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Abstract

In this article we shall present an overview of the development of calculus in
Indian mathematical tradition. The article is divided naturally into two parts. In
the first part we shall discuss the developments during what may be called the
classical period, starting with the work of̄Aryabhat.a (c. 499CE) and extending
up to the workNārāyan. a Pan.d. ita (c. 1350). The work of the Kerala School
starting withMādhava of Saṅgamagrāma (c. 1350), which has a more direct
bearing on calculus, will be dealt with in the second part. Here we shall discuss
some of the contributions of the Kerala School during the period 1350–1500 as
outlined in the seminal Malayalam workYuktibhās. ā of Jyes.t.hadeva (c. 1530).

PART I : THE CLASSICAL PERIOD

Āryabhat.a to Nārāyan.a Pan.d. ita (c. 500–1350CE)

1 Introduction

In his pioneering history of calculus written sixty years ago, Carl Boyer was totally
dismissive of the Indian contributions to the conceptual development of the subject.1

Boyer’s historical overview was written around the same time when (i) Ramavarma
Maru Thampuran and Akhileswarayyar brought out the first edition of the Mathe-
matics part of the seminal textGan. ita-yukti-bhās. ā, and (ii) C.T. Rajagopal and his
collaborators, in a series of pioneering studies, drew attention to the significance of
the results and techniques outlined inYuktibhās. ā (and the work of the Kerala School
of Mathematics in general), which seem to have been forgotten after the initial notice
by Charles Whish in early nineteenth century. These and the subsequent studies have
led to a somewhat different perception of the Indian contribution to the development
of calculus as may be gleaned from the following quotation from a recent work on the
history of mathematics:2

We have here a prime example of two traditions whose aims werecom-
pletely different. The Euclidean ideology of proof which was so influen-
tial in the Islamic world had no apparent influence in India (as al-Biruni

∗Cell for Indian Science and Technology in Sanskrit, IIT Bombay (kramas@iitb.ac.in).
†Centre for Policy Studies, Chennai (mdsrinivas50@gmail.com).
1C.B.Boyer,The History of the Calculus and its Conceptual Development, Dover, New York 1949,

pp. 61–62.
2L. H. Hodgekin,A Histoty of Mathematics: From Mesopotamia to Modernity, Oxford 2005, p. 168.
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had complained long before), even if there is a possibility that the Greek
tables of ‘trigonometric functions’ had been transmitted and refined. To
suppose that some version of ‘calculus’ underlay the derivation of the
series must be a matter of conjecture.

The single exception to this generalization is a long work, much admired
in Kerala, which was known asYuktibhās. ā, by Jyes.t.hadeva; this con-
tains something more like proofs—but again, given the different paradigm,
we should be cautious about assuming that they are meant to serve the
same functions. Both the authorship and date of this work arehard to
establish exactly (the date usually claimed is the sixteenth century), but it
does give explanations of how the formulae are arrived at which could be
taken as a version of the calculus.

The Malayalam workGan. ita-yukti-bhās. ā (c. 1530) ofJyes.t.hadeva indeed presents
an overview of the work of Kerala School of mathematicians during the period 1350–
1500 CE. The Kerala School was founded byMādhava (c. 1340–1420), who was
followed by the illustrious mathematician-astronomersParameśvara (c. 1380–1460),
his sonDāmodara and the latter’s studentNı̄lakan. t.ha Somayāj̄ı (c. 1444–1550).
While the achievements of the Kerala School are indeed spectacular, it has now been
generally recognised that these are in fact very much in continuation with the ear-
lier work of Indian mathematicians, especially of theĀryabhat.an school, during the
period 500–1350CE.

In the first part of this article, we shall consider some of theideas and methods de-
veloped in Indian mathematics, during the period 500–1350,which have a bearing on
the later work of the Kerala School. In particular, we shall focus on the following top-
ics: Mathematics of zero and infinity; iterative approximations for irrational numbers;
summation (and repeated summations) of powers of natural numbers; use of second-
order differences and interpolation in the calculation ofjyā or Rsines; the emergence
of the notion of instantaneous velocity of a planet in astronomy; and the calculation
of the surface area and volume of a sphere.

2 Zero and Infinity

2.1 Background

Theśānti-mantra of Īśāvāsyopanis.ad (of Śukla-yajurveda), a text ofBrahmavidyā,
refers to the ultimate absolute reality, theBrahman, aspūrn. a, the perfect, complete
or full. Talking of how the universe emanates from theBrahman, it states::pUa:NRa:ma:dH :pUa:NRa:�a.ma:dM :pUa:Na.Ra:tpUa:NRa:mua:d:.ya:tea Á:pUa:NRa:~ya :pUa:NRa:ma.a:d.a:ya :pUa:NRa:mea:va.a:va:�a.Za:Sya:tea Á Á

That (Brahman) is pūrn. a; this (the universe) ispūrn. a; [this] pūrn. a em-
anates from [that]pūrn. a; even whenpūrn. a is drawn out ofpūrn. a, what
remains is alsopūrn. a.
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Pān. ini’s As.t.ādhyāȳı (c. 500BCE) has the notion oflopa which functions as a null-
morpheme.Lopa appears in sevensūtras of Chapters 1, 3, 7, starting withA:d:ZRa:nMa l;ea:paH Á (1.1.60).

Śūnya appears as a symbol inPiṅgala’s Chandah. -sūtra (c. 300BCE). In Chapter
VIII, while enunciating an algorithm for evaluating any positive integral power of 2 in
terms of an optional number of squaring and multiplication (duplication) operations,
śūnya is used as a marker:.�+pea ZUa:nya:m,a Á ;�a.dõ H ZUa:nyea Á (8.29-30).

Different schools of Indian philosophy have related notions such as the notion of
abhāva in Ny āya School, and thésūnyavāda of the Bauddhas.

2.2 Mathematics of zero inBrāhmasphut.a-siddh̄anta (c. 628CE) of
Brahmagupta

TheBrāhmasphut.a-siddhānta (c. 628CE) of Brahmagupta seems to be the first avail-
able text that discusses the mathematics of zero.Śūnya-parikarma or the six opera-
tions with zero are discussed in the chapter XVIII on algebra(kut.t.akādhyāya), in the
same six verses in which the six operations with positives and negatives (dhanarn. a-
s.ad. vidha) are also discussed. Zero divided by zero is stated to be zero. Any other
quantity divided by zero is said to betaccheda (that with zero-denominator):3;Da:na:ya.ea:DRa:na:mxa:Na:mxa:Na:ya.ea:DRa:na:NRa:ya.ea.=;nta.=M .sa:mEa:k�+.aM Ka:m,a Á�+Na:mEa:k�+.aM ..a ;Da:na:mxa:Na:Da:na:ZUa:nya:ya.eaH ZUa:nya:m,a Á Á�+.na:ma:	a.Da:k+a:�a.dõ :Za.ea:DyMa ;Da:nMa ;Da:na.a:dx :Na:mxa:Na.a:d:	a.Da:k+.mUa:na.a:t,a Áv.ya:~tMa ta:d:nta.=M .~ya.a:dx :NMa ;Da:nMa ;Da:na:mxa:NMa Ba:va:	a.ta Á ÁZUa:nya:�a.va:h� .a:na:mxa:Na:mxa:NMa ;Da:nMa ;Da:nMa Ba:va:	a.ta ZUa:nya:ma.a:k+a:Za:m,a ÁZa.ea:DyMa ya:d.a ;Da:na:mxa:Na.a:dx :NMa ;Da:na.a:dõ .a ta:d.a [ea:pya:m,a Á Á�+Na:mxa:Na:Da:na:ya.ea:Ga.Ra:ta.ea ;Da:na:mxa:Na:ya.ea:DRa:na:va:Da.ea ;Da:nMa Ba:va:	a.ta ÁZUa:nya:NRa:ya.eaH Ka:Da:na:ya.eaH Ka:ZUa:nya:ya.ea:va.Ra va:DaH ZUa:nya:m,a Á Á;Da:na:Ba:�M ;Da:na:mxa:Na:&+ta:mxa:NMa ;Da:nMa Ba:va:	a.ta KMa Ka:Ba:�M Ka:m,a ÁBa:�+.mxa:Nea:na ;Da:na:mxa:NMa ;Da:nea:na &+ta:mxa:Na:mxa:NMa Ba:va:	a.ta Á ÁKa.ea.;dÄâx :ta:mxa:NMa ;Da:nMa va.a ta:.Ce +dM Ka:mxa:Na:Da:na:�a.va:Ba:�M va.a Á�+Na:Da:na:ya.ea:vRa:gRaH .~vMa KMa Ka:~ya :pa:dM kx +.	a.ta:yRa:t,a ta:t,a Á Á

. . . [The sum of] positive (dhana) and negative (r. n. a), if they are equal, is
zero (kham). The sum of a negative and zero is negative, of a positive and
zero is positive and of two zeros, zero (śūnya).

3Brāhmasphut.asiddhānta of Brahmagupta, Ed. with his own commentary by Sudhakara Dvivedi,
Benaras 1902, verses 18.30–35, pp. 309–310.
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. . . Negative subracted from zero is positive, and positive from zero is neg-
ative. Zero subtracted from negative is negative, from positive is positive,
and from zero is zero (̄akāśa).

. . . The product of zero and a negative, of zero and a positive,or of two
zeroes is zero.

. . . A zero divided by zero is zero.

. . . A positive or a negative divided by zero is that with zero-denominator.

2.3 Bhāskarācārya on Khahara

Bh āskar āc ārya II (c. 1150), while discussing the mathematics of zero inBı̄jagan. ita,
explains that infinity (ananta-rāśi) which results when some number is divided by
zero is calledkhahara. He also mentions the characteristic property of infinity that it
is unaltered even if ‘many’ are added to or taken away from it,in terms similar to the
invocatory verse of̄Iśāvāsyopanis. ad mentioned above:4Ka:h.=:ea Ba:vea:t,a Kea:na Ba:�+.(ãÉa .=:a:�a.ZaH Á Á;�a.dõ Èåî ÁÁ*+M ;�a�a:&+t,a KMa Ka:&+tMa �a:yMa ..a ZUa:nya:~ya va:g a va:d mea :pa:dM ..a Á Á

. . .A:ya:ma:na:nta.ea 3/0 .=:a:�a.ZaH Ka:h.=H I+tyua:.ya:tea ÁA:�///////�a.sma:�/�a.nva:k+a.=H Ka:h:=e na .=:a:Za.a:va:�a.pa :pra:�a.va:�e :Sva:�a.pa ;
a.naHsxa:tea:Sua Ába:hu :Sva:�a.pa .~ya.a:�+.ya:sxa:�a.�:k+a:le Y:na:nteaY:.yua:tea BUa:ta:ga:Nea:Sua ya:dõ :t,a Á Á
A quantity divided by zero will be (called)khahara (an entity with zero
as divisor).

Tell me . . . three divided by zero . . . This infinite (ananta or that without
end) quantity30 is calledkhahara.

In this quantity,khahara, there is no alteration even if many are added
or taken out, just as there is no alteration in the Infinite (ananta), Infal-
lible (acyuta) [Brahman] even though many groups of beings enter in or
emanate from [It] at times of dissolution and creation.

2.4 Bhāskarācārya on multiplication and division by zero

Bh āskar āc ārya while discussing the mathematics of zeroin L̄ılāvat̄ı, notes that when
further operations are contemplated, the quantity being multiplied by zero should not
be changed to zero, but kept as is. Further he states that whenthe quantity which is
multiplied by zero is also divided by zero, then it remains unchanged. He follows this
up with an example and declares that this kind of calculationhas great relevance in
astronomy:5

4Bı̄jagan. ita of Bhāskarācārya, Ed. by Muralidhara Jha, Benaras 1927,Vāsanā onKhas.ad. vidham

3, p. 6.
5Lı̄lāvat̄ı of Bhāskarācārya, Ed. by H. C. Bannerjee, Calcutta 1927,Vāsanā on verses 45–46,

pp. 14–15.
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ya.ea:gea KMa [ea:pa:sa:mMa va:ga.Ra:d.Ea KMa Ka:Ba.a:�aja:ta.ea .=:a:�a.ZaH ÁKa:h.=H .~ya.a:t,a Ka:gua:NaH KMa Ka:gua:Na:�a.(ãÉa:ntya:(ãÉa Zea:Sa:�a.va:Da.Ea Á ÁZUa:nyea gua:Na:ke .ja.a:tea KMa h.a.=;(ãÉea:tpua:na:~ta:d.a .=:a:�a.ZaH ÁA:�a.va:kx +.ta O;:va ¼ea:ya:~ta:TEa:va Kea:na.ea:
a.na:ta.úãÁ*.a yua:taH Á ÁKMa :pa.úãÁ*.a:yua:gBa:va:	a.ta ;�a.kM va:d Ka:~ya va:g a mUa:lM ;Ga:nMa ;Ga:na:pa:dM Ka:gua:Na.a:(ãÉa :pa.úãÁ*.a ÁKea:na.ea.;dÄâx :ta.a d:Za ..a kH Ka:gua:Na.ea ;
a.na.ja.a:DRa:yua:�+.�/�a.~:�a:�a.Ba:(ãÉa:gua:�a.Na:taH Ka:&+ta:�/�a.~:�a:Sa:�a.�H Á Á
. . .A:¼a.a:ta.ea .=:a:�a.ZaH ta:~ya gua:NaH 0 Á .sa.a:D a [ea:paH 1/2 Á gua:NaH 3 Á h.=H 0 Ádx :ZyMa 63 Áta:ta.ea va:[ya:ma.a:Nea:na ;�a.va:l;ea:ma:�a.va:	a.Da:na.a I+�:k+.mRa:Na.a va.a l+b.Da.ea .=:a:�a.ZaH 14 ÁA:~ya ga:�a.Na:ta:~ya g{a:h:ga:�a.Na:tea ma:h.a:nua:pa:ya.ea:gaH Á
. . . A quantity multiplied by zero is zero. But it must be retained as such
when further operations [involving zero] are contemplated. When zero is
the multiplier of a quantity, if zero also happens to be a divisor, then that
quantity remains unaltered . . .

. . . What is the number which when multiplied by zero, being added to
half of itself multiplied by 3 and divided by zero, amounts tosixty-three?

. . . Either following the inverse process or by choosing a desired number
for the unknown (‘rule of false position’), the quantity is obtained to be
14. This kind of calculation is of great use in mathematical astronomy.

Bh āskara works out his example as follows:

0

[(
x +

x

2

)
× 3

0

]
= 63

3x

2
× 3 = 63.

Therefore, x = 14. (1)

Bh āskara, it seems, had not fully mastered this kind of “calculation with infinitesi-
mals” as is clear from the following example that he presentsin Bı̄jagan. ita while
solving quadratic equations by eliminating the middle term:6kH .~va.a:DRa:sa:�a.h:ta.ea .=:a:�a.ZaH Ka:gua:Na.ea va:	a.gRa:ta.ea yua:taH Á.~va:pa:d.a:Bya.Ma Ka:Ba:�+.(ãÉa .ja.a:ta.aH :pa.úãÁ*.a:d:Za.ea:.ya:ta.a:m,a Á Á

Say what is the number which when added to half of itself, multiplied
by zero, squared and the square being augmented by twice its root and
divided by zero, becomes fifteen?

Clearly the problem as stated is

[
0(x + x

2 )
]2

+ 2 ×
[
0(x + x

2 )
]

0
= 15. (2)

6Bı̄jagan. ita, cited above,Vāsanā onavyaktavargādi-samı̄karan. am 5, pp. 63–64.
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Bh āskara in hisVāsanā seems to just cancel out the zeros without paying any heed to
the different powers of zero involved. He converts the problem into the equation

[
x +

x

2

]2
+ 2 ×

[
x +

x

2

]
= 15. (3)

Solving this, by the method of elimination of the middle term, Bh āskara obtains the
solutionx = 2. The other solution(− 10

3 ) is not noted.

3 Irrationals and iterative approximations

3.1 Background

Baudhāyana-śulva-sūtra gives the following approximation for
√

2:7:pra:ma.a:NMa txa:t�a.a:yea:na va:DRa:yea.�a:�a ..a:tua:TeRa:na.a:tma:.a:tua:�/�a.~:�Ma:Za.ea:nea:na Á .sa:�a.va:Zea:SaH Á
The measure [of the side] is to be increased by its third and this [third]
again by its own fourth less the thirty-fourth part [of the fourth]. That is
the approximate diagonal (savíses.a).

√
2 ≈ 1 +

1

3
+

1

3.4
− 1

3.4.34

=
577

408
= 1.4142156. (4)

The above approximation is accurate to 5 decimal places.

Baudhāyana-śulva-sūtra also gives an approximation forπ: 8..a:tua.=;(rMa ma:Nq+lM ;
a..a:k� +a:SRa:�a:[Na:ya.a:D a ma:Dya.a:tpra.a:.�a.a:ma:Bya.a:pa.a:ta:yea:t,a Áya:d:	a.ta:�a.Za:Sya:tea ta:~ya .sa:h:txa:t�a.a:yea:na ma:Nq+lM :pa:�a=;
a.l+Kea:t,a Á
If it is desired to transform a square into a circle, [a cord oflength] half
the diagonal of the square is stretched from the centre to theeast; with
one-third [of the part lying outside] added to the remainder[of the half-
diagonal] the [required] circle is drawn.

If a is half-the side of the square, then the radiusr of the circle is given by

r ≈
(a

3

)
(2 +

√
2). (5)

This corresponds toπ ≈ 3.0883.

7Baudhāyanaśulvasūtram (1.61-2), inTheŚulvasūtrās, Ed. by S. N. Sen and A. K. Bag, New Delhi
1983, p. 19.

8Baudhāyanaśulvasūtram (1.58), ibid., p. 19.
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3.2 Algorithm for square-roots in Āryabhat.ı̄ya

The Āryabhat. ı̄ya of Āryabhat.a (c. 499CE) gives a general algorithm for comput-
ing the successive digits of the square root of a number. The procedure given in the
following verse is also elucidated by an example:9Ba.a:gMa h:=e ;d:va:ga.Ra:�a.�a:tyMa ;�a.dõ :gua:Nea:na va:gRa:mUa:le +na Áva:ga.Ra:dõ :geRa Zua.;dÄâ e l+b.DMa .~Ta.a:na.a:nta:=e mUa:l+m,a Á Á

Always divide the non-square (even) place by
twice the square-root [already found]. Having sub-
tracted the square [of the quotient] from the square
(odd) place, the quotient gives the [digit in the]
next place in the square-root.

7 5

5 6 2 5
4 9

14) 7 2 (5
7 0

2 5
2 5

0 0

3.3 Approximating the square-root of a non-square number

The method for obtaining approximate square-root (āsanna-mūla) of a non-square
number (amūlada-rāśi) is stated explicitly inTrísatikā of Śr̄ıdhara (c. 750):10.=:a:Zea.=;mUa:l+d:~ya.a:h:ta:~ya va:geRa:Na :ke +.na:
a..a:n}å.a:h:ta.a ÁmUa:lM Zea:Sea:Na ;�a.va:na.a ;�a.va:Ba.jea:�çÅu ;Na:va:gRa:mUa:le +na Á Á

Multiply the non-square number by some large square number,take the
square-root [of the product] neglecting the remainder, anddivide by the
square-root of the multiplier.

Nārāyan.a Pan.d. ita (c. 1356) has noted that the solutions ofvarga-prakr. ti (the so
called Pell’s equation) can be used to compute successive approximations to the square-
root of a non-square number:11mUa:lM g{a.a:hùÅ:aM ya:~ya ..a ta:dÒU ;pa:[ea:pa.jea :pa:de ta.�a Á.$yea:�M &+~va:pa:de :na ..a .sa:mua.;dÄâ :=e ;t,a mUa:l+ma.a:sa:�a:m,a Á Á

[With the number] whose square-root is to be found as theprakr. ti and
unity as theks.epa, [obtain the greater and smaller] roots. The greater root
divided by the lesser root is an approximate value of the square-root.

Nārāyan.a considers the example

10x2 + 1 = y2, (6)
9Āryabhat.ı̄ya of Āryabhat.a, Ed. by K. S. Shukla and K. V. Sarma, New Delhi 1976,Gan. itapāda 4,

p. 36.
10Trísatikā of Śr̄ıdhara, Ed. by Sudhakara Dvivedi, Varanasi 1899, verse 46, p. 34.
11Gan. itakaumud̄ı of Nārāyan. a Pan. d. ita, Ed. by Padmakara Dvivedi, Part II, Benaras 1942, verse

10.17, p. 244.
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and gives the approximate values:

√
10 ≈ 19

6
,

721

228
,

27379

8658
, (7)

which are obtained by successive compositions (bhāvanā) of the basic solutions 6, 19:12

228 = (2)(6)(19), 721 = (10)(6)2 + (19)2, and so on.

3.4 Approximate value ofπ in Āryabhat.ı̄ya

Āryabhat.a (c. 499) gives the following approximate value forπ:13..a:tua.=;	a.Da:kM Za:ta:ma:�:gua:NMa dõ .a:Sa:�a.�:~ta:Ta.a .sa:h:~åò:a.a:Na.a:m,a ÁA:yua:ta:dõ :ya:�a.va:Sk+.}Ba:~ya.a:sa:�a.ea vxa.�a:pa:�a=;Na.a:hH Á Á
One hundred plus four multiplied by eight and added to sixty-two thou-
sand: This is the approximate measure of the circumference of a circle
whose diameter is twenty-thousand.

Thus as per the above verseπ ≈ 62832
20000 = 3.1416.

3.5 Successive doubling of the sides of the circumscribing polygon

It appears that Indian mathematicians (at least in theĀryabhat.an tradition) employed
the method of successive doubling of the sides of a circumscribing polygon—starting
from the circumscribing square leading to an octagon, etc.—to find successive approx-
imations to the circumference of a circle. This method has been described in the later
Kerala textsYuktibhās. ā (c. 1530) ofJyes.t.hadeva andKriyākramakar̄ı commentary
(c. 1535) ofŚaṅkara Vāriyar on L̄ılāvat̄ı, of Bhāskara II. The latter cites the verses
of Mādhava (c. 1340–1420) in this connection and notes at the end that:14O;:vMa ya.a:va:d:B�a.a:�M .sUa:[ma:ta.a:ma.a:pa.a:d:
a.ya:tMua Za:k�+.a:m,a Á

Thus, one can obtain [an approximation to the circumferenceof the circle]
to any desired level of accuracy.

We now outline this method as described inYuktibhās. ā.15 In Figure 1,EOSA1 is the
first quadrant of the square circumscribing the given circle. EA1 is half the side of the

12Bhāvanā or the rule of composition enunciated by Brahmagupta is the tranformation (X, Y )→(X2 +
DY 2, 2XY ) which tranforms a solutionx = X, y = Y of the equationx2 − Dy2 = 1, into an-
other solution with larger values forx, y, which correspond to higher convergents in the continued fraction
expansion of

√
D and thus give better approximations to it.

13Āryabhat.ı̄ya, cited above,Gan. itapāda 10, p. 45.
14Lı̄lāvat̄ı of Bhāskara II, Ed. with commentaryKriyākramakar̄ı of Śaṅkara Vāriyar by

K. V. Sarma, Hoshiarpur 1975, comm. on verse 199, p. 379.
15Gan. ita-yukti-bhās.ā of Jyes.t.hadeva, Ed. and Tr. by K. V. Sarma, with Exp. Notes by K. Rama-

subramanian, M. D. Srinivas and M. S. Sriram, 2 Vols, Hindustan Book Agency, New Delhi 2008. Reprint
Springer 2009, Vol. I Section 6.2, pp. 46–49, 180–83, 366–69.
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Figure 1: Finding the circumference of a square from cirumscribing polygons.

circumscribing square. LetOA1 meet the circle atC1. DrawA2C1B2 parallel toES.
EA2 is half the side of the circumscribing octagon.

Similarly, letOA2 meet the circle atC2. DrawA3C2B3 parallel toEC1. EA3 is now
half the side of a circumscribing regular polygon of 16 sides. And so on. Let half the
sides of the circumscribing square, octagon etc., be denoted

l1 = EA1, l2 = EA2, l3 = EA3, . . . (8)

The correspondingkarn. as (diagonals) are

k1 = OA1, k2 = OA2, k3 = OA3, . . . (9)

And theābhādhas (intercepts) are

a1 = D1A1, a2 = D2A2, a3 = D3A3, . . . (10)

Now
l1 = r, k1 =

√
2r and a1 =

r√
2
. (11)

Using thebhuja-kot.i-karn. a-nyāya (Pythagoras theorem) andtrairāśika-nyāya (rule
of three for similar triangles), it can be shown that

l2 = l1 − (k1 − r)
l1
a1

(12)

k2
2 = r2 + l22 (13)

and a2 =
[k2

2 − (r2 − l22)]

2k2
. (14)

In the same wayln+1, kn+1 andan+1 are to be obtained in terms ofln, kn andan.
These can be shown equivalent to the recursion relation:16

16If we setr = 1 andln = tan θn, then equation (15) givesln+1 = tan
(

θn

2

)
. Actually, θn = π

2n+1

and the above method is based on the fact that for largen, 2n tan π

2n+2 ≈ 2n π

2n+2 = π
4
.
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ln+1 =
r

ln
[
√

(r2 + l2n) − r]. (15)

4 Summation (and repeated summations) of powers of
natural numbers (saṅkalita)

4.1 Sum of squares and cubes of natural numbers in̄Aryabhat.ı̄ya

The ancient textBr. haddevatā (c. 5th centuryBCE) has the result

2 + 3 + . . . + 1000 = 500, 499. (16)

Āryabhat.a (c. 499 CE), in the Gan. itapāda of Āryabhat. ı̄ya, deals with a general
arithmetic progression in verses 19–20. He gives the sum of the squares and cubes of
natural numbers in verse 22:17.sEa:k+.sa:ga:.C+pa:d.a:na.Ma kÒ +.ma.a:t,a ;�a�a:sMa:va:	a.gRa:ta:~ya :Sa:�:eMaY:ZaH Áva:gRa:
a..a:	a.ta:Ga:naH .sa Ba:vea:t,a ;
a..a:	a.ta:va:ga.eRa ;Ga:na:
a..a:	a.ta:Ga:na:(ãÉa Á Á

The product of the three quantities, the number of terms plusone, the
same increased by the number of terms, and the number of terms, when
divided by six, gives the sum of squares of natural numbers (varga-citi-
ghana). The square of the sum of natural numbers gives the sum of the
cubes of natural numbers (ghana-citi-ghana).

In other words,

12 + 22 + 32 + . . . + n2 =
n(n + 1)(2n + 1)

6
(17)

13 + 23 + 33 + . . . + n3 = [1 + 2 + 3 + . . . + n]2

=

[
n(n + 1)

2

]2
. (18)

4.2 Repeated sum of natural numbers inĀryabhat.ı̄ya

Āryabhat.a also gives the repeated sum of the sum of the natural numbers (saṅkalita-
saṅkalita or vāra-saṅkalita):18O;:k+ea.�a.=:a:dùÅ;au :pa:
a..a:tea:gRa:.C;a:dùÅ;ae :k+ea.�a.=;�a�a:sMa:va:gRaH Á:Sa.ñÂ ÅÅå*.+.�H .sa ;
a..a:	a.ta:Ga:naH .sEa:k+.pa:d:Ga:na.ea ;�a.va:mUa:l;ea va.a Á Á

Of the series (upaciti) 1, 2, . . . ,n, take three terms in continuation of
which the first is the given number of terms (gaccha), and find their prod-
uct; that [product], or the number of terms plus one subtracted from its
own cube divided by six, gives the repeated sum (citi-ghana).

17Āryabhat.ı̄ya, cited above,Gan. itapāda 22, p. 65.
18Āryabhat.ı̄ya, cited above,Gan. itapāda 21, p. 64.
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We have

1 + 2 + 3 + . . . + n =
n(n + 1)

2
. (19)

Āryabhat.a’s result expresses the sum of these triangular numbers in two forms:

1
(1 + 1)

2
+ 2

(2 + 1)

2
+ . . . + n

(n + 1)

2
=

[n(n + 1)(n + 2)]

6

=
[(n + 1)3 − (n + 1)]

6
. (20)

4.3 Nārāyan.a Pan.d. ita’s general formula for Vārasȧnkalita

In hisGan. ita-kaumud̄ı, N ār āyan.a Pan.d. ita (c. 1356) gives the formula for therth-order
repeated sum of the sequence of numbers 1, 2, 3, . . . ,n:19O;:k+a:	a.Da:k+.va.a.=;�a.ma:ta.aH :pa:d.a:�a.d.�+pa.ea.�a.=:a :pxa:Ta:k, .teMaY:Za.aH ÁO;:k+a:dùÅ;ae :k+..a:ya:h.=:a:~ta..�ÈÅ :a:ta.ea va.a.=;sa:ñÍö�ÅÅ*:+
a.l+ta:m,a Á Á

Thepada (number of terms in the sequence) is the first term [of an arith-
metic progression] and 1 is the common difference. Take as numerators
[the terms in the AP] numbering one more thanvāra (the number of times
the repeated summation is to be made). The denominators are [terms of
an AP of the same length] starting with one and with common difference
one. The resultant product isvāra-saṅkalita.

Let

1 + 2 + 3 + . . . + n =
n(n + 1)

2
= V (1)

n . (21)

Then, N ār āyan.a’s result is

V (r)
n = V

(r−1)
1 + V

(r−1)
2 + . . . + V (r−1)

n (22)

=
[n(n + 1) . . . (n + r)]

[1.2 . . . (r + 1)]
. (23)

N ār āyan.a’s result can also be expressed in the form of a sum of polygonal numbers:
n∑

m=1

[m(m + 1) . . . (m + r − 1)]

[1.2 . . . r]
=

[n(n + 1) . . . (n + r)]

[1.2 . . . (r + 1)]
. (24)

This result can be used to evaluate the sums
∑n

k=1 k2,
∑n

k=1 k3, . . . by induction. It
can also be used to estimate the behaviour of these sums for largen.

4.4 Summation of geometric series

The geometric series1 + 2 + 22 + . . . 2n is summed in Chapter VIII of Piṅgala’s
Chandah. -sūtra (c. 300BCE). As we mentioned earlier, Piṅgala also gives an algo-
rithm for evaluating any positive integral power of a number(2 in this context) in
terms of an optimal number of squaring and multiplication operations.

19Gan. itakaumud̄ı of N ār āyan.a Pan.d. ita, Ed. by Padmakara Dvivedi, Part I, Benaras 1936, verse
3.19–20, p. 123.
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Mahāv̄ırācārya (c. 850), in hisGan. ita-sāra-saṅgraha gives the sum of a geometric
series and also explains the Piṅgala algorithm for finding the required power of the
common ratio between the terms of the series:20:pa:d:�a.ma:ta:gua:Na:h:	a.ta:gua:�a.Na:ta:pra:Ba:vaH .~ya.a:�çÅu ;Na:Da:nMa ta:d.a:dùÅ;aU :na:m,a ÁO;:k+ea:na:gua:Na:�a.va:Ba:�M gua:Na:sa:ñÍö�ÅÅ*:+
a.l+tMa ;�a.va.ja.a:n�a.a:ya.a:t,a Á Á.sa:ma:d:l+�a.va:Sa:ma:~va.�+pa.ea gua:Na:gua:�a.Na:ta.ea va:gRa:ta.a:�a.q+ta.ea ga:.CH Á.�+pa.ea:naH :pra:Ba:vaÈåîÁÁ*+.ea v.yea:k+ea.�a.=;Ba.a:�aja:taH .sa.a.=;m,a Á Á

The first term when multiplied by the product of the common ratio (gun. a)
taken as many times as the number of terms (pada), gives rise to the
gun. adhana. This gun. adhana, when diminished by the first term and
divided by the common ratio less one, is to be understood as the sum of
the geometrical series (gun. a-saṅkalita).

That is

a + ar + ar2 + . . . + arn−1 =
a(rn − 1)

(r − 1)
. (25)

Vı̄rasena (c. 816), in his commentaryDhavalā on theS. at.khan. d. āgama, has made use
of the sum of the following infinite geometric series in his evaluation of the volume of
the frustum of a right circular cone:21

1 +
1

4
+

(
1

4

)2

+ . . . +

(
1

4

)n

+ . . . =
4

3
. (26)

The proof of the above result is discussed in theĀryabhat. ı̄ya-bhās. ya (c. 1502) of
Nı̄lakan.t.ha Somayāj̄ı. As we shall see later (section 10.1),Nı̄lakan. t.ha makes use
of this series for deriving an approximate expression for a small arc in terms of the
corresponding chord in a circle.

5 Use of Second-order differences and interpolation in
computation of Rsines (Jyānayana)

Jyā, Kot.i and Śara

The jyā or bhujā-jyā of an arc of a circle is actually the half-chord (ardha-jyā or
jyārdha) of double the arc. In the Figure 2, ifR is the radius of the circle,jyā (Rsine),
kot.i or kot.i-jyā (Rcosine) and́sara (Rversine) of thecāpa (arc)EC are given by:

jyā (arc EC) = CD = R sin(6 COE) (27)

kot.i (arc EC) = OD = R cos(6 COE) (28)

śara (arc EC) = ED = Rvers(6 COE)

= R − R cos(6 COE). (29)

For computing standard Rsine-tables (pat.hita-jyā), the circumference of a circle is
20Gan. itasārasaṅgraha of Mahāv̄ırācārya, Ed. by Lakshmi Chanda Jain, Sholapur 1963, verses 2.93–

94, pp. 28–29.
21See, for instance, T. A. Sarasvati Amma,Geometry in Ancient and Medieval India, Motilal Banarsidass,

Delhi 1979, Rep. 2007, pp. 203–05.
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Figure 2:Jyā, Kot.i andŚara.

divided into21600′ and usually the Rsines are tabulated for every multiple of 225′,
thus giving 24 tabulated Rsines in a quadrant. Using the value ofπ ≈ 62832

20000 = 3.1416,
given byĀryabhat.a, the value of the radius then turns out to be3437′ 44′′ 19′′′. This
is accurate up to the seconds, but is usually approximated to3438′. Using a more
accurate value ofπ, Mādhava (c. 1340–1420) gave the value of the radius correct to
the thirds as3437′ 44′′ 48′′′ which is also known by theKat.apayādi formuladevo-
vísvasthal̄ı-bhr. guh. .

5.1 Computation of Rsines

Once the value of the radiusR is fixed (in units of minutes, seconds etc.) the 24 Rsines
can be computed (in the same units) using standard relationsof jyotpatti (trigonome-
try). For instance,Varāhamihira has given the following Rsine values and relations
in hisPañcasiddhāntikā (c. 505):22

R sin(30◦) =
R

2
(30a)

R sin(45◦) =
R√
2

(30b)

R sin(60◦) =

√
3

2
R (30c)

R sin(90◦) = R (30d)

R sin(A) = R cos(90 − A) (31)

R sin2(A) + R cos2(A) = R2 (32)

R sin

(
A

2

)
=

(
1

2

)
[R sin2(A) + R vers2(A)]

1
2

22Pañcasiddhāntikā of Varāhamihira, Ed. by T. S. Kuppanna Sastry and K. V. Sarma, Madras 1993,
verses 4.1–5, pp. 76–80.
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=

(
R

2

) 1
2

[R − R cosA]
1
2 . (33)

The above Rsine values (30) and relations (31)–(33) can be derived using thebhujā-
kot.i-karn. a-nyāya (Pythagoras theorem) andtrairāśika (rule of three for similar tri-
angles), as is done for instance in theVāsanā-bhās.ya of Pr. thūdakasvāmin (c. 860)
onBrāhmasphut.asiddhānta (c. 628) ofBrahmagupta. Equations (30)–(33) can be
used to compute all24 tabular Rsine values.

5.2 Āryabhat.a’s computation of Rsine-differences

The computation of tabular Rsine values was made much simpler by Āryabhat.a who
gave an ingenious method of computing the Rsine-differences, making use of the im-
portant property that the second-order differences of Rsines are proportional to the
Rsines themselves:23:pra:Ta:ma.a:�a.a:pa.$ya.a:Da.Ra:dùÅ;aE .�+nMa Ka:�//�a.Nq+tMa ;�a.dõ :t�a.a:ya.a:DRa:m,a Áta:tpra:Ta:ma.$ya.a:Da. a:ZEa:~tEa:~tEa.�+na.a:
a.na Zea:Sa.a:�a.Na Á Á

The first Rsine divided by itself and then diminished by the quotient will
give the second Rsine-difference. The same first Rsine, diminished by the
quotients obtained by dividing each of the preceding Rsinesby the first
Rsine, gives the remaining Rsine-differences.

Let B1 = R sin (225′), B2 = R sin (450′), ..., B24 = R sin (90◦), be the twenty-
four Rsines, and let∆1 = B1, ∆2 = B2 − B1, ..., ∆k = Bk − Bk−1, ... be the
Rsine-differences. Then, the above rule may be expressed as24

∆2 = B1 −
B1

B1
(34)

∆k+1 = B1 −
(B1 + B2 + . . . + Bk)

B1
(k = 1, 2, . . . , 23). (35)

This second relation is also sometimes expressed in the equivalent form

∆k+1 = ∆k − (∆1 + ∆2 + . . . + ∆k)

B1
(k = 1, 2, . . . , 23). (36)

From the above it follows that

∆k+1 − ∆k =
−Bk

B1
(k = 1, 2, . . . , 23). (37)

SinceĀryabhat.a also takes∆1 = B1 = R sin(225′) ≈ 225′, the above relations
reduce to

∆1 = 225′ (38)

∆k+1 − ∆k =
−Bk

225′
(k = 1, 2, . . . , 23). (39)

23Āryabhat.ı̄ya, cited above,Gan. itapāda 12, p. 51.
24Āryabhat.a is using the approximation∆2 −∆1 ≈ 1′ and the second terms in the RHS of (34)–(36)

and the RHS of (37) and (39) have an implicit factor of (∆2 − ∆1). See (45) below which is exact.
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5.3 Derivation of theĀryabhat.a-relation for the second-order Rsine-
differences

Āryabhat.a’s relation for the second-order Rsine-differences is derived and made
more exact in thēAryabhat. ı̄ya-bhās. ya (c. 1502) ofNı̄lakan. t.ha Somayāj̄ı andYuk-
tibhās. ā (c. 1530) ofJyes.t.hadeva. We shall present a detailed account of the first and
second-order Rsine-differences as given inYuktibhās. ā

25 later in Section 16. Here we
shall only summarize the argument.

In Figure 3, the arcsECj andECj+1 are successive multiples of225′. The Rsine and
Rcosine of the arcsECj andECj+1 are given by

Bj = CjPj , Bj+1 = Cj+1Pj+1 (40)

and Kj = CjTj, Kj+1 = Cj+1Tj+1, (41)

respectively. LetMj+1 and Mj be the mid-points of the arcsCjCj+1, Cj−1Cj

and the Rsine and Rcosine of the arcsEMj and EMj+1 be denoted respectively
by Bj− 1

2
, Bj+ 1

2
, Kj− 1

2
, Kj+ 1

2
.

O

jM
jC

GM j+1

C j+1
F

j+1T UjjTUj+1

Q j

Pj

Q j+1

Pj+1

E

SE

N

α

F

j+1M

C j+1

C j

Figure 3: Derivation of̄Aryabhat.a relation.

Let the chord of the arcCjCj+1, be denoted byα and letR be the radius. Then a
simple argument based ontrairāśika (similar triangles) leads to the relations:26

Bj+1 − Bj =
(α

R

)
Kj+ 1

2
(42)

Kj− 1
2
− Kj+ 1

2
=

(α

R

)
Bj . (43)

25Gan. ita-yukti-bhās.ā, cited above, Section 7.5.1, pp. 94–96, 221–24, 417–20.
26Equations (42) and (43) are essentially the relations:

R sin(x + h) − R sin x =

(
α

R

)
R cos

(
x +

h

2

)

R cos

(
x − h

2

)
− R cos

(
x +

h

2

)
=

(
α

R

)
R sinx,
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Thus we get

∆j+1 − ∆j = (Bj+1 − Bj) − (Bj − Bj−1)

= −
(α

R

)2

Bj . (44)

We can also express this relation in the form

∆j+1 − ∆j =
−Bj(∆1 − ∆2)

B1
. (45)

The above relations are exact.Āryabhat.a’s relation(39) corresponds to the approxi-
mations,B1 ≈ 225′ and∆1 − ∆2 ≈ 1′ so that

(α

R

)2

=
(∆1 − ∆2)

B1
≈
(

1

225′

)
. (46)

In Tantrasaṅgraha, Nı̄lakan. t.ha Somayāj̄ı has given the finer approximation:27

(α

R

)2

=
(∆1 − ∆2)

B1
≈
(

1

233 1
2

′

)
. (47)

This is further refined býSaṅkara Vāriyar in his commentaryLaghu-vivr. ti in the
form:28

(α

R

)2

=
(∆1 − ∆2)

B1
≈
(

1

233′32′′

)
. (48)

Sinceα = 2R sin 112′30′′, we find that the above relation is correct up to seconds.

Commenting on̄Aryabhat.a’s method of computing Rsines, Delambre had remarked:29

The method is curious: it indicates a method of calculating the table of
sines by means of their second-differences... This differential process
has not up to now been employed except by Briggs, who himself did not
know that the constant factor was the square of the chord∆A (= 3◦45′)
or of the interval, and who could not obtain it except by comparing the
second differences obtained in a different manner. The Indians also have
probably done the same; they obtained the method of differences only
from a table calculated previously by a geometric process. Here then is a
method which the Indians possessed and which is found neither amongst
the Greeks, nor amongst the Arabs.

with α = 2R sin h
2

. These lead to (44) in the form:

(R sin(x + h) − R sinx) − (R sinx − R sin(x − h)) = −
(

α

R

)2

R sinx.

27Tantrasaṅgraha of Nı̄lakan. t.ha Somayāj̄ı, Ed. with Laghu-vivr. ti of Śaṅkara Vāriyar by
S. K. Pillai, Trivandrum 1958, verse 2.4, p. 17.

28Ibid., comm. on verse 2.4.
29Delambre,Historie de l’ Astronomie Ancienne, t 1, Paris 1817, pp. 457, 459f, cited from B. B. Datta

and A. N. Singh, ‘Hindu Trigonometry’, Ind. Jour. Hist. Sc.18, 39–108, 1983, p. 77.
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5.4 The Rsine-table ofĀryabhat.a

In theGı̄tikā-pāda of Āryabhat. ı̄ya, Āryabhat.a has given a table of Rsine-differences:30ma:a.Ka Ba:a.Ka :P+a.Ka ;Da:a.Ka :Na:a.Ka Va:a.Ka.z+a.Ka h:~å.Ja .~k+.�a.k ;�a.k+.Sga .~å.Ga:�a.k ;�a.k+.Gva Á;Gl+�a.k ;�a.k+.g{a h:k�+.a ;Da:�a.k ;�a.k+..a.~ga ZJa zõÅÉ ë�ÅÉì*: �a :P C k+.l;a:DRa.$ya.aH Á Á
225, 224, 222, 219, 215, 210, 205, 199, 191, 183, 174, 164, 154, 143, 131,
119, 106, 93, 79, 65, 51, 37, 22, and 7—these are the Rsine-differences
[at intervals of 225’ of arc] in terms of the minutes of arc.

The above values follow directly from̄Aryabhat.a’s relation(39) for the second or-
der Rsine-differences. To start with,∆1 = B1 = R sin(225′) ≈ 225′. Then we
get,∆2 = B1 − B1

B1
= 224′ and so on.

The Rsine-table of̄Aryabhat.a
31 (see Table 1), obtained this way, is accurate up to

minutes. In this table, we also give the Rsine values given byGovindasvāmin (c. 825)
in his commentary onMahābhāskar̄ıya of Bhāskara I, and byMādhava (c. 1340–
1420) as recorded in thēAryabhat. ı̄ya-bhās. ya (c. 1502) ofNı̄lakan. t.ha Somayāj̄ı.
ThoughGovindasvāmin gives the Rsine values up to the thirds, his values are accu-
rate only up to the seconds; those ofMādhava are accurate up to the thirds.

5.5 Brahmagupta’s second-order interpolation formula

The Rsine table of̄Aryabhat.a gives only the Rsine values for the twenty-four mul-
tiples of225′. The Rsines for arbitrary arc-lengths have to be found by interpolation
only. In hisKhan. d. akhādyaka (c. 665),Brahmagupta gives a second-order interpo-
lation formula for the computation of Rsines for arbitrary arcs. In this work, which is
in the form of a manual (karan. a) for astronomical calculations,Brahmagupta uses a
simpler Rsine-table which gives Rsines only at intervals of15◦ or 900′:32ga:ta:Ba.ea:gya:Ka:Nq+k+a:nta.=;d:l+�a.va:k+.l+va:Da.a:t,a Za:tEa:nRa:va:�a.Ba.=:a:�ya.a Áta:dùÅ;au :	a.ta:d:lM yua:ta.ea:nMa Ba.ea:gya.a:dU :na.a:	a.Da:kM Ba.ea:gya:m,a Á Á

Multiply the residual arc after division by900′ by half the difference of
the tabular Rsine difference passed over (gata-khan. d. a) and to be passed
over (bhogya-khan. d. a) and divide by900′. The result is to be added to or
subtracted from half the sum of the same tabular sine differences accord-
ing as this [half-sum] is less than or equal to the Rsine tabular difference
to be passed. What results is the true Rsine-difference to bepassed over.

30Āryabhat.ı̄ya, cited above,Gı̄tikāpāda 12, p. 29.
31See, for instance, A. K. Bag,Mathematics in Ancient and Medieval India, Varanasi 1979, pp. 247–48.
32Khan. d. akhādyaka of Brahmagupta, Ed. by P. C. Sengupta, Calcutta 1941, p. 151.
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Table 1: Rsine-table of̄Aryabhat.a, Govindasvāmin andMādhava.

Āryabhat.a (c. 499) Govindasvāmin (c. 825) Mādhava (c. 1375)
3◦45′ 225′ 224′ 50′′ 23′′′ 224′ 50′′ 22′′′

7◦30′ 449′ 448′ 42′′ 53′′′ 448′ 42′′ 58′′′

11◦15′ 671′ 670′ 40′′ 11′′′ 670′ 40′′ 16′′′

15◦00′ 890′ 889′ 45′′ 08′′′ 889′ 45′′ 15′′′

18◦45′ 1105′ 1105′ 01′′ 30′′′ 1105′ 01′′ 39′′′

22◦30′ 1315′ 1315′ 33′′ 56′′ 1315′ 34′′ 07′′′

26◦15′ 1520′ 1520′ 28′′ 22′′′ 1520′ 28′′ 35′′′

30◦00′ 1719′ 1718′ 52′′ 10′′′ 1718′ 52′′ 24′′′

33◦45′ 1910′ 1909′ 54′′ 19′′′ 1909′ 54′′ 35′′′

37◦30′ 2093′ 2092′ 45′′ 46′′′ 2092′ 46′′ 03′′′

41◦15′ 2267′ 2266′ 38′′ 44′′′ 2266′ 39′′ 50′′′

45◦00′ 2431′ 2430′ 50′′ 54′′′ 2430′ 51′′ 15′′′

48◦45′ 2585′ 2584′ 37′′ 43′′′ 2584′ 38′′ 06′′′

52◦30′ 2728′ 2727′ 20′′ 29′′′ 2727′ 20′′ 52′′′

56◦15′ 2859′ 2858′ 22′′ 31′′′ 2858′ 22′′ 55′′′

60◦00′ 2978′ 2977′ 10′′ 09′′′ 2977′ 10′′ 34′′′

63◦45′ 3084′ 3083′ 12′′ 51′′′ 3083′ 13′′ 17′′′

67◦30′ 3177′ 3176′ 03′′ 23′′′ 3176′ 03′′ 50′′′

71◦15′ 3256′ 3255′ 17′′ 54′′′ 3255′ 18′′ 22′′′

75◦00′ 3321′ 3320′ 36′′ 02′′′ 3320′ 36′′ 30′′′

78◦45′ 3372′ 3371′ 41′′ 01′′′ 3371′ 41′′ 29′′′

82◦30′ 3409′ 3408′ 19′′ 42′′′ 3408′ 20′′ 11′′′

86◦15′ 3431′ 3430′ 22′′ 42′′′ 3430′ 23′′ 11′′′

90◦00′ 3438′ 3437′ 44′′ 19′′′ 3437′ 44′′ 48′′′

Let h be the basic unit of arc in terms of which the Rsine-table is constructed,
which happens to be225′ in the case ofĀryabhat. ı̄ya, and 900′ in the case of
Khan. d. akhādyaka. Let the arc for which Rsine is to be found be given by

s = jh + ε for somej = 0, 1, . . . (49)

NowR sin(jh) = Bj are the tabulated Rsines. Then, a simple interpolation (trairāśika)
would yield

R sin(jh + ǫ) = Bj +
( ε

h

)
(Bj+1 − Bj)

= R sin(jh) +
ε

h
∆j+1. (50)

Instead of the above simple interpolation,Brahmagupta prescribes

R sin(jh + ǫ) = Bj +
( ε

h

)[(1

2

)
(∆j + ∆j+1) ±

( ε

h

) (∆j ∼ ∆j+1)

2

]
. (51)

Here, the sign is chosen to be positive if∆j < ∆j+1, and negative if∆j > ∆j+1 (as
in the case of Rsine). SoBrahmagupta’s rule is actually the second-order interpola-
tion formula

R sin(jh + ε) = R sin(jh) +
( ε

h

)[(1

2

)
(∆j + ∆j+1) −

( ε

h

) (∆j − ∆j+1)

2

]
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= R sin(jh) +
( ε

h

) (∆j+1 + ∆j)

2
+
( ε

h

)2 (∆j+1 − ∆j)

2

= R sin(jh) +
( ε

h

)
∆j+1 +

( ε

h

) [ ε

h
− 1
] (∆j+1 − ∆j)

2
. (52)

6 Instantaneous velocity of a planet (tātkālika-gati)

6.1 True daily motion of a planet

In Indian Astronomy, the motion of a planet is computed by making use of two correc-
tions: themanda-sam. skāra which essentially corresponds to the equation of centre
and thés̄ıghra-sam. skāra which corresponds to the conversion of the heliocentric lon-
gitudes to geocentric longitudes. Themanda correction for planets is given in terms
of an epicycle of variable radiusr, which varies in such a way that

r

K
=

r0

R
, (53)

whereK is thekarn. a (hypotenuse) or the (variable) distance of the planet from the
centre of the concentric andr0 is the tabulated (or mean) radius of the epicycle in the
measure of the concentric circle of radiusR.

r

P

P

0

R

K

U

Γ

C

α
M

∆µ

Figure 4:Manda correction.

In Figure 4,C is the centre of concentric on which the mean planetP0 is located.CU
is the direction of theucca (aphelion or apogee as the case may be).P is the true
planet which lies on the epicycle of (variable) radiusr centered atP0, such thatP0P
is parallel toCU . If M is the mean longitude of a planet,α the longitude of theucca,
then the correction (manda-phala) ∆µ is given by

R sin(∆µ) =
( r

K

)
R sin(M − α)

=
(r0

R

)
R sin(M − α). (54)
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For smallr, the left hand side is usually approximated by the arc itself. Themanda-
correction is to be applied to the mean longitudeM , to obtain the true ormanda-
corrected longitudeµ given by

µ = M −
(r0

R

)( 1

R

)
R sin(M − α). (55)

If nm andnu are the mean daily motions of the planet and theucca, then the true
longitude on the next day is given by

µ + n = (M + nm) −
(r0

R

)( 1

R

)
R sin (M + nm − α − nu). (56)

The true daily motion is thus given by

n = nm −
(r0

R

) ( 1

R

)
[R sin{(M − α) + (nm − nu)} − R sin (M − α)]. (57)

The second term in the above is the correction to mean daily motion (gati-phala). An
expression for this was given byBhāskara I (c. 629) inMahābhāskar̄ıya, where he
makes use of the approximation:33

R sin{(M − α) + (nm − nu)}
− R sin(M − α)

}
≈
{

(nm − nu) ×(
1

225

)
Rsine-difference at(M − α).

(58)
In the above approximation,(nm − nu) is multiplied by tabular Rsine-difference at
the225′ arc-bit in which (the tip of the arc) (M − α) is located. Therefore, under this
approximation, as long as the anomaly (kendra), (M − α), is in the same multiple of
225′, there will be no change in thegati-phala or the correction to the mean velocity.
This defect was noticed byBhāskara also in his later workLaghubhāskar̄ıya:34A:�a.Ba:�a.�+pa:ta.a Bua:�e +.(ãÉa.a:pa:Ba.a:ga:�a.va:.a.a:�a=;NaH Á.=;vea:�a=;nd.ea:(ãÉa .j�a.a:va.a:na.a:mUa:na:Ba.a:va.a:dùÅ;a:sa:}Ba:va.a:t,a Á ÁO;:va:ma.a:l;ea:.ya:ma.a:nea:yMa .j�a.a:va.a:Bua:	a.�+.�a.vRa:Z�a.a:ya:teRa Á

Whilst the Sun or the Moon moves in the [same] element of arc, there
is no change in the rate of motion (bhukti), because the Rsine-difference
does not increase or decrease; viewed thus, the rate of motion [as given
above] is defective.

The correct formula for the true daily motion of a planet, employing the Rcosine as
the ‘rate of change’ of Rsine, seems to have been first given byMuñjāla (c. 932) in
his short manualLaghumānasa 35 and also byĀryabhat.a II (c. 950) in hisMahā-
siddhānta:36k+ea:	a.f:P+l:ÈåîÁÁ*+� .a Bua:	a.�+.gRa.$ya.a:Ba:�+a k+.l;a:�a.d:P+l+m,a Á Á

Thekot.iphala multiplied by the [mean] daily motion and divided by the
radius gives the minutes of the correction [to the rate of themotion].

33Mahābhāskar̄ıya of Bhāskara I, Ed. by K. S. Shukla, Lucknow 1960, verse 4.14, p. 120.
34Laghubhāskar̄ıya of Bhāskara I, Ed. by K. S. Shukla, Lucknow 1963, verses 2.14-5, p. 6.
35Laghumānasa of Muñjāla, Ed. by K. S. Shukla, New Delhi 1990, verse 3.4, p. 125.
36Mahāsiddhānta of Āryabhat.a II, Ed. by Sudhakara Dvivedi, Varanasi 1910, verse 3.15, p. 58.

20



This gives the true daily motion in the form

n = nm − (nm − nu)
(r0

R

)( 1

R

)
R cos(M − α). (59)

6.2 The notion of instantaneous velocity (tātkālikagati) according
to Bhāskarācārya II

Bhāskarācārya II (c. 1150) in hisSiddhāntaśiroman. i clearly distinguishes the true
daily motion from the instantaneous rate of motion. And he gives the Rcosine cor-
rection to the mean rate of motion as the instantaneous rate of motion. He further
emphasizes the fact that the velocity is changing every instant and this is particularly
important in the case of Moon because of its rapid motion.37;�a.d:na.a:nta.=;~å.pa:�:Ka:ga.a:nta.=M .~ya.a:d, ga:	a.taH .~å.Pu +f.a ta:tsa:ma:ya.a:nta.=:a:le Á Ák+ea:f� .a:P+l:ÈåîÁÁ*+� .a mxa:du :ke +.ndÒ ;Bua:	a.�+.�/�a.~:�a.$ya.ea.;dÄâx :ta.a k+.�a.kR +.mxa:ga.a:�a.d:ke +.ndÒ e Áta:ya.a yua:ta.ea:na.a g{a:h:ma:Dya:Bua:	a.�+.~ta.a:tk+a:
a.l+k� +a ma:nd:pa:�a=;~å.Pu +f.a .~ya.a:t,a Á Á.sa:m�a.a:pa:	a.ta:Tya:nta:sa:m�a.a:pa:.a.a:l+nMa ;�a.va:Da.ea:~tua ta:tk+a:l;ja:yEa:va yua.$ya:tea Á.sua:dU .=;sa.úãÁ*.a.a:l+na:ma.a:dùÅ;a:ya.a ya:taH :pra:	a.ta:[a:NMa .sa.a na .sa:ma.a ma:h:tya:taH Á Á

The true daily motion of a planet is the difference between the true planets
on successive days. And it is accurate (sphut.a) over that period. The
kot.iphala (Rcosine of anomaly) is multiplied by the rate of motion of the
manda-anomaly (mr. du-kendra-bhukti) and divided by the radius. The
result added or subtracted from the mean rate of motion of theplanet,
depending on whether the anomaly is inKarkyādi or Mr. gādi, gives the
true instantaneous rate of motion (tātkālik̄ı manda-sphut.agati) of the
planet.

In the case of the Moon, the ending moment of atithi38 which is about
to end or the beginning time of atithi which is about to begin, are to be
computed with the instantaneous rate of motion at the given instant of
time. The beginning moment of atithi which is far away can be calcu-
lated with the earlier [daily] rate of motion. This is because Moon’s rate
of motion is large and varies from moment to moment.

Here,Bhāskara explains the distinction between the true daily rate of motion and
the true instantaneous rate of motion. The former is the difference between the true
longitudes on successive days and it is accurate as the rate of motion, on the average,
for the entire period. The true instantaneous rate of motionis to be calculated from
the Rcosine of the anomaly (kot.iphala) for each relevant moment.

Thus if ωm andωu are the rates of the motion of the mean planet and theucca, then
ωm−ωu is the rate of motion of the anomaly, and the true instantaneous rate of motion

37Siddhāntaśiroman. i of Bhāskarācārya, Ed. by Muralidhara Chaturvedi, Varanasi 1981,
verses 2.36–8, p. 119.

38Tithi is the time taken by the Moon to lead the Sun exactly by 12◦ in longitude.
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of the planet at any instant is given byBhāskara to be

ω = ωm + (ωm − ωu)
(r0

R

)( 1

R

)
R cos(M − α), (60)

where (M − α) is the anomaly of the planet at that instant.

Bhāskara explains the idea of the instantaneous velocity even more clearly in his
Vāsanā:39A:dùÅ;a:ta:na.(õ;a:~ta:na:~å.Pu +f:g{a:h:ya.eaH A.Ea:d:
a.ya:k+.ya.ea:�a.dR :na.a:DRa.ja:ya.ea:va.Ra A:~ta:k+a:
a.l+k+.ya.ea:va.Raya:d:nta.=M k+.l;a:�a.d:kM .sa.a .~å.Pu +f.a ga:	a.taH Á A:dùÅ;a:ta:na.a:.CõÅÅ +~ta:nea nyUa:nea va:kÒ +a:ga:	a.ta:¼eRa:ya.a Áta:tsa:ma:ya.a:nta.=:a:l I+	a.ta Á ta:~ya k+a:l+~ya ma:DyeaY:na:ya.a ga:tya.a g{a:h:(ãÉa.a:l+
a.ya:tMuayua.$ya:ta I+	a.ta Á I+yMa ;�a.k+.l .~TUa:l;a ga:	a.taH Á A:Ta .sUa:[ma.a ta.a:tk+a:
a.l+k� +ak+.Tya:tea Á tua:ñÍç ÅÅ*:+ga:tyUa:na.a ..a:ndÒ ;ga:	a.taH :ke +.ndÒ ;ga:	a.taH Á A:nyea:Sa.Ma g{a:h.a:Na.Ma g{a:h:ga:	a.ta;=e ;va:ke +.ndÒ ;ga:	a.taH Á mxa:du :ke +.ndÒ ;k+ea:	a.f:P+lM kx +.tva.a .tea:na :ke +.ndÒ ;ga:	a.ta:gRua:Nya.a ;�a�a.$ya:ya.aBa.a.$ya.a l+b.Dea:na k+.k�+.a.Ra:�a.d:ke +.ndÒ e g{a:h:ga:	a.ta:yRua:�+a k+a:ya.Ra Á mxa:ga.a:d.Ea tua .=;�a.h:ta.ak+a:ya.Ra Á O;:vMa ta.a:tk+a:
a.l+k� +a ma:nd:pa:�a=;~å.Pu +f.a .~ya.a:t,a Á ta.a:tk+a:
a.l+k�+.a.a Bua:��+.a.a..a:ndÒ ;~ya ;�a.va:�a.Za:�M :pra:ya.ea.ja:na:m,a Á ta:d.a:h ‘ .sa:m�a.a:pa:	a.ta:Tya:nta:sa:m�a.a:pa:.a.a:l+na:m,a’ I+	a.ta Áya:tk+a:
a.l+k+.(ãÉa:ndÒ ;~ta:sma.a:t,a k+a:l;a:�çÅ ;ta.ea va.a ga:}ya.ea va.a ya:d.a:sa:�a:�///�a.~ta:tTya:nta:~ta:d.ata.a:tk+a:
a.l+k�+.a.a ga:tya.a ;	a.ta:
a.Ta:sa.a:Da:nMa k+.t ua yua.$ya:tea Á ta:Ta.a .sa:m�a.a:pa:.a.a:l+nMa ..a Áya:d.a tua dU .=;ta.=;�///�a.~ta:Tya:nta.ea dU .=;.a.a:l+nMa va.a ..a:ndÒ ;~ya ta:d.a:dùÅ;a:ya.a .~TUa:l+ya.a k+.t uayua.$ya:tea Á .~TUa:l+k+a:l+tva.a:t,a Á ya:ta:(ãÉa:ndÒ ;ga:	a.ta:mRa:h:tva.a:t,a :pra:	a.ta:[a:NMa .sa:ma.a na Ba:va:	a.taA:ta:~ta:d:TRa:ma:yMa ;�a.va:Zea:Sa.eaY-;�a.Ba:�a.h:taH ÁA:Ta ga:	a.ta:P+l+va.a:sa:na.a Á A:dùÅ;a:ta:na.(õ;a:~ta:na:g{a:h:ya.ea.=;nta.=M ga:	a.taH Á A:ta O;:va g{a:h:P+l-ya.ea.=;nta.=M ga:	a.ta:P+lM Ba:�a.va:tua:ma:hR :	a.ta Á A:Ta ta:tsa.a:Da:na:m,a Á A:dùÅ;a:ta:na.(õ;a:~ta:na:ke +.ndÒ ;ya.ea-.=;nta.=M :ke +.ndÒ ;ga:	a.taH Á Bua.ja.$ya.a:k+=;Nea ya:;�ÂåÅ :ea:gya:Ka:NqM .tea:na .sa.a gua:Nya.a Za.=;�a.dõ :d:~åò:EaH

(225) Ba.a.$ya.a Á ta.�a ta.a:va:t,a ta.a:tk+a:
a.l+k+.Ba.ea:gya:Ka:Nq+k+=;Na.a:ya.a:nua:pa.a:taH Á ya:�a.d;�a�a.$ya.a:tua:�ya:ya.a k+ea:	a.f.$ya:ya.a:dùÅ;aM Ba.ea:gya:Ka:NqM Za.=;�a.dõ :d:~åò:a:tua:�yMa l+Bya:tea ta:de :�:ya.a;�a.k+.�a.ma:tya.�a k+ea:	a.f.$ya.a:ya.aH Za.=;�a.dõ :d:~åò:a.a gua:Na:�/�a.~:�a.$ya.a h.=H Á :P+lM ta.a:tk+a:
a.l+kM.~å.Pu +f:Ba.ea:gya:Ka:NqM .tea:na :ke +.ndÒ ;ga:	a.ta:gRua:Na:n�a.a:ya.a Za.=;�a.dõ :d:~åò:Ea:Ba.Ra.$ya.a Á A.�a Za.=;�a.dõ :d:~åò:a-;�a.ma:ta:ya.ea:gRua:Na:k+.Ba.a.ja:k+.ya.ea:~tua:�ya:tva.a:�a.a:Zea kx +.tea :ke +.ndÒ ;ga:teaH k+ea:	a.f.$ya.a:gua:Na:�/�a.~:�a-.$ya.a:h.=H .~ya.a:t,a Á :P+l+ma:dùÅ;a:ta:na.(õ;a:~ta:na:ke +.ndÒ ;d.ea.$yRa:ya.ea.=;nta.=M Ba:va:	a.ta Á ta:tP+l-k+=;Na.a:T a .~va:pa:�a=;	a.Da:na.a gua:NyMa Ba.Ma:ZEaH (360) Ba.a.$ya:m,a Á :pUa:v a ;�a.k+.l gua:Na:kHk+ea:	a.f.$ya.a .sa.a ya.a:va:t,a :pa:�a=;	a.Da:na.a gua:Nya:tea Ba.Ma:ZEaH ;�a.hò :ya:tea ta.a:va:tk+ea:	a.f:P+lM .ja.a:ya:taI+tyua:pa:pa:�Ma ‘k+ea:f� .a:P+l:ÈåîÁÁ*+� .a mxa:du :ke +.ndÒ ;Bua:	a.�’ :�a=;tya.a:�a.d Á O;:va:ma:dùÅ;a:ta:na.(õ;a:~ta:na:g{a:h-:P+l+ya.ea.=;nta.=M ta:�çÅ ;teaH :P+lM k+.k�+.a.Ra:�a.d:ke +.ndÒ e g{a:h:NRa:P+l+~ya.a:pa:.�a.a:ya:ma.a:na:tva.a:t,atua:l;a:d.Ea ;Da:na:P+l+~ya.a:pa:.�a.a:ya:ma.a:na:tva.a:t,a ;Da:na:m,a Á ma:k+=:a:d.Ea tua ;Da:na:P+l+~ya.a:pa:.�a.a:ya-ma.a:na:tva.a:t,a mea:Sa.a:d.a:vxa:Na:P+l+~ya.ea:pa:.�a.a:ya:ma.a:na:tva.a:dx :Na:m,a I+tyua:pa:pa:�a:m,a Á
The true daily velocity is the difference in minutes etc., between the true
planets of today and tomorrow, either at the time of sunrise,or mid-day

39Siddhāntaśiroman. i, cited above,Vāsanā on 2.36–38, p. 119–20.
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or sunset. If tomorrow’s longitude is smaller than that of today, then we
should understand the motion to be retrograde. It is said “over that pe-
riod”. This only means that, during that intervening period, the planet
is to move with this rate [on the average]. This is only a roughor ap-
proximate rate of motion. Now we shall discuss the instantaneous rate
of motion... In this way, themanda-corrected true instantaneous rate of
motion (tātkālik̄ı manda-parisphut.agati) is calculated. In the case of
Moon, this instantaneous rate of motion is especially useful...Because of
its largeness, the rate of motion of Moon is not the same everyinstant.
Hence, in the case of Moon, the special [instantaneous] rateof motion is
stated.

Then, the justification for the correction to the rate of motion (gati-
phala-vāsanā)...The rate of motion of the anomaly is the difference in the
anomalies of today and tomorrow. That should be multiplied by the [cur-
rent] Rsine-difference used in the computation of Rsines and divided by
225. Now, the following rule of three to obtain the instantaneous Rsine-
difference: If the first Rsine-difference225 results when the Rcosine is
equal to the radius, then how much is it for the given Rcosine.In this way,
the Rcosine is to be multiplied by225 and divided by the radius. The re-
sult is the instantaneous Rsine-difference and that shouldbe multiplied
by the rate of motion in the anomaly and divided by225...

Thus,Bhāskara is here conceiving also of an instantaneous Rsine-difference, though
his derivation of the instantaneous velocity is somewhat obscure. These ideas are more
clearly set forth in thēAryabhat. ı̄ya-bhās. ya (c. 1502) ofNı̄lakan. t.ha Somayāj̄ı and
other works of the Kerala School.

6.3 The ś̄ighra correction to the velocity and the condition for ret-
rograde motion

Bhāskara then goes on to derive the correct expression for the true rate of motion as
corrected by thés̄ıghra-correction. In the language of modern astronomy, theś̄ıghra-
correction converts the heliocentric longitude of the planets to the geocentric longi-
tudes. Here also, the Indian astronomers employ an epicycle, but with a fixed radius,
unlike in the case of themanda-correction.

If µ is themanda-corrected (manda-sphut.a) longitude of the planet,ζ is the longitude
of the ś̄ıghrocca, andrs, the radius of thés̄ıghra-epicycle, then the correction (ś̄ıghra-
phala) ∆σ is given by

R sin(∆σ) =
( rs

K

)
R sin (µ − ζ), (61)

where(µ − ζ) is theś̄ıghrakendra andK is the hypotenuse (ś̄ıghrakarn. a) given by

K2 = R2 + r2
s − 2Rrs cos (µ − ζ). (62)

The calculation of thés̄ıghra-correction to the velocity is indeed much more difficult
as the denominator in (61), which is the hypotenuse which depends on the anomaly,
also varies with time in a complex way. This has been noted byBhāskara who was
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able to obtain the correct form of thés̄ıghra-correction to the velocity (́s̄ıghra-gati-
phala) in an ingenious way.40:P+l;Ma:Za:Ka.a:ñÍö�ÅÅ*:;a:nta.=;�a.Za:
aúêÁÁ*+:n�a.aÈåî ÁÁ*+� .a dÒ :a:ë�Åë�Á*:e +.ndÒ ;Bua:	a.�H (rua:	a.ta:&+�a.dõ :Za.ea:Dya.a Á.~va:Z�a.a:Gra:Bua:�e H .~å.Pu +f:Kea:f:Bua:	a.�H Zea:SMa ..a va:kÒ +a ;�a.va:pa.=� :a:ta:Zua.;dÄâ .Ea Á Á

The Rsine of ninety degrees, less the degrees ofś̄ıghra-correction for the
longitude (́s̄ıghra-phala), should be multiplied by the rate of motion of
the ś̄ıghra-anomaly (drāk-kendra-bhukti) and divided by the hypotenuse
(ś̄ıghra-karn. a). This, subtracted from the rate of motion of theś̄ıghrocca,
gives the true velocity of the planet. If this is negative, the planet’s motion
is retrograde.

If ω is the rate of motion of themanda-corrected planet andωs is the rate of motion
of the ś̄ıghrocca, then the rate of motion of thés̄ıghra-anomaly is(ω − ωs), and the
true velocity of the planetωt is given by

ωt = ωs −
[
(ωs − ω)R cos(∆σ)

K

]
. (63)

The details of the ingenious argument given byBhāskara for deriving the correct form
(63) of theś̄ıghra-correction to the velocity has been outlined by D. Arkasomayaji in
his translation ofS̄ıddhāntaśiroman. i.

41

SinceBhāskara’s derivation is somewhat long-winded, here we shall present a mod-
ern derivation of the result just to demonstrate that the expression given byBhāskara
is indeed exact.

In Figure 5a, S, E andP represent the positions of the Sun, Earth and an exterior
planet respectively. Letv andvs be the linear velocities of the planet and the Earth
with respect to the Sun.PP ′ andEE′ are lines perpendicular to the lineEP joining
the Earth to the planet. LetR, r represent the radii of the orbits of the planet and the
Earth (assumed to be cicular) around the Sun respectively and K, the distance of the
planet from the Earth. For an exterior planet, theś̄ıghra-correction∆σ is given by the
angleSP̂E.

If vt be the linear velocity of the planet as seen from the Earth, then the angular
velocity is given by

ωt =
dθ

dt
=

vt

K
. (64)

The magnitude ofvt in terms ofv andvs (for the situation depicted in the figure) is

vt = v cos∆σ + vs cos θ. (65)

Also from the triangleSEP , the distance of the planet from the Earth—known as
karn. a, and denotedK in the figure—may be expressed as

K = R cos∆σ + r cos θ,

or cos θ =
K − R cos∆σ

r
. (66)

40Siddhāntaśiroman. i, cited above, verse 2.39, p. 121.
41D. Arkasomayaji,Siddhāntaśiroman. i of Bhāskarācārya, Tirupati 1980, pp. 157–161.

24



K

R

P

E

E’

P’

S

vs

v

θ

θ

∆σ

∆σ

r

Figure 5a: Velocity of a planet as seen from the Earth.

Using (66) in (65) we have

vt = v cos∆σ +
vs

r
(K − R cos∆σ)

=
vsK

r
+ cos∆σ

(
v − vs

R

r

)

or
vt

K
=

vs

r
+

cos∆σ
(
v − vs

R
r

)

K
. (67)

Making use of (64) and the fact thatv = Rω andvs = rωs, the above equation
reduces to

ωt = ωs −
[
(ωs − ω)R cos∆σ

K

]
,

which is same as the expression given by Bh āskara (63).

Bhāskara in hisVāsanā:42 justifies as to why in thés̄ıghra process a different proce-
dure for finding the rate of motion of the planet has to be employed than the one used
in themanda process:A.�a.ea:pa:pa:�a�aH Á A:dùÅ;a:ta:na.(õ;a:~ta:na:Z�a.a:Gra:P+l+ya.ea.=;nta.=M ga:teaH Z�a.a:Gra:P+lM .~ya.a:t,a Á ta:�aya:Ta.a ma.a:ndM ga:	a.ta:P+lM g{a:h:P+l+va:d.a:n�a.a:tMa ta:Ta.a ya:dùÅ;a.a:n�a.a:ya:tea kx +.teaY:�a.pa k+.Na.Ra:nua:pa.a:tea.sa.a:nta.=;mea:va .~ya.a:t,a Á ya:Ta.a ;D�a.a:vxa:
a;dÄâ :de Á na:�a.h :ke +.ndÒ ;ga:	a.ta.ja:mea:va :P+l+ya.ea.=;nta.=M .~ya.a:t,a;�a.k+.ntva:nya:d:�a.pa A:dùÅ;a:ta:na:Bua.ja:P+l;(õ;a:~ta:na:Bua.ja:P+l;a:nta:=e ;�a�a.$ya.a:gua:NeaY:dùÅ;a:ta:na-k+.NRa:&+tea ya.a:dx :ZMa :P+lM na ta.a:dx :ZMa (õ;a:~ta:na:k+.NRa:&+tea Á .~va:�pa.a:nta:=e Y:�a.pa k+.NeRa

42Ibid., Vāsanā on 2.39.
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Ba.a.$ya:~ya ba:hu :tva.a:d, ba:�ë+.nta.=M .~ya.a:�a.d:tyea:ta:d.a:na:ya:nMa ;�a.h:tva.a:nya:t,a ma:h.a:ma:	a.ta:ma:�a.;�ÂåÅ Hk+.�////�a.�pa:ta:m,a Á ta:dùÅ;a:Ta.a...
Here is the justification. Thés̄ıghra-correction to the rate of motion is
the difference between thés̄ıghra-phalas of today and tomorrow. If that
is derived in the same way as themanda-correction to the rate of mo-
tion, the result will be incorrect even if it were to be divided by the hy-
potenuse (́s̄ıghra-karn. a)... The difference is not just due to the change
in the anomaly [which is the argument of the Rsine] but also otherwise...
The result of dividing by today’s hypotenuse is different from that of di-
viding by that of tomorrow. Even if the hypotenuses turn out to differ by
small amount, since the quantities they divide are large andthus a large
difference could result. Hence, this way of approach [whichwas adopted
in the case ofmanda-correction to the rate of the motion] has been for-
saken and another has been devised by the great intellects. That is as
follows...

6.4 The equation of centre is extremum when the velocity correc-
tion vanishes

Later, in theGolādhyāya of Siddhāntaśiroman. i, Bhāskara considers the situation
when the correction to the velocity (gati-phala) vanishes:43k+.[ya.a:ma:Dya:ga:	a.ta:yRa:g{ea:Ka.a:pra:	a.ta:vxa.�a:sMa:pa.a:tea Áma:DyEa:va ga:	a.taH .~å.pa:�.a :pa.=M :P+lM ta.�a Kea:f:~ya Á Á

Where the [North-South] line perpendicular to the [East-West] line of
apsides through the centre of the concentric meets the eccentric, there the
mean velocity itself is true and the equation of centre is extremum.

In his Vāsanā, Bhāskara explains this relation between vanishing of the velocity
correction and the extrema of the correction to the planetary longitude:44k+.[ya.a:vxa.�a:ma:Dyea ya.a ;	a.ta:yRa:g{ea:Ka.a ta:~ya.aH :pra:	a.ta:vxa.�a:~ya ..a yaH .sMa:pa.a:ta:~ta.�a ma:DyEa:vaga:	a.taH .~å.pa:�.a Á ga:	a.ta:P+l;a:Ba.a:va.a:t,a Á ;�a.kM +..a ta.�a g{a:h:~ya :pa.=;mMa :P+lM .~ya.a:t,a Á ya.�ag{a:h:~ya :pa.=;mMa :P+lM ta.�Ea:va ga:	a.ta:P+l;a:Ba.a:vea:na Ba:�a.va:ta:v.ya:m,a Á ya:ta.eaY:dùÅ;a:ta:na.(õ;a:~ta:na-g{a:h:ya.ea.=;nta.=M ga:	a.taH Á :P+l+ya.ea.=;nta.=M ga:	a.ta:P+l+m,a Á g{a:h, .~ya ga:tea:va.Ra :P+l;a:Ba.a:va:~Ta.a-na:mea:va ;Da:na:NRa:sa:�//�a.nDaH Á ya:t,a :pua:na:lR +�+ea:�M ‘ma:DyEa:va ga:	a.taH .~å.pa:�.a vxa.�a:dõ :ya:ya.ea:ga:geadùÅ;au :.a:=e ’ I+	a.ta ta:d:sa:t,a Á na ;�a.h vxa.�a:dõ :ya:ya.ea:gea g{a:h:~ya :pa.=;mMa :P+l+m,a Á

The mean rate of motion itself is exact at the points where theline per-
pendicular [to the line of apsides], at the middle of the concentric circle,
meets the eccentric circle. Because, there is no correctionto the rate of
motion [at those points]. Also, because there the equation of centre [or

43Siddhāntaśiroman. i, cited above,Golādhyāya 4.39, p. 393.
44Ibid., Vāsanā onGolādhyāya 4.39.
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correction to the planetary longitudes] is extreme. Wherever the equa-
tion of centre is maximum, there the correction to the velocity should be
absent. Because, the rate of motion is the difference between the plan-
etary longitudes of today and tomorrow. The correction to the velocity
is the difference between the equations of centre. The placewhere the
correction to the velocity vanishes, there is a change over from positive to
the negative. And, what has been stated byLalla, “the mean rate of mo-
tion is itself true when the planet is on the intersection of the two circles
[concentric and eccentric]”, that is incorrect. The planetdoes not have
maximum equation of centre at the confluence of the two circles.

E

W

N S
C

C’

Figure 5b: Equation of centre is extremum where the correction to velocity vanishes.

Bhāskara explains that when the anomaly is ninety degrees, or the meanplanet is at
N along the lineCN perpendicular to the line of apsidesCE (see Figure 5b), the
equation of centre is maximum. It is precisely then that the correction to the velocity
vanishes, as it changes sign from positive to negative. It isincorrect to state (as Lalla
did in his Śis.yadh̄ıvr. ddhida-tantra) that the correction to the velocity is zero at the
point where the concentric and eccentric meet.

7 Surface area and volume of a sphere

In Āryabhat. ı̄ya (Golapāda 7), the volume of a sphere has been incorrectly estimated
as the product of the area of a great circle by its square-root. Śr̄ıdhara (c. 750) seems
to have given the correct expression for the volume of a sphere (Trísatikā 56), though
his estimate ofπ is fairly off the mark.Bhāskarācārya (c. 1150) has given the correct
relation between the diameter, the surface area and the volume of a sphere in his
L̄ılāvat̄ı:45

45Lı̄lāvat̄ı, cited above (fn. 5), verse 203, p. 79–80.
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vxa.�a:[ea.�ea :pa:�a=;	a.Da:gua:�a.Na:ta:v.ya.a:sa:pa.a:dH :P+lM ya:t,a[ua:NNMa :vea:dE .�+.pa:�a= :pa:�a=;taH k+.ndu :k+.~yea:va .ja.a:l+m,a Ága.ea:l+~yEa:vMa ta:d:�a.pa ..a :P+lM :pxa:�:jMa v.ya.a:sa:
a.naÈåî ÁÁ*+M:Sa:�añÂ ÅÅå*.+.BRa:�M Ba:va:	a.ta ;
a.na:ya:tMa ga.ea:l+ga:BeRa ;Ga:na.a:K.ya:m,a Á Á
In a circle, the circumference multiplied by one-fourth thediameter is the
area, which, multiplied by four, is its surface area going around it like
a net around a ball. This [surface area] multiplied by the diameter and
divided by six is the volume of the sphere.

The surface area and volume of a sphere have been discussed ingreater detail in the
Siddhāntaśiroman. i (Golādhyāya 2.53-61), whereBhāskara has also presented the
upapatti or justification for the results in his commentaryVāsanā. As regards the
surface area of the sphere,Bhāskara argues as follows:46A:Ta ba.a:l;a:va:ba.ea:Da.a:T a ga.ea:l+~ya.ea:pa:�a= d:ZRa:yea:t,a Á BUa:ga.ea:lM mxa:Nma:yMa d.a.�+.ma:yMa va.akx +.tva.a tMa ..a:kÒ +.k+.l;a:pa:�a=;	a.DMa (21600) :pra:k+.�pya ta:~ya ma:~ta:ke ;�a.ba:ndMu kx +.tva.ata:sma.a:�a.dõâ â :nd.ea:ga.eRa:l+Sa:NNa:va:	a.ta:Ba.a:gea:na Za.=;�a.dõ :d:~åò:a:sa:*ñÍËÉ ùÁ+;ae :na (225) ;Da:nUa.�+pea:NEa:va vxa.�a:=e -Ka.a:mua:tpa.a:d:yea:t,a Á :pua:na:~ta:sma.a:de :va ;�a.ba:nd.eaH .tea:nEa:va ;�a.dõ :gua:Na:sUa.�ea:Na.a:nya.Ma ;�a�a:gua:Nea:na.a:nya.a-mea:vMa ..a:tua:�a.v a:Za:	a.ta:gua:NMa ya.a:va:�a:tua:�a.v a:Za:	a.ta:vRxa.�a.a:
a.na Ba:va:�//�a.nta Á O;:Sa.Ma vxa.�a.a:na.Ma Za.=;nea.�a:ba.a:h:vaH

(225) I+tya.a:d� .a:
a.na .$ya.a:Da.Ra:
a.na v.ya.a:sa.a:Da.Ra:
a.na .~yuaH Á .tea:Bya.eaY:nua:pa.a:ta.a:dõx .�a:pra:ma.a:Na.a:
a.na Áta.�a ta.a:va:d:ntya:vxa.�a:~ya ma.a:nMa ..a:kÒ +.k+.l;aH (21600) Á ta:~ya v.ya.a:sa.a:D a ;�a�a.$ya.a3438 Á .$ya.a:Da.Ra:
a.na ..a:kÒ +.k+.l;a:gua:Na.a:
a.na ;�a�a.$ya.a:Ba:�+a:
a.na vxa.�a:ma.a:na.a:
a.na .ja.a:ya:ntea Ádõ :ya.ea:dõR :ya.ea:vRxa.�a:ya.ea:mRa:Dya O;;kE +.kM va:l+ya.a:k+a.=M [ea.�a:m,a Á ta.a:
a.na ..a:tua:�a.v a:Za:	a.taH Á ba:hu .$ya.a-:pa:[ea ba:hU :
a.na .~yuaH Á ta.�a ma:h:d:Da.ea:vxa.�Ma BUa:�a.ma:mua:pa:�a=;ta:nMa l+Gua:mua:KMa Za.=;�a.dõ :d:~åò:a:�a.ma:tMal+}bMa :pra:k+.�pya l+}ba:gua:NMa ku +.mua:Ka:ya.ea:ga.a:DRa:�a.ma:tyea:vMa :pxa:Ta:k, :pxa:Ta:k, :P+l;a:
a.na Á.tea:Sa.Ma :P+l;a:na.Ma ya.ea:ga.ea ga.ea:l;a:DRa:pxa:�;P+l+m,a Á ta:�a.�ë ;gua:NMa .sa:k+.l+ga.ea:l+pxa:�;P+l+m,a Áta:dõùÅ;a.a:sa:pa:�a=;	a.Da:Ga.a:ta:tua:�ya:mea:va .~ya.a:t,a Á
In order to make the point clear to a beginner, the teacher should demon-
strate it on the surface of a sphere. Make a model of the earth in clay or
wood and let its circumference be21, 600 minutes. From the point at the
top of the sphere at an arc-distance of1/96th of the circumference, i.e.,
225′, draw a circle. Similarly draw circles with twice, thrice,... twenty-
four times225′ [as the arc-distances] so that there will be twenty-four
circles. These circles will have as there radii Rsines starting from 225′.
The measure [circumference] of the circle will be in proportion to these
radii. Here, the last circle has a circumference21, 600′ and its radius
is 3, 438′. The Rsines multiplied by21, 600 and divided by the radius
[3, 438] will give the measure of the circles. Between any two circles,
there is an annular region and there are twenty-four of them.If more
[than 24] Rsines are used, then there will be as many regions.In each
figure [if it is cut and spread across as a trapezium] the larger lower circle
may be taken as the base and the smaller upper circle as the face and225′

46Siddhāntaśiroman. i, cited above,Vāsanā onGolādhyāya 2.57, p. 362.
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as the altitude and the area calculated by the usual rule: [Area is] altitude
multiplied by half the sum of the base and face. The sum of all these areas
is the area of half the sphere. Twice that will be the surface area of the
entire sphere. That will always be equal to the product of thediameter
and the circumference.

HereBhāskara is taking the circumference to beC = 21600′, and the corresponding
radius is approximated asR ≈ 3438′. As shown in Figure 6, circles are drawn parallel
to the equator of the sphere, each separated in latitudes by225′. This divides the
northern hemisphere into24 strips, each of which can be cut and spread across as a
trapezium. If we denote the24 tabulated Rsines byB1, B2,... B24, then the areaAj

of j-th trapezium will be

Aj =

(
C

R

)
(Bj + Bj+1)

2
225.

Therefore, the surface areaS of the sphere is estimated to be

S = 2

(
C

R

)[
B1 + B2 + ...B23 +

(
B24

2

)]
(225). (68)

225

225

N

S

A

C

E

B

D

F

G

Figure 6: Surface area of a sphere.

Now, Bhāskara states that the right hand side of the above equation reducesto 2CR.
This can be checked by usingBhāskara’s Rsine-table.Bhāskara himself has done the
summation of the Rsines in hisVāsanā on the succeeding verses,47 where he gives
another method of derivation of the area of the sphere, by cutting the surface of the
sphere into lunes. In that context, he computes the sum

B1 + B2.... + B23 +

(
B24

2

)
= B1 + B2.... + B23 + B24 −

(
R

2

)

≈ 54233− 1719 = 52514. (69)
47Siddhāntaśiroman. i, cited above,Vāsanā onGolādhyāya 2.58–61, p. 364.
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Thus, according toBhāskara’s Rsine table
[
B1 + B2 + .... + B23 +

(
B24

2

)]
(225) = 52514× (225)

= 11815650

≈ (3437.39)2. (70)

Taking this asR2 = (3438)2, we obtain the surface area of the sphere to be48

S = 2

(
C

R

)
R2 = 2CR. (71)

Of course, the grossness of the result (70) is due to the fact that the quadrant of the
circumference was divided into only24 bits. Bhāskara also mentions that we may
consider dividing the circumference into many more arc-bits, instead of the usual24
divisions which are made for computing Rsine-tables. This is the approach taken in
Yuktibhās. ā, where the circumference of the circle is divided into a large number,n,
of equal arc-bits. If∆ is the Rsine of each arc-bit, the surface area is estimated tobe

S = 2

(
C

R

)
(B1 + B2 + ....Bn)(∆). (72)

Then it is shown that in the limit of largen,

(B1 + B2 + ....Bn)(∆) ≈ R2, (73)

which leads to the result2CR for the surface area.49

As regards the volume of a sphere,Bhāskara’s justification is much simpler:50ga.ea:l+pxa:�;P+l+~ya v.ya.a:sa:gua:�a.Na:ta:~ya :Sa:qM +Za.ea ;Ga:na:P+lM .~ya.a:t,a Á A.�a.ea:pa:pa:�a�aH Á:pxa:�;P+l+sa:*ñÍËÉ ùÁ+;a.a:
a.na .�+pa:ba.a:hU :
a.na v.ya.a:sa.a:DRa:tua:�ya:vea:Da.a:
a.na .sUa:.�a.a:Ka.a:ta.a:
a.na ga.ea:l+pxa:�e:pra:k+.�pya.a:
a.na Á .sUa:.ya:g{a.a:Na.Ma ga.ea:l+ga:BeRa .sMa:pa.a:taH Á O;:vMa .sUa:.�a.a:P+l;a:na.Ma ya.ea:ga.ea ;Ga:na-:P+l+�a.ma:tyua:pa:pa:�a:m,a Á ya:t,a :pua:naH [ea.�a:P+l+mUa:le +na [ea.�a:P+lM gua:�a.Na:tMa ;Ga:na:P+lM.~ya.a:�a.d:	a.ta ta:t,a :pra.a:yaH ..a:tua:veRa:d.a:.a.a:yRaH :pa.=;ma:ta:mua:pa:nya:~ta:va.a:n,a Á
The surface area of a sphere multiplied by its diameter and divided by
six is its volume. Here is the justification. As many pyramidsas there
are units in the surface area with bases of unit side and altitude equal to
the semi-diameter should be imagined on the surface of the sphere. The
apices of the pyramids meet at the centre of the sphere. Then the volume
of the sphere is the sum of the volumes of the pyramids and thusour result
is justified. The view that the volume is the product of the area times its
own root, is perhaps an alien view (paramata) that has been presented by
Caturavedācārya [Pr. thūdakasvāmin].

48As has been remarked by one of the reviewers, it is indeed intriguing theBhāskara chose to sum the
tabular Rsines numerically, instead of making use of the relation between Rsines and Rcosine-differences
which was well known since the time of̄Aryabhat.a. In fact, the proof given inYuktibhās. ā (cited below
in fn. 49) makes use of the relation between the Rsines and thesecond order Rsine-diffferences to estimate
this sum.

49Gan. ita-yukti-bhās.ā, cited above, Section 7.18, pp. 140–42, 261–63, 465–67. In modern terminology,

this amounts to the evaluation of the integral
∫ π

2

0
R sin θRdθ = R2.

50Siddhāntaśiroman. i, cited above,Vāsanā onGolādhyāya 2.61, p. 364.
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We may note that it is thēAryabhat. ı̄ya rule which is referred to asparamata in
the above passage.Bhāskara’s derivation of the volume of a sphere is similar to
that of the area of a circle by approximating it as the sum of the areas of a large
numbers of triangles with their vertices at the centre, which is actually the proof given
in Yuktibhās. ā. In the case of the volume of a sphere,Yuktibhās. ā, however, gives the
more “standard” derivation, where the sphere is divided into a large number of slices
and the volume is found as the sum of the volumes of the slices—which ultimately
involves estimating the sum of squares of natural numbers (varga-saṅkalita), 12 +
22 + 32 + ... + n2, for largen.51

51Gan. ita-yukti-bhās.ā, cited above, Section 7.19, pp. 142–45, 263–66, 468–70.
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PART II : W ORK OF THE KERALA SCHOOL

Mādhava toŚaṅkara Vāriyar (c. 1350–1550CE)

8 Kerala School of Astronomy

The Kerala School of Astronomy in the medieval period, pioneered byMādhava
(c. 1340–1420) ofSaṅgamagrāma, extended well into the 19th century as exempli-
fied in the work of́Saṅkaravarman (c. 1830),Rājā of Kad.attanad.u. Only a couple
of astronomical works ofMādhava (Ven. vāroha andSphut.acandrāpti) seem to be
extant now. Most of his celebrated mathematical discoveries—such as the infinite se-
ries forπ and the sine and cosine functions—are available only in the form of citations
in later works.

Mādhava’s discipleParameśvara (c. 1380–1460) ofVat.asseri, is reputed to have
carried out detailed observations for over 50 years. A largenumber of original works
and commentaries written by him have been published. However, his most important
work on mathematics, the commentaryVivaran. a on L̄ılāvat̄ı of Bhāskara II, is yet
to be published.

Nı̄lakan.t.ha Somayāj̄ı (c. 1444–1550) ofKun.d.agrāma, disciple ofParameśvara’s
son Dāmodara (c. 1410–1520), is the most celebrated member of Kerala School
after Mādhava. Nı̄lakan. t.ha has cited several important results ofMādhava in
his various works, the most prominent of them beingTantrasaṅgraha (c. 1500)
andĀryabhat. ı̄ya-bhās. ya. In the latter work, while commenting onGan. itapāda of
Āryabhat. ı̄ya, Nı̄lakan. t.ha has also dealt extensively with many important mathemat-
ical issues.

However, the most detailed exposition of the work of the Kerala School, starting from
Mādhava, and including the seminal contributions ofParameśvara, Dāmodara and
Nı̄lakan.t.ha, is to be found in the famous Malayalam workYuktibhās. ā (c. 1530) of
Jyes.t.hadeva (c. 1500–1610).Jyes.t.hadeva was also a disciple ofDāmodara but
junior toNı̄lakan. t.ha. The direct lineage fromMādhava continued at least tillAcyuta
Písārat.i (c. 1550–1621), a disciple ofJyes.t.hadeva, who wrote many important works
and a couple of commentaries in Malayalam also.

At the very beginning ofYuktibhās. ā, Jyes.t.hadeva states that he intends to present
the rationale of the mathematical and astronomical resultsand procedures which are
to be found inTantrasaṅgraha of Nı̄lakan. t.ha. Yuktibhās. ā, comprising 15 chapters,
is naturally divided into two parts, Mathematics and Astronomy. Topics in astronomy
proper, so to say, are taken up for consideration only from the eighth chapter onwards,
starting with a discussion on mean and true planets.

The first seven chapters ofYuktibhās. ā are in fact in the nature of an independent trea-
tise on mathematics and deal with various topics which are ofrelevance to astronomy.
It is here that one finds detailed demonstrations of the results of Mādhava such as
the infinite series forπ, the arc-tangent, sine and the cosine functions, the estima-
tion of correction terms and their use in the generation of faster convergent series.
Demonstrations are also provided for the classical resultsof Āryabhat.a (c. 499) on
kut.t.ākāra (linear indeterminate equations), of Brahmagupta (c. 628)on the diagonals
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and the area of a cyclic quadrilateral, and ofBhāskara II (c. 1150) on the surface area
and volume of a sphere. Many of these rationales have also been presented mostly in
the form of Sanskrit verses býSaṅkara Vāriyar (c. 1500–1560) ofTr. .ikkut.aveli in
his commentariesKriyākramakar̄ı (c. 1535) onL̄ılāvat̄ı of Bhāskara II and Yukti-
d̄ıpikā on Tantrasaṅgraha of Nı̄lakan. t.ha. In fact, Śaṅkara Vāriyar ends his com-
menatary on the first chapter ofTantrasaṅgraha with the acknowledgement:52I+tyea:Sa.a :pa.=;kÒ +ea:q;a:va.a:sa:�a.dõ .ja:va.=;sa:m�a.a:�a=;ta.ea ya.eaY:TRaH Á.sa tua ta.n:�a:sa:ñÍç ÅÅ*:" +h:~ya :pra:Ta:meaY:Dya.a:yea ma:ya.a k+.
a.Ta:taH Á Á

Whatever has been the meaning as expounded by the nobledvija of
Parakrod. a [Jyes.t.hadeva] the same has now been stated by me for the
first chapter ofTantrasaṅgraha.

In the following sections we shall present an overview of thecontribution of the Ker-
ala School to the development of calculus (during the period1350–1500), following
essentially the exposition given inYuktibhās. ā. In order to indicate some of the con-
cepts and methods developed by the Kerala astronomers, we first take up the issue
of irrationality of π and the summation of infinite geometric series as discussed by
Nı̄lakan.t.ha Somayāj̄ı in his Āryabhat. ı̄ya-bhās. ya. We then cosider the derivation
of binomial series expansion and the estimation of the sum ofintegral powers of in-
tegers,1k + 2k + . . . + nk for largen, as presented inYuktibhās. ā. These results
constitute the basis for the derivation of the infinite series for π

4 due toMādhava. We
shall outline this as also the very interesting work ofMādhava on the estimation of
the end-correction terms and the transformation of theπ-series to achieve faster con-
vergence. Finally we shall summarize the derivation of the infinite series for Rsine
and Rcosine due toMādhava.

In the final section, we shall deal with another topic which has a bearing on calculus,
but is not dealt with inYuktibhās. ā, namely the evaluation of the instantaneous velocity
of a planet. Here, we shall present the result ofDāmodara, as cited byNı̄lakan. t.ha,
on the instantaneous velocity of a planet which involves thederivative of the arc-sine
function. There are indeed many works and commentaries by later astronomers of the
Kerala School, whose mathematical contributions are yet tobe studied in detail. We
shall here cite only one result due toAcyuta Pis.ārat.i (c. 1550–1621), a disciple of
Jyes.t.hadeva, on the instantaneous velocity of a planet, which involves the evaluation
of the derivative of the ratio of two functions.

9 Nı̄lakan. t.ha’s discussion of irrationality of π

In the context of discussing the procedure for finding the approximate square root of a
non-square number, by multiplying it by a large square number (the method given in
Trísatikā of Śr̄ıdhara referred to earlier in Section 3.3),Nı̄lakan. t.ha observes in his
Āryabhat. ı̄ya-bhās. ya:53

52Tantrasaṅgraha of Nı̄lakan. t.ha Somayāj̄ı, Ed. with Yukti-d̄ıpikā of Śaṅkara Vāriyar by
K. V. Sarma, Hoshiarpur 1977, p. 77. The same acknowledgement appears at the end of the subsequent
chapters also.

53Āryabhat.ı̄ya of Āryabhat.a, Ed. withĀryabhat.ı̄ya-bhās.ya of Nı̄lakan. t.ha Somayāj̄ı by K. Sām-
baśiva Śāstr̄ı, Trivandrum Sanskrit Series 101, Trivandrum 1930, comm. onGan. itapāda 4, p. 14.
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O;:vMa kx +.ta.eaY:pya.a:sa:�a:mea:va mUa:lM .~ya.a:t,a Á na :pua:naH k+=;N�a.a:mUa:l+~ya ta.�va:taH:pa:�a=;.Ce +dH k+.t ua Za:k�+.a I+tya:�a.Ba:pra.a:yaH Á ta:ta.ea ya.a:va:d:pea:[a:m,a AM :Za.a:na.Ma .sUa:[ma:tva.a:yama:h:ta.a va:geRa:Na h:na:na:mua:�+.m,a Á
Even if we were to proceed this way, the square root obtained will only
be approximate. The idea [that is being conveyed] is, that itis actually
not possible to exactly de-limit (paricchedah. ) the square root of a non-
square number. Precisely for this reason, multiplication by a large square
was stated (recommended) in order to get as much accuracy as desired.

Regarding the choice of the large number that must be made, itis mentioned that
one may choose any number—as large a number as possible—thatgives the desired
accuracy.54ta.�a ya.a:va:ta.a ma:h:ta.a gua:Na:nea bua.;dÄâ .a:va:lM +Ba.a:vaH .~ya.a:t,a ta.a:va:ta.a h:nya.a:t,a Á ma:h.�va:~yaA.a:pea:�a.[a:k+.tva.a:t,a ë�ÅëÁ*:+.
a..a:d:�a.pa na :pa:�a=;sa:ma.a:	a.�a:�a=;	a.ta Ba.a:vaH Á

You can multiply by whichever large number you want upto yoursatisfac-
tion (buddhāvalam. bhāvah. ). Since largeness is a relative notion, it may
be understood that the process is an unending one.

In this context,Nı̄lakan. t.ha cites the verse given bȳAryabhat.a specifying the ratio
of the circumference to the diameter of a circle (value ofπ), particularly drawing our
attention to the fact that̄Aryabhat.a refers to this value as “approximate”.55va:[ya:	a.ta ..a – ‘A:yua:ta:dõ :ya:�a.va:Sk+.}Ba:~ya A.a:sa:�a.ea vxa.�a:pa:�a=;Na.a:hH’ I+	a.ta Á ta.�av.ya.a:sea:na :pa:�a=;	a.Da:¼a.a:nea A:nua:ma.a:na:pa.=;}å.pa.=:a .~ya.a:t,a Á ta:tk+.mRa:Nya:�a.pa mUa:l� ;a:k+=;Na:~yaA:nta:Ba.Ra:va.a:de :va ta:~ya A.a:sa:�a:tva:m,a Á ta:tsa:v a ta:d:va:sa:=e O;:va :pra:	a.ta:pa.a:d:
a.ya:Sya.a:maH Á

As will be stated [by the author himself] – ‘this is [only] an approxi-
mate measure of the circumferene of the circle whose diameter is twenty-
thousand.’ In finding the circumference from the diameter, aseries of
inferences are involved. The approximate nature of this also stems from
the fact that it involves finding square roots. All this will be explained
later at the appropriate context.

Addressing the issue—later in his commentary, as promised earlier—while discussing
the value ofπ Nı̄lakan. t.ha observes:56:pa:�a=;	a.Da:v.ya.a:sa:ya.eaH .sa:*ñÍËÉ ùÁ+;a.a:sa:}ba:nDaH :pra:d:�a.ZRa:taH Á . . .A.a:sa:�aH, A.a:sa:�a:ta:yEa:va A:yua:ta-dõ :ya:sa:*ñÍËÉ ùÁ+;a:�a.va:Sk+.}Ba:~ya I+yMa :pa:�a=;	a.Da:sa:*ñÍËÉ ùÁ+;a.a o+�+a Á ku +.taH :pua:naH va.a:~ta:v�a.Ma .sa:*ñÍËÉ ùÁ+;a.a:m,ao+tsxa.$ya A.a:sa:�Ea:va I+h.ea:�+a ? o+.ya:tea Á ta:~ya.a va:�u +.ma:Za:k�+.a:tva.a:t,a Á ku +.taH ?

54Ibid.
55Ibid.
56Ibid., comm. onGan. itapāda 10, p. 41.
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The relation between the circumference and the diameter hasbeen pre-
sented. . . . Approximate: This value (62,832) has been stated as only an
aproximation to the circumference of a circle having a diameter of 20,000.
“Why then has an approximate value been mentioned here instead of the
actual value?” It is explained [as follows]. Because it (theexact value)
cannot be expressed. Why?

Explaining as to why the exact value cannot be presented,Nı̄lakan.t.ha continues:57yea:na ma.a:nea:na m�a.a:ya:ma.a:na.ea v.ya.a:saH ;
a.na.=;va:ya:vaH .~ya.a:t,a, .tea:nEa:va m�a.a:ya:ma.a:naH :pa:�a=;	a.DaH:pua:naH .sa.a:va:ya:va O;:va .~ya.a:t,a Á yea:na ..a m�a.a:ya:ma.a:naH :pa:�a=;	a.DaH ;
a.na.=;va:ya:vaH .tea:nEa:vam�a.a:ya:ma.a:na.ea v.ya.a:sa.eaY:�a.pa .sa.a:va:ya:va O;:va; I+	a.ta O;:ke +.nEa:va ma.a:nea:na m�a.a:ya:ma.a:na:ya.eaHo+Ba:ya.eaH ë�ÅëÁ*:+a:�a.pa na ;
a.na.=;va:ya:va:tvMa .~ya.a:t,a Á ma:h.a:nta:m,a A:Dva.a:nMa ga:tva.a:�a.paA:�pa.a:va:ya:va:tva:m,a O;:va l+Bya:m,a Á ;
a.na.=;va:ya:va:tvMa tua ë�ÅëÁ*:+a:�a.pa na l+Bya:m,a I+	a.taBa.a:vaH Á
Given a certain unit of measurement (māna) in terms of which the di-
ameter (vyāsa) specified [is just an integer and] has no [fractional] part
(niravayava), the same measure when employed to specify the circum-
ference (paridhi) will certainly have a [fractional] part (sāvayava) [and
cannot be just an integer]. Again if in terms of certain [other] measure
the circumference has no [fractional] part, then employingthe same mea-
sure the diameter will certainly have a [fractional] part [and cannot be an
integer]. Thus when both [the diameter and the circumference] are mea-
sured by the same unit, they cannot both be specified [as integers] without
[fractional] parts. Even if you go a long way (i.e., keep on reducing the
measure of the unit employed), the fractional part [in specifying one of
them] will only become very small. A situation in which therewill be no
[fractional] part (i.e, both the diameter and circumference can be speci-
fied in terms of integers) is impossible, and this is what is the import [of
the expression̄asanna].

Evidently, whatNı̄lakan. t.ha is trying to explain here is the incommensurability of
the circumference and the diameter of a circle. Particularly, the last line of the above
quote—whereNı̄lakan. t.ha clearly mentions that, however small you may choose your
unit of measurement to be, the two quantities will never become commensurate—is
noteworthy.

10 N̄ılakan. t.ha’s discussion of the sum of an infinite ge-
ometric series

In his Āryabhat. ı̄ya-bhās. ya, while deriving an interesting approximation for the arc
of a circle in terms of thejyā (Rsine) and thésara (Rversine),Nı̄lakan. t.ha presents

57Ibid., pp. 41–42.
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a detailed demonstration of how to sum an infinite geometric series. The specific
geometric series that arises in this context is:

1

4
+

(
1

4

)2

+ . . . +

(
1

4

)n

+ . . . =
1

3
.

We shall now present an outline ofNı̄lakan.t.ha’s argument that gives an idea of how
the notion of limit was understood in the Indian mathematical tradition.

10.1 N̄ılakan. t.ha’s approximate formula for the arc in terms of jyā

and śara

O

A C

B

D

E

F

Figure 7: Arc-length in terms ofjyā andśara.

In Figure 7,AB is the arc whose length (assumed to be small) is to be determined
in terms of the chord lengthsAD andBD. In the Indian mathematical literature,
the arcAB, the semi-chordAD and the segmentBD are referred to as thecāpa,
jyārdha andśara respectively. As can be easily seen from the figure, this terminology
arises from the fact that these geometrical objects look like a bow, a string and an
arrow respectively. Denoting them byc, j, ands, the expression for the arc given by
Nı̄lakan.t.ha may be written as:

c ≈
√(

1 +
1

3

)
s2 + j2. (74)

Nı̄lakan.t.ha’s proof of the above equation has been discussed in detail bySarasvati
Amma.58 It may also be mentioned that the above approximation actually does not
form a part of the text̄Aryabhat. ı̄ya; but nevertheless it is introduced byNı̄lakan.t.ha
while commenting upon a verse in̄Aryabhat. ı̄ya that gives the arc in terms of the
chords in a circle.59 The verse that succinctly presents the above equation goes as

58T. A. Sarasvati Amma, cited above (fn. 21), pp. 179–182.
59vxa.�ea Za.=;sMa:va:gRaH A:DRa.$ya.a:va:gRaH .sa Ka:lu ;Da:nua:Sa.eaH Á (Āryabhat.ı̄ya, Gan. itapāda, verse 17).
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follows:60.sa.�yMa:Za.a:�a.d:Sua:va:ga.Ra:t,a .$ya.a:va:ga.Ra:Q.�a.a:t,a :pa:dM ;Da:nuaH :pra.a:yaH Á
The arc is nearly (prāyah. ) equal to the square root of the sum of the
square of thésara added to one-thirds of it, and the square of thejyā.

The proof of (74) given byNı̄lakan. t.ha involves:

1. Repeated halving of the arc-bit,cāpa c to getc1 . . . ci. . . .

2. Finding the corresponding semi-chords,jyā (ji) and the Rversines,́sara (si).

3. Estimating the difference between thecāpa andjyā at each step.

If δi denotes the difference between thecāpa andjyā at theith step, that is,

δi = ci − ji,

then it is seen that this difference decreases as the size of thecāpa decreases. Having
made this observation,Nı̄lakan. t.ha proceeds with the argument that

• Generating successive values of theji-s andsi-s is an ‘unending’ process (na
kvacidapi paryavasyati) as one can keep on dividing thecāpa into half ad
infinitum(ānantyāt vibhāgasya).

• It would therefore be appropriate to proceed upto a stage where the difference
δi becomes negligible (śūnyaprāya) and make an ‘intelligent approximation’,
to obtain the value of the difference betweenc andj approximately.

The original passage in̄Aryabhat. ı̄ya-bhās. ya which presents the above argument reads
as follows:61ta.�a .$ya.a:.a.a:pa:ya.ea.=;nta.=;~ya :pua:naH :pua:naH nyUa:na:tvMa ..a.a:pa:pa:�a=;ma.a:Na.a:�pa:tva:kÒ +.mea:Nea:	a.tata.�a:d:DRa:.a.a:pa.a:na.a:m,a A:DRa.$ya.a:pa.=;}å.pa.=:a Za.=;pa.=;}å.pa.=:a ..a A.a:n�a.a:ya:ma.a:na.a na ë�ÅëÁ*:+.
a..a:d:�a.pa:pa:yRa:va:~ya:	a.ta A.a:na:ntya.a:d, ;�a.va:Ba.a:ga:~ya Áta:taH ;�a.k+.ya:nta:
aúãÁ*.a:t,a :pra:de :ZMa ga:tva.a ..a.a:pa:~ya .j�a.a:va.a:ya.a:(ãÉa A:�p�a.a:ya:~tva:m,a A.a:pa.a:dùÅ;a..a.a:pa.$ya.a:nta.=M ..a ZUa:nya:pra.a:yMa l+b.Dva.a :pua:na.=;�a.pa k+.�pya:ma.a:na:ma:nta.=;m,a A:tya:�pa:ma:�a.pak+Ea:Za:l;a:t,a ¼ea:ya:m,a Á

60Āryabhat.ı̄ya-bhās.ya on Āryabhat.ı̄ya, cited above (fn. 50), comm. onGan. itapāda 12 and 17,
p. 63 and p. 110. That the verse cited is from another work of his, namelyGolasāra, has been alluded to
by Nı̄lakan. t.ha in both the instances of citation.

61Ibid., comm. onGan. itapāda 17, pp. 104–05.
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10.2 N̄ilakan. t.ha’s summation of the infinite geometric series

The question thatNı̄lakan. t.ha poses as he commences his detailed discussion on the
sum of geometric series is very important and arises quite naturally whenever one
encounters the sum of an infinite series:62k+.TMa :pua:naH ta.a:va:de :va va:DRa:tea ta.a:va:dõ :DRa:tea ..a ?

How do you know that [the sum of the series] increases only upto that
[limiting value] and that it certainly increases upto that [limiting value]?

Proceeding to answer the above question,Nı̄lakan. t.ha first states the general result

a

[(
1

r

)
+

(
1

r

)2

+

(
1

r

)3

+ . . .

]
=

a

r − 1
.

Here, the left hand side is an infinite geometric series with the successive terms be-
ing obtained by dividing by a common divisor,r, known ascheda, whose value is
assumed to be greater than 1. He further notes that this result is best demonstrated by
considering a particular case, sayr = 4. In his own words:63o+.ya:tea Á O;:vMa yaH tua:�ya:.Ce +d:pa.=;Ba.a:ga:pa.=;}å.pa.=:a:ya.aH A:na:nta.a:ya.aH A:�a.pa .sMa:ya.ea:gaHta:~ya A:na:nta.a:na.a:ma:�a.pa k+.�pya:ma.a:na:~ya ya.ea:ga:~ya A.a:dùÅ;a.a:va:ya:�a.va:naH :pa.=;}å.pa.=:Ma:Za:.Ce -d.a:t,a O;:k+ea:na:.Ce +d.Ma:Za:sa.a:}yMa .sa:vRa.�a .sa:ma.a:na:mea:va Á ta:dùÅ;a:Ta.a – ..a:tua.=M ;Za:pa.=;}å.pa.=:a:ya.a:mea:vata.a:va:t,a :pra:Ta:mMa :pra:	a.ta:pa.a:dùÅ;a:tea Á

It is being explained. Thus, in an infinite (ananta) geometrical series
(tulyaccheda-parabhāga-paramparā) the sum of all the infinite number
of terms considered will always be equal to the value obtained by dividing
by a factor which is one less than the common factor of the series. That
this is so will be demonstrated by first considering the series obtained
with one-fourth (caturam. śa-paramparā).

What is intended to be demonstrated is

a

[(
1

4

)
+

(
1

4

)2

+

(
1

4

)3

+ . . .

]
=

a

3
. (75)

Besides the multiplying factora, it is noted that, one-fourth and one-third are the only
terms appearing in the above equation.Nı̄lakan. t.ha first defines these numbers in
terms of one-twelfth of the multipliera referred to by the wordrāśi. For the sake of
simplicity we take therāśi to be unity.

3 × 1

12
=

1

4
; 4 × 1

12
=

1

3
.

62Ibid., p. 106.
63Ibid., pp. 106–07.
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Having defined them,Nı̄lakan. t.ha first obtains the sequence of results,

1
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1

(4.4.4.3)
,

and so on, which leads to the general result,
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. (76)

Nı̄lakan.t.ha then goes on to present the following crucial argument to derive the sum
of the infinite geometric series: As we sum more terms, the difference between13 and
sum of powers of14 (as given by the right hand side of the above equation), becomes
extremely small, but never zero. Only when we take all the terms of the infinite series
together do we obtain the equality
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3
. (77)

A brief extract from the text presenting the above argument is given below:64yea .=:a:Zea:dõ .Ra:d:Za.Ma:Za.aH .tea:Sa.Ma ;�a�a:kM ;�a.h ..a:tua.=M ;ZaH Á ..a:tua:SkM ..a �yMa:ZaH Á ta:�a:tua:�:yea�yMa:Za.a:tma:ke Ba.a:ga.�a:yMa ..a:tua.=M ;Zea:na.a:pUa:NRa:m,a Á yaH :pua:naH ta:~ya ..a:tua:Ta.eRaY:}å.ZaH ta:~ya.a:�a.pa:pa.a:d.�a:yMa ..a:tua.=M ;Za:~ya ..a:tua.=M ;Zea:na.a:pUa:NRa:m,a Á dõ .a:d:Za.Ma:Za.a:na.Ma �a:ya.a:Na.Ma . . .ta:~ya :pua:naH :pua:na.=;	a.ta:sUa:[ma:tva.a:de :va na :ke +.va:lM �yMa:Za:tvea:na A:ñÍç ÅÅ*:� ;a:k+a.=H, ;
a.na.�+pya-ma.a:Na:~ya va.a ;�a.kÒ +.ya:ma.a:Na:~ya va.a A.a:na:ntya.a:t,a Á A.a:na:ntya.a:de :va ;�a.Za:�:tva.a:de :vak+.mRa:Na:~ta:~ya A:pa:�a=;pUa:	a.tRa:Ba.Ra:	a.ta Á O;:vMa .sa:vRa:d.a:�a.pa .sa.a:va:Zea:Sa.a:Na.Ma k+.mRa:Na.Ma :pa.=;}å.pa.=:a:ya.Mak+a:t=+:ïîåéyeRa:na.a:kx +.Sya.a.�a .sa:�a.�a:�a.h:ta.a:ya.Ma :pa:�a=;pUa:	a.tRaH .~ya.a:de :vea:	a.ta ;
a.na:(ãÉ�a.a:ya:tea ..a:tua:gRua:Na.ea.�a:=egua:Na.ea.�a.=:a:K.yea ga:�a.Na:teaY:�a.pa Á
Three times one-twelfth of arāśi is one-fourth (caturam. śa) [of thatrāśi].
Four times that is one-third (tryam. śa). [Considering] four times that
[one-twelfth of therāśi] which is one-third, three by fourth of that falls
short by one-fourth [of one-third of therāśi]. Three-fourths of that [i.e.,
of 1

4.3 of therāśi] which is one-fourth of that (tryam. śa), again falls short
[of the same] by one-fourth of one-fourth [of one-third of the rāśi] . . .

Since the result to be demonstrated or the process to be carried out is never
ending (̄anantyāt) and the difference though very small (atisūks.matvāt)
[still exists and the sum of the series] cannot be simply taken to be one-
third. It seems that the process is incomplete since always something
remains because of its never ending nature. In fact, since inall the prob-
lems involving [infinite] series, by bringing in all the terms and placing
them together, the process would [in principle] become complete, here, in
the mathematics involving repeated multiplication of one-fourth, a simi-
lar conclusion may be drawn.

64Ibid., p. 107.
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11 Derivation of binomial series expansion

Yuktibhās. ā presents a very interesting derivation of the binomial series for(1 + x)−1

by making iterative substitutions in an algebric identity.The method given in the text
may be summarized as follows.

Consider the producta
(

c
b

)
, where some quantitya is multiplied by the multiplierc,

and divided by the divisorb. Here,a is calledgun. ya, c thegun. aka andb thehāra,
which are all assumed to be positive. Now the above product can be rewritten as:

a
(c

b

)
= a − a

(b − c)

b
. (78)

In the expressiona (b−c)
b

in (78) above, if we want to replace the division byb (the
divisor) by division byc (the multiplier), then we have to make a subtractive correction
(calledśodhya-phala) which amounts to the following equation.

a
(b − c)

b
= a

(b − c)

c
−
(

a
(b − c)

c
× (b − c)

b

)
. (79)

Now, in the second term (inside parenthesis) in (79)—which is what we referred to as
śodhya-phala, which literally means a quantity to be subtracted—if we again replace
the division by the divisorb by the multiplierc, then we have to employ the relation
(79) once again to get another subtractive term
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(b − c)2

c2
−
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a
(b − c)2

c2
× (b − c)

b

)]]
(80)

Here, the quantitya (b−c)2

c2 is calleddvit̄ıya-phala or simplydvit̄ıya and the one sub-
tracted from that isdvit̄ıya-śodhya-phala. If we carry out the same set of operations,
themth śodhya-phala subtracted from themth term will be of the form

a

[
(b − c)

c

]m

− a

[
(b − c)

c

]m

× (b − c)

b
.

Since the successivésodhya-phalas are subtracted from their immediately preceding
term, we will end up with a series in which all the odd terms (leaving out thegun. ya,
a) are negative and the even ones positive. Thus, after takingm śodhya-phalas we get

a
c

b
= a − a
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c
+ a
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− . . . + (−1)ma
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(b − c)

b
. (81)
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Regarding the question of termination of the process, both the textsYuktibhās. ā and
Kriyākramakar̄ı clearly mention that logically there is no end to the processof gen-
eratinǵsodhya-phalas. We may thus write our result as:65

a
c

b
= a − a
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c
+ a

[
(b − c)

c

]2
− . . . + (−1)m−1a

[
(b − c)

c

]m−1

+(−1)ma

[
(b − c)

c

]m

+ . . . . (82)

It is also noted that the process may be terminated after having obtained the desired
accuracy by neglecting the subsequentphalās as their magnitudes become smaller and
smaller. In fact,Kriyākramakar̄ı explicitly mentions the condition under which the
succeedingphalās will become smaller and smaller:66O;:vMa mua:hu H :P+l;a:na:ya:nea kx +.teaY:�a.pa yua:	a.�+.taH ë�ÅëÁ*:+a:�a.pa na .sa:ma.a:	a.�aH Á ta:Ta.a:�a.paya.a:va:d:pea:[Ma .sUa:[ma:ta.a:ma.a:pa.a:dùÅ;a :pa.a:(ãÉa.a:tya.a:nyua:pea:[ya :P+l;a:na:ya:nMa .sa:ma.a:pa:n�a.a:ya:m,a ÁI+h.ea.�a.=:ea.�a.=;P+l;a:na.Ma nyUa:na:tvMa tua gua:Na:h.a.=:a:nta:=e gua:Na:k+a.=:a:�yUa:na O;:va .~ya.a:t,a Á

Thus, even if we keep finding thephalās repeatedly, logically there is
no end to the process. Even then, having carried on the process to the
desired accuracy (yāvadapeks. am. sūks.matāmāpādya), one should ter-
minate computing thephalās by [simply] neglecting the terms that may
be obtained further (pāścātyānyupeks.ya). Here, the succeedingphalas
will become smaller and smaller only when the difference between the
gun. aka andhāra is smaller thangun. aka, [that is(b ∼ c) < c].

12 Estimation of sums of1k + 2k + . . . n
k for

large n

As mentioned in section 4.1,̄Aryabhat.a has given the explicit formula for the sum-
mation of squares and cubes of integers. The word employed inthe Indian mathemat-
ical literature for summation issaṅkalita. The formulae given bȳAryabhat.a for the
saṅkalitas are as follows:

S(1)
n = 1 + 2 + · · · + n =

n(n + 1)

2

S(2)
n = 12 + 22 + · · · + n2 =

n(n + 1)(2n + 1)

6

S(3)
n = 13 + 23 + · · · + n3 =

[
n(n + 1)

2

]2
. (83)

65It may be noted that if we set(b−c)
c

= x, then c
b

= 1
(1+x)

. Hence, the series (82) is none other than
the well known binomial series

a

1 + x
= a − ax + ax2 − . . . + (−1)maxm + . . . ,

which is convergent for−1 < x < 1.
66Kriyākramakar̄ı onLı̄lāvat̄ı, cited above (fn. 14), comm. on verse 199, p. 385.
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From these, it is easy to estimate these sums whenn is large. Yuktibhās. ā gives a
general method of estimating thesama-ghāta-saṅkalita 67

S(k)
n = 1k + 2k + · · · + nk, (84)

whenn is large. Actually the text presents a general method of estimation, which does
not make use of the actual value of the sum. In fact, the same argument is repeated
even fork = 1, 2, 3, although the result of summation is well known in these cases.

12.1 The sum of natural numbers (Mūla-saṅkalita)

Yuktibhās. ā takes up the discussion onsaṅkalitas in the context of evaluating the
circumference of a circle which is conceived to be inscribedin a square. It is half the
side of this square that is being referred to by the wordbhujā in both the citations as
well as explanations offered below. Half of the side of the square (equal to the radius)
is divided inton equal bits, known asbhujā-khan. d. as. It is thesebhujā-khan. d. as(

r
n

)
, 2
(

r
n

)
· · · whose powers are summed.

To start with,Yuktibhās. ā discusses just the basic summation ofbhujā-khan. d. as called
Mūla-saṅkalita. We now cite the following from the translation ofYuktibhās. ā:68

Now is described the methods of making the summations (referred to in
the earlier sections). At first, the simple arithmetical progression (kevala-
saṅkalita) is described. This is followed by the summation of the prod-
ucts of equal numbers (squares). . . .

Here, in thismūla-saṅkalita (basic arithmetical progression), the final
bhujā is equal to the radius. The term before that will be one segment
(khan. d. a) less. The next one will be two segments less. Here, if all the
terms (bhujās) had been equal to the radius, the result of the summation
would be obtained by multiplying the radius by the number ofbhujās.
However, here, only onebhujā is equal to the radius. And, from that
bhujā, those associated with the smaller hypotenuses are less by one seg-
ment each, in order. Now, suppose the radius to be of the same number
of units as the number of segments to which it has been divided, in order
to facilitate remembering (their number). Then, the numberassociated
with the penultimatebhujā will be less by one (from the number of units
in the radius); the number of the next one, will be less by two from the
number of units in the radius. This reduction (in the number of segments)
will increase by one (at each step). The last reduction will practically be
equal to the measure of the radius, for it will be less only by one segment.
In other words, when the reductions are all added, the sum thereof will
practically (prāyen. a) be equal to the summation of the series from 1 to
the number of units in the radius; it will be less only by one radius length.
Hence, the summation will be equal to the product of the number of units
in the radius with the number of segments plus one, and divided by 2.

67The compoundsama-ghāta in this context means product of a number with itself same number of
times.

68Gan. ita-yukti-bhās.ā, cited above, Section 6.4, pp. 61–67, 192–97, 382–88.
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The summation of all thebhujās of the different hypotenuses is called
bhujā-saṅkalita.

Now, the smaller the segments, the more accurate (sūks.ma) will be the
result. Hence, do the summation also by taking each segment as small as
an atom (an. u). Here, if it (namely, thebhujā or the radius) is divided into
parārdha (a very large number) parts, to thebhujā obtained by multiply-
ing byparārdha add one part inparārdha and multiply by the radius and
divide by 2, and then divide byparārdha. For, the result will practically
be the square of the radius divided by two. . . .

The first summation, thebhujā-saṅkalita, may be written in the reverse order from
the finalbhujā to the firstbhujā as

S(1)
n =

(nr

n

)
+

(
(n − 1)r

n

)
+ .... +

( r

n

)
. (85)

Now, conceive of thebhujā-khan. d. a
r
n

as being infinitesimal (an. u) and at the same
time as of unit-measure (rūpa), so that the radius will be the measure ofn, thepada,
or the number of terms. Then

S(1)
n = n + (n − 1) + .... + 1. (86)

If each of the terms were of the measure of radius(n) then the sum would be nothing
butn2, the square of the radius. But only the first term is of the measure of radius, the
next is deficient by one segment (khan. d. a), the next by two segments and so on till the
last term which is deficient by an amount equal to radius-minus-one segment. In other
words,

S(1)
n = n + [n − 1] + [n − 2].... + [n − (n − 2)] + [n − (n − 1)]

= n.n − [1 + 2 + ... + (n − 1)]. (87)

Whenn is very large, the quantity to be subtracted fromn2 is practically (prāyen. a)
the same asS(1)

n , thus leading to the estimate

S(1)
n ≈ n2 − S(1)

n , (88)

or, equivalently

S(1)
n ≈ n2

2
. (89)

It is stated that the result is more accurate, when the size ofthe segments are small (or
equivalently, the value ofn is large).69

If instead of making the approximation as in (88), we proceedwith (87) as it is, we
getS(1)

n = n2 − (S
(1)
n − n), which leads to the well-known exact value of the sum of

the firstn natural numbers

S(1)
n =

n(n + 1)

2
, (90)

With the convention that ther
n

is of unit-measure, the above estimate (89) is stated in
the form that thebhujā-saṅkalita is half the square of the radius.

69Śaṅkara Vāriyar also emphasizes the same idea, in his discussion of the estimation ofsaṅkalita-s
in his commentaryKriyākramakar̄ı onLı̄lāvat̄ı (cited above (fn. 14), comm. on verse 199, p. 382.):Ka:Nq+~ya.a:�pa:tvea .sa:tyea:va l+b.Da:~ya .sUa:[ma:ta.a ..a .~ya.a:t,a Á

Only when the segment is small (khan. d. asyālpatve) the result obtained would be accurate.
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12.2 Summation of squares (Varga-saṅkalita)

We now cite the following from the translation ofYuktibhās. ā:70

Now is explained the summation of squares (varga-saṅkalita). Obvi-
ously, the squares of thebhujās, which are summed up above, are the
bhujās each multiplied by itself. Here, if thebhujās which are all mul-
tipliers, had all been equal to the radius, their sum, (saṅkalita derived
above), multiplied by the radius would have been the summation of their
squares. Here, however, only one multiplier happens to be equal to the
radius, and that is the last one. The one before that will havethe number
of segments one less than in the radius. (Hence) if that, (i.e., the second
one), is multiplied by the radius, it would mean that one multiplied by
the penultimatebhujā would have been the increase in the summation of
the squares. Then (the segment) next below is the third. Thatwill be less
than the radius by two segments. If that is multiplied by the radius, it will
mean that, the summation of the squares will increase by the product of
the bhujā by two (segments). In this manner, the summation in which
the multiplication is done by the radius (instead of thebhujās) would be
larger than the summation of squares by terms which involve the succes-
sively smallerbhujās multiplied by successively higher numbers. If (all
these additions) are duly subtracted from the summation where the radius
is used as the multiplier, the summation of squares (varga-saṅkalita) will
result.

Now, thebhujā next to the east-west line is less than the radius by one
(segment). So if all the excesses are summed up and added, it would
be the summation of the basic summation (mūla-saṅkalita-saṅkalita).
Because, the sums of the summations is verily the ‘summationof sum-
mations’ (saṅkalita-saṅkalita). There, the last sum has (the summation
of) all thebhujās. The penultimate sum is next lower summation to the
last. This penultimate sum is the summation of all thebhujās except the
lastbhujā. Next to it is the third sum which is the sum of all thebhujās
except the last two. Thus, each sum of thebhujās commencing from any
bhujā which is taken to be the last one in the series, will be less by one
bhujā from the sum (of thebhujās) before that.

Thus, the longestbhujā is included only in one sum. But thebhujā next
lower than the last (bhujā) is included both in the last sum and also in the
next lower sum. Thebhujās below that are included in the three, four etc.
sums below it. Hence, it would result that the successively smallerbhujās
commencing from the one next to the last, which have been multiplied
by numbers commencing from 1 and added together, would be summa-
tion of summations (saṅkalita-saṅkalita). Now, it has been stated earlier
that the summation (saṅkalita) of (the segments constituting) abhujā
which has been very minutely divided, will be equal to half the square of
the lastbhujā. Hence, it follows that, in order to obtain the summation
(saṅkalita) of thebhujās ending in any particularbhujā, we will have to
square each of thebhujās and halve it. Thus, the summation of summa-
tions (saṅkalita-saṅkalita) would be half the summation of the squares

70Gan. ita-yukti-bhās.ā, cited above, Section 6.4, pp. 61–67, 192–97, 382–88.
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of all thebhujās. In other words, half the summation of the squares is the
summation of the basic summation. So, when the summation is multi-
plied by the radius, it would be one and a half times the summation of the
squares. This fact can be expressed by stating that this contains half more
of the summation of squares. Therefore, when the square of the radius
divided by two is multiplied by the radius and one-third of itsubtracted
from it, the remainder will be one-third of the whole. Thus itfollows
that one-third of the cube of the radius will be the summationof squares
(varga-saṅkalita).

With the same convention thatr
n

is the measure of the unit, thebhujā-varga-saṅkalita
(the sum of the squares of thebhujās) will be

S(2)
n = n2 + (n − 1)2 + .... + 12. (91)

In above expression, eachbhujā is multiplied by itself. If instead, we consider that
eachbhujā is multiplied by the radius (n in our units), then that would give raise to
the sum

n [n + (n − 1) + ... + 1] = n S(1)
n . (92)

This sum is exceeds thebhujā-varga-saṅkalita by the amount

nS(1)
n − S(2)

n = 1.(n − 1) + 2.(n − 2) + 3.(n − 3) + . . . + (n − 1).1.

This may be written as

nS(1)
n − S(2)

n = (n − 1) + (n − 2) + (n − 3) + . . . +1

+(n − 2) + (n − 3) + . . . +1

+(n − 3) + . . . +1

+ . . . . (93)

Thus,
nS(1)

n − S(2)
n = S

(1)
n−1 + S

(1)
n−2 + S

(1)
n−3 + . . . . (94)

The right hand side of (94) is called thesaṅkalita-saṅkalita (or saṅkalitaikya), the
repeated sum of the sumsS

(1)
i (here taken in the orderi = n− 1, n− 2, . . . 1). These

are defined also býSaṅkara Vāriyar in Kriyākramakar̄ı as follows:71ta:Ta.a ;�a.h .sa:ñÍö�ÅÅ*:+
a.l+ta.a:na.Ma ya.ea:ga.ea ;�a.h .sa:ñÍö�ÅÅ*:+
a.l+ta:sa:ñÍö�ÅÅ*:+
a.l+ta:mua:.ya:tea Á ta.�a A:ntya:sa:ñÍö�ÅÅ*:-;
a.l+tMa .sa:va.Ra:sa.Ma Bua.ja.a:na.Ma ya.ea:gaH Á o+pa.a:ntya:sa:ñÍö�ÅÅ*:+
a.l+tMa tua A:ntya:Bua.ja.a:v.ya:	a.ta:�a=;�+a:na.a-;�a.ma:ta:=e ;Sa.Ma ya.ea:gaH Á o+pa.a:ntya.a:t,a :pUa:vRa:~ya .sa:ñÍö�ÅÅ*:+
a.l+tMa :pua:na:~ta:d:va:	a.Da:k+a:na.a:mea:va Bua.ja.a:na.Maya.ea:gaH Á O;:vMa :pUa:vRa:sa:ñÍö�ÅÅ*:+
a.l+ta.a:
a.na .~va.ea.�a.=:a:t,a .sa:ñÍö�ÅÅ*:+
a.l+ta.a:t,a O;;kE +.ke +.na Bua.jea:na ;�a.va.=;�a.h-ta.a:
a.na Ba:va:�//�a.nta Á
The sum of the summations is called assaṅkalita-saṅkalita. Of them
the lastsaṅkalita is the sum all thebhujā-s. The penultimatesaṅkalita
is the sum of all thebhujā-s other than the last one. Thesaṅkalita of
the one preceding the penultimate is the sum of thebhujā-s ending with
that. Thus, all the precedingsaṅkalita-s will fall short by abhujā from
the succeedingsaṅkalita.

71Kriyākramakar̄ı onLı̄lāvat̄ı, cited above (fn. 14), comm. on verse 199, pp. 382–83.
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For largen, we have already estimated in (89) thatS
(1)
n ≈ n2

2 . Thus, for largen

nS(1)
n − S(2)

n ≈ (n − 1)2

2
+

(n − 2)2

2
+

(n − 3)2

2
+ . . . . (95)

Thus, the right hand side of (94) (thesaṅkalita-saṅkalita or the excess ofnS
(1)
n over

S
(2)
n ) is essentiallyS(2)

n

2 for largen, so that we obtain

nS(1)
n − S(2)

n ≈ S
(2)
n

2
. (96)

Again, using the earlier estimate (89) forS
(1)
n , we obtain the result

S(2)
n ≈ n3

3
. (97)

Thusbhujā-varga-saṅkalita is one-third the cube of the radius.

12.3 Sama-gh̄ata-sȧnkalita

We now cite the following from the translation ofYuktibhās. ā:72

Now, the square of the square (of a number) is multiplied by itself, it is
calledsama-pañca-ghāta (number multiplied by itself five times). The
successive higher order summations are calledsama-pañcādi-ghāta-
saṅkalita (and will be the summations of powers of five and above).
Among them if the summation (saṅkalita) of powers of some order is
multiplied by the radius, then the product is the summation of summations
(saṅkalita-saṅkalita) of the (powers of the) multiplicand (of the given or-
der), together with the summation of powers (sama-ghāta-saṅkalita) of
the next order. Hence, to derive the summation of the successive higher
powers: Multiply each summation by the radius. Divide it by the next
higher number and subtract the result from the summation gotbefore.
The result will be the required summation to the higher order.

Thus, divide by two the square of the radius. If it is the cube of the
radius, divide by three. If it is the radius raised to the power of four,
divide by four. If it is (the radius) raised to the power of five, divide by
five. In this manner, for powers rising one by one, divide by numbers
increasing one by one. The results will be, in order, the summations of
powers of numbers (sama-ghāta-saṅkalita). Here, the basic summation
is obtained from the square, the summation of squares from the cube, the
summation of cubes from the square of the square. In this manner, if
the numbers are multiplied by themselves a certain number oftimes (i.e.,
raised to a certain degree) and divided by the same number, that will be
the summation of the order one below that. Thus (has been stated) the
method of deriving the summations of (natural) numbers, (their) squares
etc.

72Gan. ita-yukti-bhās.ā, cited above, Section 6.4, pp. 61–67, 192–97, 382–88.
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In the case of a generalsamaghāta-saṅkalita, (summation of equal powers) given by

S(k)
n = nk + (n − 1)k + . . . + 1k, (98)

the procedure followed to estimate its behavior for largen is essentially the same as
that followed in the case ofvargasaṅkalita. We first compute the excess ofnS

(k−1)
n

overS(k)
n to be asaṅkalita-saṅkalita or repeated sum of the lower ordersaṅkalitas

S
(k−1)
r

nS(k−1)
n − S(k)

n = S
(k−1)
n−1 + S

(k−1)
n−2 + S

(k−1)
n−3 + . . . . (99)

If the lower ordersaṅkalita S
(k−1)
n has already been estimated to be, say,

S(k−1)
n ≈ nk

k
, (100)

then, the above relation (99) leads to73

nS(k−1)
n − S(k)

n ≈ (n − 1)k

k
+

(n − 2)k

k
+

(n − 3)k

k
+ . . .

≈
(

1

k

)
S(k)

n . (101)

Rewriting the above equation we have74

S(k)
n ≈ nS(k−1)

n −
(

1

k

)
S(k)

n . (102)

Using (100), we obtain the estimate

S(k)
n ≈ nk+1

(k + 1)
. (103)

12.4 Repeated summations (Saṅkalita-saṅkalita)

After having estimated the sum of powers of natural numberssamaghāta-saṅkalita
Yuktibhās. ā goes on to derive an estimate for the repeated summation (saṅkalita-
saṅkalita or saṅkalitaikya or vārasaṅkalita) of the natural number1, 2, · · · , n.75

73As one of the reviewers has pointed out, this argument leading to (101) is indeed similar to the deriva-
tion of the following relation, which is based on the interchange of order in iterated integrals:

∫ 1

0

(1 − x)xk−1dx =

∫ 1

0

xk−1

∫ 1

x

dy dx =

∫ 1

0

y

∫ y

0

xk−1dx dy =

∫ 1

0

yk

k
dy.

74As Śaṅkara Vāriyar states in hisKriyākramakar̄ı onLı̄lāvat̄ı (cited above (fn. 14), p. 383):A:ta o;�a.=:ea.�a.=;sa:ñÍö�ÅÅ*:+
a.l+ta.a:na:ya:na.a:ya ta.�a:tsa:ñÍö�ÅÅ*:+
a.l+ta:~ya v.ya.a:sa.a:DRa:gua:Na:na:m,a O;;kE +.k+a:	a.Da:k+.sa:*ñÍËÉ ùÁ+;a.a:�a-.~va.Ma:Za:Za.ea:Da:nMa ..a k+a:yRa:m,a I+	a.ta ;�////�a.~Ta:ta:m,a Á
Therefore it is established that, for obtaining the sum of the next order, the previous sum, has
to be multiplied by the radius and the present sum, divided byone more than the previous
[order], has to be diminished [from that product].

75Gan. ita-yukti-bhās.ā, cited above, Section 6.4, pp. 61–67, 192–97, 382–88.
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Now, are explained the first, second and further summations:The first
summation (̄adya-saṅkalita) is the basic summation (mūla-saṅkalita)
itself. It has already been stated (that this is) half the product of the
square of the number of terms (pada-vargārdha). The second (dvit̄ıya-
saṅkalita) is the summation of the basic summation (mūla-saṅkalitaikya).
It has been stated earlier that it is equal to half the summation of squares.
And that will be one-sixth of the cube of the number of terms.

Now, the third summation: For this, take the second summation as the
last term (antya); subtract one from the number of terms, and calculate
the summation of summations as before. Treat this as the penultimate.
Then subtract two from the number of terms and calculate the summation
of summations. That will be the next lower term. In order to calculate
the summation of summations of numbers in the descending order, the
sums of one-sixths of the cubes of numbers in descending order would
have to be calculated. That will be the summation of one-sixth of the
cubes. And that will be one-sixth of the summation of cubes. As has
been enunciated earlier, the summation of cubes is one-fourth the square
of the square. Hence, one-sixth of one-fourth the square of the square will
be the summation of one-sixth of the cubes. Hence, one-twenty-fourth of
the square of the square will be the summation of one-sixth ofthe cubes.
Then, the fourth summation will be, according to the above principle, the
summation of one-twenty-fourths of the square of squares. This will also
be equal to one-twenty-fourth of one-fifth of the fifth power.Hence, when
the number of terms has been multiplied by itself a certain number of
times, (i.e., raised to a certain degree), and divided by theproduct of one,
two, three etc. up to that index number, the result will be thesummation
up to that index number amongst the first, second etc. summations (̄adya-
dvit̄ıyādi-saṅkalita).

The first summation (̄adya-saṅkalita) V
(1)
n is just themūla-saṅkalita or the basic

summation of natural numbers, which has already been estimated in (89)

V (1)
n = S(1)

n = n + (n − 1) + (n − 2) + . . . + 1

≈ n2

2
. (104)

The second summation (dvit̄ıya-saṅkalita or saṅkalita-saṅkalita or saṅkalitaikya)
is given by

V (2)
n = V (1)

n + V
(1)
n−1 + V

(1)
n−2 + . . .

= S(1)
n + S

(1)
n−1 + S

(1)
n−2 + . . . . (105)

As was done earlier, this second summation can be estimated using the estimate for
S

(1)
n

V (2)
n ≈ n2

2
+

(n − 1)2

2
+

(n − 2)2

2
+ . . . . (106)

Therefore

V (2)
n ≈

(
1

2

)
S(2)

n . (107)
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Using the earlier estimate (97) forS
(2)
n , we get an estimate for thedvit̄ıya-saṅkalita

V (2)
n ≈ n3

6
. (108)

Now the next repeated summation can be found in the same way

V (3)
n = V (2)

n + V
(2)
n−1 + V

(2)
n−2 + . . .

≈ n3

6
+

(n − 1)3

6
+

(n − 2)3

6
+ . . .

≈
(

1

6

)
S(3)

n

≈ n4

24
. (109)

It is noted that proceeding this way we can estimate repeatedsummationV (k)
n of order

k, for largen, to be76

V (k)
n = V (k−1)

n + V
(k−1)
n−1 + V

(k−1)
n−2 + . . .

≈ nk+1

1.2.3. . . . (k + 1)
. (110)

13 Derivation of the Mādhava series forπ

The following accurate value ofπ (correct to 11 decimal places), given byMādhava,
has been cited byNı̄lakan.t.ha in his Āryabhat. ı̄ya-bhās. ya and byŚaṅkara Vāriyar
in hisKriyākramakar̄ı.77;�a.va:bua:Da:nea.�a:ga.ja.a:�a.h:hu :ta.a:Za:na:�a�a:gua:Na:vea:d:Ba:va.a.=;Na:ba.a:h:vaH Ána:va:
a.na:Ka:vRa:�a.ma:tea vxa:	a.ta:�a.va:~ta:=e :pa:�a=;	a.Da:ma.a:na:�a.ma:dM .ja:ga:du :bRua:Da.aH Á Á
Theπ value given above is:

π ≈ 2827433388233

9 × 1011
= 3.141592653592... (111)

The 13 digit number appearing in the numerator has been specified usingbhūta-
saṅkhya system, whereas the denominator is specified by word numerals.78

76These are again estimates for largen. As mentioned in Section 4, exact expressions for the first two

summations,V (1)
n andV

(2)
n , are given inĀryabhat. ı̄ya, Gan. itapāda 21; and the exact expression for

thek-th order repeated summationV (k)
n has been given (under the namevāra-saṅkalita), by N ār āyan.a

Pan.d. ita (c. 1350) in hisGan. itakaumud̄ı, 3.19. This exact expression forV
(k)
n is also noted in section

7.5.3 ofYuktibhās. ā.
77Āryabhat.ı̄ya-bhās.ya on Āryabhat.ı̄ya, cited above (fn. 53), comm. onGan. itapāda 10, p. 42;

Kriyākramakar̄ı onLı̄lāvat̄ı, cited above (fn. 14), comm. on verse 199, p. 377.
78In thebhūta-saṅkhyā system,vibudha =33,netra =2, gaja =8, ahi =8, hutāśana =3, trigun. a =3,

veda =4, bha =27, vāran. a =8, bāhu =2. In word numerals,nikharva represents1011 . Hence,nava-

nikharva =9 × 1011 .
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13.1 Infinite series forπ

The infinite series forπ attributed to M ādhava is cited býSaṅkara Vāriyar in his
commentariesKriyākramakar̄ı andYukti-d̄ıpikā. Mādhava’s verse quoted runs as
follows:79v.ya.a:sea va.a:�a=;	a.Da:
a.na:h:tea .�+pa:&+tea v.ya.a:sa:sa.a:ga.=:a:�a.Ba:h:tea Á;�a�a:Za.=:a:�a.d:�a.va:Sa:ma:sa:*ñÍËÉ ùÁ+;a.a:Ba:�+.mxa:NMa .~vMa :pxa:Ta:k, kÒ +.ma.a:t,a ku +.ya.Ra:t,a Á Á

The diameter multiplied by four and divided by unity [is found and saved].
Again the products of the diameter and four are divided by theodd num-
bers like three, five, etc., and the results are subtracted and added in order
[to the earlier result saved].

The series given by the verse may be represented as

Paridhi = 4 × Vyāsa ×
(

1 − 1

3
+

1

5
− 1

7
+ . . . . . .

)
. (112)

The wordsparidhi andvyāsa80 in the above equation refer to the circumference and
diameter respectively. Hence the equation may be rewrittenas

π

4
=

(
1 − 1

3
+

1

5
− 1

7
+ . . .

)
. (113)

We shall now present the derivation of the above result as outlined in Yuktibhās. ā
of Jyes.t.hadeva andKriyākramakar̄ı of Śaṅkara Vāriyar. For this purpose, let us
consider the quadrantOP0PnS of the square circumscribing the given circle (see
Figure 8). Divide the sideP0Pn into n equal parts (n very large). P0Pi’s are the
bhujās andOPi’s are thekarn. as denoted byki. The points of intersection of these
karn. as and the circle are marked asAis.

Thebhujās P0Pi, thekarn. as ki and the east-west lineOP0 form right-angled triangles
whose hypotenuses are given by

k2
i = r2 +

(
ir

n

)2

, (114)

wherer is the radius of the circle.

The feet of perpendiculars from the pointsAi−1 andPi−1 along theith karn. a are
denoted byBi andCi. The trianglesOPi−1Ci andOAi−1Bi are similar. Hence,

Ai−1Bi

OAi−1
=

Pi−1Ci

OPi−1
. (115)

Similarly trianglesPi−1CiPi andP0OPi are similar. Hence,

Pi−1Ci

Pi−1Pi

=
OP0

OPi

. (116)

79op. cit., p. 379.
80Nı̄lakan. t.ha, in hisĀryabhat.ı̄ya-bhās.ya, presents the etymological derivation of the wordvyāsa as

‘the one which splits the circle into two halves’:v.ya.a:sea:na ;�a.h vxa.�Ma v.ya:~ya:tea Á (Āryabhat.ı̄ya-bhās.ya, cited
above (fn. 53), comm. onGan. itapāda 11, p. 43).
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Figure 8: Geometrical construction used in the proof of the infinite series forπ.

From these two relations we have,

Ai−1Bi =
OAi−1.OP0.Pi−1Pi

OPi−1.OPi

= Pi−1Pi ×
OAi−1

OPi−1
× OP0

OPi

=
( r

n

)
× r

ki−1
× r

ki

=
( r

n

)( r2

ki−1ki

)
. (117)

It is then noted that whenn is large, the RsinesAi−1Bi can be taken as the arc-bits
themselves. :pa:�a=;	a.Da:Ka:Nq+~ya.a:DRa.$ya.a → :pa:�a=;DyMa:Za

i.e., Ai−1Bi → ̂Ai−1Ai .

Thus,18 th of the circumference of the circle can be written as sum of the contributions
given by (117). That is

C

8
≈
( r

n

)[( r2

k0k1

)
+

(
r2

k1k2

)
+

(
r2

k2k3

)
+ · · · +

(
r2

kn−1kn

)]
. (118)
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Though this is the expression that actually needs to be evaluated, the text mentions
that there may not be much difference in approximating it by either of the following
expressions:

[
C

8

]

left

=
( r

n

)[( r2

k2
0

)
+

(
r2

k2
1

)
+

(
r2

k2
2

)
+ · · · +

(
r2

k2
n−1

)]
(119)

or [
C

8

]

right

=
( r

n

) [( r2

k2
1

)
+

(
r2

k2
2

)
+

(
r2

k2
3

)
+ · · · +

(
r2

k2
n

)]
. (120)

It can be easily seen that
[
C

8

]

right

<
C

8
<

[
C

8

]

left

. (121)

In other words, though the actual value of the circumferencelies inbetween the values
given by (120) and (119) what is being said is that there will not be much difference
if we divide by the square of either of thekarn. a-s rather than by the product of two
successive ones. Actually, the difference between (120) and (119) is given by

( r

n

)[( r2

k2
0

)
−
(

r2

k2
n

)]
=

( r

n

)[
1 −

(
1

2

)]
(since k2

0 , k
2
n = r2, 2r2)

=
( r

n

)(1

2

)
(122)

Evidently this difference approaches zero asn becomes very large, as noted in both
the textsYuktibhās. ā andKriyākramakar̄ı.

The terms in (120) are evaluated using theśodhya-phala technique (binomial series,
discussed earlier in Section 11) and each one of them may be re-written in the form81

r

n

(
r2

k2
i

)
=

r

n
− r

n

(
k2

i − r2

r2

)
+

r

n

(
k2

i − r2

r2

)2

− . . . (123)

Using (114) and (123) in (120), we obtain:

C

8
=

n∑

i=1

r

n

(
r2

k2
i

)

=

n∑

i=1

( r

n

)( r2

r2 +
(

ir
n

)2

)
(124)

=

n∑

i=1


 r

n
− r

n

((
ir
n

)2

r2

)
+

r

n

((
ir
n

)2

r2

)2

− . . .


 (125)

=
( r

n

)
[1 + 1 + . . . + 1]

−
( r

n

)( 1

r2

)[( r

n

)2

+

(
2r

n

)2

+ . . . +
(nr

n

)2
]

81It may be noted that this series is convergent sincek2
i

= r2 +
(

ir
n

)2
and0 ≤ (k2

i
− r2) < r2

for i < n.
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+
( r

n

)( 1

r4

)[( r

n

)4

+

(
2r

n

)4

+ . . . +
(nr

n

)4
]

−
( r

n

)( 1

r6

)[( r

n

)6

+

(
2r

n

)6

+ . . . +
(nr

n

)6
]

+ . . . . (126)

Each of the terms in (126) is a sum of results (phala-yoga) which we need to estimate
whenn is very large, and we have a series of them (phala-paramparā) which are
alternatively positive and negative. Clearly the first termis just the sum of thebhujā-
khan. d. as.

Thebhujās themselves are given by the integral multiples ofbhujā-khan. d. a, namely,
r
n
, 2r

n
, . . . nr

n
. In the series expression for the circumference given above, we thus have

thesaṅkalitas or summations of even powers of thebhujās, such as thebhujā-varga-

saṅkalita,
(

r
n

)2
+
(

2r
n

)2
+....+

(
nr
n

)2
, bhujā-varga-varga-saṅkalita,

(
r
n

)4
+
(

2r
n

)4
+

..... +
(

nr
n

)4
, and so on.

If we take out the powers ofbhujā-khan. d. a
r
n

, the summations involved are that of
even powers of the natural numbers, namelyedādyekottara-varga-saṅkalita, 12 +
22 + ... + n2, edādyekottara-varga-varga-saṅkalita, 14 + 24 + ... + n4, and so on.

Now, recalling the estimates that were obtained earlier forthesesaṅkalita-s, whenn
is large,

n∑

i=1

ik ≈ nk+1

k + 1
, (127)

we arrive at the result82

C

8
= r

(
1 − 1

3
+

1

5
− 1

7
+ · · ·

)
, (128)

which is same as (112).

14 Derivation of end-correction terms (Antya-sam. skāra)

It is well known that the series given by (112) forπ
4 is an extremely slowly converging

series. It is so slow that even for obtaining the value ofπ correct to 2 decimal places
one has to find the sum of hundreds of terms and for getting it correct to 4-5 decimal
places we need to consider millions of terms.Mādhava seems to have found an
ingenious way to circumvent this problem. The technique employed byMādhava is
known asantya-sam. skāra. The nomenclature stems from the fact that a correction
(sam. skara) is applied towards the end (anta) of the series, when it is terminated after
considering only a certain number of terms from the beginning.

82In modern terminology, the above derivation amounts to the evaluation of the following integral

C

8
= lim

n→∞

n∑

i=1

(
r

n

)(
r2

r2 +
(

ir
n

)2

)
= r

∫ 1

0

dx

1 + x2
.
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14.1 The criterion for antya-sam. skāra to yield accurate result

The discussion onantya-sam. skāra in bothYuktibhās. ā andKriyākramakar̄ı com-
mences with the question:

How is it that one obtains the value of the circumference moreaccurately
by doingantya-sam. skara, instead of repeatedly dividing by odd num-
bers?83

The argument adduced in favor of terminating the series at any desired term, still
ensuring the accuracy, is as follows. Let the series forπ

4 be written as

π

4
= 1 − 1

3
+

1

5
− 1

7
. . . + (−1)

p−3
2

1

p − 2
+ (−1)

p−1
2

1

ap−2
, (129)

where 1
ap−2

is the correction term applied after odd denominatorp − 2. On the other

hand, if the correction terml
ap

, is applied after the odd denominatorp, then

π

4
= 1 − 1

3
+

1

5
− 1

7
. . . + (−1)

p−3
2

1

p − 2
+ (−1)

p−1
2

1

p
+ (−1)

p+1
2

1

ap

. (130)

If the correction terms indeed lead to the exact result, thenboth the series (129) and
(130) should yield the same result. That is,

1

ap−2
=

1

p
− 1

ap

or
1

ap−2
+

1

ap

=
1

p
, (131)

is the criterion that must be satisfied for the end-correction (antya-sam. skāra) to lead
to the exact result.

14.2 Successive approximations to get more accurate correction-
terms

The criterion given by (131) is trivially satisfied when we chooseap−2 = ap = 2p.
However, this value2p cannot be assigned to both the correction-divisors84 ap−2 and
ap because both the corrections should follow the same rule. That is,

ap−2 = 2p, ⇒ ap = 2(p + 2)

or, ap = 2p, ⇒ ap−2 = 2(p − 2).

We can, however, have bothap−2 andap close to2p by takingap−2 = 2p − 2 and
ap = 2p + 2, as there will always persist this much difference betweenp − 2 andp
when they are doubled. Hence, the first (order) estimate of the correction divisor is
given as, “double the even number above the last odd-number divisor p”,

ap = 2(p + 1). (132)

83k+.TMa :pua:na.=:�a mua:hu :�a.vRa:Sa:ma:sa:*ñÍËÉ ùÁ+;a.a:h.=;Nea:na l+Bya:~ya :pa:�a=;DeaH A.a:sa:�a:tva:m,a A:ntya:sMa:~k+a:=e ;Na A.a:pa.a:dùÅ;a:tea Áo+.ya:tea Á . . . (Kriyākramakar̄ı onLı̄lāvat̄ı, cited above (fn. 14), comm. on verse 199, p. 386.)
84By the term correction-divisor (sam. skāra-hāraka) is meant the divisor of the correction term.
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But, it can be seen right away that, with this value of the correction divisor, the condi-
tion for accuracy (131), stated above, is not exactly satisfied. Therefore a measure of
inaccuracy (sthaulya) E(p) is introduced

E(p) =

[
1

ap−2
+

1

ap

]
− 1

p
. (133)

Now, since the error cannot be eliminated, the objective is to find the correction
denominatorsap such that the inaccuracyE(p) is minimised. When we setap =
2(p + 1), the inaccuracy will be

E(p) =

[
1

(2p − 2)
+

1

(2p + 2)

]
− 1

p

=
1

(p3 − p)
. (134)

This estimate of the inaccuracy,Ep being positive, shows that the correction has been
over done and hence there has to be a reduction in the correction. This means that
the correction-divisor has to be increased. If we takeap = 2p + 3, thereby leading to
ap−2 = 2p− 1, we have

E(p) =

[
1

(2p − 1)
+

1

(2p + 3)

]
− 1

p

=
(−2p + 3)

(4p3 + 4p2 − 3p)
. (135)

Now, the inaccuracy happens to be negative. But, more importantly, it has a term
proportional top in the numerator. Hence, for largep, E(p) given by (135) varies
inversely asp2, while for the divisor given by (132),E(p) as given by (134) varied
inversely asp3.85

From (134) and (135) it is obvious that, if we want to reduce the inaccuracy and
thereby obtain a better correction, then a number less than 1has to be added to the
correction-divisor (132) given above. If we try addingrūpa (unity) divided by the
correction divisor itself, i.e., if we setap = 2p + 2 + 1

(2p+2) , the contributions from

the correction-divisors get multiplied essentially by
(

1
2p

)
. Hence, to get rid of the

higher order contributions, we need an extra factor of 4, which will be achieved if we
take the correction divisor to be

ap = (2p + 2) +
4

(2p + 2)
=

(2p + 2)2 + 4

(2p + 2)
. (136)

Then, correspondingly, we have

ap−2 = (2p − 2) +
4

(2p − 2)
=

(2p − 2)2 + 4

(2p − 2)
. (137)

We can then calculate the inaccuracy to be

E(p) =




1

(2p − 2) +
4

2p − 2

+
1

(2p + 2) +
4

2p + 2


−

(
1

p

)

85It may be noted that among all possible correction divisors of the typeap = 2p + m, wherem is an
integer, the choice ofm = 2 is optimal, as in all other cases there will arise a term proportional top in the
numerator of the inaccuracyE(p).
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=

[
(4p3)

(4p4 + 16)

]
− (16p4 + 64)

4p(4p4 + 16)

=
−4

(p5 + 4p)
. (138)

Clearly, thesthaulya with this (second order) correction divisor has improved consid-
erably, in that it is now proportional to the inverse fifth power of the odd number.86

At this stage, we may display the result obtained for the circumference with the cor-
rection term as follows. If only the first order correction (132) is employed, we have

C = 4d

[
1 − 1

3
+ . . . + (−1)

(p−1)
2

1

p
+ (−1)

(p+1)
2

1

(2p + 2)

]
. (139)

If the second order correction (136) is taken into account, we have

C = 4d


1 − 1

3
+ . . . + (−1)

(p−1)
2

1

p
+ (−1)

(p+1)
2

1

(2p + 2) +
4

(2p + 2)




= 4d


1 − 1

3
+ . . . + (−1)

(p−1)
2

1

p
+ (−1)

(p+1)
2

(p + 1)

2
(p + 1)2 + 1


 . (140)

The verse due toMādhava that we cited earlier as defining the infinite series forπ
4 is,

in fact, the first of a group of four verses that present the series along with the above
end-correction.87v.ya.a:sea va.a:�a=;	a.Da:
a.na:h:tea .�+pa:&+tea v.ya.a:sa:sa.a:ga.=:a:�a.Ba:h:tea Á;�a�a:Za.=:a:�a.d:�a.va:Sa:ma:sa:*ñÍËÉ ùÁ+;a.a:Ba:�+.mxa:NMa .~vMa :pxa:Ta:k, kÒ +.ma.a:t,a ku +.ya.Ra:t,a Á Á1 Á Áya:tsa:*ñÍËÉ ùÁ+;a:ya.aY.�a h.=;Nea kx +.tea ;
a.na:vxa.�a.a &+	a.ta:~tua .ja.a:�a.ma:ta:ya.a Áta:~ya.a �+.DvRa:ga:ta.a:ya.a .sa:ma:sa:*ñÍËÉ ùÁ+;a.a ta:�;lM gua:Na.eaY:ntea .~ya.a:t,a Á Á2 Á Áta:dõ :ga.eRa .�+pa:yua:ta.ea h.a.=:ea v.ya.a:sa.a:�/�a.b.Da:Ga.a:ta:taH :pra.a:gva:t,a Áta.a:Bya.a:ma.a:�Ma .~va:mxa:Nea kx +.tea ;Da:nea [ea:pa O;:va k+=;N�a.a:yaH Á Á3 Á Ál+b.DaH :pa:�a=;	a.DaH .sUa:[ma.ea ba:hu :kx +.tva.ea h.=;Na:ta.eaY:	a.ta:sUa:[maH .~ya.a:t,a Á Á4 Á Á

The diameter multiplied by four and divided by unity. Again the products
of the diameter and four are divided by the odd numbers like three, five,
etc., and the results are subtracted and added in order.

Take half of the succeeding even number as the multipler at whichever
[odd] number the division process is stopped, because of boredom. The

86It may be noted that if we take any other correction-divisorap = 2p + 2 + m
(2p+2)

, wherem is an

integer, we will end up having a contribution proportional to p2 in the numerator of the inaccuracyE(p),
unlessm = 4. Thus the above form (136) is the optimal second order choicefor the correction-divisor.

87Kriyākramakar̄ı on l̄ılāvat̄ı, cited above (fn. 14), comm. on verse 199, p. 379.
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square of that [even number] added to unity is the divisor. Their ratio has
to be multiplied by the product of the diameter and four as earlier.

The result obtained has to be added if the earlier term [in theseries] has
been subtracted and subtracted if the earlier term has been added. The
resulting circumference is very accurate; in fact more accurate than the
one which may be obtained by continuing the division process[with large
number of terms in the series].

Continuing this process further,Yuktibhās. ā presents the next order correction-term
which is said to be even more accurate:88A:ntea .sa:ma:sa:*ñÍËÉ ùÁ+;a.a:d:l+va:gRaH .sEa:k+ea gua:NaH .sa O;:va :pua:naH Á Áyua:ga:gua:�a.Na:ta.ea .�+pa:yua:taH .sa:ma:sa:*ñÍËÉ ùÁ+;a.a:d:l+h:ta.ea Ba:vea:d, h.a.=H Á

At the end, [i.e., after terminating the series at some point, apply the
correction term with] the multiplier being square of half ofthe [next]
even number plus 1, and the divisor being four times the same multiplier
with 1 added and multiplied by half the even number.

In other words,89

1

ap

=

(
p + 1

2

)2

+ 1

[(p + 1)2 + 4 + 1]

(
p + 1

2

)

=
1

(2p + 2) +
4

2p + 2 +
16

2p + 2

. (141)

88Gan. ita-yukti-bhās.ā, cited above, p. 82; Also cited inYukti-d̄ıpikā on Tantrasaṅgraha, cited
above (fn. 49), comm. on verse 2.1, p. 103.

89The inaccuracy orsthaulya associated with this correction can be calculated to be

E(p) =
2304

(64p7 + 448p5 + 1792p3 − 2304p)
.

The inaccuracy now is proportional to the inverse seventh power of the odd-number. Again it can be shown
that the number 16 in (141) is optimally chosen, in that any other choice would introduce a term proportional
to p2 in the numerator ofE(p), given above.

In fact, it has been noted by C. T. Rajagopal and M. S. Rangachari that D. T. Whiteside has shown
(personal communication of D. T. Whiteside cited in C. T. Rajagopal and M. S. Rangachari, ‘On an untapped
source of medieval Kerala mathematics’, Arch. for Hist. Sc.35(2), 89–102, 1978), that the end correction-
term can be exactly represented by the following continued fraction

1

ap

=
1

(2p + 2) +
22

(2p + 2) +
42

(2p + 2) +
62

(2p + 2) + . . .

.
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Hence, a much better approximation forπ
4 is:90

π

4
= 1 − 1

3
+

1

5
− 1

7
+ · · · + 1

p
−

(
p + 1

2

)2

+ 1

[(p + 1)2 + 4 + 1]

(
p + 1

2

) . (142)

15 Transforming the Mādhava series for better con-
vergence

After the estimation of end-correction terms,Yuktibhās. ā goes on to outline a method
of transforming theMādhava series (by making use of the above end-correction
terms) to obtain new series that have much better convergence properties. We now
reproduce the following from the English translation ofYuktibhās. ā:91

Therefore, the circumference (of a circle) can be derived intaking into
consideration what has been stated above. A method for that is stated in
the verse.sa:ma:pa.úãÁ*.a.a:h:ta:ya.ea ya.a .�+pa.a:dùÅ;a:yua.ja.Ma ..a:tuaÈåîÁÁ*+R :mUa:l+yua:ta.aH ta.a:�a.BaH Á:Sa.ea:q+Za:gua:�a.Na:ta.a:t,a v.ya.a:sa.a:d, :pxa:Ta:ga.a:h:tea:Sua ;�a.va:Sa:ma:yua:teaH Á.sa:ma:P+l+yua:	a.ta:ma:pa:h.a:ya .~ya.a:�a.d:�:v.ya.a:sa:sMa:Ba:vaH :pa:�a=;	a.DaH Á Á (I)

The fifth powers of the odd numbers (1, 3, 5 etc.) are increased
by 4 times themselves. The diameter is multiplied by 16 and it
is successively divided by the (series of) numbers obtained(as
above). The odd (first, third etc.) quotients obtained are added
and are subtracted from the sum of the even (the second, fourth
etc.) quotients. The result is the circumference corresponding
to the given diameter.

Herein above is stated a method for deriving the circumference. If the cor-
rection term is applied to an approximate circumference andthe amount
of inaccuracy (sthaulya) is found, and if it is additive, then the result is
higher. Then it will become more accurate when the correction term ob-
tained from the next higher odd number is subtracted. Since it happens
that (an approximate circumference) becomes more and more accurate
by making corrections in succeeding terms, if the corrections are applied
right from the beginning itself, then the circumference will come out ac-
curate. This is the rationale for this (above-stated result).

When it is presumed that the correction-divisor is just double the odd
number, the following is a method to obtain the (accurate) circumfer-
ence by a correction for the corresponding inaccuracy (sthaulyām. śa-
parihāra), which is given by the verse:

90It may be noted that this correction term leads to a value ofπ, which is accurate up to 11 decimal
places, when we merely evaluate terms up ton = 50 in the series (142). Incidentally the value ofπ, given
in the rulevibudhanetra..., attributed to M ādhava that was cited in the beginning of Section 13, is also
accurate up to 11 decimal places.

91Gan. ita-yukti-bhās.ā, cited above, Section 6.9, pp. 80–82, 205–07, 402–04.
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v.ya.a:sa.a:d, va.a:�a=;	a.Da:
a.na:h:ta.a:t,a :pxa:Ta:ga.a:�Ma �ya.a:dùÅ;a:yua:��a.gva:mUa:l+Ga:nEaH Á;�a�aÈåî ÁÁ*+:v.ya.a:sea .~va:mxa:NMa kÒ +.ma:ZaH kx +.tva.a :pa:�a=;	a.Da.=:a:nea:yaH Á Á (II)
The diameter is multiplied by 4 and is divided, successively,
by the cubes of the odd numbers beginning from 3, which
are diminished by these numbers themselves. The diameter is
now multiplied by three, and the quotients obtained above, are
added to or subtracted from, alternatively. The circumference
is to be obtained thus.

If, however, it is taken that half the result (of dividing) bythe last even
number is taken as the correction, there is a method to derivethe circum-
ference by that way also, as given by the versedõùÅ;a.a:�a.d:yua.ja.Ma va.a kx +.ta:ya.eaH v.yea:k+a h.a.=:a:d, ;�a.dõ :
a.naÈåî ÁÁ*+:�a.va:Sk+.}Bea Á;Da:na:m,a �+Na:ma:nteaY:ntya.ea:DvRa:ga:ta.Ea.ja:kx +.	a.ta:�a.dõR :sa:�a.h:ta.a h.=;~ya.a:DRa:m,a Á Á (III)

The squares of even numbers commencing from 2, diminished
by one, are the divisors for four times the diameter. (Make
the several divisions). The quotients got by (the division)are
alternately added to or subtracted from twice the diameter.In
the end, divide four times the diameter by twice the result of
squaring the odd number following the last even number to
which is added 2.

The method ofsthaulya-parihāra, outlined above, essentially involves incorporating
the correction terms into the series from the beginning itself. Let us recall that inac-
curacy orsthaulya at each stage is given by

E(p) =
1

ap−2
+

1

ap

−
(

1

p

)
. (143)

The series for the circumference (112) can be expressed in terms of thesesthaulyas
as follows:

C = 4d

[(
1 − 1

a1

)
+

(
1

a1
+

1

a3
− 1

3

)
−
(

1

a3
+

1

a5
− 1

5

)
− . . .

]

= 4d

[(
1 − 1

a1

)
+ E(3) − E(5) + E(7) − . . .

]
. (144)

Now, by choosing different correction-divisorsap in (144), we get several transformed
series which have better convergence properties. If we consider the correction-divisor
(136), then using the expression (138) for thesthaulyas, we get

C = 4d

(
1 − 1

5

)
− 16d

[
1

(35 + 4.3)
− 1

(55 + 4.5)
+

1

(75 + 4.7)
− . . .

]

= 16d

[
1

(15 + 4.1)
− 1

(35 + 4.3)
+

1

(55 + 4.5)
− . . .

]
. (145)

The above series is given in the versesamapañcāhatayoh. . . .(I). Note that each term
in the above series involves the fifth power of the odd number in the denominator, un-
like the original series which only involved the first power of the odd number. Clearly,
this transformed series gives more accurate results with fewer terms.
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If we had used only the lowest order correction (132) and the associatedsthaulya
(134), instead of the correction employed above, then the transformed series is the
one given in the versevyāsād vāridhinihatāt. . .(II)

C = 4d

[
3

4
+

1

(33 − 3)
− 1

(53 − 5)
+

1

(73 − 7)
− . . .

]
. (146)

Note that the denominators in the above transformed series are proportional to the
third power of the odd number.

Even if we take non-optimal correction-divisors, we often end-up obtaining interesting
series. For instance, if we take a non-optimal correction-divisor, say of the formap =
2p, then thesthaulya is given by

E(p) =
1

(2p − 4)
+

1

2p
− 1

p

=
1

(p2 − 2p)

=
1

(p − 1)2 − 1
. (147)

Then, the transformed series will be the one given in the verse dvyādiyujām. vā
kr. tayo. . .(III) 92

C = 4d

[
1

2
+

1

(22 − 1)
− 1

(42 − 1)
+

1

(62 − 1)
+ . . .

]
. (148)

16 Derivation of the Mādhava series for Rsine and Rver-
sine

16.1 First and second order differences of Rsines

We shall now outline the derivation ofMādhava series for Rsine (bhujā-jyā) and
Rversine (́sara), as given inYuktibhās. ā.93 Yuktibhās. ā begins with a discussion of
the first and second order Rsine-differences and derives an exact form of the result
of Āryabhat.a that the second-order Rsine-differences are proportionalto the Rsines
themselves. We had briefly indicated this proof in Section 5.3.

Here we are interested in obtaining theMādhava series for thejyā andśara of an arc
of lengths indicated byEC in Figure 9. This arc is divided inton equal arc bits,
wheren is large. If the arc lengths = Rθ, then thej-th pin. d. a-jyā, Bj is given by94

Bj = jyā

(
js

n

)
= R sin

(
jθ

n

)
. (149)

92The verse III in fact presents the series (148) along with an end correction-term of the form
(−1)p 4d

2(p+1)2+2
.

93Yuktibhās. ā, cited earlier, Vol. I Section 16.5, pp. 94–103, 221–233, 417–427.
94Figure 9 is essentialy the same as Figure 3 considered in section 5 except that thepin. d. ajyās Bj are

Rsines assotiated with multiples of the arc-bits
n

into which the arcEC = s is divided. In Figure 3, the
Bj ’s are the tabular Rsines associated with multiplies of225′.
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The correspondingkot.i-jyā Kj, and thésara Sj , are given by

Kj = kot.i

(
js

n

)
= R cos

(
jθ

n

)
, (150)

Sj = śara

(
js

n

)
= R

[
1 − cos

(
jθ

n

)]
. (151)

Now,CjCj+1 represents the(j +1)-th arc bit. Then, for the arcECj = js
n

, itspin. d. a-
jyā is Bj = CjPj , and the correspondingkot.i-jyā and śara areKj = CjTj, Sj =
EPj . Similarly we have

Bj+1 = Cj+1Pj+1, Kj+1 = Cj+1Tj+1 and Sj+1 = EPj+1. (152)

O

jM
jC

GM j+1

C j+1
F

C

j+1T UjjTUj+1

Q j

Pj

Q j+1

Pj+1

E

SE

N

α

F

j+1M

C j+1

C j

Figure 9: Computation ofJyā andŚara by Saṅkalitas.

Let Mj+1 be the mid-point of the arc-bitCjCj+1 and similarlyMj the mid-point of
the previous (j-th) arc-bit. We shall denote thepin. d. a-jyā of the arcEMj+1 asBj+ 1

2

and clearly
Bj+ 1

2
= Mj+1Qj+1 .

The correspondingkot.i-jyā andśara are

Kj+ 1
2

= Mj+1Uj+1 and Sj+ 1
2

= EQj+1 .

Similarly,
Bj− 1

2
= MjQj , Kj− 1

2
= MjUj and Sj− 1

2
= EQj . (153)

Let α be the chord corresponding to the equal arc-bitss
n

as indicated in Figure 9. That
is, CjCj+1 = MjMj+1 = α.
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Let F be the intersection ofCjTj andCj+1Pj+1, andG of MjUj andMj+1Qj+1.
The trianglesCj+1FCj andOQj+1Mj+1 are similar, as their sides are mutually per-
pendicular. Thus we have

Cj+1Cj

OMj+1
=

Cj+1F

OQj+1
=

FCj

Qj+1Mj+1
. (154)

Hence we obtain

Bj+1 − Bj =
(α

R

)
Kj+ 1

2
, (155)

Kj − Kj+1 = Sj+1 − Sj =
(α

R

)
Bj+ 1

2
. (156)

Similarly, the trianglesMj+1GMj andOPjCj are similar and we get

Mj+1Mj

OCj

=
Mj+1G

OPj

=
GMj

PjCj

. (157)

Thus we obtain

Bj+ 1
2

− Bj− 1
2

=
(α

R

)
Kj, (158)

Kj− 1
2

− Kj+ 1
2

= Sj+ 1
2
− Sj− 1

2
=
(α

R

)
Bj . (159)

We define the Rsine-differences (khan. d. a-jyā) ∆j by

∆j = Bj − Bj−1 , (160)

with the convention that∆1 = B1. From (155), we have

∆j =
(α

R

)
Kj− 1

2
. (161)

From (159) and (161), we also get the second order Rsine-differences (the differences
of the Rsine-differences calledkhan. d. a-jyāntara):

∆j − ∆j+1 = (Bj − Bj−1) − (Bj+1 − Bj)

=
(α

R

)(
Kj− 1

2
− Kj+ 1

2

)

=
(α

R

)(
Sj+ 1

2
− Sj− 1

2

)

=
(α

R

)2

Bj . (162)

Now, if the sum of the second-order Rsine-differences, is subtracted from the first
Rsine-difference, then we get any desired Rsine-difference. That is

∆1 − [(∆1 − ∆2) + (∆2 − ∆3) + . . . + (∆j−1 − ∆j)] = ∆j . (163)

From (162) and (163) we conclude that

∆1 −
(α

R

)2

(B1 + B2 + . . . + Bj−1) = ∆j . (164)
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16.2 Rsines and Rversines fromJyā-saṅkalita

We can sum up the Rversine-differences (159), to obtain theśara, Rversine, at the
midpoint of the last arc-bit as follows:

Sn− 1
2
− S 1

2
=

(
Sn− 1

2
− Sn− 3

2

)
+ . . . . . .

(
S 3

2
− S 1

2

)

=
(α

R

)
(Bn−1 + Bn−2 + . . . + B1) . (165)

Using (162), the right hand side of (165) can also be expressed as a summation of
the second order differences. From (164) and (165) it follows that the Rversine at the
midpoint of the last arc-bit is also given by

(α

R

)(
Sn− 1

2
− S 1

2

)
= (∆1 − ∆n). (166)

Now, since the first Rsine-difference∆1 = B1, any desired Rsine can be obtained
by adding the Rsine-differences; these Rsine-differenceshave been obtained in (164).
Now, by making use of (164), the lastpin. d. a-jyā can be expressed as follows:

Bn = ∆n + ∆n−1 + . . . + ∆1

= n∆1 −
(α

R

)2

[(B1 + B2 . . . + Bn−1) + (B1 + B2 . . . + Bn−2) + . . . + B1]

= nB1 −
(α

R

)2

[Bn−1 + 2Bn−2 + . . . + (n − 1)B1] . (167)

The results (158) – (167), obtained so far, involve no approximations. It is now shown
how better and better approximations to the Rsine and Rversine can be obtained by
takingn to be very large or, equivalently, the arc-bits

n
to be very small. Then, we can

approximate the full-chord and the Rsine of the arc-bit by the length of the arc-bits
n

itself. Also, as a first approximation, we can approximate the pin. d. a-jyās Bj in the
equations (164), (165) or (167) by the corresponding arcs themselves. That is

Bj ≈ js

n
. (168)

The result for the Rsine obtained this way is again used to obtain a better approxima-
tion for thepin. d. a-jyās Bj which is again substituted back into the equations (165) and
(167) and thus by a process of iteration successive better approximations are obtained
for the Rsine and Rversine. Now, once we takeBj ≈ js

n
, we will be led to estimate

the sums and repeated sums of natural numbers (ekādyekottara-saṅkalita), when the
number of terms is very large.

16.3 Derivation of Mādhava series by iterative corrections toJyā

and Śara

As we noted earlier, these relations given by (165) and (167)are exact. But now we
shall show how better and better approximations to the Rsineand Rversine of any
desired arc can be obtained by takingn to be very large or, equivalently, taking the
arc-bit s

n
to be very small. Then both the full-chordα, and the first RsineB1 (the
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Rsine of the arc-bit), can be approximated by the arc-bits
n

itself, and the Rversine
Sn− 1

2
can be taken asSn and the RversineS 1

2
may be treated as negligible. Thus the

above relations (165), (167) become95

S = Sn ≈
( s

nR

)
(Bn−1 + Bn−2 + . . . + B1), (169)

B = Bn ≈ s −
( s

nR

)2

[(B1 + B2 + . . . + Bn−1)

+ (B1 + B2 . . . + Bn−2) + . . . + B1], (170)

whereB andS are the Rsine and Rversine of the desired arc of lengths and the results
will be more accurate, larger the value ofn.

Now, as a first approximation, we take eachpin. d. a-jyā Bj in (169) and (170) to be
equal to the corresponding arc itself, that is

Bj ≈ js

n
. (171)

Then we obtain for the Rversine

S ≈
( s

nR

) [
(n − 1)

( s

n

)
+ (n − 2)

( s

n

)
+ . . .

]

=

(
1

R

)( s

n

)2

[(n − 1) + (n − 2) + . . .]. (172)

For largen, we can use the estimate (89) for the sum of integers. Hence (172) reduces
to

S ≈
(

1

R

)
s2

2
. (173)

Equation (173) is the first́sara-sam. skāra, correction to the Rversine. We now sub-
stitute our first approximation (171) to thepin. d. a-jyās Bj in (170), which gives the
Rsine of the desired are as a second order repeated sum of thepin. d. a-jyās Bj . We
then obtain

B ≈ s−
(

1

R

)2 ( s

n

)3

[(1+2+ . . .+(n− 1))+ (1+2+ . . .(n− 2))+ . . .]. (174)

The second term in (174) is advit̄ıya-saṅkalita, the second order repeated sum, and
using the estimate (108), we obtain

B ≈ s −
(

1

R

)2
s3

1.2.3
. (175)

Thus we see that the first correction obtained in (175) to the Rsine-arc-difference
(jyā-cāpāntara-sam. skāra), is equal to the earlier correction to the Rversine (śara-
sam. skāra) given in (173) multiplied by the arc and divided by the radius and 3.

95As has been pointed out by one of the reveiwers, in the following derivation instead of using the relation
(170), which involves repeated summation ofpin. d. ajyās, one could use the much simpler relation

B = Bn ≈ s −
s

nR
(Sn−1 + Sn−2 + . . . + S1),

which essentially follows from (165) and (170). Then we can iterate between the above equation and (169)
which involve considering only sums of powers of integers.Yuktibhās. ā, however, employes successive
iteration between (169) and (170), which involves consideration of repeated sums of integers.
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It is noted that the results (173) and (175) are only approximate (prāyika), since,
instead of thesaṅkalita of thepin. d. a-jyās in (169) and (170), we have only carried
out saṅkalita of the arc-bits. Now that (175) gives a correction to the difference
btween the Rsine and the arc (jyā-cāpāntara-sam. skāra), we can use that to correct
the values of thepin. d. a-jyās and thus obtain the next corrections to the Rversine and
Rsine.

Following (175), thepin. d. a-jyās may now be taken as

Bj ≈ js

n
−
(

1

R

)2
[(

js

n

)3

1.2.3

]
. (176)

If we introduce (176) in (169), we obtain

S ≈
(

1

R

)( s

n

)2

[(n − 1) + (n − 2) + . . .]

−
( s

nR

)( 1

R

)2 ( s

n

)3
(

1

1.2.3

)
[(n − 1)3 + (n − 2)3 + . . .]. (177)

The first term in (177) was already evaluated while deriving (173). The second term
in (177) can either be estimated as a summation of cubes (ghana-saṅkalita), or as
a tr. t̄ıya-saṅkalita, third order (repeated) summation, because each individual term
there has been obtained by doing a second-order (repeated) summation. Hence, recol-
lecting our earlier estimate (110) for thesesaṅkalitas, we get

S ≈
(

1

R

)
s2

1.2
−
(

1

R

)3
s4

1.2.3.4
. (178)

Equation (178) gives a correction (śara-sam. skāra) to the earlier value (173) of the
Rversine, which is nothing but the earlier correction to theRsine-arc difference (jyā-
cāpāntara-sam. skāra) given in (175) multiplied by the arc and divided by the radius
and 4.

Again, if we use the correctedpin. d. a-jyās (176) in the expression (170) for the Rsine,
we obtain

B ≈ s −
(

1

R

)2 ( s

n

)3

[(1 + 2 + .. + (n − 1)) + (1 + 2 + .. + (n − 2)) + ..]

+

(
1

R

)4 ( s

n

)5

×
(

1

1.2.3

)[
(13 + 23 + ... + (n − 1)3) + (13 + 23 + ... + (n − 2)3) + ..

]

≈ s −
(

1

R

)2
s3

1.2.3
+

(
1

R

)4
s5

1.2.3.4.5
. (179)

The above process can be repeated to obtain successive higher order corrections for the
Rversine and Rsine: By first finding a correction (jyā-cāpāntara-sam. skāra) for the
difference between the Rsine and the arc, using this correction to correct thepin. d. a-
jyās Bj , and using them in equations (169) and (170) get the next correction (́sara-
sam. skāra) for the Rversines, and the next correction (jyā-cāpāntara-sam. skāra) for
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the Rsine-arc-difference itself, which is then employed toget further corrections iter-
atively. In this way we are led to theMādhava series forjyā andśara given by

B = R sin(s) = s −
(

1

R

)2
s3

(1.2.3)
+

(
1

R

)4
s5

(1.2.3.4.5)

−
(

1

R

)6
s7

(1.2.3.4.5.7)
+ . . . ,

S = R vers(s) =

(
1

R

)
s2

2
−
(

1

R

)3
s4

(1.2.3.4)
+

(
1

R

)5
s6

(1.2.3.4.6)
− . . . .(180)

That is,

sin θ = θ − θ3

(1.2.3)
+

θ5

(1.2.3.4.5)
− θ7

(1.2.3.4.5.6.7)
+ . . . ,

versθ =
θ2

(1.2)
− θ4

(1.2.3.4)
+

θ6

(1.2..4.5.6)
− . . . . (181)

17 Instantaneous velocity and derivatives

As we saw in Section 6.1, themandaphala or the equation of centre for a planet∆µ
is given by

R sin(∆µ) =
(r0

R

)
R sin(M − α), (182)

wherer0 is the mean epicycle radius,M is the mean longitude of the planet andα
the longitude of the apogee. Further as we noted earlier,Muñjāla, Āryabhat.a II and
Bhāskara II used the approximation

R sin(∆µ) ≈ ∆µ, (183)

in (182) and obtained the following expression as correction to the instantaneous ve-
locity of the planet:

d

dt
(∆µ) =

(r0

R

)
R cos(M − α)

d

dt
(M − α). (184)

Actually the instantaneous velocity of the planet has to be evaluated from the more
accurate relation

∆µ = R sin−1
[(r0

R

)
R sin(M − α)

]
. (185)

The correct expression for the instantaneous velocity which involves the derivative of
arc-sine function has been given byNı̄lakan. t.ha in hisTantrasaṅgraha.96..a:ndÒ ;ba.a:hu :P+l+va:gRa:Za.ea:	a.Da:ta:�a�a.$ya:k+a:kx +.	a.ta:pa:de :na .sMa:h:=e ;t,a Áta.�a k+ea:	a.f:P+l+
a.l+	a.�a:k+a:h:ta.Ma :ke +.ndÒ ;Bua:	a.�+.�a=;h ya:�a l+Bya:tea Á Á

96Tantrasaṅgraha, cited above (fn. 52), verses 2.53–54, pp.169–170. Elsewhere, Nı̄lakan. t.ha has
ascribed these verses to his teacherDāmodara (Jyotirmı̄mām. sā, Ed. by K. V. Sarma, VVRI, Hoshiarpur
1977, p. 40).
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ta:�a.dõ :Za.ea:Dya mxa:ga.a:�a.d:ke ga:teaH ;�a.[a:pya:ta.a:�a.ma:h tua k+.kR +.f.a:�a.d:ke Áta:;�ÂåÅ ;vea:t~å.Pu +f:ta.=:a ga:	a.ta:�a.vRa:Da.eaH A:~ya ta:tsa:ma:ya.ja.a .=;vea.=;�a.pa Á Á
Let the product of thekot.iphala [r0 cos(M − α)] in minutes and the

daily motion of themanda-kendra
(

d(M−α)
dt

)
be divided by the square

root of the square of thebāhuphala subtracted from the square oftrijyā(√
R2 − r2

0 sin2(M − α)

)
. The result thus obtained has to be sub-

tracted form the daily motion of the Moon if themanda-kendra lies
within six signs beginning fromMr. ga and added if it lies within six signs
beginning fromKarkat.aka. The result gives a more accurate value of the
Moon’s angular velocity. In fact, the procedure for finding the instanta-
neous velocity of the Sun is same as this.

If (M−α) be themanda-kendra, then the content of the above verse can be expressed
as

d

dt

[
sin−1

(r0

R
sin(M − α)

)]
=

r0 cos(M − α)
d(M − α)

dt√
R2 − r2

0 sin2(M − α)
. (186)

The instantaneous velocity of the planet is given by

d

dt
µ =

d

dt
(M − α) −

r0 cos(M − α)
d(M − α)

dt√
R2 − r2

0 sin2(M − α)
. (187)

Here, the first term in the RHS represents the mean velocity ofthe planet and the
second term the rate of change in themandaphala given by (186).

In his Āryabhat. ı̄ya-bhās. ya, Nı̄lakan. t.ha explains how his result is more correct than
the traditional result ofMuñjāla andBhāskarācārya:97A:taH :P+l+sa.a:}yMa ku +.taH? . . . :pua:na.=;�a.pa ya.ea ;�a.va:Zea:SaH ta.�a k+ea:	a.f.$ya.a:gua:�a.Na:ta:~ya;�a�a.$ya:ya.a h.=;Na:mua:�+.m,a, I+h k+ea:	a.f:P+l+gua:�a.Na:ta:~ya :ke +.ndÒ ;Ba.ea:ga:~ya d.eaHP+l-k+ea:f�a.a h.=;Na:mua:�+.m,a I+	a.ta Á .tea:na ta:tP+lM ..a.a:p�a.a:kx +.tMa Bua.ja.a:P+l+ga:	a.taH .~ya.a:t,a Ák+.Ta:m,a ?..a.a:pa:ga:	a.ta:sa:}ba:�//�a.nDa.$ya.a:ga:tya.a:na:ya:nea ya:t,a :�Ea.=:a:�a.Za:k+.mua:�M , .$ya.a:ga:tya.a ..a.a:pa:ga:tya.a-na:ya:nea ta:�a.dõ :pa.=� :a:tMa k+.mRa k+a:yRa:m,a Á ta.�a :pUa:va.eRa:�e k+.mRa:�a.Na :�Ea.=:a:�a.Za:k+.dõ :yea:na ya.ad.eaHP+l+ga:	a.taH A.a:n�a.a:ta.a ta.Ma v.ya.a:sa.a:DeRa:na h:tva.a d.eaHP+l+k+ea:f�a.a &+tva.a ta:�a.a:pa-ga:	a.ta:lR +Bya.a Á ta.�ea:dM :�Ea.=:a:�a.Za:k+.m,a . . .

Hence, how can the results be equal? . . . Again the distinction being:
there it was prescribed that the multiplierkot.i-jyā was to be divided by
trijyā, [but] here it has been prescribed that the product ofkot.iphala

97Āryabhat.ı̄ya of Āryabhat.a, Ed. with Āryabhat.ı̄ya-bhās.ya of Nı̄lakan. t.ha Somayāj̄ı by
K. Sāmbaśiva Śāstr̄ı, Trivandrum Sanskrit Series 110, Trivandrum 1931, comm. onKālakriyāpāda

22–25, pp. 62–63.
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and the rate of change ofkendra be divided bykot.i of the doh. phala
(doh. phalakot.yā).98 . . .

17.1 Acyuta’s expression for instantaneous velocity involving the
derivative of ratio of two functions

In the third chapter of hisSphut.anirn. ayatantra, Acyuta Pis.ārat.i (c. 1550–1621),
a disciple ofJyes.t.hadeva, discusses various results for the instantaneous velocity
of a planet depending on the form of equation of centre (manda-sam. skāra). He first
presents the formula involving the derivative of arc-sine function given byNı̄lakan.t.ha
(in the name of (manda)-sphut.agati) as follows:99k+ea:	a.f:P+l;a:h:ta:ke +.ndÒ ;ga:tea:yRa:d, d.eaHP+l+k+ea:	a.f:k+.ya.a:�a:ma:nea:na Áh� .a:na:yua:ta.a:mxa:ga:k+.kR +.f:k+a:dùÅ;a.ea:mRa:Dya:ga:	a.ta:BRa:va:	a.ta .~å.Pu +f:Bua:	a.�H Á Á
Acyuta also gives the formula for the instantaneous velocity of a planet if one were to
follow a different model proposed byMunjāla for the equation of centre, according
to whichmandaphala is given by

∆µ =

r0

R
sin(M − α)

(
1 − r0

R
cos(M − α)

) , (188)

instead of (182), where∆µ is small. If one were to use this formula formandaphala
for finding the true longitude of the planet, then it may be noted that the instantaneous
velocity will involve the derivative of the ratio of two functions both varying with
time. Taking note of this,Acyuta observes:100kx +.t=+:ïîåéa:~ya ma.a:nd:pa:�a=;Dea:
a.nRa.ja:k+.NRa:tua:�ya.Ea vxa:
a;dÄâ :[a:ya.a:�a.va:	a.ta ma:tea k+.
a.Ta:taH kÒ +.ma.eaY:ya:m,a ÁA:DRa:~ya ma.a:nd:pa:�a=;DeaH [a:ya:vxa:
a;dÄâ :pa:[ea, yua:�M ;�a.kÒ +.ya.a:ma:Ta :pra:	a.ta:pa.a:d:ya.a:maH Á Á

The procedure that was prescribed earlier is with referenceto the School
that conceives of the increase and decrease in the circumference of the
manda-vr. tta in accordance with thekarn. a. With reference to the School
that conceives of increase and decrease only to the half [of it], now we
prescribe the appropriate procedure to be adopted.

Acyuta then proceeds to give the correct expression for the instantaneous velocity of
a planet inMunjāla’s model:101kx +.ta:k+ea:	a.f:P+lM ;�a�a.j�a.a:va:ya.a ;�a.va:&+tMa d.eaHP+l+va:gRa:ta:~tua ya:t,a Ámxa:ga:k+.kR +.f:k+a:�a.d:ke Y:mua:na.a yua:ta:h� .a:nMa :P+l+ma.�a:k+ea:	a.f.ja:m,a Á Á

98The termsdoh. phala andkot.iphala refer to r0
R

sin(M −α) and r0
R

cos(M −α) respectively. Hence,

the termdoh. phalakot. i refers to
√

1 − ( r0
R

sin(M − α))2 .
99Sphut.anirn. ayatantra of Acyuta Pis.ārat.i, Ed. by K. V. Sarma, VVRI, Hoshiarpur 1974, p. 19.

100Ibid., p. 20.
101Ibid., p. 21.
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;�a.d:na:ke +.ndÒ ;ga:	a.taÈåî ÁÁ*+:mua.;dÄâ :=e ;t,a kx +.ta:k+ea:f� .a:P+l+ya.a ;�a�a.j�a.a:va:ya.a Á:P+l+pUa:vRa:P+lE +k+.ta.ea d:lM ;�a.d:na:Bua:�e +=;�a.pa .sMa:~kx +.	a.ta:BRa:vea:t,a Á Á
Having applied thekot.iphala to trijyā [positively or negatively depend-
ing upon themandakendra], let the square of thedoh. phala be divided by
that. This may be added to or subtracted from thekot.iphala depending
on if it is Mr. gādi or Karkyādi. The product of this [result thus obtained]
and the daily motion of themanda-kendra divided by thekot.iphala and
applied totrijyā will be the correction to the daily motion.

Thus according to Acyuta, the correction to the mean velocity of a planet to obtain its
instantaneous velocity is given by

(r0

R
cos(M − α)

)
+

(r0

R
sin(M − α)

)2

(
1−

r0

R
cos(M − α)

)

(
1 − r0

R
cos(M − α)

) d(M − α)

dt
, (189)

which is nothing but the derivative of the expression given in (188).
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Benares 1927, Chaukhamba Rep. 1994.
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Ed. by V. G. Apte, 2 Vols, Pune 1937.
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