Due on Jan. 18, 2019.

Section 1

1. Evaluate the following complex numbers in the form $a+b i$.

$$
i^{5}, i^{35},(-i)^{28}, \frac{2+3 i}{3+4 i},|5+12 i|
$$

Answer: Note that $i^{4}=1$, so all powers of i can be reduced.
The answers are $i,-i, 1, \frac{18+i}{25}, \sqrt{25+144}=13$.
2. Rewrite the following complex numbers in the polar form $r e^{i \theta}$.

$$
\frac{1+i \sqrt{3}}{2},\left(\frac{1+i \sqrt{3}}{2}\right)^{5},\left(\frac{1+i \sqrt{3}}{2}\right)^{12} .
$$

Answer: The number $\frac{1+i \sqrt{3}}{2}$ is $e^{i \pi / 3}$. So the answers are:

$$
e^{i 5 \pi / 3}=(1) e^{-i \pi / 3}=\frac{1-i \sqrt{3}}{2}
$$

3. Find all complex solutions of

$$
z^{4}=1, z^{6}=-64
$$

Answer: For the first equation, note that $|z|^{4}=1$, so $|z|=1$ or $z=e^{i \theta}$. We need to check $e^{4 i \theta}=1$, i.e. $4 i \theta=2 n \pi$. So $\theta=n \pi / 4$ and $n=0,1,2,3$ give four values $1,-1, i,-i$ for z.
For the second equation, set $z=2 w$, so we need to solve $w^{6}=-1=e^{i \pi}$.. If we set $w=e^{i \theta}$ then we have to solve $6 \theta=\pi+2 n \pi / 6$ for $n=0,1,2,3,4,5 . z$ is found by multiplying by 2 .
4. Calculate the given expressions using the given modular addition (Notation: $a+_{n} b$).

$$
10+_{1} 718,20.5+_{25} 6.7,(3 \pi) / 4+{ }_{2 \pi}(3 \pi) / 2 .
$$

Answer: Modulo 1, all integers are zero, so the first answer is 0 . The second answer is 27.2 modulo 25, 2.2.
The third answer is $3 \pi(1 / 2+1 / 4)=3 \pi(3 / 4)=\pi(9 / 4)$. Modulo 2π this becomes $\pi / 4$.

Section 2

Class practice only

Section 3

Determine if the given given function ϕ gives an isomorphism of the first binary structure with the second. Explain your conclusion.

[^0]1. $(\mathbb{Z},+)$ with $(\mathbb{Z},+)$ where $\phi(n)=-n$.

Answer: ϕ is clearly 1-1 and onto. The homomorphism condition needs

$$
\phi(n+m)-(n+m)=(-n)+(-m)=\phi(n)+\phi(m) .
$$

2. $(\mathbb{Z},+)$ with $(\mathbb{Z},+)$ where $\phi(n)=3 n$.

Answer: The map is not onto, since $\phi(n) 3 n \neq 1$ for any integer n.
3. $(\mathbb{Q},+)$ with $(\mathbb{Q},+)$ where $\phi(x)=3 x$.

Answer: 1-1 and onto is easy to check since $\phi^{-1}(x)=x / 3$ exists. Homomorphism condition is routine.
4. $\left(M_{2}(R), \cdot\right)$ with (\Re, \cdot) where $\phi(A)=\operatorname{det}(A)$.

Answer: The map is not injective since $\phi(M)=0$ for $M=\left(\begin{array}{cc}1 & t \\ 1 & t\end{array}\right)$ for all values of t.
5. Show that $\phi(n)=1-n$ is a one-to-one and onto function from \mathbb{Z} to \mathbb{Z}. Determine a new binary operation $*$ on \mathbb{Z} such that ϕ gives an isomorphism

$$
(\mathbb{Z},+) \rightarrow(\mathbb{Z}, *)
$$

Answer: We wish to define ϕ such that

$$
1-n-m=\phi(n+m)=\phi(n) * \phi(m) .
$$

If we define $a * b=a+b-1$, then
$\phi(n) * \phi(m)=(1-n) *(1-m)=2-n-m-1=1-n-m=\phi(n+m)$ as desired.

[^0]: ${ }^{1} 2$ points each, except 4 for the last problem.

