceed to deal with.

The Negdive Oscudator
Thisisan application o the Pardvartye Sitra and iscalled

the Negative Osculator because it is a process not of addivion
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(as in the case of of the Ekadkika) but of Subtraction (leftward).
And this actually means a consequent alternation. of plus and
minus.

Examples & the Negative Osoulation Process
(1) 86 thus osculated by 9, gives 3—54=-—51,
(2) 7(osculated by 5) gives 0—35=—35
(3) 35712 (osculated by 4) will yield 8—8571—=—3563.

How to Determine the Negative Osculator
Just as the Bkadhika (the positive Vestana) has been duly
defined and can be correctly ascertained, similarly the Negative
Osculator will also require to be determined by means of a
proper definition and has been so defined with a view to proper
recognition.
It consists of two clauses:
(i) 1n the case of al divisors ending in 1, smply drop the
one; and
(ii) in the other cases, multiply so as to get 1 as the last
digit of the product (i.e. 3by 7, 7 by 3 and 9 by 9);
and then apply the previous sub-clause (i.e. drop the 1).
Note:—For facility of symbolisation, the positive and the
negative oseulators will be represented by P and Q
respectively.
Evamples d Negative Osculators

(1) For 11, 21, 31, 41, 51 and other numbers ending
inl, Qisl, 2 3,4, 5and soon. [Note that, by
this second type of oscultors, we avoid the big
Ekadhikas (produced by multiplying these numbers
by 931

(2) For 7, 17, 27, 37, 47, 57 etc., we have to multiply
them by 3 (in order to get products ending in 1).
And they will be 2, 5, 8, 11, 14, 17 and so on.
(In these cases too, this process is generaly cal-
culated to yield smaller multipliers than the
multiplication by 7 is likely to do).
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(3) For 3, 13, 23, 33, 43, 63 etc., we havetomultiply
them by 7; and the resultant Negative Osculators
will be 2, 9, 16, 23, 30, 37 etc., (whichwill generaly
be found to be bigger numbersthan the Ekadhikas).

(4) For 9, 19, 29, 39, 49, 59 etc., we have to multiply
these by 9 ; and the resultant Negative Osculators
will be 8, 17, 26, 35, 44, 53 etc.,, (al of which will
be much bigger than the corresponding Ekadhikas).

Important and Interesting Feature

Note—A very beautiful, interesting and important feature
about the relationship between F and Q, is that,
whatever the Divisor (D) may be, P4+Q=D. i.e. the
two osculators together invariably add up to the
Divisor. And this means that, if one of them is known,
the other is automatically known (being the comple-
ment thereof from the divisor i.e. the Denominator).

Specimen Schedule ¢ Osculators P and Q

Number Multiplefor P Multiplefor Q P Q Total

L 9 (1) 1 0 1

3 9 21 1 2 3

7 49 21 5 2 7

9 9) 81 1 8 9
11 99 (11) 10 1 11
13 39 91 4 9 13
17 119 51 12 5 17
19 (19) 171 2 17 19
21 189 (21) 19 2 21
23 69 161 7 16 23
27 189 81 19 8 27
29 (29) 261 3 26 29
31 279 (31) 28 3 31
33 99 231 10 23 33
37 259 111 26 11 37
39 (39) 351 4 35 39
41 369 (41) 37 4 41
43 129 301 13 30 43
47 329 141 33 14 47
49 (49) 441 5 44 49
51 459 (51) 46 5 51

36
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Number Multiplefor P MultipleforQ P~ Q  Totd Note:—(1) If the last digit o a divisor be 3, its P < its Q;
553 %88 i’% }‘8 f; 53 (2) If the last digit be 7, its Q <its P; and
59 (59) 53] 6 53 gg, ¢ (3) in the actual wprking out o the suptractionsd the
61 549 (61) 55 6 61 ‘ osculated multiples (for the negative osculators),
63 189 41 19 4 63 ‘ the actual result will bean alternation d pks and
67 469 201 47 20 67 minus.
69 (69) 621 7 6 69
71 639 (71) 64 7 71 Ezplanation (1) Intheremoval of brackets, a seriesdf subtrac-
;? 52)138 233-1 \gj % ;:73 tions actually materialises in an alternation of
79 (79) 711 g8 71 19 + and—For example,
81 729 (81) 73 8 81 a—(b—fe—[d~e—D)}]

- =a—b-4-c—d-e.
N.B. It will be noted :— T
(i) that P+Q always equals D: Exactly similar is the case here. ,
(i) multiplesd 2 and 5 are inadmissiblefor the purposes @ “V\é?]?chvr?sig\s”g‘e :*;‘T;tg/ g:;)’v\fhlithl;?é
d thlsscheQUIe; . L aternately plus and minus. Exactly the same

(i) and these will have to be dealt with by dividing is the case here.

offdl the powersaf 2 and 5 (which are factors of the

Divisor concerned). Nate:—The student will have to carefully remember this alter-

nation o positives and negatives. But the better

Afew sample examples thing will be, not to rely on ones memory at each

(1) for 59, Pis6 .. Q=53 t step but to mark the digitsbeforehand, alternately, say,
(2) for 47, Qis 14 .. P= 33 by means of a Vinculum (from right toleft), on al the
(3) for 53, P is 16 ... Q= 37 even-place digits, so that there may be an automatic
(4 for7,Q@s7 .. P=o64 safeguard against the possible playing of any pranks by
(5) for 89, Pis9 .. Q= 80 one's memory.

(6) for 83, Pis 25 .. &= 58 Armed with this safeguard, let us now tackle a few illus
(7)for 91, P is 82 .. Q= 9 trative instances and see how the plan works out in actual
(8) for 93, Q is65 .. P= 28 P-+Q=D throughout practice.

(9) for 97, P is68 .. Q= 29 (1) By 41? .. Tho (Negative) Osculator is 4

(10) for 99, Q is 89 .. P= 10 3 }
(112) for 101, Pis91 ... Q= 10 - 4 1 . YE8
(12) for 103, Q is72.. P= 31 Or )

(13) for 107, P is75.. Q= 32 The osculation-resultsare 16564, 1640,164 and 0 .*. YES
(14) for 131, Qis13 .. P=118 . (2) By31? .. Q—3 §6 6 0 3

(15) for 151, P is136 ... Q== 15 30 33 9 }*YES

(16) for 201, Qis20., P=181

? The osculation-results are 651, 62 and ¢ ... YES.
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(8) Bydr? .. Q=4 i] 12 3 4
0 01013 13 } ~. YES
r

The osculation-results are 1107, 82 and 0 .. YES
(4 By47? Q=14 T 4 %1 6 5
o 111 102 7 51 64 }.-ASO
r

The osculation-results are 74146, 7330, 733and 31 ... NO
(5) By51? ..Q=5 373431
{—51032183 E NO

Or

The osculation-results are 43727, 4337, 398 & | ... NO
(6)By61? ..Q=6 1 § § § 1

Or 0—-51-7~2 f .. YES

The osculation-results are 1952, 183 and 0 .. YES
(7)By 67t ~.Q=20¢1 @ 17 1 2 g3
0—-101 0 —81-4 60 } . YES
Or

The osculation-results are 1017060, 101706, 10050, 1005
and 0 ... YES.
8)By91? Q=9 (9 8 0 £ 59 0 5 3
Or {84 69 49 56 37 44 16 22 %.'.NO
The osculation-results are 98045878, 9804515, 980406
97986, 97441 938 and 21 ... NO
(9) By61? .-.Q=6 zil g 21 305 4
Or 0-10—-2 01053 19 %:.YES
The osculation-resultsare 1221281, 122122, 12200, 1220,
122and 0 .. YES
(10) By 717 . Q=7 (' 0 9 0 4 5
or io 6219 4 31 } . YES
The osculation-results are 80869, 8023, 781 and 71 .. YES
(11) By 131? .. Q=13¢1 3 3 7 9 ¢ 3
or io 10 1 20123 39 } .. YES
The osculation-results are 133751, 13362, 1310 & 131.".YES
(12)By141? . Q=144 8 9 8 8 5 7
94 87 37 2 41 93 ; .. NO
N.B. But this dividend (yielding the same results) is divisible
by 47 (whose Q IS als0 14). (94=47x2)

CHAPTER XXX

DIVISIBILITY
AND
COMPLEX MULTIPLEX OSCULATORS

The cases so far dealt with are of a simple type, involving
only small divisors and consequently small osculators, What
then about those wherein bigger numbers being the divisors,
the osculators are bound to be correspondingly larger ?

The student-inquirer's requirements in this direction
form the subject-matter of this chapter. |t meetsthe reeds
in question by formulating a scheme d groups ¢ digitswhich
can beosculated, not asindividual digits butin alump, so to say.

Examples & Multipler: Vestana ¢.e. (Osculation)

(1) 371 osculated by 4 for 2 digits at a time, gives 3+
71x 4(=287) and 3—284 (=—281) for plus oscillation
and minus oscillation respectively.

(2) 1572 osculated by 8 for 2 digits gives 154576 (=591)
and 15—576 (=—>561) respectively.

(3) 8132 osculated by 8 (Pand Q) for 2 digits gives 81
+256 (=837) and 81—256 (=—175) respectively.

(4) 75621 osculated by 5 (P and Q) for 3 digits gives
7543105 (=38180) and 75—3105 (=—3030) respec-
tively.

(5) 61845 osculated by 7 (P and Q) for 3-digit groups
gives 6145915 (=5976) and 61—5915 (=—>5854)
respectively.

(6) 615740 osculated by 8 (P and Q) for 8-digit packets
gives 6154-592¢ (=6535) and 615—5920 (= —5305)
respectively.

(7) 518 osculated by 8 (Pand Q) for 4-digit bundles gives
04144 (=4144) and 0—4144 (— —4144) respectively.

(8) 73 osculated by 8 (Pand Q) for five-digit groups yields
0584 (=584) and 0—584 (=—584) respectively.
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(9) 210074 osculated by 8 (P and Q) for five-digit bundles
give 2480592 (==80594) and 2—80592 (= —80590)
respectively.

(10) 7531 osculated by 2(P) for 3 digitsgives 7+1062=1089
(11) 901450sculated by 5 (Q) for 3 gives —725--90=—635
(12) 5014112 osculated by 7 (Q) for 4 gives 501—28784

=—28283
(13) 7008942 osculated by 3 (P) for 2 gives 126--70089

=70215
(14) 7348515 osculated by 8 (P) for 3 gives 734814120

=11468
(15) 59076242 osculated by 7 (Q) for 2 gives ~-590762--294

= —590468

Categories o Divisors and their Osculators.

In this context, it should be noted that, as there are
various types of divisors, there are consequent differences
asto the natureand typeof osculators (positive and for Negative)
which will suit them. They are generaly of two categories:

(i) those which end in nine (or a series of nines)
[in wheh case they come within the jurisdiction
o the. Ekidhika (i.e. the Positive) Osculator]
or, which terminate in or contain series of zeroes
ending in 1, (in which case they come within the
scope of operations performable with the aid o
the Viparita (i.e. the negative) osculator ; and

(1i) those which, by suitable multiplication, yield &
multiple of either of the two sortsdescribed in sub-
section () supra and can thus be tackled on that
basis.

The First Type.

We shall dedl, first, with thefirst type of divisors, namely,
those ending in 9 (or a series o nines) or 1 (or a seriesd zeroes
ending in unity) and explain a technical terminology and
symbology which will facilitate our operations in this context.

I
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(1) Let thedivisorbe499. Itisobviousthat itsosculator
P is 5 and covers 2 digits. This fact can be easily
expressedin symbolical language by saying: Py=5

(2) In the case of 1399, it is obvious that our osculator
(positive) is 14 and covers 2 digits ... Py=14.

(3) As for 1501, Q obviously comes into play, is 15 and
covers 2 digits. In other words, Q,=15.

(4) For 2999, P is 3 and covers 3 digits ... Py=3

(5) For 5001, Qg=5

(6) For 7001, Q=17

(7) For 79999, P,=8

(8) For 119999, P,=12

(9) For 800001, Q;=8

(10) For 900001, Q=9

(11) For 799999, P ;=8

(12) For 120000001, Q,=12

Correctness of the Symbology

The osculation-process invariably gives us the origina
number itself (or a multiple thereof) or zero: For example,
(i) 499 (with P,=5) gives us 4%5 (99)=4-+4495=499
(i) 1399 (with Py=14) gives 13414 (99)=13--1386-=1399

(iii) 1501 (with Q,=15) gives 15X1—15=0
(iv) 2999 with Pg=3) gives 2+3 (999)=2-2997=2999
(v) 5001 (with Qg=5) gives 5X1—5=0
(vi) 7001 (with Q4="17) gives 7X1—7=0
(vii) 79999 (with P,=8) gives 7+8 (9999)==79999
(viii) 119999 (with P,=12) gives 11+12 (9999)=119999
(ix) 800001 (with Qs=8) gives 8 %x1—8=0
{x) 900001 (with Q5=9) gives 9X1—9=0
(xi) 799999 (with Pz=38) gives 748 (99999)=799999
(xii) 120000001 (with Q,=12} gives 12X1—12==0
N.B. :—The osculation-ruleis strictly adhered to; and the P's
and the Qs invariably yield the original dividend itself
and zero respectively !




( 288 )
Utility and Significance of the Symbology

The symbology has its deep significanceand high practical
utility in our determining of the divisibility (or otherwise) of a
certain given number (however big) by a certain given divisor
(however large), inasmuch as it throws light on (1) the number
of digits to be taken in each group and (2) the actual osculator
itself in each individual case hefore us.

A few simple examples of each sort will clarify this:
(1) Supposethe question is, |'s 106656874269 divisible by 499 ?
Here, at sight, P,=5. This means that we have to
split the given expressioninto 2-digit groups and osculate
by 5. Thus,

10 66 56 87 42 69
499 497 186 525 387 E .. YES8

(69x5=345; 3454-42=387; 435131-87=525; 5 X255
+56=186; 5x86-+66==497; 5X97+4-10=499)
Or

The osculation-results are 1066569087, 10666125,
106786, 1497 and 499 .. YES

(2) Is 126143622932 divisible by 401 ?
Here Q,—4
.‘.{ﬁGlTSGZ 29 32
—16 400 185 458 99 } . NO
Or
The osculation-results are 1261436101, 12614357,
125915, 1199 and —385. -, NO

(3) 1569492392 divisible by 199 ?

Here P,=2
69 49 92
199 463 } . YES
or
The osculation-results give 695107, 6965 and 199
. YES
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(4) 151928264569 divisible by 5999 ?
Here Pg=6

. { 1 928 264 569 !

5999 4999 3678 . YES

Or
The osculation-results are 1931678 and 599 .. YES

(5) I's 2188 6068 313597 divisible by 7001 ?

Here Qg="7 N
- {8l 86 068 313 507
- YE

0 —3 6127 3866 S

Or
The osculation-results give 21 886 064 134, 21885126,
21003and 0. .. YES.

(6) Is 30102 1300602 divisible by 99 %

Here Py=1

As Py,=1 and continuous multiplications by 1 can
make no difference to the multiplicand, the sum of the
groups will suffice for our purpose:

“ 30-+10+214304-06-+2=99 . YES

The second method amounts to the same thing and
need not be put down.

(7) I's 2130 1102 1143 4112 divisible by 999 ?
Here Pg=1
and -+ 24+1304-1104-2114-434--112=999
.. (by both methods) YES.

(8) I's 7631 3787 858 divisible by 9999 %
Here P,=1
and ‘. =763-+41378-}-7858=9999
.. (By both methods), YES.

(9) |'s 2037760003210041 divisible by 9999 ?
Here P,=1
and ‘. 2037-7600--03214-0041=0999
.. (By both methods) YES.
a7
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(10) Is 5246 7664 0016 201452 divisible by 1001 ?
Here Q,=1;and
S=E§Z+676+6E+(‘)16—201+452=221:13 X17
.. Divisible by 13
But 1001 =7x11x13 .". Divisible by 13 but not by 7 or
by11. :NO

The Second Category

The second type is one wherein the given number is of
neither of the standard types (whichP and Q readily and instan-
taneously apply to) but requires a multiplication for the
transformation of the given number to either (or both) of the
standard formsand for theascertaining of the P and Q (or both)
suitable for our purpose in the particular case before us.

The Process o Transformation

In an earlier chapter (the one on " Recurring Decimals™)
we have shown how to convert a given decimal fraction into its
vulgar-fraction shape, by so multiplying it asto bring a series of
nines in the product. For example, in the case of -142857,
we had multiplied it by 7 and got -999999 (=1) as the product
and thereupon argued that, because 7 the given decima =1,
.+, that decimal should be the vulgar fraction ¥

(1) 142857 X7
==-999999=1
Sox=%

Similarly, with regard to 076923, we had multiplied it
by 3 (inorder to get 9 asthelast digit of the product) ; argued
that, inorder toget 9 asthepenultimate_digit, @) 076923
wo should add 3 to the dready existing 6 ji
there and that this 3 could be had only by .

- o . ! f -230769
multiplying the original given decimal by 1% 0-76923
then found that the product was now a series - .
o nines; and then we had argued that,, 999999=1
+ 13x=1, .. xmust beequa to {. And S X=qy
we had aso given several more illustrations of the same kind
(for demonstrating the same principle and process).

et —

T
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As P (in the present context) requires, for osculation,
numbers ending in 9 (or a series of nines), we have to adopt
a similar procedure for the same purpose; and, in the case of
Q too, wehave to apply asimilar method for producing a number
which will terminate in 1 or a series of zeroes ending in 1,

The Modus Operandi
A few examplesof both the kinds will elucidatc the process
and help the student to pick up hisP and Q. And once this
is done, the rest will automatically follow (asexplained above).

(1) Supposethedivisor is 857. .- 857 x 7=5999, We can
therefore at once say : P;=6.

Thetest and proof of the correctnees hereof is that any
multiple of the divisor in question must necessarily fulfil this
condition i.e. on osculation by P,, must yield 857 (or a
multiple thereof).

For instance, let us take 857x13 = 11141. As P,=6
.. 1146 (141)=857! And this proves that our osculator is
the correct one.

(2) Let us now take 43. ‘. 43x7=301, .. Qa=3.

Taking 43x3 (=129) for the test, we see 129 yields
29x3—1==86; and 80 is a multiple o 43 (being exactly
double of it). So, our Q is correct.

The significance of this fact consists in the natural
consequence thereof, namely, that any number (which is realy
divisibleby thedivisorin question must obey this rule o divi-
sibility by the P process or the Q process.
N.B.:—Remember what hasalready been explained asregards P

or Q being greater.

In thisvery case (of 43), instead of multiplying it by 7,
getting 301 as the product and ascertaining that Q,=3 is
the osculator, we could aso have multiplied the 43 by 3, got
129 as the product, found P,=13 to be the positive osculator
and verifiedit. Thus,in the case of 43x2=86, ... 846(13)=86
~. P,=13 isthe correct positive osculator.
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Multiplication by 13 at every step being necessarily
more cumbrous than by 3, we should naturally prefer Qg==3
(to Py=13).

Infact, it restswith thestudent t o choose between P and Q

and (in view of the bigness or otherwised mulltiplier-oscul ator
etc.) decide which to prefer.

(3) Ascertain the P and the Q for 137.

137 ;. Py=37 137 - Qe=14
27 103
959 an
274 1370
3699 14111

Obviousy Qa=14 is preferable (to Py=37)-
(Test: 137x8=1296 - Q. gives 1296—0=1296 )
(4) Determinethe P and the Q for 157.
157X 7=1099 .-.P,=11
And (67X93=14601 ‘- (,=146.
» Py=11isto bepreferred
(Test :—157 X 7=1099 ., P, gives 10-1089=1099)
(5) Find out the P and Q for 229
229 x131=29999 , P,=3
This Qsculator being so simple, the Q need not be
tried at all. But on principle, .~ 229x 69=15801
at al. But on principle, .. 229X 69=15801
. Qg=158 (obvioudy a big multiplier)
(Test for Py=38
229 X 100==2/2900 .;, P=3 gives 8702=229 x 38)
(6) Find P and Q for 283
v 283%53=14999 ., Py=15
and . 283%x47=13301 ., Q=133
s Py=15 ispreferable

(Test 283x4=1132; 1-+15 (132)=1981—=283X7)

e |
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(7) Find Pand Q for 359
v 359X 61=21899 ,,, Pg=R19
and s 359x339=14001 .. Q=14
Obviousy Q=14 is tq be preferred.
(Test: (i) 359 x3=1077 .. Q=14 gives 14X 77—1
=10717
and (ii) 359 X 115=41285 .". Qy=14 give 14X 285—41
=3040=359x11)
(8) Ascertain P and Q for421
v 421x19=7999 .. Py=8
and *.- 421 X 81=34101 .". Q;=341
obviously Py=8 isthe better one
(Test: 481xX5=2105 .. Py=8 gives 24-840=842
=421 X2)
(9) DetermineP and Q for 409
o 409 511=208999 .'. P;=209
and -+ 400 X 489=200001 .. Q;=2
Obvioudly the Q osculator is preferable.
(Test: 409X1000-=4/09000
<. Q=2 gives 18000—4=17996==409 X 44)
Having thus studied the multiplex osculator technique
and modus operandi, wenow go on to and take up actual examples

o divisibility (which can be easily tackled by the multiplex
osculatory procedure).

Model 4 pplications to Concrete Examples
(1) Is 79158435267 divisible by 229 %
e 229 %131—29999 .. P,=3
. (791 5843 5267}
{5725 21644

But 5725=229X25 .. YES
(2) I's 6056200566 divisible by 283%
" 283X 53=14999 .. Ps=15

6 056 200 566
6226 10414 8690

But 6226=283x22 .. YES



( 29t )

(3) I's 7392 60251 divisible by 3472
oo 347X 317=109999 .. Py=11

. 7 3926 6251
73654 0627

But 73654=2347x212 ... YES

(4) Is 867 311 7259 divisible by 359 ¢
‘" 859X 39=14001 .". Qg=14
4T 673 117 259
{1 764 3509 i ~. NO
(5) |'s 885648437 divisible by 367 %
o 367X3=1101 .. Q,=11
- {s 85 64 84 37
734 66 314 323 }
But 734—367 X2 .. YES
(6) Is 490 222 8096 divisible by 433?
- 433x3=1299 .. Py=13
. { 02 22 80 96 E
5 7 1292 399 1328
(7) Is 51 898 888 37 divisible by 4677
o 487X 8=1401 ... Q,=14
. 51 88 88 88 37} -~ YES
i —467 —37 504 430
N.B. :—The alternative method of successive mechanical oscula-
tionsisaso, of course, available (butwill provegeneraly
less neat and tidy and will also be more tedious).
(8) I's 789405 35994 divisible by 647 %
" BAT X 17=10999 .'. Py=11
78 940 535 994%

. NO.

1294 6110 11469
But 1294=647x2 ... YES
(9) I's 2093 1726 7051 0192 divisible by 991 ¢
.+ 991 X 111=110001 ... Q,=11.

2093 1726 7051 0192
—30721 —526 -—-4939

But 30721==991 x 831 .-, YES
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(10) I's 479466 54391 divisible by 4217?
. 421X19=7999 ... P;=8
47 946 654 391 E
{ 16904 7205 3782 NO

(11) What change should be made in the first digit of the
above number in order to render it divisible by 4217
Answer :—As 1684 is exactly 4x421, the only change needed
in order to reduce the actually present 1694 into
1684 is the alternation of the first digit from 4 to 3.



CHAPTER XXXI

SUM AND DIFFERENCE OF SQUARES

Not only with regard to questions arising in connection
with and arising out of Pythagoras' Theorem (which we shall
shortly be taking up) but also in respect of matters relating to
the three fundamental Trigonometrical-Ratio-relationships (ag
indicated by the three formulae Sin2? 6--cos® 6=1, 14tan?
6=8ec? 6 and 1-+-cot? 8= cosec? 6) etc., etc. we have often
to deal with the difference of two square numbers, the addition
o two square numbers ete., etc. And itisdesirable to have
theassistance o rulesgoverning thissubject and benefit by them.

Difference d two Syuare numbers

O the two, this is much easier. For, any number can
be expressed as the difference of two sguare numbers. The
Algebraical principle involved isto be found in the elementary
formula a®—b2=(a-}+b) (a—b). This means that, if the given
number can be expressed in the shape of the product o two
numbers, our task is automatically finished. And this *'if"
imposes a condition which is very easy to fulfil. For, even if
the given number isa prime number, even then it can be correctly
described as the product o itself and of unity. Thus 7=7X1,
17=17x1, 197=197x1 and so on.

In the next place, we have the derived formula:
(a+b)2*—(a—b)?=4ab; and therefore ab can
always come into the picture as (gj_rk)z_(g_—_ e
(haf the sum)2—(half the diffe- \ 2 2
rence)?; and as any number can be expressed as ab,
the problemisreadily solved. And the larger the number
of factorisations possible, the better.  In fact, if we accept
fractions too as permissible, the number o possible

solutions will be idterally infinite.
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For example, supposewe have to express9 asthe difference
o two squares. We know that—
9=9x1 .. 9=(9i1)ﬁ_(g_—_1)2=52—42 Similarly
2 2
(1) 18 x1=(31)2—(3#)*=7°—06"
(2) 12=6x2=42—22
or 4x3=3}—4"
or 12X 1=632—5}2
(3) 4B=8x6=72—-13
or 12 x4=82—4%
or 16 X3=9}2—6}2
or 48 X 1=2432-23}*
or 24x2=132—112

The question, therefore, of expressing any number as the
difference of two sguares presents no difficulty at all !

The Sum d Two Square Numbers

Inasmuch, however, as a2+b? has no such corresponding
advantage or facilities etc., to offer, the problem o expressing
any number as the sum o two sguare numbersis a tough one
and needsvery careful attention. This, therefore, we now proceed
to deal with.

A Smple Rule in. Operation

We first turn our attention to a certain smple rule at
work in the world of numbers, in this respect.

We need not go into the relevant original Siitras and
explain them (especially to our non-Sanskrit-knowing readers).
Sufficeit for us, for our present purpose, to explaintheir purport
and their application.

Let us take a particular series of ""mixed” fractions,
namely,—1%, 22, 3%, 4§ , 55 cte.
which fulfil three conditions:

(i) that the integer-portion consists o the natura
numbers in order ;
(ii) that the numerators are exactly the same; and
38

I
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(ifi) that the denominators are the odd numbers, in order,
commencing from 3 and going right on.
It will be observed that, when al these fractions are
put into shape as "improper™ fractions,
ie. as g, 12 24 40 00 o efC.

s T 9 3

the sum of D2 and Ne isinvariably equal to (N4-1)21 And the
General Algebraical form being;,
n _ [2n(n}1

nt = (T

" Da=2n+1; and N=2n (n41)

- DUENE=(N1)e

or.(2n-+1)%+4-4n%n4-1)*=(2n2+2n4-1)?

The shape of it is perhaps frightening; but the thing in

itself is very simple: and the best formula is D*N2=(N+}1)2,

This meansthat when a2 (given)+x2isa perfect square, we
can readily find out x2, Thus, for instance,
(i) If a (the given number) be 9, 2n4-1=98 .- n=4
& is the fraction we want. And 92_;_40::412
@ii) If a be 35, 2n+1=~35 .~ n=17 ., The fraction
wanted is 1737 =3 35"+612'——6133
(i) If a=57, 2n41=57 .. n=28 ... The required
fraction is 283§=3844 . 572-{16242—16252
(iv) If a=141, 2n+1=141 .. n=70 .. The fraction
wanted IS 705 ="%%%" .. 1412499402=9g94]2
Note: —Multiples and sub-multiples too behave in exactly
the same manner (according to dnuripya i.e. pro-
portionately). For instance,
Let a=35 .. 2n+1=35 .. n=17 .. The fraction
wanted is 173 =42 .- 3524-6121=6132
702-1-12242=12262
A Simpler Method (for the same)

This same result can aso be achieved by a simpler and
easier method which does not necessitate the **mixed" fractions,
the transforming of them into the "*improper™ —fraction—shape
etc., but gives us the answer immediately.
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It will be observed that, in al the examples dealt with
above.

Since D24-N2=(N-+-1)2

=N 41)2~N2=2N+1=N+4(N-+1)

In other words, the square of the given number is the
sum of two consecutiveintegersat theexact middle. For instance,
if 7 be the given number, its square=49 which can be split up
into the two oonsecutive integers 24 and 25

.. 784242=25% Similarly,
(D) f a=9, its square (81)=40-41 .. 9%4402=41%
(2) f a=35, itssquare (1225)=612-1613 .. 35”+61§:
=61
(3) If a=57, its square (3249)=16241625 - 57+
1624’-—1625’
(4) f a==141, its square (19881)=9940-1-9941
., 1412-4-9940%:=99413
and 0 on. And all the answers are exactly as we obtained
before (by the first method).

The Case d Even Numbers

Yes; the square of an odd number is necessarily odd and
can be split up into two consecutiveintegers. But what about
even numbers whose squares will aways be even and cannot be
split up into two consecutive numbers¢  And theanswer isthat
such cases should be divided of by 2 (and other powers o 2)
until an odd number is reached and then the final result should
e multiplied proportionately.

For example, if a=52, we divide it by 4 and get the
odd number 13. Itssquare (169)=84+85 .. 133-}-843=85%
-, (multiplying al thetermsby 4), we say : 523-+336%=340%

There are many other simple and easy methods by which
we can tacklethe problem (of a®+b2%=c?) by meansdf clues and
conclusionsdeducible from 32--4%=52%, 52}122=13%, g3.-15%
=17 etc. But into details of these and other allied matters
we do not now enter.

_



CHAPTER XX X1

ELEMENTARY SQUARING, CUBING ETC.

In some of the earliest chapters of this treatise, we have
dealt, at length, with multiplication-devices of various sorts,
and squaring, cubing etc., are only a particular application
thereof. This is why this subject too found an integral place
of its own in those earlier chapters (on multiplication).

And yet it so happens that the squaring, cubing etc., o
numbers have a particular entity and individuality of their
own ; and besides, they derive additional importance because of
their intimate connection with the question of the sguare-root,
the cube-root etc., (whichwe shall shortly be taking up). And,
consequently, we shall now deal with this subject (of squaring,
cubing etc.), mainly by way o Preliminary Revision and Recapi-
tulation on the one hand and also by way of presentation of
some important new material too on the other.

The Ydvadiinam Sutra (for Squaring)

In the revision part of it, we may just formally remind
the student of the YAVADUNAM formulaand merely cite some
examples thereof as a sort of practical memory-refresher:
972294 /09 ;
872==74,/,60="7569
192=1,, 85 1=28, 1=361
912==82/81
9652=9301 /225=931 /225
1132=1261/69=12769
9962=992/016
9982=996/004
9997%=9994/0009
10072=1014/049
99962=9992/0016
99992=9998 /0001
10172=1034/289
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14. 10392==1078,/521=1079/521
15. 999912=:99982/00081

16. 999982=99996/00004

17. 99994%=99988/00036

18. 100042=10008/0016

19. 9999782=099956/000484
20. 9999982==999996/000004
21. 1000232—=100046/00529
22, 99998732=9999746/0016129
23. 99999992=0999998 /06000001
24. 10000122=1000024/000144

The Anuripya Satra (for Qubi ng)

This iS new material. A simple example will, however,
suffice to explain it:

Take the hypothetical case o one who knows only the
cubesof the “first ten natural numbers™ (i.e. 1 to 10) and wishes
to go therebeyond, with the help o an intelligent principle and
procedure. And suppose he desires to begin with 112,

1. Thefirstthing one hasto do herefor isto put down the
cube OF the first digit in a row (of 4 figuresin a Geometrical

Ratio iN the exact proportion subsisting betweenthem). Thus—
113=1221

1331

(ii) The second step isto put down, under the second and
third numbers, just two tunes the said numbers themselves and
add up. And that is all'!

A few more instances will clarify the procedure:
3; 133 P 27

3 __ ( =139
(1)128=1 288 ' %18
- 1987
16128 s
1728 2197




( s02 )
3 .
(3) 14 _lgég 64 (4) 182 =15 25195
10 50
—_— _—
27 4 4 337175

——— e

: —
(5) 168 =1 8 36 218 (6) 17 =1 7 49 343

12 72 14 98
40 96 4 91 3
(7) 188 = 1 8 64 512 8)19% =19 81 1729
16 128 18 162
5.8 3¢ 6 8 59
(9) 21 =8421 (10) 228 =88 8 g
8 4 16 16
9261 106 48
(11) 23% = 8 12 18 27 12 248:8—1 32
24 36 s 336464
121 67 1382 4
{13) 25% == 8 20 50 125 (14) 323 =27 18 12 8
40 100 36 24
156 285 32 7 68

(15) 9% = (10—1)®
= 1000—100+410—1 }
—200--20 =1000-300-30—1=-729
(16) 97% = 729 567 441 343
1134 882
92 6 7 3
or, better still, 978=(100—3)%
==1000000—30000--9¢0 ~—27

—600001+-1800
1000000--90000-}-2700—27
= 912 6 7 3

N.B.:—f you start with the cube of the first digit and take
the next three numbers (inthetop row) in a Geometrical
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Proportion (in the ratio o the origina digits them-
selves) you find that the 4th figure (on the right end)
is just the cube o the second digit!

The Algebraical explanation hereof is very simple:

If aand b are the two digits, then our chart reads:
a?4 a%h- ab34b?
2a2b~-2ab?

a?4-3a%b4-3ab24b?
and thisis exactly (a—+b)*!

Almost every mathematical worker #nows this; but
very few people apply it! Thisis the whole tragedy and the
pathos o the situation!

The Yavadanam Satra (for Cubing)

The same YAVADUNAM Sitra can, in view of the above,
be applied for cubing too. The only differenceis that we take
here not the deficit or the surplus but exactly twicethe deficit
or the surplus asthe case may be and nmake a few corresyonding
aternations in the other portions aso, as follows:

Suppose we wish to ascertain the cube of 104. Our base
being 100, the excessis 4. So we add not 4 (as we did in
the sgquaring operation) but double that (i.e. 8) and thus have

10448 (= 112) as the left-hand-most pertion of the cube.
Thuswe obtain 112.

Then we put down thrice the new excess multi
plied by the original excess (i.e. 12x4 = 48) and  112/48
put that down as the middle portion of the product.

And then we &fix the cube of the origina
excess (i.e. 64) as the last portion thereof. And the 112/48/64
answer is complete.

Some more illustrative instances are given bdow for
familiarising the student with the new process (which is not
really new but only a very useful practical application o the
{a-+b)3 formula just above described :
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(1) 1033=109/27/27 (because 9 x 3=27 ; and 3%=27)
(2) 1132=139/07/97 (because 39X 13=507 and 13%=2197)
521 =1442897

(3) 10043=1012/048/064 (because 12 x4=48 and 43=64

(4) 100053=10015/0075/0125 (because15x 5=75 and 53=125

(5) 9965=988/048/064=0988/047/936 (*. 12 X 4=48 and 43=64

(6) 932=79/47 |43 (because 21 x —7=147 and —73=—343
T = =804357

(7) 99918==9973/0243/0729 (because —27 X —9=-243

and —93=--729:29973/0242/9271
(8) 100073=10021 /0147/0343 foz42/921

(9) 99999%=99997/00003 /00001 =99997 /00002 /99999
(10) 1000123=100036/00432/01728
(11) 999983=909994/00012/00008 =99994 /0001199992
(12) 10000073=1000021/000147 /000343
(13) 999992%=099976/000192 /000512 (because 24X8 =192

& 83=512

Fourth Power
We know that (a-b)t=al-|-4a3b4-6a2b%+4ab3+b4.
This gives us the requisite clue for raising any given number
to its fourth power. Thus, )
(HD11t=11111
353

14641

(2)12¢=124 8 16
620 24

20 73 6

The Binomial Theorem
The ""Binomia Theorem' is thus capable of practical
application and—in its more comprehensive Vedic form—has
thus been utilised, to splendid purpose, in the Vedic Sitras.
And ahugelot o Caculuswork (both Differential and Integral)

has been (and can bc) facilitated thereby. Bnt thcsc details,
we shall hold over for a later stage.

CeaprrEr XXXIII

STRAIGHT SQUARING

Reverting to the subject of the squaring of numbers, the
student need hardly be reminded that the methods expounded
and explained in an early chapter and even in the previous
chapter are applicable only to special cases and that a General
formula capable of universal application is still due.

And, as this is intimately connected with a procedure
known as the Dwandwa Yoga (or the Duplex Combination
Process) and as this is of still greater importance and utility at
the next step on the ladder, namely, the easy and facileextrac-
tion of square roots, we now go on to a brief study o this pro-
cedure.

The Dwandwa-Yoga (or the Duplex Combination Process)
The term " Dwandwa Yoga" (or Duplex) is used in two
different senses. The first one is by squaring ; and the second
one is by Crossmultiplication. And, in the present context,
it is used in both the senses (a@ and 2ab).
In the case o a single (central) digit, the square (a@etc.,)
is meant ; and in the case of a number of even digits (say, a
and b equidistant from the two ends), double the cross-product
(2ab) is meant.
A few examples will elucidate the procedure.
Denoting the Duplex with the symbol D, we have:
(1) For 2, D=2%=4
(2) For 7, D=49
(3) For 34, D=2 (12)=24
(4) For 74, D=2 (28)=56
(5) For 409, D=% (36)4-0="172
(6) For 071, D=0-4-49=49
(7) For 713, D=2 (21)+12=43
(8) For 734, D=2 (28)132=65
390
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(9) D for 7346=2x42+2 X12==108

(10) D for 26734=16+36--49=101

(11) D for 60172=24+0+1%=25

(12) D for 73215=170+6-4=80

(13) D for 80607=112+0+36=148

(14) D for 77=2x49=08

(15) D for 521398=80+36-+6=122

(18) D for 746213=42-}-8-+12=62

(17) D for 12345679=18-1-281-36-}-20=102
(18) D for 370415291==6-}-126--0440+1=173
(19) D for 432655897=56-54-32-+-60-25=227

This is merely a recapitulation o the Urdhva Tiryak
process of multiplication as applied to squaring and needs no'
exposition.

Note:— a number consists o n digits, its square must have
2n or 2n-1 digits. SO, in the following process, take
extra dots to the left (one less than the number of
digits in the given numbers).

Examples-
(1) 2072=40809 i =42849 .. 207
24 4 0 809
2 4
4 2 849

(2) 2132=44,309=45369
(3) 221%=48841
(4) 3342=9 8 3 4 6=11556
1321
(5) 425%= . .425
16/16/44/20/25=1806"25
(6) 5432=25 0 6 40=294849
442
(7) 8972 .. .897 :
64/144/193/126 /4980409
Or 110 3%2=1-2+1—646--0-1-9=80409
Or (by Ydvadiinam Sitra)==784/103%=80409

. R p—
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. . 8809
(8) 8892=64/128 /20814481 =790321

2
Or1i11=0 001 11T

1—2-940-4+34241==790321
Or (by Yavadanam Siitra)

8892="778/1112=789/ 321=790/321.
12

(9) 1113%= e o 1118
1 2387 6 9

(10) 21342=4/4/138/22/17/24/16=4553956
(11) 32142=9/12/10/28/17/8/16==10329796
(12) 32472=9/12/28 /58 /4656 /49=10543009
(13) 67032=36/84/49/36/42/0/9=44930209
(14) 31-422=9/6/25/20/20/16/4=987 2164
(15) -07312="0049/42/23/6/1= - 00534361
(18) 8978’:624/144/193/254/193/112/64=80604484

Or 11022==1/-2/1-5/0/4 /4 /480604484
Or (by Ydvad@nam Satra) 7956/10222==80604484

(17) 88872=64/128/192/240/176/112/49—78978769
2

Or 11 113=1-2-10-3-8769="78978769

Or (by Yavadanam) 7774/11132=7714/  8769=78978769
/123

(18) 141.322=1/8/18/14/29/22/13/12/4=19971 , 3424
(19) 213452=4/4/13/22/37/34/46/40/25— 455609025
(20) 43031%=16/24/9/24/26/9/6/1=185 x 66961

(21) 463252=16/48/60/52/73/72/34/20/25—2146005625
(22) 78-214=49/42/37/26/70/28/17/8/16=5360329796




CHAPTER XXXIV

VARGAMULA (SQUARE ROOT)

Armed with the recapitulation (in the last chapter) of
the " Straight Squaring method™" and the practical application
o the Dwandwayoga (Duplex Process) thereto, we now proceed
to deal with the Vargamala (i.e. the Square Root) on the same
kind of simple, easy and straight procedure as in the case of
""Straight Divison™.

Well-known First Principles

The basic or fundamental rules governing the extraction
o the square root, are as follows:

(1) Thegiven number isfist arranged in two-digit groups
(from right to left) ; and a single digit (if any) left
over (at the left-hand-end) is counted as a simple
group by itself.

(2) The number o digits in the square root will be the
same as the number o digit-groups in the given
number itself (including a single digit (if any such
there be). Thus 16 will count as one group, 144 as
two groups and 1024 as two.

(3) So, if the squareroot containsn digits, thesguare must
consist of 2n or 2n-1 digits.

(4) And, conversely, if the given number has » digits,
the square root will contain % or 5—%—_1 digits.

(5) But, in cases o pure decimals, the number of digits
in the square is aways doublethat in the sguare root.
(6) The sguares d the first nine natural numbers are

1, 4, 9, 16, 25, 36, 49, 64 and 81. This means:
(i) that an exact square cannot end in2, 3, 7 or 8;
(ii) (a)that & complete square ending in 1 must have
either 1 or 9 (mutua complements from 10) as

the last digit d its square root ;

N———
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(b) that a square can end in 4, only if the square
root ends in 2 or 8 (complements);

(c) that the ending of asquarein 5 or 0 means that
its square root too endsin & or ¢ (respectively);

(d) that a square ending in 6 must have 4 or 6
(complements) as the last digit in its square
root ; and

(e) that the termination of an exact squarein 9 is
possible, only if thesguare root endsin 3 or 7
(complements).
In other words, this may be more briefly
formulated thus:

(a) that 1, 5, 6and ¢ at the end of a number reproduce
themselves as the last digits in itssguare ;

(b) that squares of complements (from ten) have the
same last digit. Thus, 12 acd 92; 22 and 82; 32 and
72; 42& 62; 52and 52 ; and 0%and 102 havethe same
ending (namely 1,4,9,6,5 and o respectively); and

(c) that 2,3,7 and 8 are out of court altogether, as the
final digit of a perfect square.

Readily Avatiable First Data.

Thus, before we begin the straight extracting of a square
root by "straight divison" method, we start with previous

knowledge of {1} the number of digits in the square root and
(2) the fist digit thereof. Thus—

(1) 74562814 N=8 .'. N in square root=N/2=4; and
thefirst digit thereof is 8.

(2) 963106713. N=9 .-, Ninthesquareroot—_-N._“.1=5;
& the first digit thereof is 3. o

But (3) (*7104)2 mus¢ contain 8 decima digits.
(4) v/ T6="4
(5) 4/ 0064="08
(6) +/~000049==007
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(7) 4/ +00007(0)="008 etc.
(8) 4/~ 00000007="0002 €tc.
(9) v709="3

But (10) 4/°9= 4/°90="9 etc.

Modus operandi (f Straight Squaring)
The procedure o Straight Squaring as inculcated in the

Vedic Satras is precisely the same asin Straight Division but
with thisdifference,namely, that in theformer the Divisor should
be excatly double the first digit of vhe sguare root.

N.B. As a single digit can never be more than 9, it follows

therefore that, in our method of straight squaring, no
divisor above 18 is necessary. We may, o course,

voluntarily choose t0 deal with larger numbers ; but there
iS No need to do so.
Initial Chart
We thus start our operation with aninitial chart, like the

samples given hereunder :

(1) 5 : 29: 2 7: 81:
4 : 1 13
12 4: 2:
3) 32 : 49: 4 40: 96:
R B : 4
10 :5 12: 6:
(5) 1 : 6384: (6) 8: 3176:
2: M | 4: H
1o 2:
@ 44 : 44 44 (8) 61: 136:
12: : 8 140 o 12 :
16 27
9) 73: 60:84: (10) 6 : 000001:
16: - : 4 12
8: T2
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() 101 73 69 42 : (12) 90 : 61 71 74 :
6: :1 : 1 9 :

8 :

I I : : 9

Further Procedure
Let us now take a concrete case (the extraction o the

square root of, say, 119716) and dea with it:

{i) In theabove given general chart, we have not only
put down the single first digit of the sguare root
wanted but also prefixed to the next dividend-digit,
the remainder after our subtraction o the square of
that first digit from the left-hand-most digit or
digit-group of the given number. ]
And we have aso set down 4. ' 29716'
as our divisor, theexact double
of thefirst digit of the quotient.

() Our next Gross Dividend-unit is thus 29. Without
subtracting anything from it, we simply divide the
29 by the divisor 6 and put down 071
the second quotient-digit 4and ¢: Y i g5 = 6
the second remainder 5 in their — _
proper places as usual.

(i) Thusour third Gross Dividend is 57. From this we
subtract 16 (the square of the second quotient-digit),
get 41 as the Actua Dividend, 11: 9716:
divide it by 6 and set down the ¢ .255 :
Q (6)and the R (5) in their

proper places as usual. 8:46

(iv) Our third gross dividend-unit is 51. From this we
subtract the Dwandwa Yoga (Duplex) (=48), obtain
3 as the remainder, divideit
by 6 and put down the Q g; 11 3%%3
(0) and the R 3) in their __—
proper places. $.3:46.00
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(v) This gives us 36 as our last gross dividend-unit.
From this we subtract 36 (the Dwandwa Yoga of
the third quotient digit 6); get 0 as @ and as R.
This means that the work has been completed,
that the given expression is 11: 9716

a perfect square and that 346 6: 12553
.isaiI:a square root. And that T 32600
'S &l COMPLETE

Proof of Completeness & Correciness

(1) A manifest proof of the Complete-squareness of the
given expression (and of the correctness of the square root
ascertained) is by squaring the latter and finding the squaze to
be exactly the same as the given comp|ete square. Thus,

3462—9/24/52/48/36=119716 ., YES

(2) But this is too mechanica. We obtain a neat and
valid proof from the very faet that, if and when the processis
continued into the decimal pert, all the quotient-digits @in the
decimal part) are found to be zeroes and the remainders too
are al zeroes!

Proof to the Oontrary

A number can not be an exact square in the following
circumstances:
(v ifitendsing, 3, 7or 8;
(2) if it terminates in an odd number of zeroes;
(3) if itslast digit is 6 but its penultimate digit is even ;
(4) if its last digit is not 6 but its penultimate digit is
odd ; and
(5) if, even though the number be even, italast two digits
(taken together) are not divisible by 4;
AND a square root cannot be correct if it falls to fulfil
any o the requirements hereinabove indicated :

I AR
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Examples
Some instructive illustrative examples are given below :
@ 5: 29 : (2 32: 49
4: :10 10 :74
2: 3 (complete): 5: 7 (complete:
(©) 4: 96 N O 1: 6384
12: 141 2: :0236
6: 4 (complete): : 1: 2 8 (complete):
(5) :55: 2049 6 :69: 9 0631
14: 1662 16: :811 5 41
7: 4 3.00 (complete) : 8: 361.000

.~ A completesguare

(7)14: 53: 1 63 214
: :413613587

7: 291 '3 1..(incomplete)

(8) 6:14: 04 7 504
: :581113

3: 7 48 ..(incomplete)

(9) 12: 41: 254929
H 5456210

6:423:000 .. Acompletesquare

(lo) 4: 7: 389 154 80
: :355136 74 0

2: 71 83 -0000
(11)10: 25: 745476

.. An exact square

0745651
5:074000 .. A perfect square

(12) 12: 45: 319824
: 199631

6: 732000 . A complete square

40

;




03)165
(14) 14:
(15) 16
(16) 8:
an e:

(18) 16:

74
;10 9 13 19 12 7_'7_4
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57 5 3 14 49

63 57:000 <. An exact sguare

443 90 7 (to 2 places o decimals)

1364137

241 80

73: 2 1
1912161415

0 8 (to 3 decimal-places)

8

:55°6 33

18:
125910 1617

13451 2 6 (to 3 decimal-places)

4:

258464

13:
:46688 12

87000 (to4 decimal-places)

3:

7 '2424

75:
11114 9 1110

01 71 0000 (to 4 places)

(19) 6:
(20) 8:
(21) 10:

(22) 16:

8:

6 6124

'00:

09: 24 0160 (tos places)
:02 66

:3: 0397

16 :
Q771419

790 0 00000 (to5 places)

097 5 6

27 :
1219108167

130 00 0000 00 (to5places)

20864

10 7 0 0 000 (to5 places)

10 5 14 19 14

HAE: I

60 850
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:35101015 17 13
:4- 2 4391 90 -

(23) 8:19°: 70 6 4 1 2 8 14 (to6 places)

(24) 10:27°: 0 00 0 0 00 O (to6 places)
: 12109121710

:5- 119 615 24

(25) 6::098: 00 46 13 (to5 decimal-places)
: 100043 1

1’3 :00075

(26) 6: 0009: 13400000 (to6 places)
0112

‘03 :0222

(27) 12: '0039: 3000 00 0 0 (toeight places)
13914

‘06 1268971

(28) 18: 00000083: 10 0 0 0 00 0 (to8 places)
:231118720

:'0009 : 11 59

(29) 18: 000092 : 401 0 0 0 0 O (toten places)
111661315 14 24 32

-0 09 : 612 54 38
(30) 2:2: 07 36
1112 31
11:44.00 . A complete sguare.
Or, taking the first two digits together at the first step,
we have:
28:207: 3 6
: 11 1
1 14: 4.0 . An exact square



CHAPTER XXXV

CUBE ROOTS

of
EXACT cuBES

(Mainly by Inspection and Argumentation)

(Well-krnown) FIRST-PRINCIPLES

(1) Thelowest cubes (i.e. the cubes o the first nine natural
numbers) are 1, 8, 27, 64, 125, 216, 343, 512 and 729.

(2) Thus, they al have their own distinct endings; and
the is no possibility of over-lapping (or doubt as in the case
o sguares).

(3) Therefore, the last digit of the cube root of an exact
cube is obvious:

(i) Cube ends in1; .. cube root ends in 1;

(iYCendsin 2: .. CRendsin8;

(i) Cendsin  3; .~ CRendsin7;

(iv) Cendsin 4; .. CRendsin4;

(v) Cendsin &; .~ CRendsin5;

(vi) 0 endsin  6; . CRendsin6;

(vii) Cendsin 7; .. CRendsin 3;
(viii) Cendsin g; .~ CRendsin 2; and
(ixy Cendsin 9: .. CRendsin9;

(4) In other words,

(i) 1, 4, 5, 6, 9 and 0 repeat themselves in the cube-
endings; and

(i) 2, 3, 7 and 8 have an inter-play of complements
(from 10).

(5) The number of digitsin a cube root is the same as the
number o 3-digit groups (in the origina cube) including a
single digit or a double-digit group (if any such there be).
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(6) The first digit o the cube-root will always be obvious
(from the first group in the cube).

(7) Thus, the number of digits, the first digit and the
last digit of the cube root o an exact cube are the data with
which we start, when we enter on the work o extracting

the cube root o an exact cube.

Examples
(Let a, 1 and n be the symbols for the first digit, thelast
digit and n the number of digits in the cube root of an exact
cube).
(1) For 271, 601, f=6, 1=1 and n=2
(2) For 4, 269, 813, F=1, L==7 and n=3
(3) For 5, 678, f=1, L=2 and n=2
(4) For 33,076, 161, F=3, L=] and n=3
(5) For 83,453,453, F==4, L=7 and n=3
(6) For 105, 823, 817, f=4, L=3 and n==3
(7) For 248, 858, 189, f=6, L=9 and n=3
(8) For 1, 548, 816, 893, f=1, L=7 and n=4
(9) For 73,451, 930, 798, f=4, L=2 and n=4
(10) For 76, 928, 302, 277, f=4, L=3 and n=4
(11) For 6, 700, 108,456, 013, f=1, L=7 and n==§
(12) For 62, 741, 116, 007, 421, f=3, L=l and n=5
(13) For 91, 010, 000, 000, 468, f=4, L=2 and n=5 and
s0 on.

The Chart-Preliminary and Procedure

The procedure is similar to the one adopted by us in

"' Straight Division' and particularly in the extraction of square

roots. The only differenceis that our divisor (in this context)

will not be doublethe first digit of theroot but thrice thesguare

thereof. As we know the first digit at the very outset, our
chart begins functioning as usua (as follows):

1 8:1:728 () 12: 13: 824

: t01 : 05

B 12
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(3) 48: 73: 089149 (4)27:27: 841
: : 901 : : 0
4: HI
(5) 12: 21: 400 713 (6) 192: 600: 132 419
: 013 : . 88

2: . 8:

(7) 48: 79: 314 502
: 1 15

4:

Algebraical Principle Utilised

Any arithmetical naomber can be put into its proper
algebraical shape as:

a-+10b+100c+1000 d etc.

Suppose we haveto findthe cube of a three-digit arith-
metica number. Algebraically, we have to expand (a+10b+
100¢)®. Expanding it accordingly, we have:

(a4-10b-}-100¢)8=2a2--100b®+}1000000c3+30a%b -} 300ab?

+300a2c+30000ac34-300000b 2 -+ 300000bc -+ 6000abe.
Removing the powers of ten and putting the result in
algebraical form, we note the following:

(1) The units' place is determined by aS.

(2) The tens place s determined by 3 a%b

(3) The hundreds placeis contributed to by 3 ab?4-8a%c

(4) The thousands place is formed by b3+6abc

(5) The ten thousands place is given by 3ac?+8b%

(6) The lakhs’ place is constituted of 3be?; and

(7) The millions place is formed by c2.

N.B.:—The number of zeroesin the various coefficients (in the
Algebraical expansion) will prove the correctness of this
analysis.
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Note:— one wishes to proceed in the reverse direction, one
may do so; and, for facility's sake, the letters substi-
tuted (for a, b, ¢, d etc.) may be conveniently put down
asL, K, J, H etc.

The Implications o the Principle

This Analytical sorting of the various parts Of the
algebraical expansion into their respective places, gives us the
necessary clue for eliminating letter after letter and determining
the previous digit. And the whole procedure is realy of an
argumentational character. Thus,

(i) Prom the units' place, we subtract a3 (or L3); and that
eliminates the last digit.

(ii) From the ten's place, we subtract 8a%b (or 3L2K) and

thus eliminate the penultimate digit.

(ii) From the hundreds place, we subtract 3a%c+3ab?

(or 2 3L234-31k?) and there-by eliminate the pre-
penultimate digit.

(iv) From the thousands place, we deduct b3+6abe ;

and so on
N.B.:—n the case of perfect cubes we have the additional
advantage o knowing the last digit too, beforehand.

Some instructive examples are given below :

(1) Extract the cube root d the exact cube 33, 076, 161.
Here a=3; Li=1; and n=3.

(L) L=1 .. L3=1. 1 11
.. Subtracting 1, we bave L33 076 1611
| o 16
(K) 3L& =3k (endingin 6) .. K=2 6
Deducting 3K ; we have 33 0761

(J) 3L.2J4-3LK2=3J+12 (ending in 1) | -~ CR=321
. 3Jendsing ... J=3

N.B..:—-The last step is really unnecessary (as the first digit is
known to us from the outset).
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(2) Extract the cube root of the exact cube 1728.
Hero, a=| ; L=2 and n=2 .. CR=12

(3) Extract the cube root o the exact cube 13,824
Here a=2; L==4; and n=2 .. CR=24

(4) Determine the cuberoot of theexact cube83,453,453.

Here F=4; L=7; and N=3

(L) L=7 .. L3=343. 83 453 453
Subtracting this, we have }

(K) 3L*K=147K (endingin1) ., K=3 } 441
*. subtracting 441 83448 7
(J) 8L2J+3LK2=147J+4-189 (endingin 7)
s, 1477 endsing . J=
N.B.:—Exactly as in the previous example.

(5) Find out the cube root of the exact cube 84, 604, 518
Here a=4; L=9 ; and n=3 84 604 519
(L) L=9 . L3=729 ., Subtractingthis 729
- . 8460379
(K) 3LZK=243K (endingin 9) . K=3
Subtracting 729,

} .. CR==437

(J) sL2J43LK2=243J+243 (endingin 5)}

;. 243F ends in 2 ., J=4 . CR=439
N.B.:—As before.

(6) Extract the cube root d the exact cube 2488 58189
Herea==6 ; L=9; and n==3. 2488 58189
729
(L) L=9 .., L3=1729 .-, Subtracting this, 24885 746
(K) .. SL¥K=243K (ending in 6) } 486
. K=2 .". Deducting 486) 248852 6

(J) 3L2J+3LK?2=243J {108 (endingin 6)
.. 243 endsin 6 .'. J=86)

N.B. Same as before.
(7) Determine the cube root of the exact cube 105823817

} CR=629.

Here a==4 ; L=3; and n=3 105823817
(L) L=3 ... L3=27. Subtrarting this 27
. 10582379
(K) 3L2K=27K (endingin9) . K=7 } 189
Subtracting 189, we have 1058219

.

A3
83 45311

(M)

3L2J -3LK2=27J 4441 (endingin 8)
X e Al (endngin®} CR=473
N.B. As before,
(8) Extract the cuberoot of the exact cube 143 055 667
Here a=5; L=8; and n=3 143 055 687
(L) L=8 .. L3=27. deducting this T35 60
(K) sL®K=27K (endingin 4) .. K=2 } 54
Subtracting §4, we have 143 055 1
(T) 3L2J+43LK?=27J+36 (endingin 1) _
~J=5 } CR==523

N.B. Exactly as before.
(9) Bind the cube root of the cube
Here a=4,L=3;
and n=4.

76,928, 302,277.
}The last 4 digisare 2277

(L) L=3 ... L3=27. Subtracting this,
(K) 3L#K=27K (ending in 5) } 135
. K=& .. Subtracting 135, 09
(J) 3L2J+3LK2=27J+225 (ending
in9 .. J=2
N.B.:—But, if, on prirciple, we wish to determine the first
digit by the same method o successive elimination of
the digits, we shall have to make use o another alge-
braical expansion (namely, of (L+E+J+H)%. And,
on analysing its parts as beforeinto the units, the tens,
the hundreds etc., we shall find that the 4th step will
reveal 3L2H+-6LKJ+K3 as the portion te be deducted.
So,
(H) 3L2H+-6 LKJ+KS=27H+180 N %
i +125=27H+305 (endingin 3) (=
. H=4: and CR=4253 273

} .. CR=4253

(10) Determine the cube mot o the cube 11,
Here a=2; L=7: and n=4 11%%&% §§§

—7 . L3=343. ing it, e —mee
(L) L=7 .. L3=343. Subtracting it, 11345 12 283




{ 522 )

(K) 8L2K4-147K (ending in 8) _ 688
.« K=4. Deducting 588 }1'1_32IST70_

() 3LP+3LK%=1473+336 330
(ending in0) .. J=2 }H?ZSUST
.*. Subtracting 330, we have

(H) 3L3H+6 LKJI+K3=147H+336 .
+64=147H 4400 (endingin 4). } .. CR=2247

. H=2
N.B. The last part (for ascertaining the first digit) is really
superfluous.
(11) Extract the cuberoot o the cube 12,278,428,443
Herea=2 ; L=7 ; and n=4. 12 278 428 443

(L) L=7 ... L8=343 ... Deductingit 343
12 278 428 10
(K) 8L2K=147K (ending in O)

0
- K=, }12 278 428 1
(J) 3LAJ+3LK?*=147J +0(endingin1) 441
o0 J=3 } 12 278 384

.. Subtracting 441, we have
(H) 3L2H-+6LKJ+K3=147H}+04-0
and ends in ¢ ... H=2 } CR=2307
N B. Asin the last example.

(12) Find the cube root o the cube 355 045 312 441
Here a=7 ; L=1; n=4 355045 312 441
(L) L=1 ,, L3=1. Deductingit, 1

(K) 3L*K=3K (ending in 4) 355045312 44
. K=8 .. Deducting 24. 24

! 3550453122

(J) 3L23+3 LK2=3J-+192 (ending 192

in2) . J=0 355045293

(H) 3L2H+6LKJ4K3=3h+0+512
and ends in 3 ., h=7 », CR=17081

N.B. Exactly as above.

Note:—The above method is adapted mainly for odd cubes.
If the cube be even, ambiguous values may arise at
each step and tend to confuse the student’s mind.
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(13) Determine the cube root of thecube 792 994219216
Here a=9; L=6 ; and n=4 792.994 219 216

(L) L=6 . L3=216. Deductingthis, 216
792994 219-60—

(K) 3L2K=108K (ending in zero) 540
o K=0o0r5. Whichisittobe? 772 994 2136

Let ustake 5 (a pure gamble) !

(J) 3L2J+3LK?*=108J 1450 (ending 666
in6) .~ J=2or 7l 7729961 47
Which should we prefer ¢ Letus
accept 2 (another perfect gamble)!

(H) 3L#H-+-6LKJ+K3—108H+360
+125==108H-}-485(ending in 7)

.. H=4 or 91 Which should we
choose? Let us gamble again
and pitch for 9! ., CR==9256

Here, however, our previous knowledge o the first digit
may come to our rescue and assure us of its being 9. But the

other' two were pure gambles and would mean 2x2 i.e. four
different possibilities!

A Better Method

At every step, however, the ambiguity can be removed
by proper and cogent argumentation ; and this may aso prove
interesting. And anything intellectual may be welcomed ; but
it should not become too stiff and abstract ; and an ambiguity
(in such a matter) is wholly undesirable (to put it mildly). A
better method is therefore necessary, is available and is given
below.

All that hasto be done isto go on dividing by 8 (until an
odd cube emanates), work the sum out and multiply by the
proper multiplier thereafter. Thus,

8) 792 994 249 216

8) 99124 281152
8) 12390535144.

1 548 816 893
1 1 1




( 324 )

Herea=1; L=7 ; and n=4
(L) L=7 .. L%=343. 1648816893
Subtracting this, 343
} 154881656
(K) 3L8K=147K (ending in 5) 736
. } 15488092
.. K=5. Deducting 735. 672

S8L3J+3LK?=147J+4525 (endingin
) 2) + J=1 Deducti_r';g 672(,we hage: } 1548 742
(H) SL2H4-6LKJ+K3=147K}210 .. The cube
+125=147H-1-835 (endingin 2) %room is 1157
S H=1 And
and ., CR (of the origina cube==8 x1157=9256
N.B. Here too, the last step is unnecessary (as the first digit
is aready known to us).

(14) Determine the cuberot o the cube 2, 840, 362, 499, 528
Herea=1;L=2;andn=5

(L) L=2 ... L3=8 }2840 362 499 523

.. Deducting this, we have 2840 362 499 52

(K) 3L2K=12K and ends in 2 72
s K=1 or 6! Let ustake6! (2840 362 4938
Deducting 12K. 228

(J) 3L2J3LK2=12J+216 (ending | 2840 362 476
ing8) .. J=1oré!
Let us takel |
(H) SLEH-+LKJ+Ke=12H T 12
+ 216=2H+-238 (ending in 6) }
s H=4o0r9: Let ustake 4!
(&) We need not bother ourselves
about G and the expansion of
(a4-btc+d+e)® and so on.
Obvioudy (=1 .. CR=14162

But the middle three digits have been the subject of un-
certainty (with 2x2x2 =8 different possibilities). We

41‘—4_

RSN i ]
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must therefore work this case too out by the other—the
unambiguous— method.
or8:2840362499628

355045312441

Here a=7 ; L=1; and n=4
(L) L=1,.18=1 365 045 312 441
.". Subtracting this, we hav 1

355 045 312 44
(K) SL!¥K=3K (ending in 4) 24
. K=8 .., Subtracting 24,} 355 045 312 2
(1) sL2J+43LK2=3T 4192
and ends in2 ., J=0 % 19 2
.*. Subtracting 192, 355 045 13

(H) 3L#H 4 6LKJ+K3=3H-+0+512
and ends in 8 .. H="7 .. CubeRoot=17081
CR of the original expression=-14162
(15) Find out the 12-digit exact cube whose last four digitsare

6741.
Herea= !; L=l ; and n=4 .. .6741
(L) L=1 ... L8=1 .. Subtractingit, 1
...674
(K) 3L?K=3K and ends in 4 } 24
K=8 .". Deducting 24. .65

(J) 3L3J+48LK¥=3J+192 and ends } ..1935
in 5 .. J=1 7
~ Subtracting 195, we have
(H) 3L2H+6 LKJIJ+KS=3H+48+ ‘i

p12=3H+560 and endsin 7. ¢ .. The original
. H=9 Qube Rootis9181

N.B. Aswe did not know the first digit beforehand, all the
steps were really necessary.

(18) A 13-digit perfect cube begins with 5 and ends with 0541.
Find it and its cube root.
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Here a=| ; L=1; and n==5. ... 0841
(L) L=1 ., L3=l. Deducting it. 1
054
(K) sL2K=3K .. K=8 24
.~ Subtracting 24, we have } . .03
(J) 3L2J+38LK2=3J4192 213
and endsin 8 .. J=7 } 9
.. Deducting 213, we have
(H) 3L2H4+6LKJ-}+K8=3H-336
+512=3H-848 and ends in 9 }
o H=7
(J) And G=1 . CR=17781
And the cube=
177813

CBAPTER XXXVI

CUBE ROOTS (GENERAL)

Having explained an interesting method by which the
cube roots of exact cubes can be extracted, we now proceed
to deal with cubes in general (i.e. whether exact cubes or not).
As al numbers cannot be perfect cubes, it standsto reason that
there should be a general provision made for all cases. This,
of course, there is; and this we now take up.

First Principles
It goes without saying that dl the basic principles ex-
plained and utilised in the previous chapter should hold good
here too. We need not, therefore, re-iterate all that portion
of the last chapter but may just, by way of recapitulation,
remind ourselves o the conclusions arrived at there and the
modus operandi in question.

The Sequence of the Various Digits
(1) The first place by a®
(2) The second place by 3a2b
(3) The third place by 3ab?4-3ad
(4) The fourth place by 6abc+b3
(5) The fifth place by 3ac2-+3b2%
(6) The sixth place by 3bc?
(7) The seventh place by ¢®; and so on.

The Dividends, Qotients, and Remainders

(1) The first D, Q and R are available at sight.

(2) From the second dividend, no deduction isto be made.
(3) From the third, subtract 3ab?

(4) From the fourth, deduct 6 abe-{-b3

(5) from the fifth, subtract 3ac?4-3b2c

(6) from the sixth, deduct 3bc?

(7) from the seventh, subtract ¢3. ; and so on.
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Modus Operandi
Let ustake aconcrete example, namely, 258 474 853 and

see the modus eperands actually 268 : 4 74853
at work (step by step) 108 :  :42 100

(a) Put down 6 and 42 as first Q and first R by mere

:6: 3

Vilokanam (inspection).

(b) The second Gross Divident 1 258: 4 74853
is thus 424. Don't sub- 108 : 1 42 100
tract any thing thereform. : 6: 3 7

Merely divide it by 108
and put down 3 and 100 as Q and R,

) 8o, the third Gorss :258: 4 7 4853
Dividend is 1007. Sub- 108 : 1 42 100 89
tract therefrom 3ab® (i.e. . 6 : 37

3X6x32% ie 162. The
third Actual Working Dividend theréfore is 1007—
162==845. Divide this by 108 and set down 7 and 89
as Qg and R,

(d) Thus, the fourth Gross 258: 4 7 4 853
Dividend is 894. Sub- 108 : 1 42 100 89 111
tract therefrom 6 abe+ . e6: 37 ¢

(

€]

¢3=(7564-27=783). e S
So, the fourth actual working dividend is 894—783—=
111. Divide this again by 108 and put down 0 and
111 as Qand R

Our next gross dividend is 258: 4 7 4 853
now 1118. Subtract there- 108: -4210089 111 47
from 3ac?+3b2c=882--189
=1071. Thereforeour fifth -
actual working dividend is 47. Djvideit by 108 and
put down 0 and 47 as Qg and R,

=

6: 37060 o
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(f) Our sixth gross divi- 258

47 48 5 3
dend is475, Subtract 108 :  :42/100/89/111/47/34

therefrom 3bc2( =441) :6: 37 00 o
So, our Q and R
now are ¢ and 34

7 (complete cube)

(9) Our last gross dividend is thus 343.  Subtract €3

(=3843) therefrom and set down 0 and ¢ as our Q,
and

This meansthat the given number is a perfect cube,

that the work (of extracting its cube root) is over and that
the cube root is 637.

N.B. proof of the correctness of our answer is, of course,

readily available in the shape o thefact that 637%isthe
given number. But this will be too crudely and cruelly
laborious. Sufficient proof, however, is afforded by the
very fact that, on going into the decimal part of the
answers, we find that all the quotients and all theremain-
der sare zeroes.

An | nconpl et e cubeisnow dealt with asa sample:
Extract the cube root of 417 to 3 placesd decimals
Here the divisor is 147.

417-: 0 0 0 0
147 : 343:74 152 155 163

7 4 7 1

(¢} Here Q, and Ry=7 and 74
() .. The second gross dividend is 740. No subtraction

is required. .. Dividing 740 by 147, we get 4 and
152 as @, and R,.

(¢) .. The third gross dividend is 1520. Subtracting

3ab? (=336) therefrom, we have 1184 as our third
actual working dividend. We divide it by 147 and put

down 7 and 155 as our Q; and Rg

(d) Our fourth grossdividend is 1550. We subtract, abe+

b? (=1176-+64=1240) therefrom, obtain 310 as our

42
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fourth actual working dividend, divide it by 147 and
set down 1 and 163 as our Q, and R,.

() Our next gross dividend is 1630. We subtract 3ac34
3b% (=10204-336=1365) therefrom, get 265 as our

fifth actual working dividend, divide it by 147 ; and
80 On.

Note:—The divisor should not betoosmall. Its ultra-smallness
will give rise to big quotients (sometimes of several
digits), the insufficiency of the remainders for the
subtractions to be made and other such complications
which will confuse the student's mind.

In case the divisor actually happens to be too small,
two simple devices are available for surmounting this difficulty.

(i) Take thefirst four (or 5 or 6) digits as one group and
extract the cube root. For example, suppose we
have to find out the cube root of 1346, 085. Qur
chart will then have to be framed thus:

363 : 1, 346 : 086
:1331: 15

11 :

Let us now take an actual concrete example and apply
this method for extracting the cube root of 6334625 :
1634 : 6 2 B
972 : 6 832:502 166 312 1944
8 : 5 0 2

(a) Q=18; R,=502; and Divisor (D)=972.

(b) No subtraction being needed at this point, divide 5026
by 972 and put down 5 and 166 as Q, and R.

(c) Our third gross dividend (G.D) is 1662; subtract 3ab?
(=1350) from 1662, divide the resultant.  Actua

dividend (AD) i.e. 312 by 972 and set down 0 and 312
as Q3 and Ry,
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(d) Qur next GD is3125. "Subtract 6abe+b? (=0-4125==
125) from 3125, divide the AD (3000) by 972 and put
down 2 and 1944 as Q; and R,- and so on,

Or, Secondly, multiply E (the given expression) by
23, 33, 43 or 53 ete., (asfound necessary and most
convenient) find the cube root and then divide the CR
by 2, 3, 4, 5 etc. For instance, instead of taking 3
(asthedivisor), take 3 x'43 (=3 x 64=192), find the cube
root and divide it by 4.

Here again, a concrete example may be worked out by
both the methods:

First Method
(@ Q,=1; R,=1; and D=3 3:22104010020
1 26
(b) Now, GD=AD=10. Divided by 3, itgives2 and 4 as
Q, and Ry
(c) The third GD is 40. From this subtract 3ab® (=12).
After this subtraction, tho AD is 28. Divide this by
3 and put down 6 and 10 as Qs and Rs,.
(d) The fourth GD is 100. From this deduct 6abc+b?
(=724-8=80). The AD is 20.
Now, as for dividing this 20 by 3, the directly apparent
Q, and Ry are 6 and 2. But the actual quotient and Remainder
are difficultto determine (becausedf the smallnessd thedivisor)
and the insufficiency o the Remainders for the next subtrac-
tions and a good number of trial digits may fail before one can
arrive at the correct figures! This is why the other method
is to be preferred in such cases. And then the working will
be as follows:
Multiplying 2 by b3, 2%: 0 0 O
we get 250. 108 : : 33 154 19;5 332
: 6

(@) Q; and R,=6 and 34
(b) Ey=340. Dividing this by 108, we have Q,=2 and
R,=124.
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() 8abi=72. Deducting this from 1240, we get 11gs,
Dividing this by 108, Qs=9 and Ry=196

(d) 6abc+hS=648+8=656 '. The Working Divideng
=1960—656=1304. Dividing this by 108, we haye
Q,=9 and R,=332 .. The (R=6-299—
.. Dividing by 5, the actual cube root=1-259—

(2) Let us take another 1500: O 0 0
concrete exampleie. 363 : : 169 238 400 387

312. We multiply L: 4 4 7

12 by 5% and put
1500 down as the Total Dividend. And we take the
first four digits as one group.
{#) Thus Q;=11 and R;=169
(b) Dividing 1690 by 363, we have Q,=4 and R,=238
(c) 8ab?=528 .. Working Dividend=2380—528=1852
.. Dividing it by 363, we have Q;=4 and R=400
(d) 6abc+b3=1056+-64=1129. Deducting this from 4000,
we get 2928. Dividing this by 363, Q,=7 and
R=387
.. The CR=11-447 etc.
.. The cube root o the origina E=2-289...

Some more examples may be taken :
(1) (a) E=1728; Q,=1; 1: 7 238
D=3; and R,=0 8: :0 10
:1: 2.00
(exact cube)
(b) 7 divided by 3 gives 2 and 1 as Q; and R,
() Third Gorss Dividend=12; 3ab®=12; ... Actua
dividend=0 ... Qa=0 and R3=0
(d) Fourth gross dividend=8; 6abc+b8=0+8=8
.. Subtracting the latter from the former, Q,=0

and R,=0
.. The CR=12

)

N.B. The obvious second proof speaks for itself.
(2) (a) Here E=13824 ; D=12; 13: 8 24
Q;=2; and Ry=5 12 .: 2 54.3008
(Perfect cube)
(b) §% gives Q,=4; and R,=10

(¢) Gross Dividend =102 ; 3ah3=96.
. Actua dividend=6. Divided by 12, this gives

Q,=0 and R;=6
1
(d) G.-D=64; 6abc+b3=0+64 .. AD=0 .. Q=0
and R,=0 - The CR is 24.
(3) Here B33, 076, 161; Q,=3; D=27; and R,=6
(@) Q=3 and ,=6 27:33; 606746210601
3.21000
(complete cube).

(b) GD=AD=60; Divided by 27, this gives 2 &6 as
Q; and R,

(c) GD isnow 67; 3ab%=36 .. A.D=31. Divided by
27, thisgivesus 1 and 4 as Q and R.

() GD is 46; 6abc+b3=36+8=44 . AD=2And,
divided by 27, this gives 0 and 2 as Q; and R,.

(6) GD is 21 ; 3ac-}-8bZ=9+412=21 .. AD=0; and,
divided by 27, this gives 0 and 0 as Q; and R

(f)@D is6; 3bc2=6 - AD=0. And, divided by £7,
this gives us 0 and 0 as Q; and R,.

(9) GD=1; ¢3=1; AD=0. Divided by 27, thisgivesus
0 and 0 as Q, and R, . The CR is 321.

N.B.—The second proof is clearly there before us.

E=101 101: 00 0 O
@ 48 : 1878214811240

(a) Qy=4;R;=37;and D=48 :4.: 6 5 9 5

(b) GD=AD=3870: and, divided by 48, this gives us 6
and 82 as Qg and R,
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(¢) GD=820; 3ab?=43%2 .. AD=388. and, divided
by 48, this gives us 5 and 148 as Q, and R,

(d) G.D=1480; and 6abc+bB=720+216=936 ;
. AD=544. And this, divided by 48, gives us 9
and 112 as Q, and R,

(e) 6D=1120; and 3ac?+3b2c=300-}-540=840
. AD=280. And, divided by 48, this gives yg 5
and 40 as Qg and R, ; and so on.

(5) E=29791

(a) Here Q,=3; and Ry=2; and D=27

(b) GD=AD=27 ; and, divided by 29: 791
27, thisgivesus 1 and 0 as 27: 120
Q, and R, : 3. 1.0

(complete cube)

(c) GD=9 ; and 8ab2=9 ; .". AD=0, and, divided by 27,

thisgivesus0andoas Q and R, ., The CR is 3L

N.B.:—The proof is there-before us as usual.

(6) The given expression (E)=83, 453, 4538
(#) Qy=4; R,;=19; and D=u48s,

(b)) GD=AD=194. :83: 4 53 453
And, divided 48: 19 50618247 34
by 48, this : 4: 3 7. 00 0(exact cube)

gives us 3 and 50 as Q4 and Ry

(¢) GD=505;and 3ab®=108 .. AD=397. And, divided
by 48, thisgives us 7 and 61 as Q, and Ry

(d) GD=8613 ; and 6abc+b%=504-427=531 .. AD=82
And, divided by 48, this givesus0 and 82as Q; & R,

(6) GD=824 ; and 3ac®{3b%=588+189=777 . AD
=47 And this, divided by 48, gives us ¢ and 47 as
Qs & Ry

(f) GD—8be?=475—441=34. . Q¢=0 and R,=34

(g) GD=343; and c3=343 .. AD=0 ... Q,=R,=0

.. The CRis437.
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N.B.:—The proof is there as usual.
(7) E=84, 604, 519

(a) Q=4; 84: 6 0 4 51 9
D—48; 48: :20 62 80129 80 72
andR,=20 : 4: 39 .0 0 0 (perfectcube)

(b) GD=AD=206. And, divided by 48, this gives us 3
and 62 as Q3 and R,

(c) GD=620 ; and 3ab?=108 .. AD=512. And, divided
by 48, this gives us 9 and 80 as Q, and Rg

(d) GD=804 ; and 6abc+b3=648-4-27==675 .., AD=129.
And, divided by 48, thisgivesus¢ and 129asQ, & R,

(& GD=1295; and 3ac24-3b3—=972-}-243=1215
.. AD=80. And, divided by 48, this gives us0 and
80 as Q4 and Ry

(f) GD=801 ; and 3bc2=729 .-, AD=172. And, divided
by 48, this givesus 0 and 72 as Q4 and Rg

(g) GD==729; and (3=729 .. AD=0 .". Q;=0 and R;=0

. The CR is 439
N.B.:—The proof is there as usual.
(8) E=105, 823, 817

(6) Q=4; 11060 8 2 38 17
Ry=41; 48 141 82 056192
and D=48 : 4 : 78 00 0 (completecube)

(b)) GD=AD=418. And, divided by 48, this gives us
7 and 82 as Qg and Ry

(c) GD=822; and 3ab2=588 .. AD=234; and, divided
by 48, this gives us 3 and 90 as Qg and Ry

(d) GD=903 ; and 6 abc+b3==504+343=847 .. AD=>56.
And, divided by 48, thisgivesuszeroand 56asQ, & R,

(6) GD=568; and 3ac®+3bZ=1081441=>549 .. AD
=19. And divided by 48, this gives us zero and 19
as Qs & Ry
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() GD=191; and 3bc2=189 .. AD—-=2; and, divided
by 48, thisgives ns zero and 2 as Qg and Rg
(9) GD=27; and C3=27 .. AD=0 .. 0,=6 and R,=0

.. The CR=473
N.B.:—The proof is there as usual.
(9) E=143, 055, 667 143: 05 5 667
75: 1830 201752

5 : 23 .00 0 (exact cube)

(a) Q=5 R,=18; and D=175

(b) GD=AD=180; and, divided by 75, this gives us 2
and 30 as Q, and R,

(¢) GD=305; and 3ab®=60 .. AD=245; and, divided
by 75, this gives us 3 arid 20 as Q, and Ry

(d) GD=205; and 6abc|-b®=180+8=188 .. AD=17.
And, divided by 75, thisgivesus 0 and 17 asQ, and R,

(e) GD=176; and 3ac2+3b%=135436=171 ... AD=5.
And, divided by 75, this gives 0 and 5 as Q; and Rg

(fy GD=56; and 8bc2=54 ... AD=2; and, divided by
75, this gives 0 and 2 as Q4 and R,

(g) GD=27; and ¢3=27 ./, AD=0 .". Q;=0 and R;=0

2. The CR is 523

N.B.:—The proof is there as usual.
(10) E=248, 858, 189. 1248: 8 5 8 1 8 9
108: : 832 112 81 162 155 72
: 6: 2 9. 0 0 O(perfect cube)
(a) Q,=6; R,=32; and D=108
(o) GD=AD=328. And, divided by 108, this gives us 2
and 112 as @y and R,
(c) GD=1125; and 3ab?=72 .. AD—1053; and, divided
by 108, thisgives us9 and 81 as Q, and R,.
(d) GD=818; and 6abc-b3=648-4-8=656 .. AD=162.
And, divided by 108, thisgives 0 and 162 as Q; & R,
(e) GD=1621; and 3aca+3bh2c=1458+108=1506
.. AD=565. And, divided by 108, this gives us 0 and
55 as Q; and Rs.
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(f) GD=558; and 8bc2=486 .. AD==72; and, divided by
108, this gives us ¢ and 72 and Qg and Rg
(9) Gb=729; and (3=729 ... AD=0; Q,=0 and R,=0
.. The CR is 629
N.B.:—The proof is there as usual.
(11) 11, 345, 123, 223
Note:—The cube root in this case being of four digits, the
method obtained from the expansion o (a+b-c)?
will naturally not sufficefor this purpose ; and we shall

have to expand {a-+b+4c¢-4d)3 and vary the above pro-
cedure in accordancetherewith. Thisis, of course, per-

fectly reasonable.

The Schedule d Dgts
The Analytical digit-schedule for (a-+b--c+d)® now stands
as follows:
(a) First digit (9 zeros)=a%—
(b) Second digit (8 zeros)y=3a%b—
(c) Third digit (7 zeros)=8ab2+8a%c
(d) Fourth digit (6 zeros)=6abc-+b34-3a%d
(e) Fifth digit (5 zeros):ﬁabd+3acz+3bzc—
(f) Sixth digit (4 zeros)=6acd+3bc?4-3b%—
() Seventh digit (3 zeros)=6bcd-|-3ad2--c®—
(h) Eighth digit (2 zeros)==8bd®+-3c?d—
() Ninth digit (1 zero)=3cd®—
(§) Tenth digit (no zero)=d3

Consequent Subtractions
(1) Q, and R, by mere inspection.
(2) Q; and R, by simple division (without any subtraction
whatsoever).
(3) Prom all the other Gross Dividends, subtract :
(3) 8ab?
(4) 6abc+b?
(5) 6abd+3ac2+3h2c
(6) 8acd--3bc?-+-3b2d

44
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(7) 8bed4-3ad24-c?
(8) 3bd?+4-3c¥

(9) 3cd?

(10) 43

respectively, in order to obtain the actual working dividend

and thenoe deduce the required Q and R.

Note: —It will be noted that, just asthe equating of d to zero
in {(a+b-+c-+d)? will automatically give us (a+b+c)?
exactly so will the substitution o zero for d in the above
schedule give us the necessary schedule for the
three-digit cube root.

As we go higher and higher up (with the number of digits

in the cube root), the same process will be found at work. N

other words, thereis a general formula for n terms (n being any

positive integer); and al these are only special applications

o that formula (withn equal to 2, 3,4 and soon). Thisgenera

form of the formula, we shall take up and explain at alater stage

in the student's progress.
In the meantime, just now, we explain the application of
the (a-+b-+te--d)3 schedule to the present case.

Application to the Present Case

11: 34 51 2 3 2 2 3
12: :39223759 76 69 62 34
12 :247 0 0 0 0 (exact cube)

(a) Q,=2; R,=3; and Divisor is 12
(b) GD=AD=33. Dividing this by 12, we get Q,=2 and

R,=9
(c) GD=94; and 3ab?=24. .. AD=T0 .. Q;=4 and R;=22
(d) GD=225; and 6abc{b?=96+8=104; .- AD=121

s Q=T and R, =37
(e) GD==371; and 6abd43ac?-3b2c=1684964-48=312,
. AD=59 .. Q=0 and Rg;=59.
(f) 6D=592; and 6acd+48ho?48b2d=336-+96--84=516
) D=76 .. Q¢==0 and Rg=76.

e
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{(9) GD=763; and 6bed-3ad>c?=536--294+64 =604
- AD=69 .- Q,=0 and R,=69

(h) GD=692; and 3bd*}3¢%d—294+336=630 ... AD=62.
.. Qg=0 and R4=-62

() GD=622; and 3cd®=588 .. AD=34 .. Q,=0 and
Ry=34

(j) GD=343; and d®=343 .. AD=0 .. Q,;=0and R
.*. The cube root is 2247

N.R.:—The ocular proof is there, as usua. This is the usua

procedure. There are certain devices, however, v hich
can help us to over-come all such difficulties; and.

if and when a simple device is available and can serve
our purpose, itisdesirable for ustoadopt it and minimise
the mere mechanical labour involved and not resort
to the other ultra-laborious method.

The devices are therefore explained hercunder :

The First Device
The first deviceis one which we have already made use of,

10~

namely, the reckoning up of thefirst 4, 5 or 6 digits as a group
by itself. Thus, in this particular case:

: 11, 345: 1 2 3 2 2 3
1452: 10 648: 697 1163 412 363 62 34

22 : 4 7. 0 g ¢ (complete cube)

(a) Q, (by the same process) is the double-digit number
22; R,=697; and D=1452

(b) GD=AD=6971 ; and, divided by 1452, this gives us
4 and 1163 as @, and R,

(c) GD=11632; and 3ab%=1056 ., AD=10576; and,
divided by 1452, thisgives us 7 and 412 as @, and R,

(d) GD=4123; and 6abc+b3=3696-+64=3760 ... AD=
363; and, divided by 1452, this gives us 0 and 363
as Q4 and R,
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(e GD=3632; and  3ac?{-302%c=3234+336=3570
. AD=62; and, divided by the same divisor 1452,
this gives us zero and 62 as Q; and R,

(f) GD=622; and 3bc2=388 .. AD=34. So Q4=:0
and Rg=34

(g) GD=343 ; and ¢3=343 ... AD=0.". Q;=0and R,=0

.. The C.R.=2247

N.B.:—(1) And the Proof is there before us, as usual.

(2) By thisdevice, weavoid the complication caused by
shifting from (a-+b4-c¢)? to (a+b4c+d)®  It,
however, suffers from the draw-back that we have
first to find the double-digit Q, cube it and subtract
it from the first five-digit portion of the dividend
and that all thefour operations are o big numbers.

Second Device
This is one in which we do not magnify the first group
of digits but substitute (c4d) for c all through and thus have
the same (a-b--c)? procedure available to us. But, after all,
it isonly a slight alteration o the first device, whereby, instead
of a two-digit quotient-itam at the commencement, wc will be
having exactly the same thing at the end.

The real desideratum is a formula which is applicable
not only to two-digit, three-digit, or four-digit cube roots but
one which will be automatically and universally applicable. But
this we shall go into at a later stage o the student's progress.

In the meantime, a few more illustrative instances are
given hereunder (for further elucidation of—or at least, the
student's practice in, the methods hereinabove explained :

(1) E=12, 278, 428, 443.

Here too we may follow the full procedure or first ascertain
the first two-digit portion of the cube root of 12, 278, treat the

whole five-digit group as one packet and extract the cube root
of the whole given expression in the usual way. The procedure

will then be as follows:

(341

(i) Single-digit method
12: 27 8 4 2 8 44 3
12: 14613 27 22 33 44 3 34

2: 307-0 0 00 (perfectcube)

(a) Q;=2; R,=4; and D=12

(5) GD=AD=42 .. Qu=3 and Ry=6

(c) GD=67; and 3ab%=54; " AD=13 .. Q=0 and
Ry=13

(d) GD=138; and 6abc}b3=0-127=27 .. AD=l111
o Q=7 and R;=217

(e) GD=274 ; and 6ahd+3ac?43b%c=2524-0+0=252;
. AD=22 .. Qz=0 and R5=22

(f) GD=222; and 6acd + 3bc2+ 30%d == 0 +o t 189
o AD=33 .. Q=0 and Ry=33

(9) GD=338; and 6bod43ad?4cP=04294-+0==204
s AD=44 .. Q;=0 aid R,=44

(h) GD=444; and 8bd?{3c2d=441-{0=441 .. AD=3
.~ Qg=0 and Rg=3

(i) GD=34; and 3cd2=0 .. AD=34 .. Qy=0and

R,=34
(j) GD=343 ; and d3=343 - AD=A0, Q=0
and R,;y=0

N.B. :—The proof is before us, as usual.
(i) Two-Digit method

Preliminary Work 1120 278
12: :4

. Q, (of two digits) is 23
12278 : 4 2 8 4
1587 : 12167: 111 1111 33 338

23 : 0 7. 0
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(a8 Q; (of two digits)=28 ; R,==111; and D=1587

(b) GD=AD=1114 .. Q2=0; and Rz=1114

(c) GD=11142; and 3ab%=0 ... AD=11142 ... Q3=7 &
Ry==33

(d) GD=338; and Gabc+b3=0 ... AD=338 .. Q=0 &
R=338

{e) GD=3384 ; and 3ac™+302%c=3381+ 0==338] . AD=3
.~ Q;=0 and Ry=3

(f) GD=34; and 3bc?=0 .. AD=384 .". Q=0 & Ry=34

(9) GD=343; and d*=343 .. AD=0, Q,=0 and R,=0

.~ The CRis 2307
N.B.:—The proof is before us, as usual.
(2) E="76, 928, 302, 277.
(i) Single-digit method
t76: 9 28302277
48: 1123344565944 2913 2

4: 2 56 3 0 0 0 0 (Exactcube)

(a @=4; R,=12; and D=-48

(b) GD=AD=129 .. Q=2 and R,=33

(0 GD==332; and 3ab?=48 .. AD=284 .. Qy=5 &
R3=44

(d) GD=448; & 6abc+b3=2404-8=248 ... AD==200
.~ Q=3 and R ;=56

(6) GD=563 ; & 6abd43ac|3h%=144+300460=504
. AD=59 .. Q;=0 and R;=59

(f) GD=590; & 6acd+3het +-3b24 =360+ 150-+36—546
o AD=44; .. Q=0 and R,=44

(0) GD=442; and 6bed +3ad24c3=1804+108+125=413
- AD=29; .. Q,=0and R,—29

(h) GD==292 ; and 8bd2-+3c2d=54+225=279 .. AD==13
- Qg=0and Re=13
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(¢) GD=187; and 3cd?=135 .. AD=2 ... Q=0 and
Ry=2
(j))GD=27; and d®=27 .. AD=0 ..Q;, =0 and
Ryp=0 .. The CR=4253
N.B.:—Podf  as usual.
(i) Double-digit method

or, secondly, t76: 9
.. Q (double-digit)=&  48: :12 33
4: 2

1769 28: 3 0 2 2 77
5292 : 740 88 : 2840 1943 404 137 13 2

[ 5 3 0.00

(a) ;=42 ; R=2840; and D=5292

(b) GD=AD=28403 .". Q,=5; and R,=1943

(c) GD=19430; and 3ab2=3150 .. AD=16280
.. Qg=3 and Ry=404

(d) GD=4042; and 6abc+bS=3780+125=3905
o AD=137 .. Q,=0 and R,=137

(e) GD=1872; and  3ac?+3blc=11344225=1359
o AD=13 .. Q=0 and Ry;=13

(fy 6D=187; and 3be?=136 .. AD=2 .. Qg=0
and R,=2

(@) GD=27; and ¢¥=27 .. AD=0; Q,=0 and R,=0

.. The CR is 4263
N.B. Exactly as above.
(3) E=355, 045, 312, 441
(i) Single-Digit method.

3565: 0O 46 312441
147 : : 1212028 13839551960

7: 08 1-0

(@ Q,=7; R;=12; and D=147
(b) GD=AD=]20; KR Q5=O and R’=120
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() GD=1204; and 3abS=0 .. AD=1204 .. Q;=8 N.B. As above.
& Ry=28 (4) E=1792, 994, 249, 216

(d) GD=285 ; and 6abc+b8=0 .. AD=285; Q,=1and
R,=138

(e) GD=1383 and 6abd+3acS+3bZc=0+1344+0=1344
.. AD=389 .. Qz==0 and R;=39

(f)GD=391; and  6acd+3bc2+3b50=336+0+0
o AD=55 .. Q=0 and Ry=55

(g) GD=552; and 6bcd+3ad?+cS=0+21+512=533
.~ AD=19 .. Q,=0 and R,=19

(h) GD==194; and 3bd24-3c2d=0+4192 .. AD=2
» Qg=0 and Ry=2

(i)GD=24; and 3cd?=24 .. AD=0; Q=0and R=O

(j) GD=1; and d3=1 ... AD=0, Q=O and R=O

.. The CR is 7081
N.B. As above.
(ii) Double-digit method.
;355045 : 3 1 2 4 41
14700 : 343000 : 120452853 391 40 20
70 : 8 10 0 O

(a) @, (of 2 digits)=70; R,;=12045; and D=14700

() GD=AD=120453 Q,=8 and R,=2853

(¢) GD=28531; and 3ab®=13440 . AD=15001
. Q=1 and Ry=391

(d) GD=3912; & 6abc+b8=3360+512=3872 .. AD=40
. Q,=0 and R,—40

() GD=404; & 3ac®+3b%=2104192=402 .. AD=2
0 Q=0 and R;=2

(f)GD=24; and 3bc?=24 .. AD=0 .. Qg=0 and
R,=0

(9) GD=1; and d®=1 .. AD—0 .. Q,—0and R,=0

- The CR is 7081

(i) Single-Digit method.

792: 9 9 4 2 4 9 2 16
243 : 1 63 153 216 158 199 152 72 56 21

9 : 2 56.0 000

(a Q,=9; R,=63; and D=243

(b) GD=AD=639 .. Q,=2; and R,=153

(c) GD==1539 ; and 3ab?=108 .. AD=1431 .. Qz=5
and R;=216

(d) GD=2164; & 6abc+b?=540+8=548 .. AD=1616
- Q=6 and R;=158

(6) GD=1582; and 6abd t 3ac” T 3b%c =648+ 675+
60=1363 .. AD=199 .. Q,=0 and R;=199

(J)X6D=1994; and 6acd+3bc+3 b2*=1620-}150-+
2=1842 .. AD=152 .. Q¢=0 and Rg=152

(9) GD=1529; & 6bcd+3ad*+c8=360+972+125=1427
+ AD=12 .. Q;=0 and R,=72.

(k) GD=722; & 3bd?-3c?d=216-450=666 .. AD=50
v Qg=0 and R,=56

(i)GD=561; and cd®=540 .. AD=21 .. Q,=0and
Ry=21

()GD=216; and d@=216 .. AD=0 .. Q=0 and
Ryo=0

. The CR=9256

N.B. As above.

Double-Digit Method

92 Y el o Q (of two digits is 92 and
P I E— 923—=778688. And D=25392.
792994 : 2 4 9 2 1 6
25392 : 778688 : 14306 16102 1772 1044 56 21
92 : 5 6.0 0000
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(a) Q,=92; and R,=14306

(6) GD=AD=143062 .. Qu=5; and R,=16102

(c) GD=161024 ; and 3ab%=6900 .. AD=154124

. Qy=6; and Ry=1772
(d) GD=17729 ; and 6abe+b3=165604-125=16685
o AD=1044 ... Q,=0 and R,=1044
(e) GD=10442; and 3ac?4-3b%=9936-+-450—10386
. AD=56 .. Q5=0 and RE=56
(f) GD=>561 ; and 3bc2==540.".AD=21.".Q4==0 ; & R4=21
(g) GD=216 ; and D¥=216.". AD=0 .". Q,=0 and R,=0
.. The CR is 9256

N.B. As above.

Note:—It must be admitted that, although the double-digit
method uses the (a-+b-+c)® schedule and avoids the
(a+b+c-+d)® one, yet it necessitates the division,
multiplication and subtraction o big numbers and in
therefore likely to cause more mistakes. It is obvious-
by better and safer to use the (a+b-+c+d)® and deal
with smaller numbers.

In this particular case, however, as the given number
terminates in an even number and is manifestly divisible by
8 (and perhaps 64 or even 512), we can (in this case) utilise
a third method which has already been explained (in the imme-
diately preceding chapter), namely, divide out by 8 (and its
powers) and thus diminish the magnitude of the given number.
We now briefly remind the student of that method.

Third Method
8§:7 92 994 249 216
8 99 124 281 152
8: 12 390 535 144

1, 548, 816, 893

:1: 5 4 8 8 1 6 8 9 3
3: :0 2 6 16 36 55 74 16 34

:1: 1 8 7 00 00
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(a) Q=1 and R,=0
(b) GD=AD=05 .- Q,=1 and R,=2
(¢) GD=24 ; and 3ab?=38 .. AD=21 .". Qg=5and Ry=6
(d) GD=68; and 6abec4+b%=30+4+1=31 .. AD=37
. Q,=7; and R;=186
(© GD=168; and 6abd+3ac?+-8b%=42475+15=132
~. AD=36 .. Qz=0 and R;=36
(f) GD=361 ; and 6acd+3bcS+3bSd=210+76+21=306
o AD==55 .. Q=0 and Rg=55
(9) GD=556; and 6bed +3ad3--¢3=2104147-}-125—482
.. AD=714 ., Q,=0 and R,=T74
(h) GD="748; and 3bd?4-3¢c2d=1474-525=672 .". AD=16
.~ Qg=0 and Ry=T6
(t) GD=769 : and 3¢d?=735 .. AD=34 ... Q,=0; and
R,=34
())GD=343; and d3=343 ., AD=0 .. Q;4=0; and
Ryp=0
. The C.R. (of the sub-multiple)=1157
.. The C.R. of the given number=9256
Or, Fourthly, the derived submultiple may be dealt
with (by the two-digit method) thus :(—
1548: 8 1 6 8 9 3
363: 1331: 217 363 266 221 76 3#A

11: 5 7 00 0

(a) Q;=11; R;=217; and D=363

(b) GD=AD=2178 ... Q,=5 and R,—363

(c) GD=3631 ; and 3ab5=825 ... AD==2806 .. Q=7 &
R,=265

(d) GD=2856 ; and 6abc4b3=2310-+126=2435 .. AD=
21 ... Q=90 and R,=221

(¢) GD=2218; and 3ac?+4-3b%c=18174-525=2142
o AD=78 .. Q=0 and R;=76
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(f) GD=169; and 3be?=735 ... AD=34 .. Q,=0; &
Re=34
(g) GD=343; and c3=343 .-, AD=0.". Q;=0 and R,==0
.. The cube root of the sub-multiple is 1157
.. The CR of the origind number=9256

N.B. As above.

(5 E= : 2, 840, 363, 499, 528
8:
355, 045 312, 441,
355 0 4
147 12120
7o 0 8 1

This very number having already bean dealt with (in
example 3 of this very series, in thisvery portion of this subject),
we need not work it all out again.  Sufficeit to say that, because.
7081 is the cube root of this derived sub-multiple,

.. The C.R. of the origina number is 14162

Note:—All  these methods, however, fall in one way or another,

short of the Vedic ideal of ease and simplicity. And
the general formula which is simultaneously applicable
to al cases and free from all flawsis yet ahead. But
these matters we shall go into, later.

CHAPTER XXX VII

PYTHAGORAX' THEOREM ETC.

Modern Historical Research has revedled—and al the
modern historians of mathematics have placed on record the
historical fact that the so-called “Pythogoras’ Theorem™ was
known to the ancient Indians long long before the time of
Pythagoras and that, just as although the Arabs introduced the
Indian system of numerals into the Western world and distinct-
ly spoke of them as the™ H ndu" numerals, yet, the European
importers thereof undiscerningly dubbed them as the Arabic
numerals and they are still described everywhere under that
designation, similarly exactly it has happened that, although
Pythagoras introduced his theorem to the Western mathematical
and scientific world long long afterwards, yet that Theorem
continues to be known as Pythagoras’ Theorem!

This theorem is constantly in requisition in a vast lot of
practical mathematical work and is acknowledged by all as
practically the real foundational pre-requisite for Higher Geo-
metry (including Solid Geometry), Trigonometry (both plane
arid Spherical), Analytica Conics, Calculus (Differential and
Integral) and various other branches of mathematics (Pure and
Applied). Yet, the proof of such a basicaly important arid
fundamental theorem (as presented, straight from the earliest
sources known to the scientific world, by Euclid etc., and assitill
rxpounded by the most eminent modermn geometricians all
the world over) is ultranotorious for its tedious length, its
clumsy cumbrousness etc., and for the time and toil entailed
onit!

There are several Vedic proofs, everyone of which iS much
simpler than Euclids' etc. A few of them are shown below:
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First Proof
\ Here, the square AE=the square KG
> ¢ the four congruent right-angled traingles al
= around it.
e Their areas are ¢2, {(b—a)® and 4x3ah
" respectively.
. C3==al—2ab+ he{-4(dab)=—a2 4 bt
s Q.ED.
Second Proof

CONSTRUCTION:

CD=AB=m; and DE=BC=n. .., ABC
and CDE are Congruent ; and ACE is right-
angled Isosceles. Now, the trapezium
ABDE=ABCHCDE--ACE .. jmn-3hi4
jmn=}(m-+n) X (m+n)=34m?4mn4jn?

oo §h?=3m24n? . h2=m24n2 QED.

{N.B. Here we have utilised the proposition that the area o
a trapezium=+ the altitude Xthe sum of the paralel
sides).

Third Proof
Here, AE=BF=CG=DH==m and EB=
d FC=0GD=HA= n.

Now, the squae AC=the square EG+
the 4 congruent right-angled trianglesaround
,‘ it . h3d-4(dmn)=(m+n)2=m24-2mn+n?

oo ht=m234-n2 Q.ED.

Fourth Proof
(The proposition to be used here isthat the areas of
similar trianglesare proportional to the squares ON the homo-
logous sides). Here, BDis g to AC
- . The triangles ABC, ABD and BCD
X are similar.
'+ As between (1) the first two triangles
¢ and (2) the first and third ones,

L
™
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AB®_ADB. ;,4BC*_BCD

AR ABC” AC® ABC
. ition AB24+BC2__ADB4BCD_ABC _
.. By addition, ACT ABC — SARGT
. AB24B(2=AC? QE.D

Fifth Proof

(This proof is from Co-ordinate Geometry. And, as
modern Conics and Co-ordinate Geometry (and even Trigono-
metry) take their genesis from Pythagoras' Theorem, this
process would be objectionable to the modern mathematician.
But, as the Vedic Satras establish their Conicsand Co-ordinate
Geometry (and even their Calculus), at a very early stage, on
the basis of first principles and not from Pythagoras' Theorem
(sir), no sueh objection can hold good in this case.

The proposition is the one which
gives US the distance between two
points whose co-ordinates have been
given. Let the points be A and B
- | = * and let their co-ordinates be (a, 0)

and (0, b) respectively.

| Then, RA  4/(a—0)'+(0—b)i=

A/aitbT . BAZ—a®ib? QED.
Note:—The  Apollonius’ Theorem, Ptolemy’s Theorem and a
vast lot of other Theorems are similarly easy to solve
with the aid of the Vedic Sutras. We shall not,
however, go into an elaborate description thereof
(except of the Apollonius Theorem) just now but shall
reserve them for a higher stagein thestudent's studies.

1




CHAPTER XXXVIII

APOLLONIUS THEOREM

Apollonius Theorem (sic) is practically a direct and
clementary Gorollary or offshoot from Pythagoras Theorem.
But, unfortunately, its proof too has been beset with the usual
flaw of irksome and needless length and laboriousness.

The usua proof is well-known and need not be reiterated
here. We need only point out the Vedic method and leave
it to the discerning reader to do all the contrasting for himself.
And, after all, that is the best way. Isn't it.?

Well, in any triangle ABC, if D he
the mid-point of BC, then AB24AC?=
2(AD24+BD?). This is the proposition
which goes by the name of Apollonius

_/ Theorem and has now to be proved by
T us by afarsimpler and easier method than
the one employed by him.

v Let AO be the perpendicular from A
on BC; let XOX’ and YOY’® bc the axes of co-ordinates ;
and let BO, OD and OA be m, u and p respectively

. DB=DC=m-n
o AB4ACR=(p?{-m?){(m?J-4mn+4n24 p2)=
2p?4-2m?-4+4mn--4n2
and 2 (AD24+BD?)=2 [(P”+112)+(m’+2mn+n?) 1=
=2p¥+42m2{ 4mn +4n?
.. AB®4AC2=2 (AD21DBY) Q..
Note :—\We faintly remember to have read a proof of Apolloning’
Theorem on these lines in sOMe publication of Prof.
8. L. Loney ; but we are not sure. However that may
be, this proof (by means of Co-ordinate Geometry)
was well-known to the ancient Indian mathematiciang
and specifically finds its place in the Vedic Siitras,
And all the Geometrical Theoremsabout the concurre-
ney of certain straight lines and about the orthocentre,
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the circum-centre, the in-centre, the ex-centres, the
centroid, the Nine-Points-cirele etc. ean all be similarly
proved (very simply and very easily) by means of
Co-ordinate Geometry. -
We shall go into details of these theorems and. their

Vedic proofs |ater on ; but just now we would just merely point
out that, like the “Arabic numerals' and “Pythogoras’ Theorem.
the “Cartesian’ co-ordinates are a historical MISNOMER, no more,
and no less.

a



CHAPTER XX XIX

ANALYTICAL CONICS

Analytical Conicsis a very important branch of mathema-
tical study and hasa direct bearing on practical work in various
branches o mathematics. It isin thefitnessd things, there-
fore, that Analytical Conics should find an important and pre-
dominating position for itsdf in the Vedic system of mathe-
matics (asit actualy does).

A few instances (relating to certain very necessary and
very important points connected with Analytical Conics) are
therefore given here under (merely by way, let it be remem-
bered, o illustration).

1. Equation t0 the Straight Line,
For finding the Equation o the straight line passing
through two points (whose co-ordinates are given.
Say, (9, 17) and (7,-2).
The current method tells us to work as follows:
Take the general equation y—=mx+-c.
Substituting the above values therein,
We have: 9m+-c=17; and Tm+ec=—a2.
Solving this simultaneous equation in m and ¢, we have ;
9m+4-c=17
Tm-+tc=—2

s 2m=19 .". m=9%

Substituting this valueof m (ineither of theabovetwo equations)
we have, 66}+c=-—2 .. c=-—68}. Subgtituting these values
of m and ¢ in the Origina Generd Equation (y-—=mxz-}-c), we
gety=04 X —68). ... Removingfractions, we have2y=19x—
137. And then, by transposition, we say, 19x—2y=137. But
this method is decidedly too long and cumbrous (and especidly
for such a petty matter)!
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ANd the Second Current Method (which uses the formula

is equaly cumbrous and confusing.
It ultimately amounts to the right

thing ; but it doesnot mekeit clear and requiresseveral more
steps o .working!

But the Vedic a-sight, om-line, mental method (by the
Pardvartya Sutra) enables us to write the answer mechanically
down by a mere casual look at the given co-ordinates. And
it is as follows:

The Genera Equation to the straight line (in its final
form) is ..x—..y=.. [where the co-efficients of x and
y (on the left hand side) and the independent (on the Right
hand-side) have to be filled in]. The Siitra tells us to do this

very simply by :
(i) putting the difference of the y—co-ordinatesas the
x-coefficient and vice versa; and
(i) evaluating the independent term on that basis.

y—y= 220 ()
1

For example, in the above example, the co-ordinates are:
(9, 17) and (7, —2).

(i) S0 our x-coefficient is 17—(~2)=19

(i) and our y—coefficient is 9—7=2.
Thus we have 19x —2y as our L.H.S. straightaway.
(i) Asfor the absolute term ontheR.H.8., asthe straight
linein question passes through the two given points,
the substitution of the original co-ordinates o each
of the points must give us the independent term.

So, the substitution o the values 9 and 17 in the L.H.S.
o the equation gives uUs 19X9—2x 17=171—34=137 |

Or Substituting the values7and —2 therein, we get 19X7
—2x—2==133-+4=137! And that is additional confirmation
and verification!

But this is not al. There is also a third method by
which we can obtain the independent term (on the R.H.S).
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And this is with the help of the rule about Adyam Antyam
and Madhyam ¢.e. bc—ad (i.e. the product of the means minus
the product of the extremes)! So, we have 17X7—9X—
2=1194+18==137 ! And this is still further additional
confirmation and verification!

So, the equation is:—19x—2y=187 whichis exactly the
same as the one obtained by the elaborate current method
(with its simultaneous equations transpositions and substitu-
tionsetc;galore)!  Andall the work involvedin the VVedic method
has been purely mental, short, simple and easy ¥

A few more instances are given below:

(2) Points (9, 7) and (—7, 2)
<. The Equation to the straight line joining them is:

5Xx—16y=—67

() (10, 5) and (18, 9) .. x=2y (by Vilokan too)
(3) (10, 8) and (9, 7) . x—y=2 (by Vilokan to0)
(4) (4, 7) and (3, 5) S 2X—y=1

) © 7) and (5, 2 v BX—dy=17

6) (9 7)and (4 —6) .. 13x—5y=82

(7 (17, 9) and (13,—8) .. 17x—4y=253
(8) (15, 16) and (9, —3) .. 19x—6y=189
(9) (2, b) and (c, d)

‘. x(b—d)—y (a—c)=bc—ad

II. The Gewal Equation and Two Straight Lines.

The question frequently arises:—When does the Genera
Equation to a straight line represent two straight lines?

Say, 1252+ 7xy —10y2+4+13x 45y —85=0.

Expounding the current conventional method, Prof. S L.
Loney (the world-reputed present-day authority on the subject)
devotes about 15 lines (not of argument or of explanation
but of hard solid working) in section 119, example 1 on page
97 o his ""Elements of Co-ordinate Geometry™, to his model
solution of this problem as follows:

7 13
Here a=12, h= 4, b=—10, g=7, f=;4§and 0=—35
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.. abo--2fgh—af2—bg?—ch?

13 _17 45\2
—_ — — LX—-—12 2
—12 (x—10) (x—35)+2x 22 2>< 3.1 (2)

—(~10) (1_3.)’-(—35) (1)2

7
_4200+‘3°_95-6075+ @#715 _—1875+_i‘39 -0

. The equation represents two straight lines.
Solving it for x, we have:

2
xt4x 7y+I3 (2y+13) _loy? —45y+35 (7y;;l3>
_ [23y—43.2
T\ 24 )
. 7y-413 _ . 23y—43
sox4 24 = F o1

',x=gL—_701 jéz_—t?

s The two straight linesare 3x=2y~—7 and 4x==—58y-+5

Note:—The only comment possible for us to make hereon is
that the very magnituded the numbersinvolved in the
fractions, their multiplications. subtractions etc., ad
infindtum is appalling and panic-striking and that it
issuch asinine burden-bearing labour that is responsible
for, not as a justification for, but, at any rate, an ex-
tenuation for the inveterate hatred which many
youngsters and youngstresses develop for mathematics
assuch and for their mathematics-teachers as such!

We make no reflection on Prof. Loney. He is perhaps
one of the best, the finest and the most painstaking of mathe-
maticians and is very highly esteemed by us as such and for his
beautiful publications (which arc standard authorities on the
various subjects which they deal with). It is the system that
we are blaming, (or, at any rate, comparing and contrasting with
the Vedic system).

Now, the Vedic method herein is one by which we can
immediately apply the “Urdhwa” Sitra the Adyam Adyena



( 368 )

Sitra and the Lopana Sthipana Sitra and by merely looking at
the frightful looking (but realy harmless) Quadratic before
us, readily by mere mental arithmetic, write down the answer
to this question and say :—'Yes ; and the straight lines are
3x—2y+7=0 and 4x+45y—~5=0. How exactly we do this (by
mental arithmetic), we proceed to explain presently.

The Vedic Mthd

(1) By the “Urdhva Tiryek”, the  3x—2y47

“Lopana Sthapena” and the’Adyam Adyena”  4X+8y—8
Siitras (as explained in some o the 12%*+7xy—10y%
earliest chapters), we have (mentaly): _F13x+45y—35
12x2—7xy-+10y2=(3z—2y) (& +ti~) and we find 7 and—6 to
be the absolute terms of the two factors. We thus get
(3x—2y+7)=0 and (4x+5y—5)=0 as the two straight lines
represented by the givenequation. Andthat isall thereistoit.

The Hyperbolas and the Asymptotes.

Dealmg with the same principle and adopting the same
procedure in connection with the Hyperbola, the Conjugate
Hyperbola and the Asymptotes, in articles 324 and 325 on pages
293 & 294 of his "Elements of Co-ordinate Geometry", Prof.
8. L. Loney devotes27+-14 (==41) linesin al to the problem and
concludes by saying:

“As 3x*—5Xy—2y3*45x4-11y—8=0 IS the equation of the
Asymptotes,
. af_ 5 11 (—5 1)2 2 —5)2
-~ 3( 2)c+2,_§. 3 ( 3)'—3 (_12_2 _(_2)%) —-c( g) =0
=12

< The Equation to the Asymptotes is 3x2—sxy—2y2-|
5x-+11y—12=0

And consequently the Equation to the Conjugate Hyper-
bola is 3x%—5xy —2y®+5x4-11y—16.

Well; all this is not so terrific-looking, because o the
very simplefact that all the working (according to Art, 116 on
pages 95 etc.,) has been taken for granted and done'* out o Court"'
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or in private, so to speak. But even then the substitution o the
vauesd a, b, c, f, g, and 1 in the Discriminant to the General
Equation and 0 on is, from the Vedic standpoint, wholly
supererogatory toil and therefore to be avoided.

By the Vedic method, however, we use the same Lopan
Sthapana the Ordhwa Tiryek and the ddyem Adyena Sitras ;
we first get-mentally 3x-+y and 3x+y —4
%—2y and then—4 and 3 asthe x—2y+3
only possibilitiesinthecase; and  gxs—5xy—9y*+5x+11y—12
asthis givesus—12 in the product,
we get this product=0 as the Equation to the Asymptotes;
and, as the Conjugate Hyperbolais at the same distance-in the
opposite direction from the Asymptotes, we put down the same
equation (with only — 16instead of —8) as the required Equation
to the Conjugate Hyperbola (and have not got to bother about
the complexities of the Discriminants, the inevitable substi-
tutions and all the rest o it)! And that is all

A few moreillustrative instances will not be out d place:
(1) 8x34-10xy-—3y2~2x-+4y—2=0 ]
oo (2x+-3y)(4x—y)—2x -4y —2=0
S 4x— y41
2x+8y—1
8x24-10xy —3y?—2x+4y—1=0
-. The Equation to the Asymptotes is 8z%+10xy—3y*—2x
+4y=1; and the Equation to the Conjugate Hyperbola is
8x2410xy —3y2—2x-+4y=0

2) y2—xy—2x2—5y4+x—6=0..y+ Xx—
(2) y*—xy—2x*—5y y__zx_3}

yi—xy—2x?+x—~5y-+6=0

*. The Asymptotes are (y4+x—2) (y—2x—3)=0 }
And the Conjugate Hyperbolais y—xy —2x#+x—5y-+-18=0

2 '’ 21 64x—48y=0 - —
(3) 55x3—120xy 420y >+-64x—48y =0 ., llx 1%‘;’?13%

.. 55x2—120xy+20y?+64x—48y+16=0
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.. Thisisthe Equation to the Asymptotes; and the Equation
tothe Conjugate Hyperbolais 55x2—120xy +20y 2+ 6dx —48y -+
32=0

4) 12x3—-23xy+10y?—25x426y—14 .. 4x—5y—3
(4) xy-+10y oyt

,*. The Asymptotesare: 12x2—23xy+102:1—22r5§+26y
And the Conjugate Hyperbola is 12x3—23xy+10¥‘j‘é—8-25())(+26y

(5) 6x3—5xy—6y%4-14x+5y-+4 .- 2x—3y+4

3x—2y+1

. Independent term==4
.. Two straight lines.

Cuaprer XL,

, MISCELLANEOUS MATTERS

There are also varioussubjects of a miscellaneouscharacter
which are o great practical interest not only to mathematicians
and statisticians as such but aso to ordinary people in the
ordinary coursed their variousbusinessesetc., which the modern
system of accountingetc., does scant justice to and in which
the Vedic Siitras can be very helpful to them. We do not propose
to deal with them now, except to rname a few o them :

(1) Subtractions ;

(2) Mixed additions and subtractions ;

(3) Compound additions and subtractions

(4) Additions of Vulgar Fractions etc;

(6) Comparison of Fractions;

(6) Smple and compound practice (without taking

Aliquot parts etc.)

(7) Decimal operations in al Decima Work ;

(8) Ratios, Proportions, Percentages, Averages €tc. ;

(9) Interest ; Annuities, Discount €tC;

(10) The Centre of Gravity of Hemispheres etc;

(11) Transformation of Equations; and

(12) Dynamics, Statics, Hydrostatics, Pneumatics etc.,
Applied Mechanics etc., etc.

N.B.:—Thee aresomeother subjects, however, d animportant
character which need detailed attention but which
(owingto their being more appropriate at a later stage)
we do not now propose to deal with but which, at the
same time, in view of their practical importance and
their absorbingly interesting character, do require
a brief description. We deal with them, therefore,
briefly hereunder.
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Solids, Trigonometry, Astronomy Eic.

In Solid Geometry, Plane Trigonometry, Spherica Tri-
gonometry and Astronomy too, there are similarly huge masses
o Vedic material calculatedtolighten the mathematics students'
burden. We shall not, however, go here and now into a detailed
disquisition on such matters but shall merely name a few of the
important and most interesting headings under which these
subjects may be usefully sorted :

(1) The Trigonometrical Functions and their inter-
relationships; etc.

(2) Arcsand chords o circles, angles and sines of angles
etc;,

(3) Theconversei.e. sinesd angles, the angles themselves,
chords and arcs of circles etc;

(4) Determinants and their use in the Theory of Equa-
tions, Trigonometry, Conics, Caculusetc;

(5) Solids and why there can be only five regular Poly-
hedrons; etc., ete.

(6) The Earth's daily Rotation on its own axis and her
annual relation around the Sun;

(7) Eclipses;

(8) The Theorem (in Spherical Triangles) relating to the
product o the sines of the Alternate Segments i.e.
about :

SnBD Sin CE SnAF_, 4
§n DC S EA S FB

(9) Thevalued 11 (i.e. theratio of the circumferenced a
circle to its Diameter).

N.B.:—The last item, however, is one which we would like to
explain in dlightly greater detail.

~

Actualy, the value of % is given in the well-known

Anustub metreand iscouchedin the Alphabetical Code-Language
(described in an earlier chapter):

AT A= T 0

ToNfEEE TSI U
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It isso worded that it can bear three different meanings—
al o them quite appropriate. The first-is a hymn to the Lord
Sri Krena ; the second is similarly a hymn in praise o the
Lord Shri Shankara; and the third is a valuation of i—(l)to 32
places of Decimals! (with a " Self-contained master-key'* for
extending the evaluation to any number o decima places!

As the student (and especialy the non-Sanskrit knowing
student) is not likely to be interested in and will find great
difficulty in understanding the puns and other literary beauties
d the versein respect of thefirst two meaningsbut will naturally
fed interested in and can easily follow the third meaning, we
give only that third one here:

H_ 3844525031 889792 .. f

on which, on understandingit, Dr. V. P. Dalal (of the Heidelburg
University, Germany) felt impelled—as a mathematician and
physicist and also as a Sanskrit scholar—to put on record his
comment as follows:

"It shows how deeply the ancient Indian mathe-
maticians penetrated, in the subtlety o their
calculations, even when the Greeks had no numerals
above 1000 and their multiplications were so very
complex, which they performed with the help of the
counting frame by adding so many timesthe multiplier!
7% 56 could be done by adding 7 on the counting frame
6 times!” etc., ete.!



RECAPITULATION AND CONCLUSION

I n these pages, we have covered alarge number of branches
o mathematics and sought,by comparison and contrast, tomake
the exact position clear to all seekers after knowledge.  Arith-
metic and Algebra being the basis on which all mathematical
operations have to depend, it was and is both appropriate and
inevitable that, in an introductory and preliminary volume of
this particular character, Arithmetic and Algebra should have
received the greatest attention in this treatise. But this is
only a kind of preliminary ""PROLEGOMENA" and SAMPLE
type of publication and has been intended solely for the purpose
of giving our readers a foretaste of the delicious delicaciesin
store for them in the volumesahead.! If thisvolume achieves
this purpose and stimulates the reader's interest and prompts
him to goin for a further detailed study of Vedic Mathematics
we shall fee more than amply rewarded and gratified thereby.

I Nosubsequent volumehas been left by the author.—Editor.

A REPRESENTATIVE PRESS OPINION

Reproduced from the Statesman, India, dated 10¢» January, 1956.

EVERY MAN A MATHEMATICIAN
(Mr. DesmonDp Doig)

Now in Calcutta and peddling a miraculouscommodity is
His Holiness Jagad Guru Sri Shankaracharya o the Govardhan
Peeth, Puri.

Y et 8ri Shankaracharya denies any spiritual or miraculous
powers, giving the credit for his revolutionary knowledge to
anonymousancients who in 16 Sutras and 120 words laid down
simple formulae for al the world's mathematical problems.

The staggering gist of Sri Shankaracharyas peculiar
knowledge is that he possesses the know-how to make a mathe-
matical vacuum like mysdf receptive to the high voltage of
higher mathematics. And that within the short period of one
year. To a person who struggled helplesdy with simple equa-
tions and simpler problems, year after school-going year and
without the bolstering comfort of a single credit in the subject,
the clam that | can face MA. Mathematics fearlesdy after
only six months of arithmetical acrobatics, makes me an im-
mediate devotee o HisHolinessJagad Guru 8ri Shankaracharya
of the Goverdhan Peeth, Puri.

T was introduced to him in a small room in Hastings, a
frail but young 75 year-old, wrapped in pale coral robes and
wearing light spectacles. Behind him a bronze Buddha caught
the rays o a trespassing sun, splintering them into a form of
aura; and had 'His Holiness claimed divine inspiration, 1
would have belived him. He isthat type of peison, dedicated
as, much as | hate using the word ; a sort of saint in saint's
clothing, and no inkling of anything so mundane as a mathe-
matical mind.
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Astounding Wonders,

My host, Mr. Sitaram, with whom His Holiness Sri
Shankaracharya is staying, had briefly prepared me for the
interview. | could pose any question | wished, | could take
photographs, | could read a short descriptive note he had
prepared on ""The Astounding Wonders of Ancient Indian
Vedic Mathematics”. His Holiness, it appears, had spent years
in contemplation, and while going through the Vedas had
suddenly happened upon the key to what manv historians,
devotees and translatorshad dismissed as meaningless jargon.
There, contained in certain Stitras, were the processesd mathe-
matics, psychology, ethics, and metaphysics.

"'Duringthereign o King Kamsa” read a Sutra, ""rebellions,
arson: faminesand insanitary conditions prevailed™. Decoded,
this little piece o libellous history gave decimal answer to the
fraction 1/17 ; sixteen processesof simple mathematics reduced
to one.

The discovery of one key led to another, and His Holiness
found himself turning more and more to the astounding know-
ledge contained in words whose real meaning had been lost
to humanity for generations. Thisloss is obviously one of the
greatest mankind has suffered; and, | suspect, resulted from
the secret being entrusted to people like myself, to whom a
square root isone d life's perpetual mysteries. Had it survived,
every-educated-“soul” ; would, be; a, mathematical-“wizard” 3
and, maths-“masters™ woud "starve". For my note reads
""Little children merely look at the sums written on the black-
board and immediately shout out the answers....they......
have merely to go on redling off the digits, one after another
forwards or backwards, by mere mental arithmetic (without
needing pen, pencil, paper or slate).” Thisis the sort of thing
one usualy refusesto believe. | did. Until | actually met His
Holiness.

n a child's blackboard, attended with devotion by my
host's wife; His Holiness began demonstrating his peculiar
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skill ; multiplication, division, fractions, algebra, and intricate
excursionsinto higher mathematics for which | cannot find a
name, al were reduced to a disarming simplicity. Yes |
even shouted out an answer. (‘Algebra for High Schools,
Page 363, exercise 70, example ten). More, | was soon tossing
offanswersto problems, which ; offictal- Maths-books ; ** described",
as; “advanced”, difficult,and very difficult. Cross my heart!

His Holinesss ambition is to restore this lost art to the
world, certainly to India. That India should today be credited
with having given the world, via Arabia, the present numerals
we use, especidly the epochmaking “zero”, is not enough.
India apparently once had the knowledge which we are today
rediscovering. Somewhere aong the forgotten road o history,
calamity, or deliberate destruction, lost to man the secrets he
had emassed. It might happen again.

In the meantime, people like His Holiness Jagad Guru
8ri Shankaracharya o the Govardhan Peeth, Puri, are by a
devotionto true knowledge, endeavouringto restore to humanity
an interest in great wisdom by making that wisdom more easily
acceptable. Opposition there is, and will be. But eminent
mathematicians both here and abroad are taking more than a
passing interest in this gentle ascetic's discoveries. | for one,
as a representative o all the mathematically despairing, hope,
sincerely hope, that his gentle persuasion will prevail.






