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Bessels contain Continued Fractions of Progressions

Introduction

The January 2000 issue of this journal carried a nice arti-
cle [1] on continued fractions by Shailesh Shirali. After
discussing various continued fractions for numbers re-
lated to e, he left us with the intriguing question as to
how one could possibly evaluate the continued fraction

1
1+

1
2+

1
3+

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ :

The question is interesting because this continued frac-
tion is simpler-looking than the ones which were stud-
ied in that article. We answer this question here and
show that the discussion naturally involves the Bessel
functions, thus explaining the title. However, we shall
begin with some details about continued fractions which
complement his discussion. One place where continued
fractions are known to appear naturally is in the study
of the so-erroneously-called Pell's equation.

In a series of very well-written articles [2], Amartya
Kumar Dutta discussed various aspects of Mathemat-
ics in ancient India. In particular, he discussed Brah-
magupta's work on Samasabhavana and the Chakravala
method for ¯nding solutions to `Pell's equation'. In fact,
it is amusing to recall what Andre Weil, one of the great
mathematicians of the last century wrote once, while
discussing Fermat's writings on the problem of ¯nding
integer solutions to x2 ¡Dy2 = 1:

What would have been Fermat's astonishment
if some missionary, just back from India, had
told him that his problem had been success-
fully tackled there by native mathematicians
almost six centuries earlier!



CLASSROOM

81RESONANCE  March    2005

The Chakravala method can be described in terms of
continued fractions. Let us begin with some rather ele-
mentary things which were known so long back and have
gone out of fashion to such an extent that they are not
as widely known as they ought perhaps to be.

Linear Diophantine Equations with SCF's

As in Shirali's article, let us denote by

[a0 ; a1; a2; a3; ¢ ¢ ¢] (1)

the SCF (simple continued fraction)

a0 +
1
a1+

1
a2+

¢ ¢ ¢ ¢ ¢ ¢ : (2)

Here the ai are natural numbers. Evidently, any rational
number has a ¯nite SCF. For instance,

763
396

= [1 ; 1; 12; 1; 1; 1; 9]:

Its successive convergents are 1
1 ;

2
1 ;

25
13 ;

27
14 ;

52
27 ;

79
41 ;

763
396 . Note

that if the n-th convergent is pn
qn

, then pnqn¡1¡pn¡1qn =
(¡1)n. This holds for any continued fraction, as can
be seen by induction. This gives a method of ¯nding
all positive integral solutions (in particular, the small-
est one) x; y to a Diophantine equation of the form
ax¡ by = c. For instance, consider the equation

396x¡ 763y = 12:

Look at the SCF for 763
396 and compute its penultimate

convergent 79
41 . Now, if x; y are positive integers satisfy-

ing
396x¡ 763y = 12;

then combining with the fact that 396£79¡763£41 = 1,
we get

x¡ (79£ 12) = 763t; y ¡ (41£ 12) = 396t
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for some integer t. This gives all solutions, and the
smallest solution in natural numbers x; y is obtained by
taking t = ¡1 and turns out to be (185; 96).

The reader is left with deriving similarly the correspond-
ing expression for any linear equation.

Quadratic Equations from SCF's

Evidently, ¯nite CF's give only rational numbers. Given
the fact that a periodic decimal expansion gives ratio-
nal numbers too, a reader might be tempted to guess
that a periodic CF gives rationals. After just a little
thought, it becomes apparent that an eventually peri-
odic SCF gives a quadratic irrational number. For ex-
ample, [1 ; 1; 1; ¢ ¢ ¢] is the `golden ratio' (1+

p
5)=2. This

is because the value s satis¯es s = 1 + 1=s and is posi-
tive. Similarly, the SCF [1 ; 3; 2; 3; 2; ¢ ¢ ¢] =

p
5=3, as it

gives the quadratic equation s ¡ 1 = (s + 1)=(3s + 4),
and [0 ; 3; 2; 1; 3; 2; 1; ¢ ¢ ¢] = (

p
37 ¡ 4)=7 as it gives the

equation s = (3 + 2s)=(10 + 7s), etc.

Consider a quadratic Diophantine equation in two vari-
ables

ax2 + 2hxy + by2 + 2gx+ 2fy + c = 0; (3)

where a; b; c; f; g; h are integers. Thinking of this as a
polynomial in x and solving it, one obtains

ax+hy+g = §
p

(h2 ¡ ab)y2 + 2(hg ¡ af )y + g2 ¡ ac):

For any integral solution, the expression inside the square
root (which we write as ry2 + 2sy + t now) must be a
perfect square, say v2. Once again, solving this as a
polynomial in y, we get

ry + s = §
p

(s2 ¡ rt+ rv2):

Hence, s2 ¡ rt + rv2 must be a perfect square u2. In
other words, the original equation does not have integral

An eventually
periodic SCF gives

a quadratic
irrational number.
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solutions unless the equation u2¡rv2 = w has a solution,
where w is a constant de¯ned in terms of a; b; c; f; g; h.

An equation of the form u2 + rv2 = w for r positive has
only ¯nitely many solutions. Therefore, let us discuss
the equation u2 ¡ rv2 = §w where r; w are positive
integers and r is not a perfect square. The SCF for

p
r

provides a way of obtaining in¯nitely many solutions of
the special equation u2 ¡ rv2 = 1. Consequently, for
given r;w if we ¯nd one solution (u0; v0) of u2 ¡ rv2 =
w, one can ¯nd in¯nitely many by the samasabhavana
(composition) x = uu0 +rvv0, y = uv0 +vu0 for any u; v
with u2 ¡ rv2 = 1. However, the method of CF's will
provide even one solution only for certain w's; namely,
those which appear as one of the denominators while
expressing

p
r as a continued fraction.

Let us now show how u2¡ rv2 = 1 can always be solved
in positive integers using the SCF for

p
r. It is a simple

exercise to show that the SCF for
p
r has the form

[a1 ; b1; b2; ¢ ¢ ¢ ; bn; 2a1; b1; b2; ¢ ¢ ¢ ; bn; 2a1; ¢ ¢ ¢]: (4)

If p=q is a penultimate convergent of a recurring period,
then it is easy to check that p2 ¡ rq2 = §1. In fact, if
the period is even, this is always 1. If the period is odd,
then the penultimate convergents of the ¯rst, second,
third period, . . . alternately satisfy the equations

x2 ¡ ry2 = ¡1; x2 ¡ ry2 = 1:

For example,
p

13 = [3 ; 1; 1; 1; 1; 6; ¢ ¢ ¢]:

The period is 5 which is odd. The penultimate conver-
gent to the ¯rst period is

3 +
1

1+
1

1+
1

1+
1
1

=
18
5
:

Therefore, (18; 5) is a solution of u2 ¡ 13v2 = ¡1.

u2–rv2 = 1 can
always be solved
in positive integers
using the SCF for

r .
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The penultimate convergent to the second period is com-
puted to be 649=180. Therefore, (649; 180) is a solution
of u2 ¡ 13v2 = 1.

SCF's in Arithmetic Progressions

In his discussion, Shirali showed that the following SCF's
can be evaluated in terms of the exponential function;
he showed

[2 ; 6; 10; 14; ¢ ¢ ¢] =
e+ 1
e¡ 1

; [1 ; 3; 5; 7; ¢ ¢ ¢] =
e2 + 1
e2 ¡ 1

:

The SCF's here involve terms in arithmetic progres-
sion. What about a general SCF of the form [a ; a +
d; a+ 2d; ¢ ¢ ¢]? For example, can the SCF [0 ; 1; 2; 3; ¢ ¢ ¢]
be evaluated in terms of some `known' numbers and
functions? Shirali started with the di®erential equation
(1¡ x)y00 = 2y0 + y which he remarked \does not seem
to solvable in closed form".

We start with any arithmetic progression a; a + d; a +
2d; ¢ ¢ ¢ where a is any real number and d is any non-zero
real number, and show how it can be evaluated.

Let us consider the di®erential equation

dxy00 + ay0 = y: (5)

Actually, heuristic reasons can be given as to why one
looks at this di®erential equation but we directly start
with it here and show its relation to our problem. Let
y = y(x) be a solution of the above di®erential equation
satisfying y(0) = ay0(0). Let us denote the r-th deriv-
ative of y by yr for simplicity of notation. By repeated
di®erentiation, we get dxyr+2 + (a+ rd)yr+1 = yr for all
r ¸ 0 (with y0 denoting y). Therefore, we have

y0

y1
= a+

dxy2

y1
= a+

dx
a+ d+

dx
a+ 2d+

¢ ¢ ¢ ¢ ¢ ¢ : (6)

Observe that

[a ; a+ d; a+ 2d; a+ 3d; ¢ ¢ ¢] =
y(1=d)
y0(1=d)

:
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A solution function such as above can be very easily
obtained as a series; we get

y = c0 + c0
X

n¸1

xn+1

(n+ 1)!a(a+ d) ¢ ¢ ¢ (a+ nd)
(7)

for any c0. This evaluates the SCF [a ; a+ d; a+2d; a+
3d; ¢ ¢ ¢] in terms of these series. As we shall see now,
these series are special values of modi¯ed Bessel func-
tions and, for certain choices of a and d, the series are
even expressible in terms of e, etc.

Before proceeding further, let us note that the SCF
whose evaluation was asked for by Shirali is:

[0 ; 1; 2; 3; ¢ ¢ ¢] =
P

1= ((n+ 1)!n!)P
1=(n!)2 : (8)

Its approximate value is 0:7.

For general a; d as above, the solution function

y = y(x) = c0 +c0
X

n¸1

xn+1

(n + 1)!a(a+ d) ¢ ¢ ¢ (a+ nd)
(9)

is related to Bessel functions in the following manner.
First, the Bessel di®erential equation x2y00 +xy0 + (x2¡
®2)y = 0 has certain solutions

J®(x) =
X

n¸0

(¡1)n(x=2)2n+®

n!¡(n+ 1 + ®)
; (10)

these are usually referred to as Bessel functions of the
¯rst kind. Here ¡(s) is the Gamma function. If ® is not
an integer, then J¡® (de¯ned in the obvious manner) is
another independent solution to the Bessel di®erential
equation above. Closely related to the J® is the so-called
modi¯ed Bessel function of the ¯rst kind

I®(x) =
X

n¸0

(x=2)2n+®

n!¡(n+ 1 + ®)
: (11)
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Thus, we have

1
1+

1
2+

1
3+

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ = I1(2)
I0(2)

:

The function I®(x) is a solution of the di®erential equa-
tion x2y00 + xy0 ¡ (x2 + ®2)y = 0. Indeed, I®(x) =
i¡®J®(ix) for each x. Using the relation ¡(s+1) = s¡(s)
and the value ¡(1=2) =

p
¼, it is easy to see that the

solution function

y = c0 + c0
X

n¸1

xn+1

(n + 1)!a(a+ d) ¢ ¢ ¢ (a+ nd)
(12)

above, is related to the modi¯ed Bessel function of the
¯rst kind as:

y(x2=d) = c0¡(a=d)(x=d)1¡a=dIa=d¡1(2x=d): (13)

In particular,

[a ; a+ d; a+ 2d; a+ 3d; ¢ ¢ ¢] =
y(1=d)
y0(1=d)

=
Ia=d¡1(2=d)
Ia=d(2=d)

:

(14)

Conclusion

Before ¯nishing, we recall some SCF's evaluated out by
Shirali:

[2 ; 6; 10; 14; ¢ ¢ ¢] =
e+ 1
e¡ 1

; [1 ; 3; 5; 7; ¢ ¢ ¢] =
e2 + 1
e2 ¡ 1

:

Our formula above yields for the same SCF's the expres-
sions:

[2 ; 6; 10; 14; ¢ ¢ ¢] =
I¡1=2(1=2)
I1=2(1=2)

; (15)

[1 ; 3; 5; 7; ¢ ¢ ¢] =
I¡1=2(1)
I1=2(1)

: (16)
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Burnside is hot stu®

P Kesava Menon discovered the beautiful identity
X

(a;n)=1

(a¡ 1; n) = Á(n)d(n)

where Á is Euler's totient function and d(n) denotes the
number of divisors of n. It is a nice exercise to deduce this
identity from an application of Burnside's `counting' lemma
to the group of units of the ring of integers modulo n. Recall
that Burnside's lemma is the simple statement that when a
¯nite group G acts on a ¯nite set S, the numbers

P
s2S jGsj

and
P
g2G jSgj match; here jGsj is the number of elements of

G which ¯x a particular point s in S and jSgj is the number
of elements of S ¯xed by a particular element g.

It is clear from the de¯nition that

I¡1=2(1) =

r
2
¼

X

n¸0

1
(2n)!

=

r
2
¼
e+ e¡1

2
; (17)

I1=2(1) =

r
2
¼

X

n¸0

1
(2n+ 1)!

=

r
2
¼
e¡ e¡1

2
:(18)

Therefore, for these special parameters, the value of the
modi¯ed Bessel function is expressible in terms of e and
one can recover Shirali's expressions.
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