This is a mixture of homework and exam practice. Only the problems marked with a ${ }^{*}$ are to be submitted as homework. Others will be discussed in class.

1. * 5 pts. For each of the following field extensions, determine a basis and hence its dimension.

- $Q(\sqrt{2})$ over Q.
- $Q(\sqrt{2})$ over \Re
- $\boldsymbol{Q}(\sqrt[4]{\mathbf{2}})$ over \boldsymbol{Q}.

2. * 8 pts. Let $h: \boldsymbol{Z}_{2}[X] \rightarrow \boldsymbol{Z}\left[2_{2}[X]\right] /\left(X^{2}+X+1\right)$ be the canonical homomorphism and let $h(X)=\alpha$. Find the following minimum polynomials.

- $\operatorname{Irr}\left(\alpha, \boldsymbol{Z}_{2}\right)$.
- $\operatorname{Irr}\left(\alpha+1, \boldsymbol{Z}_{2}\right)$.
- $\operatorname{Irr}\left(\alpha^{2}, \boldsymbol{Z}_{2}\right)$.
- $\operatorname{Irr}\left(5, \boldsymbol{Z}_{2}\right)$.

3. ${ }^{*} 6$ pts. Let $F=Q(\pi)$.

- Explain why $\zeta=\pi^{2}+\pi+1$ is algebraic over F. Determine $\operatorname{Irr}(\zeta, F)$.
- Determine $\operatorname{Irr}\left(\pi, Q\left(\pi^{5}\right)\right)$
- Determine $\operatorname{Irr}\left(\pi, Q\left(1+\pi^{5}\right)\right)$

4. ${ }^{*} 6 \mathrm{pts}$. Answer the following.

- Prove or disprove that $I=\left(X+Y+Y^{2}\right)$ is a prime ideal in $Q[X, Y]$.
- Prove or disprove that $J=\left(X^{2}-Y^{4}\right)$ is a prime ideal in $Q[X, Y]$.

5. ${ }^{*}$ 5pts Answer the following.

- Determine the quotient ring $Q[X, Y] /(X-1, Y-2)$. Is it a field?
- Determine the quotient ring $Q[X, Y] /\left(X^{2}-1, Y-2\right)$. Is it a field?

For practice, may be expanded.

1. Let $F=X^{5}-Y X^{2}+Y$ and $R=Q[Y][X]$.

Prove that $F \in R$ is irreducible.
Hint: First prove that $(Y) \in Q[Y]$ is a prime ideal. Then an Eisenstein type criterion exists for (Y). Use it.
2. Let α be a root of F in some extension field of $q t(R)$ the quotient field of R. Prove that $[q t(R)(\alpha): q t(R)]=5$.

Determine a basis for $q t(R)(\alpha)$ over $q t(R)$.
Hint: Observe that F is a polynomial satisfied by α over $q t(R)$. Argue that F is irreducible and hence is $\operatorname{Irr}(\alpha, q t(R))$
3. Let α be a root of a polynomial $f(X)=\sum_{0}^{m} a_{i} X^{i}$ where all a_{i} are in $K=G F(27)$.

Answer the following:
(a) Let σ denote the Frobenius automorphism $\sigma(z)=z^{3}$. Let $K=G F(3)$.

Explain why $\sigma(z)=z$ if $z \in G F(3) \subset K$.
(b) Explain why $\sigma(z) \neq z$ if $z \notin G F(3)$.
(c) Prove that $\sigma^{3}(z)=z$ for all $z \in K$.
(d) Idea of argument: Note that $K^{\times}=K-0$ is a cyclic group of order $3^{3}-1=26$.

Hence $z^{26}=1$ or $z^{27}-z=0$ for all $z \in K$.
Argue that the elements of $G F\left(p^{n}\right)$ are exactly all possible roots of $X^{p^{n}}-X$. This should answer all remaining questions.
4. Suppose that $I \subset Q[X, Y]$ is the ideal $I=(X-a, Y-b)$, where $a, b \in Q$. Explain why $f(X, Y) \in I$ if and only if $f(a, b)=0$.
Prove that I is maximal thus: Let $f \notin I$. Then $f(a, b)=t \neq 0$. Show that $g=f-t$ is in I and hence f is a unit modulo I. Hint: Let $s \in Q$ where $s t=1$. Let $g(X, Y)=s$. Prove that $f g=1(\bmod I)$.
How does this finish the proof?
5. Construct a polynomial f of degree 23 in $Q[X]$ such that f is irreducible and has at least four different terms.

Answer the same question where $f=f_{1} f_{2}$ where each f_{1}, f_{2} are irreducible with four different terms.
6. Answer if the statements are true or false. If they are false, then you must give an example.

- A finite extension of any field is finite.
- $C(x)$ is algebraically closed for any x in an extension field of C provided $x \notin C$.
- Let $F \subset G$ be finite fields. Then F, G have the same characteristic, p. Moreover, if $p>0$ then $\log _{p}(|F|)$ divides $\log _{p}(|G|)$.
- Suppose that F is a finite field and u, v are two elements in an extension field E of F. Suppose that $[F(u)$: $F]=[F(v): F]=n$ where $n \geq 1$ is an integer. Then $[F(u, v): F]=n^{2}$.

