Some concrete problems and topics for investigation are presented below. Be sure to experiment with calculations. On Monday, there would be a quiz in class to calculate various quantities.

1. Evaluate the following permutations and present your answer as a product of disjoint cycles.

$$
(1234)(234),(34)(2367)(43),(123)(32145)(321)
$$

Answer:

$$
(1243),(2467),(13245) .
$$

2. A transposition of the form $(i j)$ is said to be adjacent if $j=i+1$. Show that every transposition can be written as a product of adjacent transpositions.
Answer: Hint: $(13)=\left(\begin{array}{ll}2 & 3\end{array}\right)(12)(23)$.
3. If σ is an r-cycle, and τ is any permutation, then $\sigma^{\tau}=\tau \sigma \tau^{-1}$ is also an r-cycle. Check this with examples.

Generalize to the case of an arbitrary permutation σ. Again test some examples.

Answer:

4. Let G be a group. Define a relation $g \sim h$ iff $g=u h u^{-1}$ for some $u \in G$.

Prove that \sim is an equivalence relation. The set of all elements $g \in G$ such that $g \sim h$ is called the conjugacy class of h in G.
Determine all the differemt conjugacy classes in S_{3}. Similarly do this for S_{4}.
Answer: S_{3} has 3 classes and S_{4} has 5 classes.
5. Prove that in an abelian group G, all conjugacy classes are singleton sets, so the number of classes is equal to the order of the group.
6. Let G be a group and for a given $g \in G$ we define the conjugation homomorphism ϕ_{g} defined by $\phi_{g}(h)=g h g^{-1}$.
Show that the composition $\phi_{a} \circ \phi_{b}$ is equal to the conjugation homomorphism $\phi_{a} a b$.
Verify these facts for elements in S_{3} and S_{4}.
7. If G is abelian, then every ϕ_{g} is simply the identity map!
8. Kernel of any homomorphism F of a group G is defined as $\operatorname{Ker}(F)=\left\{g \in G \mid F(g)=e_{G}\right\}$. Prove that $\operatorname{Ker}(F)$ is always a subgroup of G.
Determine the kernels of the conjugation homomorphisms in S_{3} and S_{4}.
Answer:

