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Permutations, Cosets, and Direct Products

where not all primes p; need be distinct. Since (p1)"'(p2)™ -+ (pa)™ 18 the order of G,
then m must be of the form (p1)™ (p2)* - - - (pn)™, where 0 < s; < r;. By Theorem 6.14,
(p;Y1 ™% generates a cyclic subgroup of Z,,y: of order equal to the quotient of (p;)" by
the ged of (p;)" and (p;)" ™. But the gcd of {p;)" and (p;)" 7% is (p;) . Thus (p;)" ™%
generates a cyclic subgroup Z,,y of order
[(p) 1/ [p)" 51 = (pi)*.
Recalling that (a) denotes the cyclic subgroup generated by a, we see that
(0" ™) X {(p2)™72) x - x ((p)™ ™)
is the required subgroup of order m. *

If m is a square free integer, that is, m is not divisible by the square of any prime, then
every abelian group of order m is cyclic.

Let G be an abelian group of square free order m. Then by Theorem 11.12, G is isomor-
phic to

Lpyyr % Lipoy> X =+ X Lp,yns
where m = (p1)" (p2)? - - - (pn)". Since m is square free, we must have all r; = 1 and

all p; distinct primes. Corollary 11.6 then shows that G is isomorphic to Zpyprepn> S0 G
is cyclic. L 4

EXERCISES 11

1. List the elements of Z> x Z,. Find the order of each of the elements. Is this group cyclic?

2. Repeat Exercise 1 for the group Z3 x Zy.

In Exercises 3 through 7, find the order of the given element of the direct product.

3.
6.
8.
9.
10.
11.
12.
13.

14,

(2, 6) in Z4 X le

(3,10,9)in Z4 X

4, (2, 3) in Zé X ZIS s. (8, 10) in le X Z]g
le X 215 7. (3, 6, 12, 16) in Z4 X Z]Q X Zzo X Z24

What is the largest order among the orders of all the cyclic subgroups of Ze x Zg? of Za X Zys5?

Find all proper nontrivial subgroups of Z» x Z;.

Find all proper nontrivial subgroups of Z, x Z; x Z.

Find all subgroups of Z; x Z4 of order 4.

Find all subgroups of Z, x Z; x Z4 that are isomorphic to the Klein 4-group.

Disregarding the order of the factors, write direct products of two or more groups of the form Z, so that the
resulting product is isomorphic to Zeo in as many ways as possible.

Fill in the blanks.

a. The cyclic subgroup of Z,4 generated by 18 has order_.
b. Zz x Z4 is of order___.
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¢. The element (4, 2) of Z); X Zg has order__.
d. The Klein 4-group is isomorphicto Z__ x Z__.
e. Z» x Z x Z4 has___elements of finite order.
15. Find the maximum possible order for some element of Z4 X Zg.
16. Are the groups Z; x Z, and Z4 x Zg isomorphic? Why or why not?
17. Find the maximum possible order for some element of Zg X Zip X Zaa.
w 18. Are the groups Zg X Zig x Zag and Zy x Zyy X Zag isomorphic? Why or why not?
19. Find the maximum possible order for some element of Zy X Z1g X Zis.
w 20. Are the groups Z, x Zig x Zs and Zs x Z3zs X Zip isomorphic? Why or why not?

In Exercises 21 through 25, proceed as in Example 11.13 to find all abelian groups, up to isomorphism, of the given

order.
21. Order 8 22. Order 16 23. Order 32
24. Order 720 25. Order 1089

26. How many abelian groups (up to isomorphism) are there of order 247 of order 25? of order (24)(25)?

27. Following the idea suggested in Exercise 26, let m and n be relatively prime positive integers. Show that if
there are (up to isomorphism) r abelian groups of order m and s of order 7, then there are (up to isomorphism)
rs abelian groups of order mn.

28. Use Exercise 27 to determine the number of abelian groups (up to isomorphism) of order (10)°.

29. a, Let p be a prime number. Fill in the second row of the table to give the number of abelian groups of order p”,
up to isomorphism.

i n|2|3[4]5]6]7]|8]

numberof groups | | | | | | | |

b. Let p, g, and r be distinct prime numbers. Use the table you created to find the number of abelian groups,
up to isomorphism, of the given order.
i pg4’ ii. (gr)’ iii. ¢°r%g°

30. Indicate schematically a Cayley digraph for Z,, x Z, for the generating set S = {(1, 0), (0, 1)}.

31. Consider Cayley digraphs with two arc types, a solid one with an arrow and a dashed one with no arrow,
and consisting of two regular n-gons, for n > 3, with solid arc sides, one inside the other, with dashed arcs
joining the vertices of the outer n-gon to the inner one. Figure 7.9(b) shows such a Cayley digraph with n = 3,
and Figure 7.11(b) shows one with n = 4. The arrows on the outer n-gon may have the same (clockwise or
counterclockwise) direction as those on the inner n-gon, or they may have the opposite direction. Let G be a
group with such a Cayley digraph.

a. Under what circumstances will G be abelian?

b. If G is abelian, to what familiar group is it isomorphic?

c. If G is abelian, under what circumstances is it cyclic?

d. If G is not abelian, to what group we have discussed is it isomorphic?



satha
Accepted

satha
Accepted

satha
Accepted


112 PartII Permutations, Cosets, and Direct Products
Concepts
32. Mark each of the following true or false.

v

33.

34.

35,

36.

37.

38.

39.

a. If G, and G, are any groups, then G, x G is always isomorphic to G, x G1.
b. Computation in an external direct product of groups is easy if you know how to compute in each
component group.
. Groups of finite order must be used to form an external direct product.

. A group of prime order could not be the internal direct product of two proper nontrivial subgroups.

c
d
e. Zo x Z4 is isomorphic to Zg.
f. Z, x Z4 is isomorphic to Sg.
g
h

. 73 x Zg is isomorphic to Ss.

. Bvery element in Z4 X Zg has order 8.
i. The order of Z13 x Z;s is 60.
jo Zum x Z, has mn elements whether m and n are relatively prime or not.

Give an example illustrating that not every nontrivial abelian group is the internal direct product of two proper
nontrivial subgroups.

a. How many subgroups of Zs x Zg are isomorphic to Zs x Zs?
b. How many subgroups of Z x Z are isomorphic to Z x Z?

Give an example of a nontrivial group that is not of prime order and is not the internal direct product of two
nontrivial subgroups.

Mark each of the following true or false.

a. Every abelian group of prime order is cyclic.

b. Every abelian group of prime power order is cyclic.

¢. Zg is generated by {4, 6}.

d. Zg is generated by {4, 5, 6}.

e. All finite abelian groups are classified up to isomorphism by Theorem 11.12.
f.

g

h.

Any two finitely generated abelian groups with the same Betti number are isomorphic.

Every abelian group of order divisible by 5 contains a cyclic subgroup of order 5.

Every abelian group of order divisible by 4 contains a cyclic subgroup of order 4.
i. Every abelian group of order divisible by 6 contains a cyclic subgroup of order 6.

j. Every finite abelian group has a Betti number of 0.

Let p and ¢ be distinct prime numbers. How does the number (up to isomorphism) of abelian groups of order p”
compare with the number (up to isomorphism) of abelian groups of order ¢g"?

Let G be an abelian group of order 72.

a. Can you say how many subgroups of order 8 G has? Why, or why not?
b. Can you say how many subgroups of order 4 G has? Why, or why not?

Let G be an abelian group. Show that the elements of finite order in G form a subgroup. This subgroup is catled
the torsion subgroup of G.

Exercises 40 through 43 deal with the concept of the torsion subgroup just defined.

40.

Find the order of the torsion subgroup of Zs x Z X Zz; of Z1z X Z X Z1a.
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41.
42.
43.

44.

Section 11 Exercises 113

Find the torsion subgroup of the multiplicative group R* of nonzero real numbers.
Find the torsion subgroup 7 of the multiplicative group C* of nonzero complex numbers.

An abelian group is torsion free if ¢ is the only element of finite order. Use Theorem 11.12 to show that
every finitely generated abelian group is the internal direct product of its torsion subgroup and of a torsion-free
subgroup. (Note that {¢} may be the torsion subgroup, and is also torsion free.)

The part of the decomposition of G in Theorem 11.12 corresponding to the subgroups of prime-power order
can also be written in the form Z,,, X Zm, X - -+ X Zy, , where m; divides m; 41 fori =1,2,---,7 — 1. The
numbers m; can be shown to be unique, and are the torsion coefficients of G.

a. Find the torsion coefficients of Zs x Zg.

b. Find the torsion coefficients of Zg X Zy3 X Znp.

c. Describe an algorithm to find the torsion coefficients of a direct product of cyclic groups.

Proof Synopsis

45.

Give a two-sentence synopsis of the proof of Theorem 11.5.

Theory

46.
47.

48.

49,

Prove that a direct product of abelian groups is abelian.

Let G be an abelian group. Let H be the subset of G consisting of the identity e together with all elements of
G of order 2. Show that H is a subgroup of G.

Following up the idea of Exercise 47 determine whether H will always be a subgroup for every abelian group
G if H consists of the identity e together with all elements of G of order 3; of order 4. For what positive
integers n will H always be a subgroup for every abelian group G, if H consists of the identity e together with
all elements of G of order n? Compare with Exercise 48 of Section 5.

Find a counterexample of Exercise 47 with the hypothesis that G is abelian omitted.

Let H and K be subgroups of a group G. Exercises 50 and 51 ask you to establish necessary and sufficient criteria
for G to appear as the internal direct product of H and K.

50.

51.

52.

53.

54.

Let H and K be groups and let G = H x K. Recall that both H and K appear as subgroups of G in a natural
way. Show that these subgroups H (actually H x {e}) and K (actually {e} x K)have the following properties.

a. Every element of G is of the form ik for some h € H and k € K.
b. hk =khforallh € H and k € K. c. HNK ={e}.

Let H and K be subgroups of a group G satisfying the three properties listed in the preceding exercise. Show
that for each g € G, the expression g = hk for h € H and k € K is unique. Then let each g be renamed (£, k).
Show that, under this renaming, G becomes structurally identical (isomorphic) to H x K.

Show that a finite abelian group is not cyclic if and only if it contains a subgroup isomorphic to Z, x Z,, for
some prime p.

Prove that if a finite abelian group has order a power of a prime p, then the order of every element in the group
is a power of p. Can the hypothesis of commutativity be dropped? Why, or why not?

Let G, H, and K be finitely generated abelian groups. Show that if G x K is isomorphic to H x K, then
G~H.
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Ker(¢). Section 14 will indicate the importance of the image ¢[G]. Exercise 44 asks us
to show that if |G| is finite, then |¢[G]] is finite and is a divisor of |G].

% EXERCISES 13

Computations

In Exercises 1 through 13, determine whether the given map ¢ is a homomorphism. [Hint: The straightforward
way to proceed is to check whether ¢(ab) = ¢(a)p(b) for all a and b in the domain of ¢. However, if we should
happen to notice that ¢~![{e’}] is not a subgroup whose left and right cosets coincide, or that ¢ does not satisfy the
properties given in Exercise 44 or 45 for finite groups, then we can say at once that ¢ is not a homomorphism.]

1. Let ¢ : Z — R under addition be given by ¢(n) = n.
2. Let ¢ : R — Z under addition be given by ¢(x) = the greatest integer < x.
3. Let ¢ : R* — R* under multiplication be given by ¢(x) = | x|.
——>4. Let ¢ : Zg — Z be given by @{x) = the remainder of x when divided by 2, as in the division algorithm.
——> 5. Let ¢ : Zy — Z, be given by ¢(x) = the remainder of x when divided by 2, as in the division algorithm.
6. Let ¢ : R — R*, where R is additive and R* is multiplicative, be given by ¢(x) = 2.

7. Letg; :Gi = G x Gy x---xG; x - x G, be given by ¢;(g;) =(er.e2,...,&,...,e), where g; € G;
and ¢; is the identity element of G ;. This is an injection map. Compare with Example 13.8.

———> 8. Let G be any group and let ¢ : G — G be given by ¢(g) = g lforgeG.

9. Let F be the additive group of functions mapping R into R having derivatives of all orders. Let¢ : F — F be
given by ¢(f) = f", the second derivative of f.

——> 10. Let F be the additive group of all continuous functions mapping R into R. Let R be the additive group of real
numbers, and let ¢ : F — R be given by

4
6(f) = /0 Fdx.

11. Let F be the additive group of all functions mapping R into R, andlet ¢ : F — F be given by ¢(f) =3 1.

12. Let M, be the additive group of all n x n matrices with real entries, and let R be the additive group of real
numbers. Let ¢(A) = det(A), the determinant of A, for A € M,,.

13. Let M, and R be as in Exercise 12. Let ¢(A) = tr(A) for A € M,, where the trace tr(A) is the sum of the
elements on the main diagonal of A, from the upper-left to the lower-right corner.

14. Let GL(n, R) be the multiplicative group of invertible n x n matrices, and let R be the additive group of real
numbers. Let ¢ : GL(n, R) — R be given by ¢(A) = tr(A), where tr(A) is defined in Exercise 13.

15. Let F be the multiplicative group of all continuous functions mapping R into R that are nonzero at every x € R.
Let R* be the multiplicative group of nonzero real numbers. Let ¢ : F — R* be given by ¢(f) = fol fx)dx.

In Exercises 16 through 24, compute the indicated quantities for the given homomorphism ¢. (See Exercise 46.)

16. Ker(¢) for ¢ : S35 — Z, in Example 13.3
17. Ker(¢) and ¢(25) for ¢ : Z — Z7 such that ¢(1) =4
18. Ker(¢) and ¢(18) for ¢ : Z — Zjp such that ¢(1) =6
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134 Part Il Homomorphisms and Factor Groups

19. Ker(¢) and ¢(20) for ¢ : Z — Sg such that ¢(1) = (1,4,2,6)2,5,7)

20. Ker(¢p) and ¢(3) for ¢ : Z1g — Zyg such that ¢(1) =8

21. Ker(¢p) and ¢(14) for ¢ : Zyy — Sg where ¢(1) = (2,5)(1,4,6,7)

22. Ker(¢) and ¢(—3, 2) for ¢ : Z x Z — Z where ¢(1,0) =3 and ¢(0, 1) = =3

23. Ker(¢) and ¢(4, 6) for ¢ : Z x Z — Z x Z where ¢(1,0) = (2, =3) and ¢(0, 1) = (-1, 5)

24, Ker(¢) and ¢(3, 10) for ¢ : Z x Z — S1o where (1, 0) = (3, 5)(2, 4) and ¢(0, 1) = (1, 7)(6, 10,8, 9)

25. How many homomorphisms are there of Z onto Z?

26. How many homomorphisms are there of Z into Z?

27. How many homomorphisms are there of Z into Z,?
28. Let G be a group, and let g € G. Let ¢, : G — G be defined by ¢,(x) = gx for x € G. For which g € G is
¢, a homomorphism?

29. Let G be a group, and let g € G. Let ¢, : G — G be defined by ¢,(x) = gxg~! for x € G. For which g € G
is ¢, a homomorphism?

Concepts

In Exercises 30 and 31, correct the definition of the italicized term without reference to the text, if correction is
needed, so that it is in a form acceptable for publication.

———30. A homomorphism is a map such that ¢(xy) = ¢(x)p(¥).
———> 31. Let¢ : G — G’ be ahomomorphism of groups. The kernel of ¢ is {x € G | ¢(x) = ¢'} where ¢’ is the identity

in G'.

——— 32. Mark each of the following true or false.

. A, is a normal subgroup of S;.

. For any two groups G and G', there exists a homomorphism of G into G'.

. Every homomorphism is a one-to-one map.

. A homomorphism is one to one if and only if the kernel consists of the identity element alone.

. The image of a group of 6 elements under some homomorphism may have 4 elements. (See Exercise

44)

f. The image of a group of 6 elements under a homomorphism may have 12 elements.

. There is a homomorphism of some group of 6 elements into some group of 12 elements.

. There is a homomorphism of some groups of 6 elements into some group of 10 elements.

. A homomorphism may have an empty kernel.

. Itis not possible to have a nontrivial homomorphism of some finite group into some infinite group.

In Exercises 33 through 43, give an example of a nontrivial homomorphism ¢ for the given groups, if an example
exists. If no such homomorphism exists, explain why that is so. You may use Exercises 44 and 45.

33.¢3Z12—)ZS 34.¢ZZ12—>Z4

35. @1 Zo X Lo — Ly X Ls 36. ¢: 23— L Several examples from
37. ¢ : 723 —> S5 38. ¢:Z — S5 >

39. 0 1 Z X7 — 27 40. ¢ :2Z - Z < Z 33-42 for discussion
41. ¢ : Dy — S3 42. ¢ S5 — S

43, ¢ . S4 —> S3
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Theory

4.
45,

46.
—

47.

48.

Let ¢ : G = G’ be a group homomorphism. Show that if |G| is finite, then |¢[G]| is finite and is a divisor
of |G]|.

Let ¢ : G — G’ be a group homomorphism. Show that if |G’| is finite, then, |¢[G]| is finite and is a divisor
of |G’].

Let a group G be generated by {g; | i € I}, where I is some indexing setanda; € Gforalli € I.Let¢ : G = G’
and i : G — G’ be two homomorphisms from G into a group G’, such that ¢(a;) = p(a;) forevery i € I.Prove
that ¢ = w. [Thus, for example, a homomorphism of a cyclic group is completely determined by its value on a
generator of the group.] [Hinz: Use Theorem 7.6 and, of course, Definition 13.1.]

Show that any group homomorphism ¢ : G — G’ where |G| is a prime must either be the trivial homomorphism
or a one-to-one map.

The sign of an even permutation is +1 and the sign of an odd permutation is —1. Observe that the map
sgn, : S, — {1, —1} defined by

—_—> sgn, (o) =signof o

49.

50.

51.

is a homomorphism of S, onto the multiplicative group {1, —1}. What is the kernel? Compare with Example
13.3.

Show that if G, G’, and G” are groups and if ¢ : G — G’ and y : G’ = G” are homomorphisms, then the
composite map y¢ : G — G” is a homomorphism.

Let ¢ : G — H be a group homomorphism. Show that $[G] is abelian if and only if for all x, y € G, we have
xyx 1yl € Ker(¢).

Let G be any group and let a be any element of G. Let ¢ : Z — G be defined by ¢(n) = a". Show that ¢ is a
homomorphism. Describe the image and the possibilities for the kernel of ¢.

. Let ¢ : G — G’ be a homomorphism with kernel H and let a € G. Prove the set equality {x € G|¢(x) =

% ¢(a)} = Ha.

53.
54.

55.
—

Let G be a group, Let &,k € G and let ¢ : Z x Z — G be defined by ¢(m, n) = h™k". Give a necessary and
sufficient condition, involving / and k, for ¢ to be a homomorphism. Prove your condition.

Find a necessary and sufficient condition on G such that the map ¢ described in the preceding exercise is a
homomorphism for all choices of i, k € G.

Let G be a group, & an element of G, and n a positive integer. Let ¢ : Z, — G be defined by ¢(i) = Al for
0 < i < n. Give a necessary and sufficient condition (in terms of # and n) for ¢ to be a homomorphism. Prove
your assertion.

FAacTtorR GROUPS

Let H be a subgroup of a finite group G. Suppose we write a table for the group operation
of G, listing element heads at the top and at the left as they occur in the left cosets of
H. We illustrated this in Section 10. The body of the table may break up into blocks
corresponding to the cosets (Table 10.5), giving a group operation on the cosets, or they
may not break up that way (Table 10.9). We start this section by showing that if H is the
kernel of a group homomorphism ¢ : G — G/, then the cosets of H (remember that left
and right cosets then coincide) are indeed elements of a group whose binary operation
is derived from the group operation of G.
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>

>

® EXERCISES 14

Exercises sec. 14

Computations
In Exercises 1 through 8, find the order of the given factor group. Problems
1. Ze/(3) 2. (Zs x Z12)/({2) x (2)) 1-8
3. (Zy x L)/{(2, 1)) 4. (Zs x Zs)/({0} x Zs)
5. (Zo x Za)/{(1, 1)) 6. (Z12 x Z1s)/{(4, 3))
7. (Zz x S3)/{(1, p1)) 8. (Zn x Zy5)/{(1, 1))
In Exercises 9 through 15, give the order of the element in the factor group.
9. 54 (4)in Z1»/(4) 10. 26 + (12) in Zeo/(12) Problems
11. 2, )+ {(1, D) in (Z5 x Ze)/{(1, 1)) 12. 3, 1)+ {(1, 1)) in (Zs x Z4)/(Q, 1)) | 9-16
13. (3, )+ {(0, 2)) in (Z4 x Zs)/{(0, 2)) 14. (3,3) +((1,2)) in(Z4 x Z3)/((1, 2))

15. (2,0) +{(4,4)) in (Zs x Z3)/((4,4))
16. Compute i, [H] for the subgroup H = {0, 441} of the group 53 of Example 8.7.

Concepts

In Exercises 17 through 19, correct the definition of the italicized term without reference to the text, if correction

is needed, so that it is in a form acceptable for publication.

17. A normal subgroup H of G is one satistying hG = Gh forallh € H.

18. A normal subgroup H of G is one satisfying g'hg € H forallh € H and all g € G.

19. An automorphism of a group G is a homomorphism mapping G into G.

20. What is the importance of a normal subgroup of a group G?

Students often write nonsense when first proving theorems about factor groups. The next two exercises are designed

to call attention to one basic type of error.

21. A student is asked to show that if H is a normal subgroup of an abelian group G, then G/H is abelian. The

student’s proof starts as follows:
We must show that G/H is abelian. Let a and b be two elements of G/H.

a. Why does the instructor reading this proof expect to find nonsense from here on in the student’s paper?

b. What should the student have written?
¢. Complete the proof.

22. A torsion group is a group all of whose elements have finite order. A group is torsion free if the identity is
the only element of finite order. A student is asked to prove that if G is a torsion group, then so is G/H for

every normal subgroup H of G. The student writes
We must show that each element of G/ H is of finite order. Let x € G/H.
Answer the same questions as in Exercise 21.

23. Mark each of the following true or false.

G.
b. Every subgroup of an abelian group G is a normal subgroup of G.

¢. An inner automorphism of an abelian group must be just the identity map.

a. It makes sense to speak of the factor group G/N if and only if N is a normal subgroup of the group
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. Bvery factor group of a finite group is again of finite order.

. Every factor group of a torsion group is a torsion group. (See Exercise 22.)
. Every factor group of a torsion-free group is torsion free. (See Exercise 22.)
. Every factor group of an abelian group is abelian.

. Every factor group of a nonabelian group is nonabelian.

=0e s o &

i. Z/nZ is cyclic of order n.
j. R/nR is cyclic of order n, where nR = {nr |r € R} and R is under addition.

Theory

24.

25,

26.

27.

28.

29.
30.
31.
32.

33.

34.
35.

36.

37.

38.

39.

Show that A, is a normal subgroup of S, and compute S,/A,; that is, find a known group to which S,/A, is
isomorphic.

Complete the proof of Theorem 14.4 by showing that if H is a subgroup of a group G and if left coset
multiplication (¢ H)(bH) = (ab)H is well defined, then Ha C aH.

Prove that the torsion subgroup T of an abelian group G is a normal subgroup of G, and that G/T is torsion
free. (See Exercise 22.)

A subgroup H is conjugate to a subgroup K of a group G if there exists an inner automorphism i, of G such
that i,[H] = K. Show that conjugacy is an equivalence relation on the collection of subgroups of G.

Characterize the normal subgroups of a group G in terms of the cells where they appear in the partition given
by the conjugacy relation in the preceding exercise.

Referring to Exercise 27, find all subgroups of 3 (Example 8.7) that are conjugate to {09, i42}-
Let H be a normal subgroup of a group G, and let m = (G : H). Show thata™ € H foreverya € G.
Show that an intersection of normal subgroups of a group G is again a normal subgroup of G.

Given any subset S of a group G, show that it makes sense to speak of the smallest normal subgroup that
contains S. [Hint: Use Exercise 31.]

Let G be a group. An element of G that can be expressed in the form aba™'b~! for some a,b € G is a
commutator in G. The preceding exercise shows that there is a smallest normal subgroup C of a group G
containing all commutators in G; the subgroup C is the commutator subgroup of G. Show that G/C is an
abelian group.

Show that if a finite group G has exactly one subgroup H of a given order, then H is a normal subgroup of G.

Show that if H and N are subgroups of a group G, and N is normal in G, then H N N is normal in H. Show
by an example that H N N need not be normal in G.

Let G be a group containing at least one subgroup of a fixed finite order s. Show that the intersection of all
subgroups of G of order s is a normal subgroup of G. [Hint: Use the fact that if H has order s, then so does
x"1'Hx forallx € G.]

a. Show that all automorphisms of a group G form a group under function composition.

b. Show that the inner automorphisms of a group G form a normal subgroup of the group of all automorphisms
of G under function composition. [Warning: Be sure to show that the inner automorphisms do form a
subgroup.]

Show that the setof all g € G suchthati, : G — G is the identity inner automorphism i, is a normal subgroup
of a group G.

Let G and G’ be groups, and let H and H’ be normal subgroups of G and G’, respectively. Let ¢ be a
homomorphism of G into . Show that ¢ induces a natural homomorphism ¢.. : (G/H) — (G'/H')if¢[H] €
H'. (This fact is used constantly in algebraic topology.)
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Use the properties det(AB) = det(A) - det(B) and det(Z,,) = 1 for n x n matrices to show the following:

a. The n x n matrices with determinant 1 form a normal subgroup of GL(n, R).
b. The n x n matrices with determinant &1 form a normal subgroup of GL(n, R).

Let G be a group, and let Z4(G) be the set of all subsets of G. For any A, B € Z%G), let us define the product
subset AB = {ab|a € A, b € B}.

a. Show that this multiplication of subsets is associative and has an identity element, but that AG) is not a
group under this operation.

b. Show that if N is a normal subgroup of G, then the set of cosets of N is closed under the above operation
on ZXG), and that this operation agrees with the multiplication given by the formula in Corollary 14.5.

c. Show (without using Corollary 14.5) that the cosets of N in G form a group under the above operation. Is
its identity element the same as the identity element of Z%(G)?

Factor-GRrROUP COMPUTATIONS AND SIMPLE GROUPS

Factor groups can be a tough topic for students to grasp. There is nothing like a bit of com-
putation to strengthen understanding in mathematics. We start by attempting to improve
our intuition concerning factor groups. Since we will be dealing with normal subgroups
throughout this section, we often denote a subgroup of a group G by N rather than by H.

Let N be a normal subgroup of G. In the factor group G /N, the subgroup N acts as
identity element. We may regard N as being collapsed to a single element, either to 0 in
additive notation or to e in multiplicative notation. This collapsing of N together with
the algebraic structure of G require that other subsets of G, namely, the cosets of N,
also collapse into a single element in the factor group. A visualization of this collapsing
is provided by Fig. 15.1. Recall from Theorem 14.9 that y : G — G/N defined by
y(a) = aN fora € G is ahomomorphism of G onto G/N. Figure 15.1 is very similar to
Fig. 13.14, but in Fig. 15.1 the image group under the homomorphism is actually formed
from G. We can view the “line” G/ N at the bottom of the figure as obtained by collapsing
to a point each coset of N in another copy of G. Each point of G/N thus corresponds
to a whole vertical line segment in the shaded portion, representing a coset of N in
G. It is crucial to remember that multiplication of cosets in G/N can be computed by
multiplying in G, using any representative elements of the cosets as shown in the figure.

| -

| b | | |
| [ | | |
| | | | |

Q
=<

aN N bN (cNYBN) (ab)N cN
= (ch)N = (aN)(bN)

15.1 Figure
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The commutators certainly generate a subgroup C; we must show that it is normal in
G. Note that the inverse (aba~'b~1)"! of a commutator is again a commutator, namely,
bab~'a~'. Also e = eee'e~! is a commutator. Theorem 7.6 then shows that C consists
precisely of all finite products of commutators. For x € C, we mustshow that g 'xg € C
for all g € G, or that if x is a product of commutators, so is g~'xg for all g € G. By
inserting ¢ = gg~! between each product of commutators occurring in x, we see that it
is sufficient to show for each commutator cdc™'d~! that g~!(cdc~'d~!)g isin C. But

g (cde™'d™ g = (g7 ede W)@ g)
= (g "edc™(gd dgTNd ™ g)
=g 'e)d(g o) d Midg™d g,
which is in C. Thus C is normal in G.
The rest of the theorem is obvious if we have acquired the proper feeling for factor
groups. One doesn’t visualize in this way, but writing out that G/ C is abelian follows from
(@aCYBC) = abC = ab(b 'a™'ba)C
= (abb~'a )baC = baC = (bC)(aC).
Furthermore, if N is a normal subgroup of G and G/N is abelian, then (@ TNYOIN) =
(b~1N)a~!N); that is, aba~'b~'N = N, so aba='b~! € N, and C < N. Finally, if
C < N, then
(aN)(bN) = abN = ab(b™'a"'ba)N

= (abb™'a ")baN = baN = (bN)@aN). .
For the group S3 in Table 8.8, we find that one commutator is ,olul,ol_lul_l = 01410241
= w3z = py. We similarly find that pop1 03 ' 7' = pap1p1ier = pops = py. Thus the
commutator subgroup C of S3 contains Aj. Since Az is a normal subgroup of S3 and
S3/Ajs is abelian, Theorem 15.20 shows that C = As. A

& EXERCISES 15

Computations

In Exercises 1 through 12, classify the given group according to the fundamental theorem of finitely generated
abelian groups.

1. (Zy x Z4)/{(0, 1)} 2. (Z x Z4)/{(0,2))

3. (Zy x Za)/((1,2)) 4. (Zy x Zg)/((1,2))

So (Za X Za x Lg)/((1,2,4)) 6. (Z x Z)/{(0, 1))

7. (Z x 2)/{(1,2)) 8. (ZxZxZ)/{(1,1,1))
9. (Z x Z x Z4)/{(3, 0,0)) 10. (Z x Z x Zg)/{(0. 4. 0))
11. (Z x Z)/{(2.2)) 12. (Z x Z x Z)/{(3.3.,3))
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Find both the center Z(D,) and the commutator subgroup C of the group D4 of symmetries of the square in
Table 8.12.

Find both the center and the commutator subgroup of Z3 x Sa.
Find both the center and the commutator subgroup of 53 x Ds.

Describe all subgroups of order < 4 of Z4 x Za, and in each case classify the factor group of Z4 x Z4 modulo
the subgroup by Theorem 11.12. That is, describe the subgroup and say that the factor group of Z4 x Z4 modulo
the subgroup is isomorphic to Z, x Z4, or whatever the case may be. [Hint: Z4 x Zy has six different cyclic
subgroups of order 4. Describe them by giving a generator, such as the subgroup ((1, 0)). There is one subgroup
of order 4 that is isomorphic to the Klein 4-group. There are three subgroups of order 2.]

Concepts

In Exercises 17 and 18, correct the definition of the italicized term without reference to the text, if correction is
needed, so that it is in a form acceptable for publication.

17.
18.
19.

The center of a group G contains all elements of G that commute with every element of G.
The commutator subgroup of a group G is {a~'b~lab|a, b € G).
Mark each of the following true or false.

. Every factor group of a cyclic group is cyclic.
. A factor group of a noncyclic group is again noncyclic.

. R/Z under addition has no element of order 2.

. R/Z under addition has elements of order n for alln € Z.

R/Z under addition has an infinite number of elements of order 4.

. If the commutator subgroup C of a group G is {e}, then G is abelian.

. If G/H is abelian, then the commutator subgroup of C of G contains H.

=2 CHEC ST = TR O

. The commutator subgroup of a simple group G must be G itself.
. The commutator subgroup of a nonabelian simple group G must be G itself.
j- All nontrivial finite simple groups have prime order.

e

In Exercises 20 through 23, let F be the additive group of all functions mapping R into R, and let F* be the
multiplicative group of all elements of F that do not assume the value 0 at any point of R.

20.

21.

22.

23.

Let K be the subgroup of F consisting of the constant functions. Find a subgroup of F to which F/K is
isomorphic.

Let K* be the subgroup of F* consisting of the nonzero constant functions. Find a subgroup of F* to which
F*/K* is isomorphic.

Let K be the subgroup of continuous functions in . Can you find an element of F//K having order 2? Why
or why not?

Let K* be the subgroup of F* consisting of the continuous functions in #*. Can you find an element of F*/K*
having order 2?7 Why or why not?

In Exercises 24 through 26, let U be the multiplicative group {z € C | |z| = 1}.

24.
25.
26.
27.

Let zg € U. Show that zoU = {z9z |z € U} is a subgroup of U, and compute U /zoU.
To what group we have mentioned in the text is U/{—1) isomorphic?
Let &, = cos(2m/n) + i sin(2m/n) where n € Z*. To what group we have mentioned is U/({,) isomorphic?

To what group mentioned in the text is the additive group R/Z isomorphic?
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29.

30.

31,
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Give an example of a group G having no elements of finite order > 1 but having a factor group G/H, all of
whose elements are of finite order.

Let H and K be normal subgroups of a group G. Give an example showing that we may have H ~ K while
G/ H is not isomorphic to G/K.

Describe the center of every simple

a. abelian group
b. nonabelian group.

Describe the commutator subgroup of every simple

a. abelian group
b. nonabelian group.

Proof Synopsis

32.
33.

Give a one-sentence synopsis of the proof of Theorem 15.9.

Give at most a two-sentence synopsis of the proof of Theorem 15.18.

Theory

> 34.
35.

—

36.

37.

38.
39.

Show that if a finite group G contains a nontrivial subgroup of index 2 in G, then G is not simple.

Let ¢ : G — G’ be a group homomorphism, and let N be a normal subgroup of G. Show that ¢[N] is normal
subgroup of ¢[G].

Let ¢ : G — G’ be a group homomorphism, and let N’ be a normal subgroup of G'. Show that ¢ '[N']is a
normal subgroup of G.

Show that if G is nonabelian, then the factor group G/Z(G) is not cyclic. [Hint: Show the equivalent contra-
positive, namely, that if G/Z(G) is cyclic then G is abelian (and hence Z(G) = G).]

Using Exercise 37, show that a nonabelian group G of order pg where p and g are primes has a trivial center.
Prove that A, is simple for n > 5, following the steps and hints given.

a. Show A, contains every 3-cycleif n > 3.

b. Show A, is generated by the 3-cycles for n > 3. [Hint: Note that (a, b)(c,d) = (a,c,b)a,c,d) and
(a,c)a,b)=1{(a,b,c)]

¢. Let r and s be fixed elements of {1,2, .-, n} for n > 3. Show that A, is generated by the n “special”
3-cycles of the form (r, s, i) for 1 <i < n [Hint: Show every 3-cycle is the product of “special” 3-cycles
by computing

(ros, i (rs, s, i, (s, s, i),
and
r, 5,1, 5, ), s, P, s, 0).
Observe that these products give all possible types of 3-cycles.]
d. Let N be a normal subgroup of A, for n > 3. Show that if N contains a 3-cycle, then N = A,. [Hint: Show
that (r, s, i) € N implies that (r, s, j) € N for j = 1,2, - - -, n by computing
(. ), s, D, )G N7

e. Let N be a nontrivial normal subgroup of A, for n > 5. Show that one of the following cases must hold,
and conclude in each case that N = A,,.


satha
Line

satha
Line

satha
Line


154

40.

41.

—>42.

PartIIl Homomorphisms and Factor Groups Exercises sec. 16

Casel

Case II

Case II1

Case 1V

CaseV

N contains a 3-cycle.

N contains a product of disjoint cycles, at least one of which has length greater than 3. [Hin?: Suppose
N contains the disjoint product o = w(ay, as, - - -, a,). Show o Yay, az, a3)o(ai, as, a3)"Lisin N,
and compute it.]

N contains a disjoint product of the form o = w(as, as, as)(a1, a2, a3). [Hint: Show o~ Yay, az, as)
o(ai, a2, )" ' is in N, and compute it.]

N contains a disjoint product of the form o = p(ay, a», a3) where 4 is a product of disjoint 2-cycles.
[Hint: Show 6 € N and compute it.]

N contains a disjoint product o of the form o = u{as, as)(ai, a;), where w is a product of an even
number of disjoint 2-cycles. [Hint: Show that o~ Nay, ay, az)o (a1, az, a3)” is in N, and compute
it to deduce that & = (as, as)(a1, a3) is in N. Using n > 5 for the first time, find i # a1, a2, a3, a4
in{1,2,---,n}. Let B = (a1, a3, {). Show that B~ '¢Ba € N, and compute it.]

Let N be a normal subgroup of G and let H be any subgroup of G.Let HN = {hn |k € H,n € N}. Show that

HN is a subgroup of G, and is the smallest subgroup containing both N and H.

With reference to the preceding exercise, let M also be a normal subgroup of G. Show that NM is again a

normal subgroup of G.

Show that if H and K are normal subgroups of a group G such that H N K = {e}, then hk = kh forallh € H

and k € K. [Hint: Consider the commutator hkh ™'k~ = (hkh ™)k~ = h(kh~1k™1).]

tGROUP ACTION ON A SET

We have seen examples of how groups may act on things, like the group of symmetries
of a triangle or of a square, the group of rotations of a cube, the general linear group
acting on R”, and so on. In this section, we give the general notion of group action on a
set. The next section will give an application to counting.

The Notion of a Group Action

Definition 2.1 defines a binary operation * on a set S to be a function mapping § x S
into S. The function * gives us a rule for “multiplying” an element s; in S and an element
5 in S to yield an element s; * 55 in S.

More generally, for any sets A, B, and C, we can view amap * : A X B — C as
defining a “multiplication,” where any element a of A times any element b of B has as
value some element ¢ of C. Of course, we write a * b = ¢, or simply ab = c. In this
section, we will be concerned with the case where X is a set, G is a group, and we have
amap % : G x X — X. We shall write x(g, x) as g x x or gx.

16.1 Definition Let X be a set and G a group. An action of G on X is amap % : G x X — X such that

]
1. ex=xforallx € X,

2. (g1g2)(x) =gi(gex)forallx € X and all g1, g2 € G.

Under these conditions, X is a G-set.

T This section is a prerequisite only for Sections 17 and 36.
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16.17 Example Let X be the Dy-set in Example 16.8, with action table given by Table 16.10. With
G = Dy, wehave G1 = {1, 2, 3, 4}and G; = {0, 82} Since |G| = 8, wehave |G 1| =
(G:G) =4 A
We should remember not only the cardinality equation in Theorem 16.16 but also
that the elements of G carrying x into g1x are precisely the elements of the left coset
g1Gx.Namely,if g € G,,then(g;g)x = g1(gx) = gi1x.Onthe otherhand,if gox = g1x,

then gl_l(gzx) = X S0 (gl‘lgz)x = x. Thus gl_lgz € G,s50g € g1G4.

# EXERCISES 16

Computations
In Exercises 1 through 3, let
X ={1,2, 3, 4, 51,582,583, 54, m1,ma,dy,d>, C, P, P2, P3, Py}
be the D-set of Example 16.8 with action table in Table 16.10. Find the following, where G = Dy.
1. The fixed sets X, for each o € Dy, thatis, X, , X,,, -+, Xs
2. The isotropy subgroups G, for each x € X, thatis, G, G2, ---, Gp,, Gp,
3. The orbits in X under D,

Concepts
In Exercises 4 and 5, correct the definition of the italicized term without reference to the text, if correction is needed,
so that it is in a form acceptable for publication.

4. A group G acts faithfully on X if and only if gx = x implies that g = e.

5. A group G is transitive on a G-set X if and only if, for some g € G, gx can be every other x.

6. Let X bea G-setandlet § € X. If Gs € S forall s € S, then S is a sub-G-set. Characterize a sub-G-set of a
G-set X in terms of orbits in X and G.

7. Characterize a transitive G-set in terms of its orbits.
8. Mark each of the following true or false.

a. Every G-set is also a group.

b. Each element of a G-set is left fixed by the identity of G.

c. If every element of a G-set is left fixed by the same element g of G, then g must be the identity e.
d. Let X be a G-set with x, x; € X and g € G. If gx; = gx», then x; = xo.

e. Let X be a G-set withx € X and g1, g2 € G.If gjx = gox, then g1 = g.

f. Each orbit of a G-set X is a transitive sub-G-set.

g. Let X be a G-set and let H < G. Then X can be regarded in a natural way as an H-set.

h. With reference to (g), the orbits in X under H are the same as the orbits in X under G.

i. If X is a G-set, then each element of G acts as a permutation of X.

J- Let X be a G-setand let x € X. If G is finite, then |G| = |Gx| - |G, ].

9. Let X and Y be G-sets with the same group G. An isomorphism between G-sets X and Yisamap¢ : X — ¥

that is one to one, onto ¥, and satisfies g¢(x) = ¢(gx) for all x € X and g € G. Two G-sets are isomorphic
V if such an isomorphism between them exists. Let X be the Dy-set of Example 16.8.
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a. Find two distinct orbits of X that are isomorphic sub-D4-sets.

b. Show that the orbits {1, 2, 3, 4} and {sy, 52, s3, 54} are not isomorphic sub-Dy-sets. [Hint: Find an element
of G that acts in an essentially different fashion on the two orbits. ]

¢. Are the orbits you gave for your answer to part (a) the only two different isomorphic sub-Dy-sets of X?
10. Let X be the Dy4-set in Example 16.8.

a. Does Dy act faithfully on X?
b. Find all orbits in X on which Dy acts faithfully as a sub-Dy-set.

Theory
11. Let X be a G-set. Show that G acts faithfully on X if and only if no two distinct elements of G have the same
action on each element of X.

12. et X bea G-setandlet Y C X. Let Gy ={g € G| gy =y for all y € Y}. Show Gy is a subgroup of G,
w generalizing Theorem 16.12.

13. Let G be the additive group of real numbers. Let the action of € G on the real plane R? be given by rotating
the plane counterclockwise about the origin through 6 radians. Let P be a point other than the origin in the
plane.

a. Show R?is a G-set.
b. Describe geometrically the orbit containing P.
c¢. Find the group Gp.

Exercises 14 through 17 show how all possible G-sets, up to isomorphism (see Exercise 9), can be formed from
the group G.

14. Let {X; |i € I} be a disjoint collection of sets, so X; N X; = @ fori # j. Let each X; be a G-set for the same
group G.
a. Show that | J,;
b. Show that every G-set X is the union of its orbits.

X; can be viewed in a natural way as a G-set, the union of the G-sets X;.

15. Let X be a transitive G-set, and let xg € X. Show that X is isomorphic (see Exercise 9) to the G-set L of all
left cosets of G,, described in Example 16.7. [Hint: For x € X, suppose x = gxg, and define ¢ : X — L by
¢(x) = gGy,. Be sure to show ¢ is well defined!]

16, Let X; for i € I be G-sets for the same group G, and suppose the sets X; are not necessarily disjoint. Let
X! ={(x,i)|x € X;}foreachi € I. Then the sets X| are disjoint, and each can still be regarded as a G-set in
an obvious way. (The elements of X; have simply been tagged by i to distinguish them from the elements of
X; fori # j.) The G-set { ;. X/ is the disjoint union of the G-sets X;. Using Exercises 14 and 15, show that
every G-set is isomorphic to a disjoint union of left coset G-sets, as described in Example 16.7.

17. The preceding exercises show that every G-set X is isomorphic to a disjoint union of left coset G-sets. The
question then arises whether left coset G-sets of distinct subgroups H and K of G can themselves be isomorphic.
Note that the map defined in the hint of Exercise 15 depends on the choice of x as “base point.” If xq is replaced
by goxp andif G, # G4, then the collections L g of leftcosets of H = G, and Lg ofleftcosets of K = Gy,
form distinct G-sets that must be isomorphic, since both L 5 and Lk are isomorphic to X.

a. Let X be a transitive G-set and let xp € X and go € G. If H = G, describe K = G, in terms of H
and go.

b. Based on part (a), conjecture conditions on subgroups H and K of G such that the left coset G-sets of H
and K are isomorphic.

¢. Prove your conjecture in part (b).
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Up to isomorphism, how many transitive Z4 sets X are there? (Use the preceding exercises.) Give an example
of each isomorphism type, listing an action table of each as in Table 16.10. Take lowercase names a, b, ¢, and
so on for the elements in the set X.

Repeat Exercise 18 for the group Zs.

Repeat Exercise 18 for the group Ss. List the elements of S in the order ¢, (1, 2, 3), (1, 3, 2), (2, 3), (1, 3),
(1,2).

17.1 Theorem

T APPLICATIONS OF G-SETS To COUNTING

This section presents an application of our work with G-sets to counting. Suppose, for
example, we wish to count how many distinguishable ways the six faces of a cube can
be marked with from one to six dots to form a die. The standard die is marked so that
when placed on a table with the 1 on the bottom and the 2 toward the front, the 6 is on
top, the 3 on the left, the 4 on the right, and the 5 on the back. Of course, other ways of
marking the cube to give a distinguishably different die are possible.

Let us distinguish between the faces of the cube for the moment and call them the
bottom, top, left, right, front, and back. Then the bottom can have any one of six marks
from one dot to six dots, the top any one of the five remaining marks, and so on. There
are 6! = 720 ways the cube faces can be marked in all. Some markings yield the same
die as others, in the sense that one marking can be carried into another by a rotation
of the marked cube. For example, if the standard die described above is rotated 90°
counterclockwise as we look down on it, then 3 will be on the front face rather than 2,
but it is the same die.

There are 24 possible positions of a cube on a table, for any one of six faces can be
placed down, and then any one of four to the front, giving 6 - 4 = 24 possible positions.
Any position can be achieved from any other by a rotation of the die. These rotations
form a group G, which is isomorphic to a subgroup of Sz (see Exercise 45 of Section 8).
We let X be the 720 possible ways of marking the cube and let G act on X by rotation of
the cube. We consider two markings to give the same die if one can be carried into the
other under action by an element of G, that is, by rotating the cube. In other words, we
consider each orbit in X under G to correspond to a single die, and different orbits to
give different dice. The determination of the number of distinguishable dice thus leads
to the question of determining the number of orbits under G in a G-set X.

The following theorem gives a tool for determining the number of orbits in a G-
set X under G. Recall that for each g € G we let X, be the set of elements of X left
fixed by g, so that X, = {x € X |gx = x}. Recall also that for each x € X, we let
G, = {g € G| gx = x}, and Gx is the orbit of x under G.

(Burnside’s Formula) Let G be a finite group and X a finite G-set. If r is the number
of orbits in X under G, then

rlGl=)_ 1X,l. 1)

geG

T This section is not used in the remainder of the text.
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