Erdős's proof of Bertrand's postulate

David Galvin*

April 21, 2006

Abstract

In 1845 Bertrand postulated that there is always a prime between n and $2 n$, and he verified this for $n<3,000,000$. Tchebychev gave an analytic proof of the postulate in 1850. In 1932, in his first paper, Erdős gave a beautiful elementary proof using nothing more than a few easily verified facts about the middle binomial coefficient. We describe Erdős's proof and make a few additional comments, including a discussion of how the two main lemmas used in the proof very quickly give an approximate prime number theorem. We also describe a result of Greenfield and Greenfield that links Bertrand's postulate to the statement that $\{1, \ldots, 2 n\}$ can always be decomposed into n pairs such that the sum of each pair is a prime.

1 Introduction

Write $\pi(x)$ for the number of primes less than or equal to x. The Prime Number Theorem (PNT), first proved by Hadamard [4] and de la Vallée-Poussin [7] in 1896, is the statement that

$$
\begin{equation*}
\pi(x) \sim \frac{x}{\ln x} \quad \text { as } x \rightarrow \infty \tag{1}
\end{equation*}
$$

A consequence of the PNT is that

$$
\begin{equation*}
\forall \epsilon>0 \exists n(\epsilon)>0: n>n(\epsilon) \Rightarrow \exists p \text { prime, } n<p \leq(1+\epsilon) n . \tag{2}
\end{equation*}
$$

Indeed, by (1) we have

$$
\pi((1+\epsilon) n)-\pi(n) \sim \frac{(1+\epsilon) n}{\ln (1+\epsilon) n}-\frac{n}{\ln n} \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

Using a more refined version of the PNT with an error estimate, we may prove the following theorem.

Theorem 1.1 For all $n>0$ there is a prime p such that $n<p \leq 2 n$.
*Dept of Mathematics, University of Pennsylvania, Philadelphia, PA 19104; dgalvin@math.upenn.edu.

This is Bertrand's postulate, conjectured in the 1845, verified by Bertrand for all $N<$ 3000000 , and first proved by Tchebychev in 1850. (See [5, p. 25] for a discussion of the original references).

In his first paper Erdős [2] gave a beautiful elementary proof of Bertrand's postulate which uses nothing more than some easily verified facts about the middle binomial coefficient $\binom{2 n}{n}$. We describe this proof in Section 2 and present some comments, conjectures and a consequence in Section 3. One consequence is the following lovely theorem of Greenfield and Greenfield [3].

Theorem 1.2 For $n>0$, the set $\{1, \ldots, 2 n\}$ can be partitioned into pairs

$$
\left\{a_{1}, b_{1}\right\}, \ldots,\left\{a_{n}, b_{n}\right\}
$$

such that for each $1 \leq i \leq n, a_{i}+b_{i}$ is a prime.
Another is an approximate version of (1).
Theorem 1.3 There are constants $c, C>0$ such that for all x

$$
\frac{c \ln x}{x} \leq \pi(x) \leq \frac{C \ln x}{x} .
$$

2 Erdôs's proof

We consider the middle binomial coefficient $\binom{2 n}{n}=(2 n)!/(n!)^{2}$. An easy lower bound is

$$
\begin{equation*}
\binom{2 n}{n} \geq \frac{4^{n}}{2 n+1} . \tag{3}
\end{equation*}
$$

Indeed, $\binom{2 n}{n}$ is the largest term in the $2 n+1$-term sum $\sum_{i=0}^{2 n}\binom{2 n}{n}=(1+1)^{2 n}=4^{n}$. Erdős's proof proceeds by showing that if there is no prime p with $n<p \leq 2 n$ then we can put an upper bound on $\binom{2 n}{n}$ that is smaller than $4^{n} /(2 n+1)$ unless n is small. This verifies Bertrand's postulate for all sufficiently large n, and we deal with small n by hand.

For a prime p and an integer n we define $o_{p}(n)$ to be the largest exponent of p that divides n. Note that $o_{p}(a b)=o_{p}(a)+o_{p}(b)$ and $o_{p}(a / b)=o_{p}(a)-o_{p}(n)$. The heart of the whole proof is the following simple observation.

$$
\begin{equation*}
\text { If } \left.\frac{2}{3} n<p \leq n \text { then } o_{p}\left(\binom{2 n}{n}\right)=0 \text { (i.e., } p \nmid\binom{2 n}{n}\right) \text {. } \tag{4}
\end{equation*}
$$

Indeed, for such a p

$$
o_{p}\left(\binom{2 n}{n}\right)=o_{p}((2 n)!)-2 o_{p}(n!)=2-2.1=0 .
$$

So if n is such that there is no prime p with $n<p \leq 2 n$, then all of the prime factors of $\binom{2 n}{n}$ lie between 2 and $2 n / 3$. We will show that each of these factors appears only to a small exponent, forcing $\binom{2 n}{n}$ to be small. The following is the claim we need in this direction.

Claim 2.1 If $p\binom{2 n}{n}$ then

$$
p^{o_{p}\left(\binom{2 n}{n}\right)} \leq 2 n
$$

Proof: Let $r(p)$ be such that $p^{r(p)} \leq 2 n<p^{r(p)+1}$. We have

$$
\begin{align*}
o_{p}\left(\binom{2 n}{n}\right) & =o_{p}((2 n)!)-2 o_{p}(n!) \\
& =\sum_{i=1}^{r(p)}\left[\frac{2 n}{p^{i}}\right]-2 \sum_{i=1}^{r(p)}\left[\frac{n}{p^{i}}\right] \\
& =\sum_{i=1}^{r(p)}\left(\left[\frac{2 n}{p^{i}}\right]-2\left[\frac{n}{p^{i}}\right]\right) \\
& \leq r(p), \tag{5}
\end{align*}
$$

and so

$$
p^{o_{p}\left(\binom{2 n}{n}\right)} \leq p^{r(p)} \leq 2 n .
$$

In (5) we use the easily verified fact that for integers a and $b, 0 \leq[2 a / b]-2[a / b] \leq 1$.
Before writing down the estimates that upper bound $\binom{2 n}{n}$, we need one more simple result.

Claim 2.2 $\forall n \prod_{p \leq n} p \leq 4^{n}$ (where the product is over primes).
Proof: We proceed by induction on n. For small values of n, the claim is easily verified. For larger even n, we have

$$
\prod_{p \leq n} p=\prod_{p \leq n-1} p \leq 4^{n-1} \leq 4^{n}
$$

the equality following from the fact that n is even an so not a prime and the first inequality following from the inductive hypothesis. For larger odd n, say $n=2 m+1$, we have

$$
\begin{align*}
\prod_{p \leq n} p & =\prod_{p \leq m+1} p \prod_{m+2 \leq p \leq 2 m+1} p \\
& \leq 4^{m+1}\binom{2 m+1}{m} \tag{6}\\
& \leq 4^{m+1} 2^{2 m} \tag{7}\\
& =4^{2 m+1}=4^{n}
\end{align*}
$$

In (6) we use the induction hypothesis to bound $\prod_{p \leq m+1} p$ and we bound $\prod_{m+2 \leq p \leq 2 m+1} p$ by observing that all primes between $m+2$ and $2 m+1$ divide $\binom{2 m+1}{m}$. In (7) we bound
$\binom{2 m+1}{m} \leq 2^{2 m}$ by noting that $\sum_{i=0}^{2 m+1}\binom{2 m+1}{i}=2^{2 m+1}$ and $\binom{2 m+1}{m}=\binom{2 m+1}{m+1}$ and so the contribution to the sum from $\binom{2 m+1}{m}$ is at most $2^{2 m}$.

We are now ready to prove Bertrand's postulate. Let n be such that there is no prime p with $n<p \leq 2 n$. Then we have

$$
\begin{align*}
\binom{2 n}{n} & \leq(2 n)^{\sqrt{2 n}} \prod_{\sqrt{2 n}<p \leq 2 n / 3} p \tag{8}\\
& \leq(2 n)^{\sqrt{2 n}} \prod_{p \leq 2 n / 3} p \\
& \leq(2 n)^{\sqrt{2 n}} 4^{2 n / 3} . \tag{9}
\end{align*}
$$

The main point is (8). We have first used the simple fact that $\binom{2 n}{n}$ has at most $\sqrt{2 n}$ prime factors that are smaller than $\sqrt{2 n}$, and, by Claim 2.1, each of these prime factors contributes at most $2 n$ to $\binom{2 n}{n}$; this accounts for the factor $(2 n)^{\sqrt{2 n}}$. Next, we have used that by hypothesis and by (4) all of the prime factors p of $\binom{2 n}{n}$ satisfy $p \leq 2 n / 3$, and the fact that each such p with $p>\sqrt{2 n}$ appears in $\binom{2 n}{n}$ with exponent 1 (this is again by Claim 2.1); these two observations together account for the factor $\prod_{\sqrt{2 n}<p \leq 2 n / 3} p$. In (9) we have used Claim 2.2.

Combining (9) with (3) we obtain the inequality

$$
\begin{equation*}
\frac{4^{n}}{2 n+1} \leq(2 n)^{\sqrt{2 n}} 4^{2 n / 3} \tag{10}
\end{equation*}
$$

This inequality can hold only for small values of n. Indeed, for any $\epsilon>0$ the left-hand side of (10) grows faster than $(4-\epsilon)^{n}$ whereas the right-hand side grows more slowly than $\left(4^{2 / 3}+\epsilon\right)^{n}$. We may check that in fact (10) fails for all $n \geq 468$ (Maple calculation), verifying Bertrand's postulate for all n in this range. To verify Bertrand's postulate for all $n<468$, it suffices to check that

$$
\begin{equation*}
2,3,5,7,13,23,43,83,163,317,631 \tag{11}
\end{equation*}
$$

is a sequence of primes, each term of which is less than twice the term preceding it; it follows that every interval $\{n+1, \ldots, 2 n\}$ with $n<486$ contains one of these 11 primes. This concludes the proof of Theorem 1.1.
(If a Maple calculation is not satisfactory, it is easy to check that (10) reduces to $n / 3 \leq$ $\log _{2}(2 n+1)+\sqrt{2 n} \log _{2} 2 n$. The left hand side of this inequality is increasing faster than the right, and the inequality is easily seen to fail for $n=2^{10}=1024$, so to complete the proof in this case we need only add the prime 1259 to the list in (11)).

3 Comments, conjectures and consequences

A stronger result than (2) is known (due to Lou and Yao [6]):

$$
\forall \epsilon>0 \exists n(\epsilon)>0: n>n(\epsilon) \Rightarrow \exists p \text { prime, } n<p \leq n+n^{\frac{1}{2}+\frac{1}{22}+\epsilon}
$$

The Riemann hypothesis would imply

$$
\forall \epsilon>0 \exists n(\epsilon)>0: n>n(\epsilon) \Rightarrow \exists p \text { prime, } n<p \leq n+n^{\frac{1}{2}+\epsilon} .
$$

There is a very strong conjecture of Cramér [1] that would imply

$$
\forall \epsilon>0 \exists n_{0}>0: n>n_{0} \Rightarrow \exists p \text { prime, } n<p \leq n+(1+\epsilon) \ln ^{2} n .
$$

And here is a very lovely open question much in the spirit of Bertrand's postulate.
Question 3.1 Is it true that for all $n>1$, there is always a prime p with $n^{2}<p<(n+1)^{2}$?
As mentioned in the introduction, a consequence of Bertrand's postulate is the appealing Theorem 1.2. We give the proof here.
Proof of Theorem 1.2: We proceed by induction on n. For $n=1$ the result is trivial. For $n>1$, let p be a prime satisfying $2 n<p \leq 4 n$. Since $4 n$ is not prime we have $p=2 n+m$ for $1 \leq m<2 k$. Pair $2 n$ with $m, 2 n-1$ with $m+1$, and continue up to $n+\lceil k\rceil$ with $n+\lfloor k\rfloor$ (this last a valid pair since m is odd). This deals with all of the numbers in $\{m, \ldots, 2 n\}$; the inductive hypothesis deals with $\{1, \ldots, m-1\}$ (again since m is odd).

Finally, we turn to the proof of Theorem 1.3. The upper bound will follow from Claim 2.2 while the lower bound will follow from Claim 2.1.

Proof of Theorem 1.3: For the lower bound on $\pi(x)$ choose n such that

$$
\binom{2 n}{n} \leq x<\binom{2 n+2}{n+1}
$$

For sufficiently large n we have $\ln \binom{2 n}{n}>n\left(\right.$ from (3)) and for all n we have $\binom{2 n}{n} /\binom{2 n+2}{n+1} \geq$ $1 / 4$ and so

$$
\begin{equation*}
\frac{\pi(x) \ln x}{x} \geq \frac{\pi\left(\binom{2 n}{n}\right) \ln \binom{2 n}{n}}{\binom{2 n+2}{n+1}} \geq \frac{n \pi\left(\binom{2 n}{n}\right)}{4\binom{2 n}{n}} \tag{12}
\end{equation*}
$$

We lower bound the number of primes at most $\binom{2 n}{n}$ by counting those which divide $\binom{2 n}{n}$. By Claim 2.1 each such prime contributes at most $2 n$ to $\binom{2 n}{n}$ and so $\pi\left(\binom{2 n}{n}\right) \geq\binom{ 2 n}{n} / 2 n$. Combining this with (12) we obtain (for sufficiently large x)

$$
\pi(x) \geq \frac{x}{8 \ln x}
$$

For the upper bound we use Claim 2.2 to get (for $x \geq 4$)

$$
4^{x} \geq \prod_{p \leq x} p \geq \sqrt{x}^{\pi(x)-\pi(x / 2)}
$$

and so

$$
\pi(x) \leq \frac{4 x \ln 2}{\log x}+\pi(x / 2)
$$

Repeating this procedure $\left\lfloor\log _{2} x\right\rfloor$ times we reach (for sufficiently large x)

$$
\begin{aligned}
\pi(x) & \leq \frac{8 x \ln 2}{\log x}+\pi(2) \\
& \leq \frac{9 x \ln 2}{\log x}
\end{aligned}
$$

References

[1] Cramér, H., On the Order of Magnitude of the Difference Between Consecutive Prime Numbers, Acta Arith. 2 (1936) 23-46. 1936.
[2] Erdős, P., Beweis eines Satzes von Tschebyschef, Acta Sci. Math. (Szeged) 5 (19301932), 194-198.
[3] Greenfield, L. and Greenfield, S., Some problems of combinatorial number theory related to Bertrand's postulate, J. Integer Seq. 1 (1998), Article 98.1.2.
[4] Hadamard, J., Sur la distribution des zéros de la fonction $\zeta(s)$ et ses conséquences arithmétiques, Bull. Soc. math. France 24 (1896), 199-220.
[5] Havil, J., Gamma: Exploring Euler's Constant, Princeton University Press (2003).
[6] Lou, S. and Yau, Q., A Chebyshev's Type of Prime Number Theorem in a Short Interval (II), Hardy-Ramanujan J. 15 (1992), 1-33.
[7] Poussin, C. de la Vallée, Recherces analytiques sur la théorie des nombres premiers, Ann. Soc. Sci. Bruxells (1897).

