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Abstract

In 1845 Bertrand postulated that there is always a prime between n and 2n, and he
verified this for n < 3, 000, 000. Tchebychev gave an analytic proof of the postulate
in 1850. In 1932, in his first paper, Erdős gave a beautiful elementary proof using
nothing more than a few easily verified facts about the middle binomial coefficient. We
describe Erdős’s proof and make a few additional comments, including a discussion of
how the two main lemmas used in the proof very quickly give an approximate prime
number theorem. We also describe a result of Greenfield and Greenfield that links
Bertrand’s postulate to the statement that {1, . . . , 2n} can always be decomposed into
n pairs such that the sum of each pair is a prime.

1 Introduction
Write π(x) for the number of primes less than or equal to x. The Prime Number Theorem
(PNT), first proved by Hadamard [4] and de la Vallée-Poussin [7] in 1896, is the statement
that

π(x) ∼ x

ln x
as x →∞. (1)

A consequence of the PNT is that

∀ε > 0 ∃n(ε) > 0 : n > n(ε) ⇒ ∃p prime, n < p ≤ (1 + ε)n. (2)

Indeed, by (1) we have

π((1 + ε)n)− π(n) ∼ (1 + ε)n

ln(1 + ε)n
− n

ln n
→∞ as n →∞.

Using a more refined version of the PNT with an error estimate, we may prove the following
theorem.

Theorem 1.1 For all n > 0 there is a prime p such that n < p ≤ 2n.
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This is Bertrand’s postulate, conjectured in the 1845, verified by Bertrand for all N <
3 000 000, and first proved by Tchebychev in 1850. (See [5, p. 25] for a discussion of the
original references).

In his first paper Erdős [2] gave a beautiful elementary proof of Bertrand’s postulate
which uses nothing more than some easily verified facts about the middle binomial coeffi-
cient

(
2n
n

)
. We describe this proof in Section 2 and present some comments, conjectures and

a consequence in Section 3. One consequence is the following lovely theorem of Greenfield
and Greenfield [3].

Theorem 1.2 For n > 0, the set {1, . . . , 2n} can be partitioned into pairs

{a1, b1}, . . . , {an, bn}
such that for each 1 ≤ i ≤ n, ai + bi is a prime.

Another is an approximate version of (1).

Theorem 1.3 There are constants c, C > 0 such that for all x

c ln x

x
≤ π(x) ≤ C ln x

x
.

2 Erdős’s proof
We consider the middle binomial coefficient

(
2n
n

)
= (2n)!/(n!)2. An easy lower bound is

(
2n

n

)
≥ 4n

2n + 1
. (3)

Indeed,
(
2n
n

)
is the largest term in the 2n+1-term sum

∑2n
i=0

(
2n
n

)
= (1+1)2n = 4n. Erdős’s

proof proceeds by showing that if there is no prime p with n < p ≤ 2n then we can put
an upper bound on

(
2n
n

)
that is smaller than 4n/(2n + 1) unless n is small. This verifies

Bertrand’s postulate for all sufficiently large n, and we deal with small n by hand.
For a prime p and an integer n we define op(n) to be the largest exponent of p that

divides n. Note that op(ab) = op(a) + op(b) and op(a/b) = op(a)− op(n). The heart of the
whole proof is the following simple observation.

If 2
3
n < p ≤ n then op

((
2n
n

))
= 0 (i.e., p 6 |(2n

n

)
). (4)

Indeed, for such a p

op

((
2n

n

))
= op((2n)!)− 2op(n!) = 2− 2.1 = 0.

So if n is such that there is no prime p with n < p ≤ 2n, then all of the prime factors of
(
2n
n

)
lie between 2 and 2n/3. We will show that each of these factors appears only to a small
exponent, forcing

(
2n
n

)
to be small. The following is the claim we need in this direction.
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Claim 2.1 If p|(2n
n

)
then

pop((2n
n )) ≤ 2n.

Proof: Let r(p) be such that pr(p) ≤ 2n < pr(p)+1. We have

op

((
2n

n

))
= op((2n)!)− 2op(n!)

=

r(p)∑
i=1

[
2n

pi

]
− 2

r(p)∑
i=1

[
n

pi

]

=

r(p)∑
i=1

([
2n

pi

]
− 2

[
n

pi

])

≤ r(p), (5)

and so
pop((2n

n )) ≤ pr(p) ≤ 2n.

In (5) we use the easily verified fact that for integers a and b, 0 ≤ [2a/b]− 2[a/b] ≤ 1. 2

Before writing down the estimates that upper bound
(
2n
n

)
, we need one more simple

result.

Claim 2.2 ∀n ∏
p≤n p ≤ 4n (where the product is over primes).

Proof: We proceed by induction on n. For small values of n, the claim is easily verified.
For larger even n, we have

∏
p≤n

p =
∏

p≤n−1

p ≤ 4n−1 ≤ 4n,

the equality following from the fact that n is even an so not a prime and the first inequality
following from the inductive hypothesis. For larger odd n, say n = 2m + 1, we have

∏
p≤n

p =
∏

p≤m+1

p
∏

m+2≤p≤2m+1

p

≤ 4m+1

(
2m + 1

m

)
(6)

≤ 4m+122m (7)
= 42m+1 = 4n.

In (6) we use the induction hypothesis to bound
∏

p≤m+1 p and we bound
∏

m+2≤p≤2m+1 p

by observing that all primes between m + 2 and 2m + 1 divide
(
2m+1

m

)
. In (7) we bound
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(
2m+1

m

) ≤ 22m by noting that
∑2m+1

i=0

(
2m+1

i

)
= 22m+1 and

(
2m+1

m

)
=

(
2m+1
m+1

)
and so the

contribution to the sum from
(
2m+1

m

)
is at most 22m. 2

We are now ready to prove Bertrand’s postulate. Let n be such that there is no prime p
with n < p ≤ 2n. Then we have

(
2n

n

)
≤ (2n)

√
2n

∏
√

2n<p≤2n/3

p (8)

≤ (2n)
√

2n
∏

p≤2n/3

p

≤ (2n)
√

2n42n/3. (9)

The main point is (8). We have first used the simple fact that
(
2n
n

)
has at most

√
2n prime

factors that are smaller than
√

2n, and, by Claim 2.1, each of these prime factors contributes
at most 2n to

(
2n
n

)
; this accounts for the factor (2n)

√
2n. Next, we have used that by hy-

pothesis and by (4) all of the prime factors p of
(
2n
n

)
satisfy p ≤ 2n/3, and the fact that

each such p with p >
√

2n appears in
(
2n
n

)
with exponent 1 (this is again by Claim 2.1);

these two observations together account for the factor
∏√

2n<p≤2n/3 p. In (9) we have used
Claim 2.2.

Combining (9) with (3) we obtain the inequality

4n

2n + 1
≤ (2n)

√
2n42n/3. (10)

This inequality can hold only for small values of n. Indeed, for any ε > 0 the left-hand
side of (10) grows faster than (4− ε)n whereas the right-hand side grows more slowly than
(42/3 + ε)n. We may check that in fact (10) fails for all n ≥ 468 (Maple calculation),
verifying Bertrand’s postulate for all n in this range. To verify Bertrand’s postulate for all
n < 468, it suffices to check that

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631. (11)

is a sequence of primes, each term of which is less than twice the term preceding it; it
follows that every interval {n + 1, . . . , 2n} with n < 486 contains one of these 11 primes.
This concludes the proof of Theorem 1.1.

(If a Maple calculation is not satisfactory, it is easy to check that (10) reduces to n/3 ≤
log2(2n + 1) +

√
2n log2 2n. The left hand side of this inequality is increasing faster than

the right, and the inequality is easily seen to fail for n = 210 = 1024, so to complete the
proof in this case we need only add the prime 1259 to the list in (11)).

3 Comments, conjectures and consequences
A stronger result than (2) is known (due to Lou and Yao [6]):

∀ε > 0 ∃n(ε) > 0 : n > n(ε) ⇒ ∃p prime, n < p ≤ n + n
1
2
+ 1

22
+ε.
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The Riemann hypothesis would imply

∀ε > 0 ∃n(ε) > 0 : n > n(ε) ⇒ ∃p prime, n < p ≤ n + n
1
2
+ε.

There is a very strong conjecture of Cramér [1] that would imply

∀ε > 0 ∃n0 > 0 : n > n0 ⇒ ∃p prime, n < p ≤ n + (1 + ε) ln2 n.

And here is a very lovely open question much in the spirit of Bertrand’s postulate.

Question 3.1 Is it true that for all n > 1, there is always a prime p with n2 < p < (n+1)2?

As mentioned in the introduction, a consequence of Bertrand’s postulate is the appeal-
ing Theorem 1.2. We give the proof here.

Proof of Theorem 1.2: We proceed by induction on n. For n = 1 the result is trivial. For
n > 1, let p be a prime satisfying 2n < p ≤ 4n. Since 4n is not prime we have p = 2n+m
for 1 ≤ m < 2k. Pair 2n with m, 2n−1 with m+1, and continue up to n+dkewith n+bkc
(this last a valid pair since m is odd). This deals with all of the numbers in {m, . . . , 2n};
the inductive hypothesis deals with {1, . . . , m− 1} (again since m is odd). 2

Finally, we turn to the proof of Theorem 1.3. The upper bound will follow from Claim
2.2 while the lower bound will follow from Claim 2.1.

Proof of Theorem 1.3: For the lower bound on π(x) choose n such that
(

2n

n

)
≤ x <

(
2n + 2

n + 1

)
.

For sufficiently large n we have ln
(
2n
n

)
> n (from (3)) and for all n we have

(
2n
n

)
/
(
2n+2
n+1

) ≥
1/4 and so

π(x) ln x

x
≥ π

((
2n
n

))
ln

(
2n
n

)
(
2n+2
n+1

) ≥ nπ
((

2n
n

))

4
(
2n
n

) (12)

We lower bound the number of primes at most
(
2n
n

)
by counting those which divide

(
2n
n

)
.

By Claim 2.1 each such prime contributes at most 2n to
(
2n
n

)
and so π

((
2n
n

)) ≥ (
2n
n

)
/2n.

Combining this with (12) we obtain (for sufficiently large x)

π(x) ≥ x

8 ln x
.

For the upper bound we use Claim 2.2 to get (for x ≥ 4)

4x ≥
∏
p≤x

p ≥ √
x

π(x)−π(x/2)

and so
π(x) ≤ 4x ln 2

log x
+ π(x/2).
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Repeating this procedure blog2 xc times we reach (for sufficiently large x)

π(x) ≤ 8x ln 2

log x
+ π(2)

≤ 9x ln 2

log x
.
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