A universal divisibility test

Given below is a certain universal divisibility test invented by Bhārati Krṣṇa Tīrtha, who claimed (in 1950's) that he found it in ancient vedic scriptures. While the claim is very doubtful, the test is a nice alteration of the usual modern techniques.

The test is for checking if a given natural number n is divisible by a given natural number $d>1$.

1. First assume that d is coprime with 10 , since for numbers having common factors with 10 , the possible common factors 2,5 can be factored out from d. The divisibility test by 2 is very easy: n must be even, i.e. the units digit is among $0,2,4,6,8$.
The divisibility test by 5 is easier: n must have the units digit 0 or 5 .
2. Next, find a number m such that $10 m \equiv s(\bmod d)$, where s is 1 or -1 . (See more details below.) The resulting product $s m$ shall be called a multiplier for d.

Write $n=10 u+v$.
3. Then the divisibility test says that $d \mid n=10 u+v$ iff $d \mid u+s m v$. The number $u+s m v$ is usually much smaller than n and we can repeat the test until divisibility becomes evident.
4. Here is an illustration.

Let $d=13$. Note that $(3) 13+1=(4) 10$, so we can take $s=1$ and $m=4$. Start with $n=34351=10(3435)+1$, so $u=3435$ and $v=1$. So we can replace $n=34351$ by $u+s m v=$ $3435+(4) 1=3439$. Taking $n=3439=(10) 343+9$, we next replace it by $343+(4) 9=379$. Next replacement shall be $37+(4) 9=73$ and this is easily seen to be not divisible by 13 .
Usually, we don't spend time in these arguments. We just write the process thus:

$$
\begin{array}{rlr}
34351 \rightarrow 3435+ & (4) 1=3439 & \\
& \rightarrow & 343+(4) 9=379 \\
& \rightarrow & 37+(4) 9=73 \\
& \rightarrow & 7+(4) 3=19 \\
& \rightarrow & \\
& \text { Done! Not divisible. }
\end{array}
$$

We start with a given n and a given d. Find a suitable multiplier $s m$. Use it to reduce n until divisibility is easy.
Here is another example with $d=23$.
$3(23)=69$, so (7) $10=1+(3)(23)$. Thus, we can take $s=1, m=7$. The multiplier is $(1)(7)=7$. Take $n=314452$. Here are the reductions:
$314452 \rightarrow 31445+(2)(7)=31459 \rightarrow 3145+(7)(9)=3208 \rightarrow 320+(7)(8)=376 \rightarrow 37+(7)(6)=79$.
The last number is clearly not divisible by 23 . (You could make a further reduction if you like:

$$
79 \rightarrow 7+(7)(9)=70 \rightarrow 7+(7)(0)=7
$$

5. Here are simple recipes for finding the s, m.

If d ends in 1 , then write $d=10 m+1$, which defines m and let $s=-1$. Example: $d=31=$ $10(3)+1$ so $m=3, s=-1$ and multiplier is -3 .

If d ends in 3 , then write $3 d+1=10 m$, which defines m and set $s=1$. Example: $d=43$ so $3 d+1=130=10(13)$ so $m=13, s=1, s m=13$.
If d ends in 7 , then write $3 d=10 m+1$ thereby defining m and $s=-1$. Example: $d=37$ so $3 d=111=10(11)+1$ so $m=11, s=-1, s m=-11$.
If d ends in 9 , then write $d+1=10 m$ thereby defining m and $s=1$. Example: $d=29$ so $d+1=30=10(3)$ so $m=3, s=1, s m=3$.

The original recipe of Swamiji stated the following:
Find a multiple of the chosen d which ends in 9 . Take the part of the number before 9 and add 1 to it. This is the multiplier sm. For instance, when $d=17$, we have $(7)(17)=119$; the part before 9 is 11 so the multiplier is $1+11=12$.
6. Now you should practice using the above multipliers as well as practicing making your own multipliers.
7. Proof of the test: Note that by assumption $10 s m \equiv s^{2}=1$ modulo d. Now, $d \mid n=10+v$ iff $d \mid(s m) n=10 s m u+s m v$. This last expression is congruent to $u+s m v$ modulo d. Hence the test is proved!
8. This reproduces the usual tests for divibility by $3,9,11$ since the values of $s m$ come out to be $1,1,-1$ in these cases respectively. You should verify how this leads to the usual tests.
9. We give one more example for practice. Take $d=17$. As shown above, the multiplier is 12 . This is also -5 modulo 17 , so we choose the smaller size multiplier.

Take $n=214457$. Here is the work:

$$
214457 \rightarrow 21445-(5) 7=21410 \rightarrow 2141 \rightarrow 214-(5) 1=209 \rightarrow 20-(5) 9=-25
$$

The last is clearly non divisible.

