1. Polynomials. 8 pts. Let $R=\boldsymbol{Z}[X]$, the polynomial ring in one variable X with integer coefficients.

Answer the following:
(a) Let $I=(5 \boldsymbol{Z}[x])$, the ideal generated by 5 in R. Explain why $R / I=\boldsymbol{Z}_{5}[X]$.
(b) Explain why R has infinitely many polynomials of degree 3 . How many such polynomials are in R / I.
(c) In the ring $\boldsymbol{Z}_{5}[X]$ determine $\phi_{3}\left(2 X^{200}+X^{171}-17 X^{3} 5+73\right)$. (The answer must be an element of \boldsymbol{Z}_{5})
(d) Let F be a finite field and F^{F} denote the set of all functions $f: F \rightarrow F$. Let the elements of F be $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$. Prove that there is a polynomial $f_{j}(X)$ of degree n such that $f_{j}\left(a_{i}\right)=0$ when $i \neq j$ while $f_{j}\left(a_{j}\right)=1$.
Using this or otherwise, prove that $F^{F}=F[X]$.
2. Factorization. 12 pts.

Determine the complete factorization of the given polynomials over the given fields. Be sure to write down a clear reasoning.
(a) $X^{4}+4 \in Q$.
(b) $X^{4}+1 \in Q$.
(c) $2 X^{3}+X^{2}+2 X+1$ in $\boldsymbol{Z}_{5}[X]$.
(d) $2 X^{3}+X^{2}+2 X+1$ in $Q[X]$.
3. Ring homomorphism. 10 pts.

Answer the following questions.
(a) Let $\psi: \boldsymbol{Z}_{n} \rightarrow \boldsymbol{Z}_{m}$ be a homomorphism. Let $\psi\left([1]_{n}\right)=[x]_{m}$.

Let d be the $G C D(n, m)$. Explain why $[x n]_{m}=[0]_{m}$.
Using this, or directly, prove that x is a multiple of m / d.
(b) Using the above result, or directly, prove that if $G C D(n, m)=1$ then ψ is the zero map.
(c) Suppose $\psi: \boldsymbol{Z}_{15} \rightarrow \boldsymbol{Z}_{21}$. Determine all possible such homomorphisms, by listing all possible values of $\psi\left([1]_{15}\right)$.
(d) If $\psi: \boldsymbol{Z}_{15} \rightarrow \boldsymbol{Z}_{21}$ has $\psi\left([1]_{15}\right)=[7]_{21}$, then determine the Kernel and the image of ψ.
(e) Let R be a commutative ring with 1 and having a prime characteristic p. Prove that the wellknown Frobenius $\operatorname{map} F: R \rightarrow R$ defined by $F(x)=x^{p}$ is a ring homomorphism.

