1. Power series ring over a field. Let $F$ be a field and let $R=\left\{a(X)=\sum_{0}^{\infty} a_{i} x^{i}\right.$ where $\left.a_{i} \in F\right\}$. Here $X$ is an indeterminate and we will write $R=F[[X]]$.
Prove the following:
(a) 1 pt

What are the additive identity (0) and unity (1) in $R$.
(b) 1 pt

Prove that for any $a(X), b(X)$ in $R$, either $a(X) b(X) \neq 0$ or one of $a(X), b(X)$ is 0 . Deduce that $R$ is an integral domain.
(c) 2 pt

Let $v(x)=v_{1} X+v_{2} X^{2}+\cdots \in R$. Explain why $v(X)$ is not a unit.
Prove that $1+v(x)$ is a unit. Hint: Argue that $p(X)=1-v(x)+v(X)^{2}+\cdots$ is the desired inverse. Be sure to explain why $p(X) \in R$.
(d) $2 \mathbf{p t}$

Using the above, explain why $b(X)=\sum_{0}^{\infty} b_{i} X^{i}$ is a unit iff $b_{0} \neq 0$.
2. Boolean Rings. A ring $B$ is said to be Boolean if $b^{2}=b$ for all $b \in B$.

Prove the following:
(a) 2 pt

Prove that for each $b \in B$ we have $b+b=0$. Hint. Apply the hypothesis to $h=b+b$.
(b) 2 pt

By a similar argument, deduce that $a b=b a$ for all $a, b \in B$.
(c) 1 pt

Using the above or otherwise prove that $(a+b)^{2}=a^{2}+b^{2}$ for all $a, b \in B$.
3. 5 pt

Define " a characteristic of a ring $R$ ". Determine the characteristic for each of the following rings:

$$
\boldsymbol{Z}_{7}, \quad \boldsymbol{Z}_{8}, \quad \boldsymbol{Z}_{4} \times \boldsymbol{Z}_{6}, \quad \boldsymbol{Z}
$$

4. Suppose that $R$ is a ring such that for every non zero $a \in R$ there is a unique $b \in R$ such that $a b a=a$.

Prove that $R$ is a division ring using the following steps.
(a) $3 \mathbf{p t}$

Show that $R$ has no zero divisors. Hint: Argue that if this is not true, and $a c=0$ (or $c a=0$ ) then $b$ and $b+c$ both satisfy the given condition. Now use uniqueness of $b$ given $a$.
In particular, cancellation holds in $R$.
(b) 2 pt

Show that $b a b=b$. Hint: Consider the equation $a b a b=a b$ and use above.
(c) 2 pt

Show that $a b$ is the identity in $R$.
Also, note that it follows that $b$ is the multiplicative inverse of $a$.
(d) 2 pt

Explain why we are done.
5. 5 pt

Let $m, n$ be coprime positive integers. Let $A=\boldsymbol{Z}_{m n}$ and let $R=\boldsymbol{Z}_{m} \times \boldsymbol{Z}_{n}$.
Define a homomorphism $\psi: A \rightarrow R$ by

$$
\psi\left([x]_{m n}\right)=\left([x]_{m},[x]_{n}\right)
$$

Using the class discussions, argue that $\psi$ is an isomorphism.

