MA361 Sathaye

Group problems

Suppose that G is a group with 7 elements. Explain why G must be a cyclic group. You will need Lagrange Theorem. Study it well.

Given any $x \in G$ argue that o(x) = 1 or 7.

2. Suppose that G is a cyclic group with 12 elements.

Given any $x \in G$, is it still true that every $x \in G$ has order 1 or 12. Either prove this or give a counterexample.

3. Suppose we have groups G and H. Then we define a group structure on $G \times H$ as follows:

$$(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2)$$

where the two terms use the operations in G and H respectively.

Note: G may be equal to H, as a set or even as a group. Prove that this defines a group $G \times H$.

4. Consider $K = \mathbb{Z}_2 \times \mathbb{Z}_2$. Explicitly list all 4 elements in K.

Argue that an element of K has order 1 or 2, but no other orders are possible.

Is this a contradiction to Lagrange Theorem?

Explain why K is not a cyclic group.

Prove or disprove that K is abelian.

5. We may denote above group K as \mathbb{Z}_2^2 . Formulate a definition of \mathbb{Z}_2^n for $n = 3, 4, \cdots$. Is the statement about orders still valid in these groups?

6. Define a binary operation on \Re by $x * y = \lfloor x + y \rfloor$. Is * associative? Prove your claim.

7. **Permutations** Given a set A, a permutation is a bijective map of A to A. These are a group under composition. The group may be denoted as S_A .

We are particularly interested in finite A. If A has n elements, then we call the group S_n .

If $A = \{1, 23\}$ then list all 6 elements of S_3 .

I recommend that the map $1 \to a, 2 \to b, 3 \to c$ be simply denoted as a triple $\sigma = (a, b, c)$.

Compute the following compositions which are marked as \cdot and even that may be dropped later.

• $(1,2,3) \cdot (3,2,1)$.

What element is the identity element?

- If $\sigma = (2, 1, 3)$ then what is $\sigma \cdot \sigma$ What is the order of σ ?
- If $\tau = (2, 3, 1)$ then what is its order?