1. Suppose that G is a group with 7 elements. Explain why G must be a cyclic group. You will need Lagrange Theorem. Study it well.
Given any $x \in G$ argue that $o(x)=1$ or 7 .
2. Suppose that G is a cyclic group with 12 elements.

Given any $x \in G$, is it still true that every $x \in G$ has order 1 or 12 . Either prove this or give a counterexample.
3. Suppose we have groups G and H. Then we define a group structure on $G \times H$ as follows:

$$
\left(g_{1}, h_{1}\right) \cdot\left(g_{2}, h_{2}\right)=\left(g_{1} g_{2}, h_{1} h_{2}\right)
$$

where the two terms use the operations in G and H respectively.
Note: G may be equal to H, as a set or even as a group. Prove that this defines a group $G \times H$.
4. Consider $K=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Explicitly list all 4 elements in K.

Argue that an element of K has order 1 or 2 , but no other orders are possible.
Is this a contradiction to Lagrange Theorem?
Explain why K is not a cyclic group.
Prove or disprove that K is abelian.
5. We may denote above group K as \mathbb{Z}_{2}^{2}. Formulate a definition of \mathbb{Z}_{2}^{n} for $n=3,4, \cdots$. Is the statement about orders still valid in these groups?
6. Define a binary operation on \Re by $x * y=\lfloor x+y\rfloor$. Is $*$ associative?

Prove your claim.
7. Permutations Given a set A, a permutation is a bijective map of A to A. These are a group under composition. The group may be denoted as S_{A}.
We are particularly interested in finite A. If A has n elements, then we call the group S_{n}. If $A=\{1,23\}$ then list all 6 elements of S_{3}. I recommend that the map $1 \rightarrow a, 2 \rightarrow b, 3 \rightarrow c$ be simply denoted as a triple $\sigma=(a, b, c)$.

Compute the following compositions which are marked as • and even that may be dropped later.

- $(1,2,3) \cdot(3,2,1)$.

What element is the identity element?

- If $\sigma=(2,1,3)$ then what is $\sigma \cdot \sigma$ What is the order of σ ?
- If $\tau=(2,3,1)$ then what is its order?

