Homework 1

1. Power series ring over a field. Let F be a field and let $R = \{a(X) = \sum_{0}^{\infty} a_i x^i \text{ where } a_i \in F\}$. Here X is an indeterminate and we will write R = F[[X]].

Prove the following:

(a) **1 pt**

What are the additive identity (0) and unity (1) in R.

(b) 1 pt

Prove that for any a(X), b(X) in R, either $a(X)b(X) \neq 0$ or one of a(X), b(X) is 0. Deduce that R is an integral domain.

(c) **2 pt**

Let $v(x) = v_1 X + v_2 X^2 + \cdots \in R$. Explain why v(X) is not a unit.

Prove that 1 + v(x) is a unit. Hint: Argue that $p(X) = 1 - v(x) + v(X)^2 + \cdots$ is the desired inverse. Be sure to explain why $p(X) \in R$.

(d) 2 pt

Using the above, explain why $b(X) = \sum_{i=0}^{\infty} b_i X^i$ is a unit iff $b_0 \neq 0$.

2. Boolean Rings. A ring B is said to be Boolean if $b^2 = b$ for all $b \in B$.

Prove the following:

(a) **2 pt**

Prove that for each $b \in B$ we have b + b = 0. **Hint.** Apply the hypothesis to h = b + b.

(b) **2 pt**

By a similar argument, deduce that ab = ba for all $a, b \in B$.

(c) **1 pt**

Using the above or otherwise prove that $(a + b)^2 = a^2 + b^2$ for all $a, b \in B$.

3. 5 pt

Define " a characteristic of a ring R". Determine the characteristic for each of the following rings:

$$\boldsymbol{Z}_7, \ \boldsymbol{Z}_8, \ \boldsymbol{Z}_4 \times \boldsymbol{Z}_6, \ \boldsymbol{Z}.$$

4. Suppose that R is a ring such that for every **non zero** $a \in R$ there is a unique $b \in R$ such that aba = a.

Prove that R is a division ring using the following steps.

(a) **3 pt**

Show that R has no zero divisors. **Hint:** Argue that if this is not true, and ac = 0 (or ca = 0) then b and b + c both satisfy the given condition. Now use uniqueness of b given a. In particular, cancellation holds in R.

(b) **2 pt**

Show that bab = b. Hint: Consider the equation abab = ab and use above.

(c) **2 pt**

Show that ab is the identity in R.

Also, note that it follows that b is the multiplicative inverse of a.

(d) **2 pt**

Explain why we are done.

5. **5 pt**

Let m, n be coprime positive integers. Let $A = \mathbf{Z}_{mn}$ and let $R = \mathbf{Z}_m \times \mathbf{Z}_n$. Define a homomorphism $\psi : A \to R$ by

$$\psi([x]_{mn}) = ([x]_m, [x]_n).$$

Using the class discussions, argue that ψ is an isomorphism.