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1 Introduction.

The aim of this essay is to communicate what I learned from my Guru Shree-
ram Shankar Abhyankar and also some work inspired from it. As is legendary,
Abhyankar’s written work was always extremely precise, composed like a
computer program, yet ornamented like classic Indian poetry. He used to
say that when the arguments flow naturally and fit together without de-
pending on the reader’s imagination, then the theorems are true. He took
great pains to create a symmetric structure to all his sections, never abusing
or reusing symbols and trying to supply as many details as possible.

I, however, will take inspiration from one of his most popular book “Al-
gebraic Geometry for Scientists and Engineers ” , where his informal style
of motivating the topic without technical complications is clearly visible. It
reflects his natural style of talking and lecturing.

I will restrict to the discussion of affine varieties over a field, or, to put it
algebraically, the study of ideals in finite dimensional polynomial rings over
a field. As will be clear, there are already a large number of outstanding
problems even for plane affine curves and surfaces in three space.

2 Basic Ideas.

Let R be any commutative ring with unity. A polynomial ring in n vari-
ables over R is a ring isomorphic to R[X1, · · · , Xn] where X1, · · · , Xn are
algebraically independent over R.

We note that if we let n = 0 then we simply get the ring R.
Definition: Variable in a Polynomial Ring
Any sequence of polynomials (F1, · · · , Fn) which generate the polynomial

ring, i.e. satisfy R[F1, · · · , Fn] is said to be a complete set of variables.
A subsequence (F1, · · · , Fr) is said to be a partial set of variables or a

block of r variables. When r = 1, F1 is simply said to be a variable.
Sometimes the word “coordinate” is used in place of “variable” to em-

phasize the geometric connection.
We shall be mainly interested in polynomial rings over a field k. The

characteristic of k shall be denoted by π.
Let n ≥ 1 and consider A = k[X1, · · · , Xn] ≈ k[n]. A sequences of

polynomials (F1, · · · , Fn) in A is said to be a coordinate system if the ring
k[F1, · · · , Fn] generated by F1, · · · , Fn is equal to A.

If I is any ideal in A = k[n], then the residue class ring B = A/I is said to
be an affine algebra over k. For example, if A = k[X, Y ] and I = (Y 2 −X3)
an ideal in A, then B = A/I = k[x, y] if x, y denote the images of X, Y in B.
It can be seen that the affine algebra is isomorphic to k[t2, t3], the subring of
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k[t] ≈ k[1].
Usually, by a point of the curve defined by Y 2−X3 = 0 we mean elements

a, b ∈ k such that b2 − a3 = 0. Such a point corresponds to a maximal ideal
(X − a, Y − b) in A/I. The ideal may be alternatively described as the set
of all elements of A vanishing at the point (a, b).

We turn this around to say that a point of the affine algebra A/I is any
maximal ideal in it. .

In general, this gives us a notion of affine varieties defined by such ideals
I. Classically, the word variety was restricted to the so-called irreducible va-
rieties. In algebraic terms, this corresponds to ideals I which are prime (or,
in a more general viewpoint, their radicals are prime.). In modern terminol-
ogy, one may use the word “scheme”, but it comes equipped with additional
structures which we don’t wish to be entangled with.

Definition: Coordinate Algebra The affine algebra A/I is said to be
the coordinate algebra of the ideal (or variety) I.

Geometrically, a polynomial ring k[n] corresponds to an affine n-space
over k and prime ideals I in it define irreducible varieties in n-space with
coordinate algebra k[[n]]/I.

We note that equations like aX+ bY + cZ = d define a plane in the affine
3-space, if (a, b, c) is not equal to (0, 0, 0). We also note that the coordinate
algebra of (aX + bY + cZ − d) is isomorphic to k[2]. 1

We define an abstract hyperplane in n-space to be any F in k[n] such
that the coordinate algebra k[n]/(F ) is isomorphic to k[n−1].

For n = 2, 3 we use the usual terms: line and plane, respectively.
Some natural questions present themselves:

NQ1 Given two ideals I, J in A = k[n] how to tell if their coordinate algebras
are isomorphic?

NQ2 If the coordinate algebras are isomorphic (i.e. A/I ≈ A/J ), then is it
possible that there is an automorphism σ of A, such that σ(I) = J?

NQ3 Given an affine algebra A/I what are possible polynomial rings A∗ such
that A/I ≈ A∗/I∗?

This complicated sounding question really amounts to asking, what is
the minimum number of elements u1, · · · , ur such thatA/I = k[u1, · · · , ur]?

NQ4 Given an affine algebra k[x1, · · · , xn] ≈ k[X1, · · · , Xn]/I, can we deter-
mine the minimum number of generators of I in terms of the properties
of the affine algebra.

1For proof, note that if a 6= 0, then it will be the polynomial ring k[y, z] where y, z are
respectively images of Y, Z.
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We will study several instances of these questions and refer to these at
that time.

3 Polynomial Rings over a field

Let n ≥ 1 and A = k[X1 · · · , Xn] ≈ k[n]. Let Φ : A → B be a surjective
k-homomorphism.

Then B is a k-algebra and is finitely generated by x1, · · · , xn, if we set
xi = Φ(Xi) for i = 1, · · · , n.

A set of elements b1, · · · , br in B are said to be algebraically depen-
dent over k if there is a non zero polynomial F (X1, · · · , Xr) such that
F (b1, · · · , br) = 0. The largest number of algebraically independent elements
in B is defined to be the transcendence degree trdegk(B).

The usual dimension theory of affine algebras shows that

• trdegk(k[n]) = n.

• trdegk(B) ≤ n and it is equal to n if and only if Φ has trivial kernel,
and hence is an isomorphism.

• In particular, if B ≈ k[m], then m ≥ n and m = n if and only if Φ is
an isomorphism.

Special Cases related to the Natural Question NQ4: Now, we
assume that Φ, A,B are as above and further B = k[Y1, · · · , Ym] ≈ k[m]. Set
Φ(Xi) = xi = Fi(Y1, · · · , Ym) for i = 1, · · · , n.

First consider the case when n = m+1 where m ≥ 0. Let P be the prime
ideal ker(Φ). We wish to study P .

It is not too difficult to prove that P is a principal ideal, say generated
by an irreducible polynomial f ∈ A. 2

1. In case m = 0, we easily see that P is necessarily generated by a non
constant linear polynomial and hence it is generated by a variable in
A = k[1].

2. In general, for m ≥ 1, the ideal P is still a principal prime ideal, say
P = (f) and clearly, f is an abstract hyperplane in n-space.

2To see this, take any irreducible f ∈ P and note that the coordinate ring B∗ = A/(f)
of the ideal (f) has transcendence degree n− 1 = m. Without loss of generality, we may
assume that Xn is present in F and then the images of X1, · · · , Xn−1 in B∗ are seen to
form a transcendence basis of B∗. Since B has the same transcendence degree, these must
remain algebraically independent in B. Thus, P cannot contain any non zero polynomial
in X1, · · · , Xn−1.

On the other hand, if P has any polynomial g not divisible by f , then it is seen that
the Xn-resultant of f, g is exactly such an element in the ideal P .
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3. This raises:

Natural Question NQ5 When is an abstract hyperplane in n-space
a variable. Expressed differently, given two embeddings Φ,Ψ of the
(n− 1)-space B into the n-space A, when is there an automorphism σ
of A, such that Φ = Ψ ◦ σ?

The story of this question is interesting.

4. First, if k has positive characteristic π, then there are examples (at-
tributed to B. Segre) which give a family of abstract lines which are
not variables.

One such family of examples is given by Φ : k[X, Y ]→ k[T ] defined by
Φ(X) = T πq+T,Φ(Y ) = T π

2
where π, q are coprime. It is easy to show

that Φ is surjective and has kernel generated by f = (Xπ − Y q)π − Y .

Given a pair of integers (a, b) we shall define that the pair is principal
if a divides b or b divides a. If neither divides the other, then it is said
to be non principal.

Moreover, to see that f is not a variable, we notice that (degY (f), degX(f)) =
(pq, p2) and this is non principal.

On the other hand, if f were to be a variable, then (degY (f), degX(f))
is principal. Indeed, this is one of the equivalent formulations of the
well known automorphism theorem (Jung and van der Kulk ) on the
k-Automorphism group of k[X, Y ].

5. The celebrated Epimorphism Theorem of Abhyankar and Moh
states that if f ∈ k[X, Y ] is an abstract line and if at least one of the
two degrees degY (f), degX(f) is not divisible by p, the characteristic of
k, then f is a variable.

The theorem that an abstract line is a variable was independently
proved by Suzuki for k = C using function theory techniques.

The Abhyankar-Moh proof leads to extensive theory of plane curves
with one place at infinity. Moreover, it directly establishes that (degY (f), degX(f))
is principal for an abstract line f and then it is easy to established by
a sequence of well defined automorphisms of the form

σ(X, Y ) = (X, Y + u(X)) or σ(X, Y ) = (X + u(Y ), Y )

we can reduce f to a linear polynomial.

This, in turn, also gives a proof of the automorphism theorem at least
in characteristic zero. Indeed, even in characteristic π, the proof works
as long as one of (degY (f), degX(f)) is not divisible by π.
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One of our aims in these notes is to present the basic ideas of the
Abhyankar-Moh proof.

6. The conjecture known as Abhyankar-Sathaye Conjecture states
that for k of characteristic zero, every abstract hyperplane in n-space
is a variable for all n ≥ 1.

We note that in case n = 2, the well known k-Automorphism structure
of k[X, Y ] was heavily used. For n ≥ 3 this structure is not well
understood.

7. For any polynomial ring S in n-variables over a ring R, let AutR(S)
denote the R-automorphisms of S.

Let A be a polynomial ring in n variables (F1, · · · , Fn) over k. Let
(F1, · · · , Fr) be a block of r variables in A where 1 ≤ r < n. Note
that A is then naturally a polynomial ring in the remaining (n − r)
variables Fr+1, · · · , Fn over the subring R = k[F1, · · · , Fr]. It is clear
that elements of AutR(A) form a subgroup of Autk(A).

Definition: Block automorphisms Let us define an r-block auto-
morphism of A to be any member of AutR(A) where R is the k-algebra
generated by some r-block.

Definition: Tame Block automorphisms A block automorphism
in AutR(A) is said to be tame if its action on its the non block variables
Fr+1, · · · , Fn is of the form Fi → ciFi + d4 where 0 6= ci ∈ k and
di ∈ R. We may describe the automorphism being linear in its non
block variables.

Definition: Mild (Block) Automorphisms We propose that
in general Autk(A) is generated by the linear k-automorphism GLk(A)
and the set of r-block automorphisms of A as r varies over 1 ≤ r < n.
3

Let us call such automorphisms “mild”. In general, the concept of mild
block automorphisms is more extensive than the usual notion of “tame”
automorphisms (corresponding to what we called block tame ).

Moreover, the automorphism theorem of Jung and van der Kulk shows
that for n = 2 the concept of “tame” and “mild” coincides.

Indeed the well known Nagata automorphism which was conjectured
by Nagata to be non tame, is a 1-block mild automorphism. The

3The linear automorphisms GLk(A) are only mentioned for convenience. In fact, they
can be easily seen to be generated by tame block automorphisms which only use linear
terms, by the theory of the Gauss-Jordan forms.
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conjecture was established by Shestakov and Umirbaev in 2002 after
nearly 25 years.

The Nagata automorphism is:

σ(X) = X, σ(Y ) = X(XY−Z2)+Z, σ(Z) = X(XY−Z2)2+2Z(XY−Z2)+Y

8. The next case of the Abhyankar-Sathaye conjecture is n = 3 and asks
if every abstract plane is a variable. This remains unsolved, except in
situations where the needed automorphism can be identified as 1-block
automorphism and then the force of the Abhyankar-Moh theorem can
be used effectively.

To explain this, let us set up the notation. Let Φ : k[3] ≈ k[X, Y, Z]→
k[U, V ] ≈ k[2] be surjective.

• Let (F ) be the kernel of Φ and assume that (F )
⋂
k[X, Y ] =

(0). Then, by a suitable identification, we may assume that
Φ(k[X, Y ]) ⊂ Φ(k[X, Y, Z]) = k[U, V ].

• Further, assume the condition that k[X, Y ]
⋂
k[U ] 6= k. Then the

we have Russell-Sathaye Theorem asserting that F is a variable.

• The proof proceeds by showing that k[X, Y ]
⋂
k[U ] must be of the

form k[p(U)] for some polynomial p(U) in U . Moreover, we may
assume after an automorphism that X = p(U).

• In case X = U , we can set R = k[X] = k[U ] and note that
our homomorphism Φ may be thought of as an R-epimorphism of
R[Y, Z] onto R[V ].

Suitable modifications of the Abhyankar-Moh theorem then yield
the result.

• In case X is a higher degree polynomial in U , we proceed by a
Chinese remainder type argument.
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4 Some Basic Curve Theory

4.1 Notations

Let k denote a ground field. We will generally assume that k is algebraically
closed and characteristic 0, unless otherwise declared.

An affine curve is a finitely generated k-algebra A of transcendence degree
1 over k. Unless otherwise declared, we will generally assume that A is an
integral domain (geometrically this means that the curve is irreducible).

A maximal ideal of A corresponds to a point of the curve.
An embedding of a curve in an affine n-space is determined by a choice

of generators (x) = (x1, x2, · · · , xn), so that A = k[x1, · · · , xn]. Two em-
beddings (x), (y) are said to be equivalent if there is an automorphism σ of
k[X1, · · · , Xn] ≈ k[n] such that yi = σi(x1, · · · , xn).

LetA = k[x1, · · · , xn] be an affine irreducible curve and letK = k(x1, · · · , xn)
be its quotient field. K is called the function field of the curve A.

A discrete valuation ring (DVR) V of K/k is a DVR such that k ⊂ V ⊂
K = qt(V ). Let us denote by v( ) the valuation defined by V . Let M(V )
the maximal ideal of V . Let fV be the canonical map from V onto V/M(V )
which we denote by kV and note that k can be canonically identified with its
image contained in kV .

We say that V is at finite distance for A if A ⊂ V . It can be seen that the
ideal M(V )

⋂
A is a maximal ideal of A, say m. We say that m is the center

of V on A and the local ring Am is said to be the local ring of the point m.
The valuation V is said to be at infinity for A if A 6⊂ V . If this is the

case, then there is some xi such that

0 > ord V(xi) = min{ ord V(xj) | j = 1, · · · , n.}

If we set Ai to be the k-algebra generated by xj/xi for all j ∈ {1, · · · , n}\{i}.
It is easy to see that then V is at finite distance for Ai. Thus, every valuation
V has a center on at least one of the Ai. The set of Ai as i varies from 1, · · · , n
and xi 6= 0 is said to form a projective model of the curve A. It can be shown
that the local ring of the center of V on Ai is the same for all i for which V
is at finite distance.

There are two concrete methods to identify a valuation. For convenience,
we consider a plane curve A = k[x, y]. Suppose that we wish to identify all
valuations of K = qt(A) centered at origin (i.e. (x, y).) Let f(X, Y ) be such
that A = k[X, Y ]/(f(X, Y )).

• Valuations at finite distance: Write f = fd + fd+1 + · · · where fi
are homogeneous expressions of degree i in X, Y and fd 6= 0. We call d
the multiplicity of f at (x, y). We say f is regular in Y if fd(0, y) 6= 0.
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Then by the Weierstrass’ Preparation Theorem, we can write f = εF
where ε ∈ k[[X, Y ]] is a unit and F = Y d + a1(X)Y d−1 + · · · + ad(X)
where ai(X) ∈ k[[X]]. We factor F as a polynomial in k[[X]][Y ] as
F = F1 · F2 · Fs where each Fi is irreducible in k[[X]][Y ].

We assume that f has no multiple factors and then it can be deduced
that F has no multiple factors. Each Fi defines a valuation vi on A as
follows.

For any 0 6= h(x, y) ∈ A define

vi(h(x, y)) = ord XResultant(Fi(X,Y), h(X,Y); Y)

The valuation is naturally extended to the quotient field qt(A) by
vi(h1/h2) = vi(h1)− vi(h2).

• Valuations at infinity: We can consider k[X] as naturally a subring
of k((X−1)) (the field of power series in X−1 over k.)

Without loss of generality, we may assume f to be monic in Y . 4

Then we can factor f = f1 · f2 · fs where each fi ∈ k((X−1))[Y ] is
irreducible.

As above, for any 0 6= h(x, y) ∈ A define

vi(h(x, y)) = ord X−1Resultant(fi(X,Y), h(X,Y); Y).

The valuation is naturally extended to the quotient field qt(A) by
vi(h1/h2) = vi(h1)− vi(h2).

5 The Expansions Paper.

5.1 Places of a curve.

Consider an irreducible polynomial F (X, Y ) ∈ k[X, Y ]. Let A be its coordi-
nate ring and K = qt(A) its function field. Then the places of A correspond
to valuations of K/k. The places at infinity are those valuations whose val-
uation rings do not contain A. 5

We say that A has one place at infinity if there is exactly one place at
infinity and moreover the residue field of the valuation ring coincides with k,
in other words, the valuation is “residually rational”.

4This is the condition equivalent to the “regular in Y ” described at finite distance.
5Technically, in this case, place is the canonical map of the valuation ring to the residue

field, and valuation is the map to the ring of integers augmented by infinity; but we do
not need this distinction for this short exposition.
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A more direct definition can be given which is valid even for a reducible F .
Arrange F to be pre-monic in Y , 6 then the number of places at infinity
of F can be determined to be the number of irreducible factors of F in the
ring k((X−1))[Y ]. In characteristic zero, each such factor gives a Newton-
Puiseux expansion defined by X = τ−n, Y = η(τ) where η(τ) ∈ k∗((τ))
where k∗ is a finite algebraic extension of k generated by the coefficients of
η(τ) over k. Moreover, it is assumed that the GCD of n and the support of
η(τ) is 1. Such an expansion defines a place at infinity of degree [k∗ : k].

If F is irreducible in k((X−1))[Y ], then we say that F has one place at
infinity of degree [k∗ : k]. If the degree is 1, then we say that F has one
place (or branch) at infinity (sometimes shortened to just “F is a one place
curve”). Note that then F is already an irreducible polynomial in k[Y,X].

In the case of a one place curve, it can be shown that F is already pre-
monic in any choice of variables and so the definition is not dependent on
our choice of coordinates.

One way to make this definition intrinsic is as follows.
We first define the number of places at any point P of the curve F . If P

is defined by a maximal ideal (X − a, Y − b), then F is in the maximal ideal
(U, V ) ⊂ k[Y,X] where U = X−a, V = Y −b. Then the number of branches
of F at P are defined as the number of irreducible factors of F when viewed
as a member of the complete ring k[[U, V ]]. If k is not algebraically closed,
then the definition is refined by going to the completion of the corresponding
maximal ideal. Now, to define the number of branches at infinity, we take a
projective completion of the curve and count the number of branches of the
curve at points at infinity.

5.2 Characteristic sequences.

The basic tool is a certain clever reorganization of the classic characteristic
sequences invented by Abhyankar.7 We reproduce these definitions, since
they are still not that well known. Following [A] 6.4 we first define various
characteristic sequences.

Let ν 6= 0 be a given integer and J a subset of of integers bounded below.
This set J will be replaced by the support of the Newton-Puiseux expan-

sion for Y and ν will be the order of X. Here, the definitions are given in

6Which means F times a non zero element of k becomes monic in Y .
7Abhyankar used to relate that he invented several ideas about plane curves in his

personal notes of Zariski’s lectures on curves but always presumed that he had simply
learned them in Zariski’s course. he discovered that they were his own inventions only when
he found out that Zariski was not aware of them. His idea of introducing the q-sequence
made the complicated formulas involved in manipulating Newton-Puiseux expansions into
much simpler statements of invariance. He wrote two separate papers entitled inversion
and invariance of characteristic pairs exploring the power of these techniques.
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the abstract setup.
We inductively define an integer h(ν, J) = h and two sequences m(ν, J) =

(m1(ν, J), · · · ,mh(ν, J)) and d(ν, J) = (d1(ν, J), · · · , dh+1(ν, J)) as follows.
Convention: To keep our display simple, we shall drop the augment

(ν, J) when it is fixed.

(1) If J is empty, then h = 0 , d1 = |ν| and m(ν, J) is empty. Actually, the
original also sets m0 = −∞ but we drop it for simplifying the setup.

(2) If J is nonempty, set D = gcd(J
⋃
{ν}), the greatest common divisor of

the set J together with ν , d1 = |ν|, m1 = min J and d2 = gcd{m1, d1}.
If d2 = D, then put h = 1 and stop.

(3) If d1, · · · , dr+1 and m1, · · · ,mr are defined and D = dr+1, then put h = r
and stop; otherwise, define mr+1 = min{p ∈ J | p 6≡ 0 mod dr+1},
dr+2 = gcd{m1, · · · ,mr+1} = gcd{dr+1,mr+1}

Note that D = dh+1 and di+1 divides di for i = 1, · · · , h. Some natu-
ral expressions in these numbers are also useful to define. Naturally, these
notations should also be augmented by (ν, J), for precision.

(1) The q-sequence. q1 = m1 and qi = mi − mi−1 for i = 2, · · · , h. For
convenience, we also set qh+1 = mh+1 =∞.

(2) The s-sequence. si =
∑i

1 qjdj for i = 1, · · · , h.

(3) The r-sequence.ri = si/di and δi = −ri for i = 1, · · · , h.

(4) The n-sequence. ni = di/di+1 for i = 1, · · · , h.

5.3 Connection with a place of a curve.

Assume that F (X, Y ) defines a curve with one rational place at infinity and
assume the characteristic of k is π = 0.8 We consider the Newton-Puiseux
expansion given by a power series parametrization: X = τ−n, Y = η(τ) ∈
k((τ)), where n = degY (F (X, Y )), and it is assumed that the support of
η(τ) and n and have GCD 1. In this case, we get the well known induced
factorization: F (τ−n, Y ) =

∏n
j=1(Y − η(ωjτ)) where ω is a primitive n-th

root of unity.9

There are three essential ingredients of the Abhyankar-Moh theory, which
are responsible for most of its successes.

8It is enough to assume that π does not divide n.
9This can also be made to work if π > 0 provided π does not divide n.
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1. The Irreducibility Criterion of Abhyankar and Moh Assume
that n = degY f(X, Y ) 6≡ 0 mod π and f(X, Y ) is monic in Y . Then
f(X, Y ) has one place at infinity iff there is a “test series” u(τ) ∈
k((τ)) such that ord τ f(τ

−n), p(τ) > sh(−n, u(τ))

Moreover, given any series u(τ) passing this test, there is a “root” y(τ)
satisfying: f(τ−n, y(τ)) = 0 and ord τ (y(τ)− u(τ)) > mh(−n, u(τ))

This Lemma, originally in [AM2], was later reproved by Abhyankar in
greater detail in [A2].

2. The innovation of the approximate roots. For convenience of no-
tation, assume that f(X, Y ) is monic in Y of degree n. If we construct
the characteristic sequences using the support of η(τ) (Supp(η(τ))
and ν = −n, then for each di = di(−n, η(τ)) for i = 1, 2, · · · , h =
h(−n, η(τ)), we get approximate roots gi(X, Y ) defined by

• For i = 1, g1 = Y and for i > 1, gi(X, Y ) is monic in Y of degree
n/di and

• degY (f − gdii ) < n− n/di.

It is shown that moreover such polynomials are uniquely defined by
f for any factors of n, but for the di chosen from the characteristic
sequence, it is also shown that each gi(X, Y ) is a curve with one place
at infinity.

3. The One Place Theorem on Translates of one place curves. If
π = 0 and F has one place at infinity, then F + λ also has one place
at infinity for any λ ∈ k.

Moreover, all translates have the same Newton-Puiseux expansion through
the last characteristic term. In geometric terms, this means that F and
F + λ go through each other at infinity through all the singular points
in a sequence of quadratic transforms.

This is deduced from the irreducibilty lemma and the explicit calcula-
tion of the initial forms in terms terms of the approximate roots.

5.4 The value semigroup of a one place curve.

Equipped with the above results and elegant numerical manipulations of
the various associated numbers defined from the support of the Newton-
Puiseux expansion, the Expansions Paper established the basic structure of
the coordinate ring A = K[X, Y ]/(F (X, Y )) for a curve defined by F (X, Y )
and having one place at infinity. Let α : k[X, Y ] → k[x, y] be the canonical
homomorphism with α(X) = x, α(Y ) = y.
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As described above, let η(τ) be a Newton-Puiseux expansion. We have de-
scribed a valuation V on the quotient field ofA by V (h(x, y)) = ord τ (h(τ−n, η(τ)))
with the natural convention that ord τ (0) =∞.

We assume, without loss of generality, that F (X, Y ) is monic of degree n
in Y and construct, as explained above, the approximate roots G1(X, Y ) =
Y , G2(X, Y ), · · · , Gh(X, Y ), which are curves with one place at infinity them-
selves. Then we set ΓF = {V (h) | 0 6= h ∈ A, }.

We deduce the sequences mi, qi, di, rr, si, ni as described above, which are
determined using ν = −n and J = Suppη(τ). We get the following detailed
structure theorem for A.

1. Set gi = α(Gi(X, Y )) for i = 1, · · · , h. Then V (gi) = ri. Define g0 = x.
Also define r0 = −n and δ0 = n. Call a monomial ga =

∏h
i=0 g

ai
i a

standard monomial in g0, · · · , gh, if it satisfies:

• a0 ≥ 0

• and for 1 ≤ i ≤ h, we have 0 ≤ ai < ni.

Let S(g) be the set of all standard monomials in g0, · · · , gh.

2. Then S(g) is a basis of A as a k-vector space. The set of all monomials
ga for which a = (0, a1, · · · , ah) can be seen to have cardinality n and
it gives a free basis for A as a module over k[g0] = k[x].

3. The semigroup ΓF = {
∑h

0 airi | where ga ∈ S(g)}. It has the im-

portant property that if
∑h

0 airi is divisible, by dj, then aj = aj+1 =
· · · ah = 0.

We remark that that expansion techniques can also be applied to irreducible
elements F (U, V ) of the power series ring k[[U, V ]], in particular when it is
the completion of of the local ring at the point at infinity in P2 of a one-place
curve. If one does not insist that the expansion be of Newton-Puiseux type
(with one of the variables a power of the parameter τ), the basic definitions
can be made without reference to the characteristic π, see [Ru3].

5.5 Further Developments from the Expansions Pa-
per.

One of the most important case of one place curves is the polynomial curve
which may be defined as a curve defined by a polynomial parametrization so
that the coordinate ring A is a subring of k[t] where t is an indeterminate
over k. Using a modified Lüroth theorem, we can assume that A has quotient
field k(t). In this case, the valuation V can be described as V (h(x, y)) =
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− degt(h(x, y)) and it is more convenient to work with non negative integers
δi = −ri for i = 0, 1, · · · , h.

Indeed, this δ-sequence can be thus introduced for any one place curve as
well and Sathaye termed the resulting semi-groups as planar semigroups.

A sequence of positive integers (δ0, · · · , δh) is said to be a characteristic
δ − sequence if it satisfies the following three axioms:

(1) Set di = gcd{δ0, · · · , δi−1} for 1 ≤ i ≤ h+1. Set ni =
di
di+1

for 1 ≤ i ≤ h.

Then dh+1 = 1 and ni > 1 for all i ≥ 2.

(2) δini ∈ {δ0, · · · , δi−1}N = the semigroup generated by {δ0, · · · , δi−1}.

(3) δi < δi−1ni−1 for i ≥ 2. Set δi = δi−1ni−1 − qi, so that qi > 0 for i ≥ 2.

This definition codifies the properties of the r-sequence in the Abhyankar-
Moh theory and Sathaye proved the converse that given such a semigroup,
it is given by a one place curve. [SS]. (Also see [A2]).

5.5.1 Proof of the Main Theorem via semigroup structure.

The explicit description of the δ-sequence can be used to prove a
Generation Lemma. Any integer a can be uniquely written as

a = a0δ0 + a1δ1 + · · · ahδh

where {ai}hi=0 are integers and 0 ≤ ai < di/di+1 for all i = 1, 2, · · · , h.
Moreover

1. If a is divisible by di, then ai+1 = · · · = ah = 0 .

2. An integer a belongs to the semigroup generated by δ0, δ1, · · · , δh if and
only if a0 ≥ 0.

3. If d2 belongs to the semigroup generated by δ0, δ1, · · · , δh , then (δ0, δ1)
is principal, i.e. one of them divides the other.

It is now easy to see that the hypothesis of the main theorem implies
that if we take F (Y,X) to be the kernel of the canonical epimorphism γ :
k[Y,X] → k[u, v] = k[Z], then its degree semigroup is {0, 1, 2, · · · } and
(δ0, δ1) = (degZ(u), degZ(v)) and hence this pair of degrees is principal.
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5.5.2 Degree semigroups of various curves with one place.

We can similarly define the degree semigroup for any affine curve with one
place at infinity, namely the semigroup generated by the degrees of non zero
elements of its coordinate rings, where the degrees are defined to be negatives
of their corresponding values in the valuation at infinity. This gives rise to
three sets of degree-semigroups:

• Sci = {semigroups of complete intersection space curves with one place at infinity},

• Spl = {semigroups of plane curves with one place at infinity} and

• Spol = { semigroups of plane polynomial curves }.

Clearly we have Sci ⊇ Spl ⊇ Spol. Examples showing that these are strict
containments were discussed in [Sa2], [SS].

One of the most important questions, originally raised by Abhyankar him-
self, was to characterize the degree semigroups of plane polynomial curves.
This remains unsolved to date. The examples of δ-sequences which give a
planar semi group but not the semi group of a polynomial curve are rela-
tively easy to construct. The simplest was the sequence (6, 8, 3), which was
discovered by Moh and Sathaye as an exercise in using computers. But, the
semigroup itself is also generated by (3, 8) and hence is in Spol. Sathaye had
conjectured that the semi group < 6, 22, 17 >6∈ Spol, but its proof came after
many years by M. Fujimoto, M. Suzuki and K. Yokoyama [Sfy]. They also
came up with a smaller example < 6, 21, 4 >.

But all these are only initial calculations. There is no theory or conjecture
for the restrictions imposed by a polynomial curve on its degree semigroup.
Recently L. Makar-Limanov has started the investigation of determining the
smallest possible element in a polynomial semigroup and has analyzed the
case when 2 is in the semigroup. His conjecture states the only possible d-
sequences are either (2, 2m + 1) or (6, 9, 2), where it is known that the first
two numbers of a d-sequence can be always interchanged [ML].

5.5.3 Finiteness of Embeddings of One Place Curves.

Another way of formulating the epimorphism theorem is to say that any
two embeddings of the affine line in the affine plane are equivalent by an
automorphism and so we may say that there is only one equivalence class
of embeddings of an affine line in the affine plane. Right after establishing
the structure of the “value-semigroup” (generated by the r-sequence) of a
curve with one rational place at infinity, Abhyankar raised the corresponding
question for such curves:
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Suppose that α, β are two epimorphisms from k[Y,X] onto the coordinate
ring A of a plane curve with one rational place at infinity. Does it follow that
α and β are equivalent?

The answer to this question is, of course no. However, Abhyankar and
Singh established that there are only finitely many equivalence classes of such
epimorphisms. [A-SI]. In fact, they proved the following strong result.

Note that each embedding corresponds to the choice of two ring generators
x, y such that k[x, y]. It is also clear that the induced r sequence has r0, r1
given by values of x, y at the valuation at infinity and by modifying by an
elementary automorphism, we may arrange (r0, r1) to be non principal. This
gives a number d2 = gcd(r0, r1) which is clearly a number such that −d2 is
not in the value semigroup (by the non principal condition).10 They proved
that two embedding are equivalent if and only if the corresponding d2 is
equal! This, combined with the fact that there are only finitely many negative
numbers not in the value-semigroup, we get the finiteness of embeddings with
a very explicit bound on the number. We remark, that the number of possible
d2s is smaller than the number of missing values and the corresponding set
has not been studied.

5.6 The Jacobian Problem

Inspired by their own new machinery, Abhyankar and Moh produced sev-
eral papers attacking the famous Jacobian Problem which asks if given n
polynomials f1, f2, · · · , fn in the polynomial ring k[X1, · · · , Xn] in n-variables
over a field k of characteristic zero, such that their jacobian J(X1,··· ,Xn)(f1, · · · , fn)
is a non zero constant in k, is it true that k[f1, · · · , fn] = k[X1, · · · , Xn]?

Indeed, this particular problem was rejuvenated and popularized by Ab-
hyankar along with several other problems in Affine Geometry of two and
three dimensions as a way to attract new students to important but accessi-
ble problems in Algebraic Geometry.

Abhyankar and Moh concentrated on the two dimensional problem where
f1, f2 can be considered to be defining a polynomial curve over k(X1) with
X2 serving as the parameter t. Without loss of generality, we may assume
that f1 is monic of degree n > 0 in X2 and f2 is monic of degree m > in X2;
since if one of the degrees is zero, then the Jacobian Problem is easily seen
to have an affirmative answer.

It was quickly established that the Jacobian condition on the jacobian is
equivalent to the following two conditions:

1. The Newton-Puiseux expansion can then be assumed to be defined by
f1 = τ−n, f2 = η(τ) ∈ k(X1)((τ)) where the characteristic m-sequence

10In case of the line, this would cause r0 = −∞ and we already know the result.
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has m1 = −m,m2, · · · ,mh where mh ≤ n− 1.

2. Moreover, all the coefficients of terms before n − 1 are actually in k
while the coefficient of τn−1 is a non constant linear expression in X1.

Two striking results were deduced from this and the Abhyankar-Moh
theory:

1. A case of the Jacobian Problem. If n− 2 is not a characteristic
exponent then the Jacobian problem has an affirmative answer (i.e.
k[f1, f2] = k[X1, X2]).

2. Two Point Theorem. Using the above result, it can be shown that
the Jacobian condition implies that f1, f2 have at most two points at
infinity, i.e. their top degree forms in X1, X2 have at most two non
associate factors.

Moreover, if it can be deduced that the Jacobian condition implies
f1, f2 have at most one point at infinity, then the Jacobian problem has
an affirmative answer.

Several particular cases of the theorem have been resolved by investiga-
tions using these techniques. We only list a few of these technical results:
The Jacobian Problem has an affirmative answer in case (i) h ≤ 2, (ii) h = 3
with small dh, (iii) degree at most 100, (iv) if we can show that the Newton
diagram of f1 is always a triangle with corners at the origin, and on X1 and
X2 axes, in case f1 has degree at least 2.

It is also established that in case the diagram is not a triangle, then it is
contained in a box joining (0, 0) with some (a, b) with a 6= b. It is enough to
show that this cannot occur.

Since, the analysis of the Jacobian problem can be reduced to the study
of the polynomial curve (f1, f2) with X2 as the parameter, Abhyankar pro-
posed the problem of analyzing the polynomial curves, especially ones with
coefficients in k[X1].

5.7 An unexpected Generalization.

The main epimorphism theorem was generalized by Sathaye in the following
form [Sa3]:

Generalized Main Theorem. Let k have characteristic zero and let
U(W1, · · · ,Wp), V (W1, · · · ,Wp) ∈ k[W1][[W2, · · ·Wp]] such that n = degW1

(U(W1, 0, · · · , 0)) >
0 and m = degW1

(V (W1, 0, · · · , 0)) > 0. Assume that there is Ψ ∈ k[U, V ][[W2, · · · ,Wp]]
such that the lowest W2, · · · ,Wp-adic term in Ψ(U, V,W2, · · · ,Wp) is of the
form L(W1)W

q2
2 · · ·W q3

p where L(W1) is a polynomial of degree 1 in W1. Then
m divides n or n divides m.
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Of course, if p = 1, then this is simply the main theorem. The gen-
eralization was a needed technical result to establish generalizations of the
epimorphism theorem when the base k is taken to be a polynomial ring in
one variable over a field. [Sa4].

6 Suzuki’s Proof.

A proof of the Embedding Theorem contemporary with that of Abhyankar
and Moh was given by M. Suzuki [Su]. It is very different in spirit, and the
Embedding Theorem nowadays is often cited as the AMS-theorem. Suzuki’s
paper also was very influential. It uses methods of complex analysis, in par-
ticular the theory of pluri-subharmonic functions, to study polynomial maps
F : C2 → C, where F is an irreducible polynomial. A key result, now usually
referred to as Suzuki’s formula, is that the topological Euler characteristic
of any singular (special) fiber is at least as big as that of a regular (general)
fiber. (This generalizes a fact well known in the case of proper maps.) In
case F0 = F−1(0) ' C Suzuki then goes on to show that F0 is in fact a
regular fiber. His methods apply to morphisms Φ : X → C for surfaces more
general than C2, in particular all smooth affine surfaces. His results have
been extended and sharpened by M. Zaidenberg [Za], and a proof of Suzuki’s
formula relying on geometric methods rather than complex analysis, or, let
us say, more accessible to algebraic geometers, has been given by R. Gurjar
[Gu2].

References

[A] S.S. Abhyankar, Lectures on Expansion Techniques in Algebraic Ge-
ometry, Tata Lecture Notes 57, 1977.

[A2] S.S. Abhyankar, Irreducibility criterion for germs of analytic func-
tions of Two complex Variables. Advances in Mathematics, 74(2),
(1989), 190-257.

[A3] S.S. Abhyankar, Montreal Notes.

[AM1] S.S. Abhyankar and T.-T. Moh, Embeddings of the line in the plane,
J. reine angew. Math. 276 (1975), 148-166.

[AM2] S.S. Abhyankar and T.-T. Moh, Newton-Puiseux expansions and gen-
eralized Tschirnhausen transformations, I, II J. reine angew. Math.
260 (1973), 47-83; 261 (1973), 29-54.

18
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