This is a mixture of homework and exam practice. Only the problems marked with a * are to be submitted as homework. Others will be discussed in class.

- 1. * 5 pts. For each of the following field extensions, determine a basis and hence its dimension.
 - $Q(\sqrt{2})$ over Q.
 - $Q(\sqrt{2})$ over \Re
 - $Q(\sqrt[4]{2})$ over Q.

2. * 8 pts. Let $h : \mathbb{Z}_2[X] \to \mathbb{Z}[2_2[X]]/(X^2 + X + 1)$ be the canonical homomorphism and let $h(X) = \alpha$. Find the following minimum polynomials.

- $Irr(\alpha, \mathbf{Z}_2)$.
- $Irr(\alpha + 1, \mathbb{Z}_2)$.
- $Irr(\alpha^2, \mathbf{Z}_2)$.
- $Irr(5, Z_2)$.

3. * 6 pts. Let $F = Q(\pi)$.

- Explain why $\zeta = \pi^2 + \pi + 1$ is algebraic over F. Determine $Irr(\zeta, F)$.
- Determine $Irr(\pi, Q(\pi^5))$
- Determine $Irr(\pi, Q(1 + \pi^5))$
- 4. * 6 pts. Answer the following.
 - Prove or disprove that $I = (X + Y + Y^2)$ is a prime ideal in Q[X, Y].
 - Prove or disprove that $J = (X^2 Y^4)$ is a prime ideal in Q[X, Y].
- 5. * **5pts** Answer the following.
 - Determine the quotient ring Q[X,Y]/(X-1,Y-2). Is it a field?
 - Determine the quotient ring $Q[X,Y]/(X^2-1,Y-2)$. Is it a field?

For practice, may be expanded.

- 1. Let $F = X^5 YX^2 + Y$ and R = Q[Y][X].
 - Prove that $F \in R$ is irreducible.

Hint: First prove that $(Y) \in Q[Y]$ is a prime ideal. Then an Eisenstein type criterion exists for (Y). Use it.

- 2. Let α be a root of F in some extension field of qt(R) the quotient field of R. Prove that [qt(R)(α) : qt(R)] = 5. Determine a basis for qt(R)(α) over qt(R).
 Hint: Observe that F is a polynomial satisfied by α over qt(R). Argue that F is irreducible and hence is Irr(α, qt(R))
- 3. Let α be a root of a polynomial $f(X) = \sum_{i=0}^{m} a_i X^i$ where all a_i are in K = GF(27). Answer the following:
 - (a) Let σ denote the Frobenius automorphism $\sigma(z) = z^3$. Let K = GF(3). Explain why $\sigma(z) = z$ if $z \in GF(3) \subset K$.
 - (b) Explain why $\sigma(z) \neq z$ if $z \notin GF(3)$.
 - (c) Prove that $\sigma^3(z) = z$ for all $z \in K$.

- (d) Idea of argument: Note that K[×] = K − 0 is a cyclic group of order 3³ − 1 = 26. Hence z²⁶ = 1 or z²⁷ − z = 0 for all z ∈ K. Argue that the elements of GF(pⁿ) are exactly all possible roots of X^{pⁿ} − X. This should answer all remaining questions.
- 4. Suppose that $I \subset Q[X, Y]$ is the ideal I = (X a, Y b), where $a, b \in Q$. Explain why $f(X, Y) \in I$ if and only if f(a, b) = 0.

Prove that I is maximal thus: Let $f \notin I$. Then $f(a, b) = t \neq 0$. Show that g = f - t is in I and hence f is a unit modulo I. **Hint:** Let $s \in Q$ where st = 1. Let g(X, Y) = s. Prove that $fg = 1 \pmod{I}$. How does this finish the proof?

- 5. Construct a polynomial f of degree 23 in Q[X] such that f is irreducible and has at least four different terms. Answer the same question where $f = f_1 f_2$ where each f_1, f_2 are irreducible with four different terms.
- 6. Answer if the statements are true or false. If they are false, then you must give an example.
 - A finite extension of any field is finite.
 - C(x) is algebraically closed for any x in an extension field of C provided $x \notin C$.
 - Let $F \subset G$ be finite fields. Then F, G have the same characteristic, p. Moreover, if p > 0 then $\log_p(|F|)$ divides $\log_p(|G|)$.
 - Suppose that F is a finite field and u, v are two elements in an extension field E of F. Suppose that [F(u) : F] = [F(v) : F] = n where $n \ge 1$ is an integer. Then $[F(u, v) : F] = n^2$.