- 1. Polynomials. 8 pts. Let R = Z[X], the polynomial ring in one variable X with integer coefficients. Answer the following:
 - (a) Let $I = (5\mathbf{Z}[x])$, the ideal generated by 5 in R. Explain why $R/I = \mathbf{Z}_5[X]$.
 - (b) Explain why R has infinitely many polynomials of degree 3. How many such polynomials are in R/I.
 - (c) In the ring $\mathbf{Z}_5[X]$ determine $\phi_3(2X^{200} + X^{171} 17X^35 + 73)$. (The answer must be an element of \mathbf{Z}_5)
 - (d) Let F be a finite field and F^F denote the set of all functions $f : F \to F$. Let the elements of F be $\{a_1, a_2, \dots, a_n\}$. Prove that there is a polynomial $f_j(X)$ of degree n such that $f_j(a_i) = 0$ when $i \neq j$ while $f_j(a_j) = 1$.

Using this or otherwise, prove that $F^F = F[X]$.

2. Factorization. 12 pts.

Determine the complete factorization of the given polynomials over the given fields. Be sure to write down a clear reasoning.

- (a) $X^4 + 4 \in Q$.
- (b) $X^4 + 1 \in Q$.
- (c) $2X^3 + X^2 + 2X + 1$ in $\boldsymbol{Z}_5[X]$.
- (d) $2X^3 + X^2 + 2X + 1$ in Q[X].

3. Ring homomorphism. 10 pts.

Answer the following questions.

- (a) Let $\psi : \mathbb{Z}_n \to \mathbb{Z}_m$ be a homomorphism. Let $\psi([1]_n) = [x]_m$. Let d be the GCD(n,m). Explain why $[xn]_m = [0]_m$. Using this, or directly, prove that x is a multiple of m/d.
- (b) Using the above result, or directly, prove that if GCD(n,m) = 1 then ψ is the zero map.
- (c) Suppose $\psi : \mathbb{Z}_{15} \to \mathbb{Z}_{21}$. Determine all possible such homomorphisms, by listing all possible values of $\psi([1]_{15})$.
- (d) If $\psi : \mathbb{Z}_{15} \to \mathbb{Z}_{21}$ has $\psi([1]_{15}) = [7]_{21}$, then determine the Kernel and the image of ψ .
- (e) Let R be a commutative ring with 1 and having a prime characteristic p. Prove that the wellknown Frobenius map $F: R \to R$ defined by $F(x) = x^p$ is a ring homomorphism.