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Problems Leading to Pell’s Equation
and Preliminary Investigations

The first chapter presented a situation that led to pairs of integers (x, y) that satisfied
equations of the form x2−2y2 � k for some constant k. One of the reasons for the
popularity of Pell’s equation as a topic for mathematical investigation is the fact
that many natural questions that one might ask about integers lead to a quadratic
equation in two variables, which in turn can be cast as a Pell’s equation. In this
chapter we will present a selection of such problems for you to sample.

For each of these you should set up the requisite equation and then try to find
numerical solutions. Often, you should have little difficulty in determining at least
one and may be able to find several. These exercises should help you gain some
experience in handling Pell’s equation. Before going on to study more systematic
methods of solving them, spend a little bit of time trying to develop your own
methods.

While a coherent theory for obtaining and describing the solutions of Pell’s
equation did not appear until the eighteenth century, the equation was tackled
ingeniously by earlier mathematicians, in particular those of India. In the third
section, inspired by their methods, we will try to solve Pell’s equation.

2.1 Square and Triangular Numbers

The numbers 1, 3, 6, 10, 15, 21, 28, 36, 45, . . . , tn ≡ 1
2 n(n + 1), . . . are

called triangular, since the nth number counts the number of dots in an equilateral
triangular array with n dots to the side.

It is not difficult to see that the sum of two adjacent triangular numbers is square.

Figure 2.1.
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Figure 2.2.

But does it often happen that an individual triangular number is square? We will
examine this and similar questions.

Exercise 1.1. Verify that the condition that the nth triangular number tn is equal
to the mth square is that 1

2 n(n+ 1) � m2. Manipulate this equation into the form

(2n + 1)2 − 8m2 � 1.

Thus, we are led to solving the equation x2 − 8y2 � 1 for integers x and y.
It is clear that for any solution, x must be odd (why?), so that we can then find
the appropriate values of m and n. Observe that 1 and 36 are included in the list
of triangular numbers. What are the corresponding values of x, y, m, n? Use the
results of Exercise 1.1.7(c) to generate other solutions.

Exercise 1.2. There are triangular numbers that differ from a square by 1, such
as 3 � 22 − 1, 10 � 32 + 1, 15 � 42 − 1, and 120 � 112 − 1. Determine other
examples.

Exercise 1.3. Find four sets of three consecutive triangular numbers whose
product is a perfect square.

Exercise 1.4. Find four sets of three consecutive triangular numbers that add up
to a perfect square.

Exercise 1.5. Determine integers n for which there exists an integer m for which
1 + 2 + 3 + · · · + m � (m + 1) + (m + 2) + · · · + n.

Exercise 1.6. Determine positive integers m and n for which

m + (m + 1) + · · · + (n − 1) + n � mn

(International Mathematical Talent Search 2/31).
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Exploration 2.1. The triangular numbers are sums of arithmetic progressions. We
can ask similar questions about other arithmetic progressions as well. Determine
the smallest four values of n for which the sum of n terms of the arithmetic series
1+ 5+ 9+ 13+ · · · is a perfect square. Compare these values of n with the terms
of the sequence {qn} listed in Exploration 1.1. Experiment with other initial terms
and common differences.

Exploration 2.2. Numbers of the form n(n + 1) (twice the triangular numbers)
are known as oblong, since they represent the area of a rectangle whose sides
lengths are consecutive integers. The smallest oblong numbers are

2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156.

A little experimentation confirms that the product of two consecutive oblong num-
bers is oblong; can you give a general proof of this result? Look for triples (a, b, c)
of oblong numbers a, b, c for which c � ab. For each possible value of a,
investigate which pairs (b, c) are possible.

An interesting phenomenon is the appearance of related triples of solutions. For
example, we have (a, b, c) equal to

(14 × 15, 782 × 783, 11339 × 11340),

(14 × 15, 13 × 14, 195 × 196),

(13 × 14, 782 × 783, 10556 × 10557),

while

(11339 × 11340)(13 × 14)2 � (195 × 196)(10556 × 10557).

Are there other such triples?

2.2 Other Examples Leading to a Pell’s Equation

The following exercises also involve Pell’s equation. For integers n and k with
1 ≤ k ≤ n, we define(

n

k

)
� n(n − 1) · · · (n − k + 1)

1 · 2 · · · k � n!

k!(n − k)!
.

Also, we define
(
n

0

) � 1 for each positive integer n. Observe that 1+2+· · ·+n �(
n+1

2

)
.

Exercise 2.1. Determine nonnegative integers a and b for which(
a

b

)
�
(
a − 1

b + 1

)
.
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Exercise 2.2. Suppose that there are n marbles in a jar with r of them are red
and n − r blue. Two marbles are drawn at random (without replacement). The
probability that both have the same color is 1

2 . What are the possible values of n
and r?

Exercise 2.3. The following problem appeared in the American Mathematical
Monthly (#10238, 99 (1992), 674):
(a) Show that there exist infinitely many positive integers a such that both a + 1

and 3a + 1 are perfect squares.
(b) Let {an} be the increasing sequence of all solutions in (a). Show that anan+1+1

is also a perfect square.

Exercise 2.4. Determine positive integers b for which the number (111 . . . 1)b
with k digits all equal to 1 when written to base b is a triangular number, regardless
of the value of k.

Exercise 2.5. Problem 2185 in Crux Mathematicorum (22 (1996), 319) points out
that

22 + 42 + 62 + 82 + 102 � 4 · 5 + 5 · 6 + 6 · 7 + 7 · 8 + 8 · 9

and asks for other examples for which the sum of the first n even squares is the
sum of n consecutive products of pairs of adjacent integers.

Exercise 2.6. Determine integer solutions of the system

2uv − xy � 16,

xv − uy � 12

(American Mathematical Monthly 61 (1954), 126; 62 (1955), 263).

Exercise 2.7. Problem 605 in the College Mathematics Journal (28 (1997), 232)
asks for positive integer quadruples (x, y, z, w) satisfying x2 + y2 + z2 � w2

for which, in addition, x � y and z � x ± 1. Some examples are (2, 2, 1, 3) and
(6, 6, 7, 11). Find others.

Exercise 2.8. The root-mean-square of a set {a1, a2, . . . , ak} of positive integers
is equal to √

a2
1 + a2

2 + · · · + a2
k

k
.

Is the root-mean-square of the first n positive integers ever an integer? (USAMO,
1986)

Exercise 2.9. Observe that (1+ 12)(1+ 22) � (1+ 32). Find other examples of
positive integer triples (x, y, z) for which (1 + x2)(1 + y2) � (1 + z2).
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Exercise 2.10. A problem in the American Mathematical Monthly (#6628, 98
(1991), 772–774) asks for infinitely many triangles with integer sides whose area
is a perfect square. According to one solution, if m is chosen to make 1

2 (m
2 − 1) a

square, then the triangles with sides ( 1
2 (m

3 +m2)− 1, 1
2 (m

3 −m2)+ 1, m2) and
with sides (m3− 1

2 (m−1), m3− 1
2 (m+1), m)have square area. Recalling Heron’s

formula
√
s(s − a)(s − b)(s − c) for the area of a triangle with sides (a, b, c)

and perimeter 2s, verify this assertion and give some numerical examples.

Exercise 2.11.
(a) Suppose that the side lengths of a triangle are consecutive integers t − 1, t ,

t + 1, and that its area is an integer. Prove that 3(t2 − 4) must be an even
perfect square, so that t � 2x for some x. Thus show that x2 − 3y2 � 1 for
some integer y. Determine some examples.

(b) In the situation of (a), prove that the altitude to the side of middle length is
an integer and that this altitude partitions the side into two parts of integer
length that differ by 4.

(c) Suppose that the sides of a triangle are integers t − u, t , and t + u. Verify
that 3(t2 − 4u2) is a square (3v)2 and obtain the equation t2 − 3v2 � 4u2.
Determine some examples with u �� 1.

Exercise 2.12. Here is one approach to constructing triangles with integer sides
whose area is an integer. Such a triangle can be had either by slicing one right
triangle from another or by juxtaposing two right triangles. (See figure 2.3.)

We suppose that m, r , a, b � ma + r and c � ma − r are integers.

(a) Prove that 4mr � a ± 2q and deduce that 2q is an integer.
(b) Prove that 2p must be an integer.
(c) By comparing two expressions for the area of the triangle (a, b, c), verify

that

(4m2 − 1)(a2 − 4r2) � 4p2.

Take a � 2t and obtain the equation

p2 − (4m2 − 1)t2 � −(4m2 − 1)r2.

(d) Determine some solutions of the equation in (c) and use them to construct
some examples of triangles of the desired type.

Exercise 2.13. A Putnam problem (A2 for the year 2000) asked for a proof that
there are infinitely many sets of three consecutive positive integers each of which
is the sum of two integer squares. An example of such a triple is 8 � 22 + 22,
9 � 02 + 32 and 10 � 12 + 32.
(a) One way to approach the problem is to let the three integers be n2− 1 � 2m2,

n2, and n2 + 1. Derive a suitable Pell’s equation for m and n and produce
some numerical examples.

(b) However, it is possible to solve this problem without recourse to Pell’s
equation. Do this.
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Figure 2.3.

Exploration 2.3. Let {Fn} be the Fibonacci sequence determined by F0 � 0,
F1 � 1, and Fn+1 � Fn + Fn−1 for each integer n. It turns out that

F 2
2n−1 + F 2

2n+1 + 1 � 3F2n−1F2n+1

(can you prove this?), so that (F2n−1, F2n+1) is an example of a pair (a, b) for
which a2 + b2 + 1 is a multiple of ab. Thus we have the instances (a, b) �
(1, 1), (1, 2), (2, 5), (5, 13), (13, 34). What other pairs can be found?

Problem #10316 in the American Mathematical Monthly (100 (1993), 589; 103
(1996), 905) asks for conditions under which ab divides a2 + b2 + 1. Suppose for
some integer k that a2+ b2+ 1 � kab. If (a, b) satisfies the equation, then so also
do (b, kb− a) and (a, ka− b), so we have a way of generating new solutions from
old. Show that the multiple k must exceed 2, and that the Diophantine equation for
a and b can be rewritten

(2a − kb)2 − (k2 − 4)b2 � −4.

We can rule out certain values of k. For example, k must be a multiple of 3, but
cannot be twice an odd number.

What are all the solutions for k � 3? Are there any solutions for k � 15? Are
there solutions for any other values of k?
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Exploration 2.4. The triple (1, 8, 15) has the interesting property that the three
numbers are in arithmetic progression and the product of any two of them plus one
is a perfect square. Find other triples that have the same property.

Exploration 2.5. Note that 152 + 162 + 172 � 7× (52 + 62 + 72) and 82 + 92 +
102 + 112 + 122 � 2 × (52 + 62 + 72 + 82 + 92). Determine generalizations.

2.3 Strategies for Solutions and a Little History

It is perverse that equations of the type x2 − dy2 � k became associated with
the name of Pell. John Pell (c. 1611–1683) was indeed a minor mathematician,
but he does not appear to have seriously studied the equation. Kenneth Rosen,
on page 459 of his Elementary Number Theory, mentions a book in which Pell
augmented work of other mathematicians on x2 − 12y2 � n, and D.E. Smith, in
his Source Book, says that there is weak indication of his interest in the equation
x2 � 12y2 − 33 is considered in a 1668 algebra book by J. H. Rahn to which
Pell may have contributed. H.C. Williams provides a full description of this in
his millennial paper on number theory. However, many mathematical historians
agree that this is a simple case of misattribution; these equations were ascribed
to Pell by Leonhard Euler in a letter to Goldbach on August 10, 1730, and in
one of his papers. Since Euler was one of the most influential mathematicians in
Europe in the eighteenth century, the name stuck. There were others very interested
in the equation, many earlier than Pell. Pierre de Fermat (1601?–1665) was the
first Western European mathematician to give the equation serious attention, and
he induced his contemporaries John Wallis (1616–1703) and Frénicle de Bessy
(1602–1675) to study it. Actually, Pell’s equations go back a long way, before the
seventeenth century. The Greeks seem to have come across some instances of it; in
particular, Archimedes posed a problem about cattle that led to an equation of the
type. The Indian mathematician Brahmagupta in the sixth century had a systematic
way of generating infinitely many solutions from a particular one, while in the
eleventh century, Jayadeva and Bhaskara II had algorithms for finding the first
solution.

Exercise 3.1. In our definition of Pell’s equation we specified that d had to be
positive and nonsquare. Let us see why this restriction is a natural one. First,
suppose that d is a negative number, say −p.
(a) Consider the equation x2 + 3y2 � 7. Find all solutions to this equation. How

do you know that you have a complete set? In the Cartesian plane, sketch
the curve with equation x2 + 3y2 � 7. Indicate all points on it with integer
coordinates. What is this curve?

(b) For a given positive integer p and integer k, sketch the graph of the equation
x2 + py2 � k. Corresponding to every point (x, y) on the graph with integer
coordinates there is a solution to the equation. Determine an upper bound on
the number of solutions that this equation can possibly have. ♠
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Thus, when d is negative, the solutions of x2 − dy2 � k in integers x and y

are finite in number and can be found by inspection. Characterizing those values
of k for which there is a solution for a given d is in itself an interesting question,
though it is not within the scope of this book.

Exercise 3.2. Consider the equation x2 − dy2 � k where d � q2, the square of
an integer.
(a) Determine all the solutions in integers that you can for each of the following

equations:

x2 − 4y2 � 45,

x2 − y2 � 6,

x2 − 9y2 � 7.

(b) Argue that that equation x2 − q2y2 � k can have at most finitely many
solutions in integers x and y. Give an upper bound for this number of solutions
in terms of the number of positive integers that divide k evenly.

(c) Sketch the graph of the hyperbola with equation x2 − q2y2 � k along with
the graphs of its asymptotes with equations x + qy � 0 and x − qy � 0.
What are the points with integer coordinates lying on the asymptotes? What
insight does this give as to why there are so few points on the hyperbola with
integer coordinates?

Exercise 3.3. The eleventh century Indian mathematician Bhaskara was able to
solve the equation x2 − 61y2 � 1 for integers x and y. One might think that
since it easy to find a solution of x2 − 63y2 � 1 (do it!), there should not be
too much difficulty solving Bhaskara’s equation. However, simple trial and error
is likely to lead to abject failure, and Bhaskara needed considerable numerical
skill to handle the job—this at a time when there were no calculators or even the
convenient notation we enjoy today. In this exercise we will indicate the type of
strategy followed by Bhaskara, but avail ourselves of modern notation.
(a) Suppose that k, d , x, y are integers for which x2 − dy2 � k. Show that

(mx + dy)2 − d(ym + x)2 � k(m2 − d)

for each positive integer m.
(b) Suppose, in (a), that the greatest common divisor of k and y is 1, and that

ym + x is a multiple of k. Use the equations

(m2 − d)y2 � k − (x2 − m2y2) � k − (x + my)(x − my)

and

mx + dy � m(x + my) − (m2 − d)y
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to show that m2 − d and mx + dy are also multiples of k. Thus, the result in
(a) can be rewritten(

mx + dy

k

)2

− d

(
ym + x

k

)2

� m2 − d

k
,

where the quantities in parentheses can be made all integers whenm is suitably
chosen.

(c) Derive from 82 − 61(1)2 � 3 the equation(
8m + 61

3

)2

− 61

(
m + 8

3

)2

� m2 − 61

3
.

Choose m so that (m + 8)/3 is an integer and |(m2 − 61)/3| is as small as
possible. Hence derive

392 − 61(5)2 � −4.

(d) Now obtain the equation(
39m + 305

−4

)2

− 61

(
5m + 39

−4

)2

� m2 − 61

−4
.

Choose m so that (5m + 39)/4 is an integer and |(m2 − 61)/4| is as small as
possible. Using a pocket calculator, if you wish, obtain

1642 − 61(21)2 � −5.

(e) We can continue on in this way to successively derive the following numer-
ical equations. Check the derivation of as many of them as you need to feel
comfortable with the process.

4532 − 61(58)2 � 5,

15232 − 61(195)2 � 4,

56392 − 61(722)2 � −3,

297182 − 61(3805)2 � −1,

4698492 − 61(60158)2 � −3,

23195272 − 61(296985)2 � 4,

97479572 − 61(1248098)2 � 5,

269243442 − 61(3447309)2 � −5,

905209892 − 61(11590025)2 � −4,

3351596122 − 61(42912791)2 � 3,

17663190492 − 61(226153980)2 � 1.

It is interesting to note that the equation x2 − 61y2 � 1 was proposed by the
Frenchman Pierre Fermat to Frénicle in February, 1657. The first European to
publish a solution was Leonhard Euler, in 1732.
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Exercise 3.4. There are devices known to Bhaskara by which the process can be
shortened. One depends on the identity

(x2 − dy2)(u2 − dv2) � (xu + dyv)2 − d(xv + yu)2.

(a) Verify this identity and draw from it the conclusion that if two integers can be
written in the form x2 − dy2 for integers x and y, then so can their product.

(b) Explain how a solution of x2 − dy2 � −1 can be used to obtain a solution
of x2 − dy2 � +1.

(c) Determine a solution to the equation x2 − 65y2 � 1 in integers x and y.
(d) From the identity and the pair of equations, derive

x2 − dy2 � k, m2 − d(1)2 � m2 − d,

the equation in Exercise 3.3(a).

Exercise 3.5. Refer to Exercise 3.3.
(a) From the numerical equation 392 − 61(5)2 � −4, deduce that(

39

2

)2

− 61

(
5

2

)2

� −1.

(b) Substituting x � u � 39/2, y � v � 5/2, d � 61 in the identity of
Exercise 3.4(a), derive(

1523

2

)2

− 61

(
195

2

)2

� 1.

(c) Substituting x � 39/2, y � 5/2, u � 1523/2, v � 195/2 in the identity
of Exercise 3.4(a), obtain

297182 − 61(3805)2 � −1.

(d) Now obtain a solution to x2 − 61y2 � 1 using Exercise 3.4(b).

Exercise 3.6. Another equation solved by Bhaskara was x2 − 67y2 � 1.
(a) Following the procedure of Exercise 3.3, derive the equations

82 − 67(1)2 � −3,

412 − 67(5)2 � 6,

902 − 67(11)2 � −7,

2212 − 67(27)2 � −2.

(b) Using the identity of Exercise 3.4, derive a solution of x2 − 67y2 � 4 and
deduce from this a solution in integers x, y to x2 − 67y2 � 1.

Exercise 3.7. In 1658, Frénicle claimed that he had found a solution in integers
x and y to x2 − dy2 � 1 for all nonsquare values of d up to 150, but mentioned
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that he was looking in particular for solutions in the cases d � 151 and d � 313.
In response, John Wallis found that

(1728148040)2 − 151(140634693)2 � 1,

and Lord Brouncker commented that within an hour or two, he had discovered that

(126862368)2 − 313(7170685)2 � −1.

Check that these results are correct. Doing this in this obvious way may not be most
efficient, particularly if they lead to overflow of your pocket calculator. A better
way may be to set things up so that you can use division rather than multiplication.
This might involve manipulating the equation to be checked into forms leading to
easy factorization, such as those involving differences of squares. It might involve
checking for small prime factors of terms involved. Be creative and use some
ingenuity.

Exercise 3.8. How might Wallis and Brouncker have solved a Pell’s equation?
Consider the example x2 − 7y2 � 1.
(a) The smallest square exceeding 7 is 9 � 32; we have that 7 � 32 − 2.

Deduce from this 7(2)2 � 62 − 8, 7(3)2 � 92 − 18, and more generally
7m2 � (3m)2 − 2m2.

(b) Observe that 92 − 18 � (9 − 1)2 − 1, so that 92 − 18 is just 1 shy of being
a perfect square. Transform 7(3)2 � 92 − 18 to 7(3)2 � (9 − 1)2 − 1 and
thence derive a solution to x2 − 7y2 � 1.

Exercise 3.9. Let us apply the Wallis–Brouncker approach to the general equation
x2−dy2 � 1. Let positive integers c and k be chosen to satisfy (c−1)2 < d < c2

and c2−d � k, so that c2 is the smallest square exceeding d, and k is the difference
between this square and d .
(a) Show that for any integer m, dm2 � (cm)2 − km2.
(b) The quantity dm2 � (cm)2 − km2 is certainly less than (cm)2, but it may not

be less than any smaller square, in particular (cm− 1)2. However, as m grows
larger, the distance between dm2 and (cm)2 increases, so that eventually dm2

will become less than (cm − 1)2. This will happen as soon as

(cm)2 − km2 ≤ (cm − 1)2 − 1.

Verify that this condition is equivalent to 2c ≤ km.
(The strategy is to select the smallest value of m for which this occurs and

hope that dm2 − (cm− 1)2 � −1, in which case (x, y) � (cm− 1, m) will
satisfy x2 − dy2 � 1. This, of course, need not occur, and we will need to
modify the strategy.)

(c) Start with 13 � 42 − 3 and determine the smallest value of m for which
13m2 − (4m − 1)2 has a negative value, and write the numerical equation
that evaluates this.

(d) Suppose dm2− (cm−1)2 is not equal to−1 when it first becomes negative. It
will take larger and larger negative values as m increases (why?). Eventually,
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there will come a time when dm2 − (cm − 2)2 will not exceed −1. Verify
that this occurs when 4c ≤ km + (3/m).

(e) This process can be continued. If dm2 − (cm− 2)2 fails at any point to equal
−1, then we can try for a solution with x � cm − 3 for some value of m.
This process can be continued until (hopefully) a solution is found. Try this
in the case that d � 13.

(f) Which method do you consider more convenient, this or Bhaskara’s?

Exercise 3.10. Here is a systematic way to obtain solutions of x2 − dy2 � 1 for
a great many values of d .
(a) Verify the identity

(zy + 1)2 −
(
z2 + 2z

y

)
y2 � 1.

(b) Suppose that integers y and z are selected so that 2z is a multiple of y; let
d � z2+ (2z/y) and x � zy+1. Without loss of generality, we may suppose
that z > 0 and that y can be either positive or negative. If 1 ≤ y ≤ 2z, show
that z2 + 1 ≤ d ≤ (z + 1)2 − 1, while if −2z ≤ y ≤ −1, show that
(z − 1)2 − 1 ≤ d ≤ z2 + 1.

(c) Describe how, for a given value of d, one might determine solutions to x2 −
dy2 � 1. Apply this method to obtain solutions when d � 3, 27, 35, 45.

(d) List values of d up to 50 for which solutions cannot be found using this
method.

2.4 Explorations

Exploration 2.6. Archimedes’ Cattle Problem. In the eighteenth century, a
German dramatist, G.E. Lessing, discovered a problem posed by Archimedes to
students in Alexandria. A complete statement of the problem and comments on its
history and solution can be found in the following sources:

H.W. Lenstra, Jr., Solving the Pell’s equation. Notices of the American
Mathematical Society 49:2 (February, 2002), 182-192.

James R. Newman (ed.), The World of Mathematics, Volume 1 (Simon &
Schuster, New York, 1956) pages 197–198, 105–106.

H.L. Nelson, A solution to Archimedes’ cattle problem, Journal of Recreational
Mathematics 13:3 (1980–81), 162–176.

Ilan Vardi, Archimedes’ Cattle Problem, American Mathematical Monthly 106
(1998), 305–319.

The paper of H.C. Williams on solving Pell’s equation, delivered to the Millennial
Conference on Number Theory in 2002 and listed in the historical references,
discusses the cattle problem and lists additional references by P. Schreiber and W.
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Waterhouse. In modern symbolism, this problem amounts to finding eight positive
integers to satisfy the conditions

W � 5
6 X + Z, X � 9

20 Y + Z, Y � 13
42 W + Z,

w � 7
12 (X + x), x � 9

20 (Y + y), y � 11
30 (Z + z), z � 13

42 (W + w),

with the additional requirements that W +X is to be square and Y +Z triangular.
Solving this problem involves obtaining a solution to the Pell’s equation p2 −
4,729,494q2 � 1, a feat that was not accomplished until 1965. Now, of course,
we have sophisticated software available to do the job. Can you find a solution to
the equation?

Exploration 2.7. There are certain values of d for that it is easy to find a solution
of x2 − dy2 � 1. One does not have to look very far to solve x2 − 3y2 � 1 or
x2 − 8y2 � 1. Indeed, there are categories of values of d for which some formula
for a solution can be given. For example, 3 and 8 are both of the form t2 − 1; what
would a solution of x2 − (t2 − 1)y2 � 1 be for an arbitrary value of the parameter
t? Can you find more than one solution?

Determine the smallest pair (x, y) of positive integers that satisfies x2−dy2 � 1
in each of the following special cases.

(a) d � 2, 5, 10, 17, 26, . . . , t2 + 1, . . ..

(b) d � 3, 6, 11, 18, 27, . . . , t2 + 2, . . ..

(c) d � 2, 7, 14, 23, . . . , t2 − 2, . . ..

(d) d � 2, 6, 12, 20, 30, . . . , t2 + t, . . ..

(e) d � 7, 32, 75, . . . , t2 + (4t + 1)/3, . . . (where t is 1 less than a multiple
of 3.

(f) d � 3, 14, 33, . . . , t2 + (3t + 1)/2, . . . (where t is odd) .
Now we come to some tougher cases that do not seem to follow an easy pattern.
Find at least one solution in positive integers to each of the following:

(g) x2 − 21y2 � 1.

(h) x2 − 22y2 � 1.

(i) x2 − 28y2 � 1.

(j) x2 − 19y2 � 1.

(k) x2 − 13y2 � 1.

(l) x2 − 29y2 � 1.

(m) x2 − 31y2 � 1.

Exploration 2.8. For which values of the integer d is x2 − dy2 � −1 solvable?
In particular, is there a solution when d is a prime exceeding a multiple of 4 by
1? Do not look at the discussion for this exploration until you have completed
working through Chapter 5.
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Exploration 2.9. Which integers can be written in the form x2 − y2? x2 − 2y2?
x2 − 3y2? x2 − dy2?

Exploration 2.10. Let xn � a + (n − 1)d be the nth term of an arithmetic
progression with initial term a and common difference d. The quantity sn �
x1 + x2 + · · · + xn is called a partial sum of the series x1 + x2 + x3 + · · ·. Must
there be at least one partial sum that is a square? Even if the a and d are coprime?
For which progressions is it true that every partial sum is a square? Suppose that
there is one square partial sum; must there be infinitely many more?

Exploration 2.11. In Exploration 1.4 the equation x2− 3y2 � 1 was considered.
Its solutions are given by

(x, y) � (1, 0), (2, 1), (7, 4), (26, 15), (97, 56), (362, 209), . . . .

What is special about the numbers 2, 26, and 362? The solutions for x2 − 6y2 � 1
are

(x, y) � (1, 0), (5, 2), (49, 20), (485, 198), (4801, 1960), . . . .

Note the appearance of 5 and 485. You may also wish in this context to look at
the solutions of x2 − 7y2 � 1 and x2 − 8y2 � 1. Are there other values of d for
which the solutions of x2 − dy2 � 1 exhibit similar behavior?

2.5 Historical References

There are several books and papers concerned with the history of Pell’s equation:

David M. Burton, The History of Mathematics: An Introduction. Allyn and
Bacon, Newton, MA, 1985 [pp. 243, 250, 504].

Bibhutibhusan Datta and Avadhesh Narayan Singh, History of Hindu Mathe-
matics, a source book, Asia Publishing House, Bombay, 1962.

Leonard Eugene Dickson, History of the Theory of Numbers, Volume II: Dio-
phantine Analysis. Chelsea, New York, 1952 (reprint of 1920 edition) [Chapter
XII].

Victor J. Katz, A History of Mathematics: An Introduction. (Harper-Collins,
New York, 1993) [pp. 208–211, 555–556].

Morris Kline, Mathematical Thought from Ancient to Modern Times. Oxford
University Press, New York, 1972 [pp. 278, 610, 611].

James R. Newman editor, The World of Mathematics, Volume 1. Simon and
Schuster, New York, 1956 [pp. 197–198].

C.O. Selenius, Rationale of the Chakravala process of Jayadeva and Bhaskara
II, Historia Mathematica 2 (1975), 167–184.

David E. Smith ed., A Source Book in Mathematics, Volume One Dover, 1959
[pp. 214–216].
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D.J. Struik ed., A Source Book in Mathematics, 1200–1800, Harvard University
Press, Cambridge, MA, 1969 [pages 29–31].

André Weil, Number Theory: An Approach Through History from Hammurapi
to Legendre. Birkhäuser, Boston, 1983.

H.C. Williams, Solving the Pell’s equation. Proceedings of the Millennial Con-
ference on Number Theory (Urbana, IL, 2000) (M.A. Bennett et al., editors), A.K.
Peters, Boston, 2002.

Weil describes how rational approximations to the square root of 3 involved ob-
taining some solutions to Pell’s equation. Burton, Dickson (pp. 342–345), and
Newman mention the Archimedean cattle problem. Datta and Singh, Dickson (pp.
346–350), Katz, and Weil give quite a bit of attention to Indian mathematics, with
Selenius giving an analysis of their method. Dickson and Weil give a lot of detail
on European developments in the seventeenth and eighteenth centuries. Smith and
Struik document a 1657 letter of Fermat in which he asserts that given any number
not a square, there are infinitely many squares that when multiplied by the given
number are one less than a square.

2.10, 2.11. See A.R. Beauregard and E.R. Suryanarayan, Arithmetic triangle,
Mathematics Magazine (1997) 106–116.

5.9. Oeuvres de Fermat III, 457-480, 490-503; Dickson, p. 352.

2.6 Hints

2.3(a). If the two numbers are y2 and x2, what is x2 − 3y2?

2.4. In particular, 1 + b + b2 � 1
2 v(v + 1) for some integer v.

2.5. Suppose that 22+ 42+· · ·+ (2n)2 � m(m+ 1)+· · ·+ (m+n− 1)(m+n).
The left side can be summed using the formula for the sum of the first r squares:
1
6 r(r + 1)(2r + 1). The right side can be summed by expressing each term as a
difference: 3x(x + 1) � x(x + 1)(x + 2) − (x − 1)x(x + 1). Show that this
equation leads to (n+ 1)2 � m(n+m), which can be rewritten as a Pythagorean
equation: n2 + [2(n + 1)]2 � (2m + n)2. At this point you can use the general
formula for Pythagorean triples to get an equation of the form x2 − 5y2 � 4.

2.6. Square each equation and eliminate terms that are linear in each variable.

3.7. Rearrange the terms in the equation involving 151 to obtain a difference of
squares on one side. The equation involving 313 is trickier. It may help to observe
that 313 � 122 + 132. It is easy to check divisibility of factors by powers of
2. Casting out 9’s will help check divisibility by powers of 3. Check also for
divisibility of factors by other small primes. Another way to compare divisors is
as follows. Suppose we wish to show that ab � cd. We might look for common
divisors of the two sides; one such would be the greatest common divisor of
a and c. Finding such a greatest common divisor need not involve knowing the
prime-power decomposition of the numbers. The Euclidean algorithm can be used.



2.6. Hints 31

Suppose a > c. Divide c into a and get a remainder r � a − cq, where q is the
quotient. Then gcd(a, c) � gcd(c, r). Now we have a smaller pair of numbers to
work with. We can continue the process with c and r . Eventually, we will come to
a pair of numbers one of which divides the other.
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