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1 Examples of Fields.

In mathematics, we work with numbers. The first numbers that we learn are
the whole numbers or integers. Then we learn about fractions or rational
numbers. A field is an abstraction of the important ideas associated with
rational numbers.

Definition: Field.
Thus, a field is a set with built in operations of addition and multipli-

cation. The operation of addition has an associated “subtraction” which is
the inverse of addition. There is also a zero which acts as a neutral element
for addition. The multiplication has its associated inverse called “division”,
but it is forbidden to divide by zero. There are natural distributive and
commutative properties summarized in:

a(b+ c) = ab+ ac, a+ b = b+ a, ab = ba.
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These are convenient properties for performing algebraic operations, so
we like to study other fields.

The field of rational numbers is usually denoted by Q . A much bigger
field containing them is the field of real numbers, or the field of decimal
numbers, which are permitted to possess infinite decimal expansions. This
is denoted by <. There are many intermediate fields. One, for example may
be thought of as Q (

√
2) or the smallest field containing Q as well as

√
2.

Its elements can be explicitely displayed as a + b
√

2 where a, b are rational
numbers. It is easy to see how the addition and multiplication of these
numbers can be carried out. It takes a little more imagination to work out
that

1

(a+ b
√

2)
=

a

a2 − 2b2
− b

a2 − 2b2
.

These ideas can be extended to make Q (α) into a field where α is the
root of some polynomial equation over Q . We shall work out examples in
class discussions and homework.

Even bigger field is obtained by adjoining i the (non real ) square root of
−1 and denoted by C = <(i).

Another way of extending any field K is to adjoin indeterminates. Thus
K(X) is the field of rational functions of X with coefficients in K. It is easy
to imagine adjoining many indeterminates in succession.

1We are giving a rather informal definition of a field. The reader should try to see if
this is precise and consistent with the more formal and formidable definitions in books. It
is also a worthy topic of discussion.
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Yet another way of extending a field K is to form formal Laurent power
series. A formal power series is like a polynomial but we allow the variable
to take on infinitely many exponents, even some finitely many negative ones.

Thus, we allow expressions like

f(X) = a−mX
−m + · · ·+ a0 + a1X + · · ·+ anX

n + · · · .

The addition is termswise and multiplication is done just like polynomials,
noting that at the time of collecting like terms, only finitely many products
are involved at one time.

The calculation of the reciprocal of a power series does take some imag-
ination and will be discussed in class meetings. Such ia field is denoted by
K((X)).

Our first new example is, however, the field obtained by modular numbers
or the so called finite field.

2 The finite Fields.

To create a finite field, we start with the set of integers denoted by ZZ and
fix a prime p. We know that every integer n can be written as n = qp + r
where q s some integer and r is the remainder which is a number between 0
and p− 1.

Thus, there are p distinct remainders 0, 1, · · · , p − 1. These are called
remainders modulo p and their set is denoted as ZZp. We define operations
on this set thus.

Define the sum of two remainders a, b to be the remainder of their sum
a+ b. Similarly, define the product of two remainders to be the remainder of
their product. We shall say that two integers x, Y are equal as remainders
if the remainder of x − y is zero modulo p or p divides x − y as an integer.
This is written in notational form as x− y ≡ 0 (mod p) or x ≡ y (mod p).

Convention. In words, we may simply say that x equals y in ZZp. Thus,
we could say 172 equals 2 in ZZ7. One way of proving this is to first note that
172 = 289 which has remainder 2 modulo 7. Let us note that a recommended
procedure is to say that in ZZ7 we have 17 equal to 3, so its square is 9 whose
remainder is 2. Thus, it is recommended that you simplify the work by taking
remainders often!

The surprise is that now we can also find reciprocals of non zero remain-
ders, even though such reciprocals don’t exist in ZZ, except for ±1. Given a
remainder a ∈ ZZp which is non zero, consider its multiples ax as x varies over
ZZp. I claim that ax 6= ay in ZZp unless x equals y in ZZp, or x ≡ y (mod ).
This is seen thus:
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Suppose if possible ax ≡ ay (mod p). Then p must divide a(x− y). But
p is prime and by assumption, it does not divide a, so it must divide (x− y),
i.e. x ≡ y (mod p).

Thus the remainders of ax as x varies over ZZp are p distinct numbers in
ZZp, so one of them, say some at must be 1. Then at ≡ 1 (mod p) and thus
t is the reciprocal of a in ZZp.

For example, when a = 2 and p = 7 the set of elements of ZZ7 is
{0, 1, 2, 3, 4, 5, 6}. The set {2x} becomes {0, 2, 4, 6, 8, 10, 12} and when we
take the remainders, we get {0, 2, 4, 6, 1, 3, 5}. Thus the reciprocal of 2 is 4.

While the above was a clever proof and a useful technique (sometimes
called the pigeon hole principle) it can be tedious, especially if the prime is
large. A recommended method is to use the Euclidean division to get the
answer. Thus, when a is not divisible by p, we get that the GCD of a, p is 1
(due to primeness of p). Then we have an expression

1 = ax− bp

and clearly the remainder of ax is 1 modulo p. So the inverse of a is x. For 2
modulo 7, we simply note that 1 = (2)(4)− (1)(7) and hence 4 is the answer!

2.1 Fermat’s Little Theorem.

We next discuss one of the most important properties of ZZp. First, recall the
usual Binomial Theorem for p-th powers:

(X + Y )p = Xp +

(
p

1

)
Xp−1Y + · · ·

(
p

i

)
Xp−iY i + · · ·Y p.

We also know that the binomial coefficients(
p

i

)
=
p · (p− 1) · · · (p− i+ 1)

i!

are all integers divisible by p when 1 ≤ i ≤ p − 1. As a result all the terms
between Xp and Y p become zero in ZZp. We thus have a wonderful formula

in ZZp we have (X + Y )p = Xp + Y p.

This is sometimes called the Freshman’s Dream!
Now we have everything we need to prove the so-called
Theorem: Fermat’s Little Theorem (FLT). For every integers x, we

have xp ≡ x (mod p). Moreover, if x 6≡ 0 (mod p) then xp−1 ≡ 1 (mod p).
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Proof. By taking remainders mod p, it is enough to prove this for x =
0, 1, · · · , (p−1). It is obviously true for x = 0, 1. Also, since (x+1)p ≡ xp+1p

(mod p), we see that whenever xp ≡ x (mod p), we get that

(x+ 1)p ≡ xp + 1 ≡ x+ 1 (mod p).

Thus we are done by induction! The rest of the argument is obvious.

Corollary Every element of a finite field ZZp is a root of the polynomial
Xp−X. Moreover, since these are exactly p elements, we have a factorization:

Xp −X =

p−1∏
0

(X − i) .

REMARK. Actually, we have proved something more general:
General FLT If we have any field F in which p = 0, then its elements

a, b satisfy (a+ b)p = ap + bp.
Definition: Characteristic of a field. Such a “p” deserves a name.

Thus, for any field F , we define its characteristic to be a positive integer p if
the sum 1 + 1 + · · ·+ 1 of p terms evaluates to zero in F . The characteristic
is said to be 0 if such a sum of 1’s is never zero (as in Q ).

We leave it to the reader to prove that the characteristic is always a prime
number, unless it is zero.2

Thus, in such a field F (of characteristic p), we have the following result:
Definition: Fröbenius Map Define a map σ : F → F by σ(x) = xp.

Then σ satisfies the properties:

σ(x+ y) = σ(x) + σ(y) and σ(xy) = σ(x)σ(y).

The first follows from the general FLT and the second is obvious. This map
σ is said to be the “Fröbenius” map and is a very important tool in the
study of finite fields.

Later on, when we deal with different fields, it would be convenient to
denote σ by σp to indicate the characteristic being used.

We also note that given any field F of characteristic p, we can easily argue
that the set {0, 1, · · · , (p− 1)} contained in F is actually a field isomorphic
to ZZp and every root of the polynomial Xp −X is automatically contained
in it! It is therefore called the prime subfield of F .

In case of characteristic zero, the prime subfield turns out to be Q .

2Hint:
Write d for the sum of d 1’s. Thus every natural number 1, 2, 3, · · · has a well defined

meaning as a sum of 1’s.
Suppose n = 0 and n = de for 1 < d, e < n. Then de = 0 and we should get a

contradiction.
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In either case, the prime subfield is simply the smallest subfield which
contains 0, 1.

Later on we shall establish that if F is a finite field, then its number of
elements |F | is a power of p, its characteristic. Moreover, if |F | = ps then it
consists of all the ps roots of the polynomial Xps −X. Thus, each finite field
is completely determined by its number of elements- a very remarkable fact!

2.2 Uses of the Fröbenius map.

Recall the skill needed to factor polynomial over Q ? We shall now show how
the Fröbenius map σp gives a very effective technique for factorization over
a finite field.

2.2.1 Quadratic extension of ZZp.

Let F = ZZp where p is a prime number. Consider a quadratic equation

f(X) = X2 + aX + b = 0.

The equation has potentially two roots, say α, β. It is possible that the
two roots coincide. In principle, we could check the finitely many elements
of F to see if any of them is a root. If it is, then f(X) factors into linear
factors and we we know both the roots. If not, then f(X) is irreducible and
the roots lie outside F .

Thus, for example, when f(X) = X2 +X + 2 and p = 5, we see that that
plugging in X = 0, 1, 2, 3, 4 gives non zero values, so f(X) has no roots in ZZ5

and is irreducible. On the other hand, if p = 7, then X = 3 is a double root
since f(X) = (X − 3)2 over ZZ7. If we take p = 11, then we see that X = 4, 6
are two roots.

We now present an alternative to checking all the roots one by one. Note
that

f(X)p = X2p + apXp + bp

in view of the general FLT. Note that by FLT, we get that ap = a and bp = b.
It follows that:

f(X)p = (Xp)2 + aXp + b = f(Xp).

It follows that if α is any root of f(X) so that f(α) = 0 then we get
f(αp) = 0 i.e. αp is also a root. This is very fortunate, since usually, even
when we know one root, it is not easy to find another so easily!

We illustrate how to use this for the above example of f(X) = X2+X+2.
Let x be an unknown root. Then we know that x2 = −x− 2 since f(x) = 0.
If p = 5, we try to compute xp = x5, by a sequence of steps.
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x3 = −x2 − 2x = −(−x− 2)− 2x = −x+ 2.

x4 = −x2 + 2x = −(−x− 2) + 2x = 3x+ 2.

x5 = 3x2 + 2x = 3(−x− 2) + 2x = −x− 6 = −x− 1.

Thus we see that x5 = x would lead to x = −x − 1 or 2x = −1 or x = 2 in
ZZ5. This is obviously not a root! This confirms that there are no roots in
ZZ5.

If we analyze the same equation in ZZ7, then we see that when we divide
X7 by X2 +X + 2 we get

X7 = (X5 −X4 −X3 + 3X2 −X − 5)(X2 +X + 2) + 7X + 10.

Thus if x is any root, then x7 = 10 = 3 modulo 7. Hence x = 3 is a
double root!

If we analyze it in ZZ11 then we get that

X11 = h(X)(X2 +X + 2) + 23X − 22

where we have avoided writing out the quotient h(X) of degree 9. Typically,
we only compute remainders as illustrated for p = 5.

If x is a root modulo 11, then we see that

x11 = 23x− 22 = x modulo 11.

Thus, we see that the roots are both in ZZ11, but we don’t yet know what
they are!

Thus, we have managed to argue that the equation factors in ZZ11 without
finding the factors! There is no simple way to actually find the roots, except
perhaps to invoke the usual quadratic formula valid here.

Remark. The usual quadratic formula works in all fields, except when
characteristic is 2. What is usually unclear is how to decide if the dis-
criminant has a square root, without actually checking all possible elements
or using some theorems in number theory. Our method of using Fröbenius,
gives an alternative.

Thus, to solve the equation

X2 + AX +B = 0

we can still verify the formula:

X =
−A±

√
A2 − 4B

2
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for the roots, provided 2 6= 0 in our field, i.e. p 6= 2. The question is if the√
A2 − 4B exists in the field.

Let us denote A2 − 4B = D and note that we are simply trying to solve:

X2 = D

in our field ZZp. Let us apply the Fröbenius method. Write p = 4q+ r where
r = 1 or r = 3.3

Set m = p−1
2

and we note that m = 2q or m = 2q + 1 is an integer. Also
we see that:

Xp = X2m+1 = (X2)mX = DmX.

Thus Xp = X iff Dm = 1 in our field ZZp.
This gives us a simple test of when

√
D ∈ ZZp: Theorem Cauchy Let

p 6= 2 be a prime and D 6= 0 be an element of ZZp.

Then
√
D ∈ ZZp iff D

p−1
2 = 1 in ZZp.

This is how we can use this for analyzing our equation.
For the equation X2 + X + 2 = 0 our D = (1)−(4)(2) = −7. For p = 5

we see that m = p−1
2

= 4
2

= 2 and (−7)2 = 49 = −1 mod 5. So, there are no
roots in ZZ5 and it is irreducible.

For p = 7, D = 0 mod 7 and hence we get a double root.
For p = 11, we see that D = −7 = 4 mod 11. Since 4 = 22, we need no

test! The equation factors.
For p = 13, we get D = −7 = 6 and m = 6. Now we wish to calculate 66

mod 13. Here are convenient steps for hand calculations.
62 = 36 = −3 mod 13. So 66 = (−3)3 = −27 = −1 mod 13. Thus, we

have no roots in ZZ13.
For p = 17, we get that D = −7 = 10 mod 17 and m = 8. Now

D2 = 100 = −2 mod 17. So D8 = (D2)4 = (−2)4 = 16 = −1 so again there
are no roots!

For p = 23, we get that D = −7 and m = 11. We wish to compute (−7)11

mod 23.
Here is an outline of how to do this even without a calculator!
Now D2 = 49 = 3 mod 23. Then D4 = (32) = 9 mod 23. Now D8 = 92 =

81 = 12 mod 23. Also, D3 = D2 ·D = (3)(−7) = −21 = 2 mod 23.
Thus D11 = D8D3 = 12 ·2 = 24 = 1 mod 23. This says that it will factor!

Of course, this does not yet help us find the factors.
If we had stopped and thought that −7 = 16 mod 23, then we would not

have gone thru this test. We would have at once used the quadratic formula
and declared the roots:

3In general r is one of 0, 1, 2, 3 but the fact that p 6= 2 is a prime discards the other
cases!
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x =
−1±

√
−7

2
=
−1± 4

2
=

3

2
,−5

2
.

What does it mean? If we note that 12 · 2 = 24 = 1 mod 23, we see that
1
2

= 12 mod 23 and hence the roots are 3 · 12 = 36 = 13 and (−5) · 12 =
−60 = 9.

3 Resultants

If we have two polynomials f(X), g(X) over a field (or at least an integral
domain) R, then we often need to know if they have a common root. If
there is a common root, then it will be a root of the GCD(f(X), g(X)).
So, it is enough to just find the GCD and check if it is 1 (or a degree zero
polynomial). However, often, the polynomials f(X) and g(X) have variable
coefficients and finding GCD is also messy.

We present a useful way to visualize and compute the GCD. Moreover,
we can use it to analyze field extensions.

3.1 An example

Suppose that we are given two equations f(X)−p = 0 and g(Y )−q = 0. We
wish to know all values of (p, q) for which these equations have a common
root (value of X).

For example, let the equations be X3 − X = p,X2 + X = q. We can
visualize this as a curve in the (p, q) plane parametrized by X. We construct
a well defined polynomial in p, q denoted by Resultant(f(X)−p, g(X)−q;X)
and is equal to

det



X4 X3 X2 X 1

1 0 −1 −p 0

0 1 0 −1 −p

1 1 −q 0 0

0 1 1 −q 0

0 0 1 1 −q


This can be evaluated by the definition of determinants by row or column

expansions or better by row reductions. Note:
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det



1 0 −1 −p 0

0 1 0 −1 −p

1 1 −q 0 0

0 1 1 −q 0

0 0 1 1 −q


R3 −R1 → det



1 0 −1 −p 0

0 1 0 −1 −p

0 1 −q + 1 p 0

0 1 1 −q 0

0 0 1 1 −q


We now expand by the first column to get a smaller determinant with

the same value:

det


1 0 −1 −p

1 1− q p 0

0 1 1− q p

0 1 1 −q


One more operation R2 → R2 −R1 yields:

det


1 0 −1 −p

0 1− q 1 + p p

0 1 1− q p

0 1 1 −q


and now expansion by the first column yields a 3× 3 determinant:

det


2− q 2 + p −q + p

1 1− q p

1 1 −q

 .
This can be evaluated directly to yield: −q3 +p2 +3 qp+2 q2 which is the

equation of the p, q-curve with parametrization X3 −X = p,X2 +X = q.
To be continued . . .
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