MA361 Sathaye

Permutation problems

Some concrete problems and topics for investigation are presented below. Be sure to experiment with calculations. On Monday, there would be a quiz in class to calculate various quantities.

1. Evaluate the following permutations and present your answer as a product of disjoint cycles.

 $(1\ 2\ 3\ 4)(2\ 3\ 4),\ (3\ 4)(2\ 3\ 6\ 7)(4\ 3),\ (1\ 2\ 3)(3\ 2\ 1\ 4\ 5)(3\ 2\ 1)$

Answer:

2. A transposition of the form $(i \ j)$ is said to be adjacent if j = i + 1. Show that every transposition can be written as a product of adjacent transpositions.

Answer: Hint: $(1 \ 3) = (2 \ 3)(1 \ 2)(2 \ 3).$

3. If σ is an r - cycle, and τ is any permutation, then $\sigma^{\tau} = \tau \sigma \tau^{-1}$ is also an *r*-cycle. Check this with examples.

Generalize to the case of an arbitrary permutation σ . Again test some examples.

Answer:

4. Let G be a group. Define a relation $g \sim h$ iff $g = uhu^{-1}$ for some $u \in G$.

Prove that \sim is an equivalence relation. The set of all elements $g \in G$ such that $g \sim h$ is called the conjugacy class of h in G.

Determine all the different conjugacy classes in S_3 . Similarly do this for S_4 .

Answer: S_3 has 3 classes and S_4 has 5 classes.

- 5. Prove that in an abelian group G, all conjugacy classes are singleton sets, so the number of classes is equal to the order of the group.
- 6. Let G be a group and for a given $g \in G$ we define the conjugation homomorphism ϕ_g defined by $\phi_g(h) = ghg^{-1}$.

Show that the composition $\phi_a \circ \phi_b$ is equal to the conjugation homomorphism $\phi_a ab$.

Verify these facts for elements in S_3 and S_4 .

- 7. If G is abelian, then every ϕ_g is simply the identity map!
- 8. Kernel of any homomorphism F of a group G is defined as $Ker(F) = \{g \in G \mid F(g) = e_G\}$. Prove that Ker(F) is always a subgroup of G.

Determine the kernels of the conjugation homomorphisms in S_3 and S_4 .

Answer: