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1 Introduction

Let k denote the ground field. Let R be the coordinate ring of an affine curve
over k with one place at infinity. Let v denote the valuation associated with
the place at infinity and let Γ(R) denote the corresponding value semigroup
consisting of all the values of nonzero elements of R.

If R is a plane curve (meaning generated by two elements over k) and k
is algebraically closed and characteristic zero (or at least if the characteristic
does not divide the value of one of a pair of generators), then the well known
Abhyankar-Moh theory gives a detailed description of the semigroup and
indeed the semigroups obtained from such plane curves (planar semigroups)
can be completely characterized as shown in [S1], [SS].

Moreover, the theory shows that the ring R has a distinguished basis over
k generated by certain polynomials in the two ring generators of R with the
property that distinct basis elements have distinct values and so the value
semigroup is nothing but the values of the distinct basis elements.

We generalized the concepts of such plane curves and value semigroups in
[S1] to include rings of the form R[[t1, · · · , ts]] where R is still a curve as above,
with the valuation denoted by v. We will explain the exact connection below.
We will also show the existence of a similar distinguished k basis, which was
only partly described in [S1].

We will then show an application to a conjecture of D. Daigle and G.
Freudenburg which we reformulate as follows.

Let R be as above and set Ψ : R[[t]] −→ R be defined as the canonical
residue map mod (t). Further, let u0(t), u1(t) ∈ R[[t]], such that v(Ψ(u0)) =
−n 6= 0. Set u∗0 = Ψ(u0), u∗1 = Ψ(u1).

Let φ1(Y, u∗0) be the minimum monic polynomial of u∗1 over k(u∗0). Then
it is easy to see that φ1(Y, u∗0) ∈ k[Y, u∗0]. Since we have φ1(u∗1, u

∗
0) = 0,

we see that φ1(u1, u0) is divisible by some largest power ta1 and we define
u2 = φ1(u1, u0)/ta1 , and u∗2 = Ψ(u2).
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Then the conjecture is that every such sequence can be continued
indefinitely. Specifically, if u0, · · · , um are constructed and the corresponding
u∗i = Ψ(ui) are defined, then the minimum monic polynomial φm(Y, u∗m−1, · · · , u∗0)
of u∗m over k(u∗0, · · · , u∗m−1) is actually in k[Y, u∗0, · · · , u∗m−1] and we can ex-
tend the sequence by defining um+1 = φm(um, um−1, · · · , u0)/tam and u∗m+1 =
Ψ(um+1), where, as before am is the highest power of t that divides the
expression.

Actually, the original conjecture used “slow division” by t, which
leads to several trivial ui, where the equation Φi = Y and then ui+1 =
u1/t. We drop these to get a better match with our construction.

The point of the conjecture is that all the corresponding φi are polynomi-
als in all their arguments, i.e. u∗m satisfies an integral relation whose degree
matches its field degree over k(u∗0, · · · , u∗m−1). [DF]

Our proof of this consists of showing that the quantities φm(um, u0, · · · , um−1)
simply correspond to certain members of our distinguished basis up to mul-
tiplication by a power of t. The fact that the degree of an integral relation
matches the field degree is simply a consequence of the properties of the
generalized Newton-Puiseux expansions.

We begin by giving a review of our generalized theory from [SS], [S1]. As
before, the reference to Abhyankar’s TIFR notes [A1] is the crucial reference,
but we will not give point by point reference. Since we are about to describe
an extension of the notion of pseudoapproximate roots we shall try to make
this as self contained as possible by repeating several definitions in detail and
giving outline of the arguments. We also provide a proof of the irreducibility
criterion (2.2.1) which was not essential in [S1] and hence was avoided in that
paper.

2 Setup

Let k be the ground field. We shall later assume it to be algebraically closed
of characteristic zero. Some of the universal notations shall be:

ZZ = the set of integers ,ZZ+ = {a ∈ ZZ|a ≥ 0}

and
Q = the set of rationals ,Q + = {a ∈ Q |a ≥ 0}.

We shall use the “Abhyankar nonzero symbol” 0 , which specifies a nonzero
constant. This is used in places where we don’t have use for the explicit value
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of the constant and it can stand for different constants even in the same equa-
tion.

For 0 6= n ∈ ZZ+, let µn(k) be the set of the n-th roots of unity in k and
in our case of algebraically closed characteristic zero k, we can simply write
µn.

We consider a generalized power series

f =
∑
ι∈Λ

fιx
ι

where the coefficients fι are in k and the indexing set Λ is a well ordered
subset of some chosen ordered abelian group.

By Supp (f) we denote the set of ι for which fι is nonzero. We can clearly
replace Λ by Supp (f).

In particular, we will need to use the field of multi-Laurent series in p
variables k� x�= k� x1, · · · , xp�, where we use the abelian group ZZp of p-
tuples of integers ordered by reverse lexicographic order 1 and we conveniently
write xi for xi11 · · · , xipp . In such fields, we define ord (f) = ord x(f) = inf{ι|ι ∈
Supp (f)}. Moreover, we define the initial form Info (f) = aιx

ι if ι = ord (f)
and the corresponding initial coefficient Inco (f) = aι.

As customary, we define ord x(0) = ∞ where ∞ is augmented to the
abelian group as a maximal element. The corresponding initial form shall be
declared 0. Of course, this is only a technicality and we avoid using the zero
element for f .

For an exponent ι = (ι1, · · · , ιp), we need two projection functions, ,̄ π
defined as ι = ι1 and π(ι) = (ι2, · · · , ιp).

Given any sequence of positive rational numbers n = (n1, · · · , np) we can
similarly define a field k� xn�= k� xn1

1 , · · · , xnp
p � and finally, the multi-

Laurent field is defined as L(k, p) =
⋃{k� xn�} where n varies over all

sequences of positive rationals.
The generalized Newton’s Lemma states that for an algebraically

closed k of characteristic zero, an algebraic closure of k� x� is given by
L(k, p).

The proof is easily modified from (5.5) in ET [A1]as follows.
Note that k� x�= k� x1, · · · , xp−1�� xp� and that The usual

Newton’s Lemma says that for a field K of characteristic zero, the field

1Recall that reverse lexicographic order means that we say (m1, · · · ,mp) > (n1, · · · , np),
if the last mi distinct from ni satisfies mi > ni.
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L(K, 1) gives the algebraic closure of K� x�, where K is an algebraic
closure of K. The result now follows by induction applied to K = k�
x1, · · · , xp−1�.

2.1 Characteristic terms

We now fix a value of p ≥ 1.
Given an n-th root of unity ω ∈ µn(k) we define as associated automor-

phism ω of k� x� by defining

ω(
∑

aix
i) =

∑
aiω

i1xi.

In short, this corresponds to sending x1 to ωx1 and fixing all other variables.
For a fixed power series y(x) =

∑
aιx

ι ∈ k� x�, we construct a polyno-
mial

f = f(Y ) =
∏
ω∈µn

(Y − ω(y(x)).

It is easy to see that f ∈ k� xñ� [Y ], where ñ = (n, 1, · · · , 1). In other
words f ∈ k� xn1 , · · · , x2, · · · , xp�. Indeed, if the gcd of n and the set
{ι1 = ι|ι ∈ Supp (y(x))} is d, then f is the d-th power of the minimum
polynomial of y(x) over the field k� xñ�.

Let Λ be the support of y(x). Note that all conjugates ω(y(x)) have the
same support Λ and we declare it to be also the Supp (f).

For each λ ∈ Λ we wish to define some associated quantities inductively.

1. Given any λ, set cλ to be the coefficient of xλ in y(x) and thus Λ =
{λ|cλ 6= 0}.

2. For a set of integers S, by gcd(S), we mean the gcd of all the elements
of S. Set

d(λ) = gcd({n}
⋃
{ι1|ι ∈ Λ|ι < λ}})

and note that d(λ) = n if λ is the minimum element of Λ.

Also define d̂(λ) = gcd(λ1, d(λ)).

Finally set n(λ) = d(λ)/d̂(λ).

3. Given some λ ∈ Λ, by a λ-deformation of y(x) we mean a power series
yλ(x) with the property that yλ(x)−y(x) has the initial term (Z−cλ)xλ.
Here Z is best thought of as a brand new indeterminate, or at least
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something independent from earlier coefficients. We can specialize Z
to convenient quantities afterwards.

It is a simple matter to evaluate f(yλ(x)) and note that we get

Info (f(yλ(x))) = 0 (Zn(λ) − cn(λ)
λ )d̂(λ)xs(λ).

Note that here the coefficient 0 is completely determined by the coef-
ficients of y(x) up to the λ term.

The quantity s(λ) may be taken as defined by this formula and
we will give an alternate expression later.

For future use, we define r(λ) = s(λ)/d(λ).

4. The explanation of the above formula is this.

We have
Info (f(yλ(x))) =

∏
ω∈µn

(yλ(x)− ω(y(x))).

and the initial form is simply the product of the initial forms of the
various terms, each of which can be rewritten as (yλ(x)−y(x))−(y(x)−
ω(y(x))). The initial form of the first piece is (Z − cλ)xλ and it cannot
cancel with the initial form of the second piece. The order of the second
piece is less than λ exactly when ωd(λ) 6= 1 and hence for all such ω,
the initial coefficient is free of Z and forms part of the 0 . The d(λ)
terms with ωd(λ) = 1 give the order of the second piece bigger than or
equal to λ - which is the order of the first piece. Hence the order of
such terms is exactly λ and the initial forms are (Z − cλωλ)xλ.
Moreover, if the ratio of two d(λ)-th roots of unity ω1 and ω2 is a d̂(λ)-
th root of unity, then the corresponding initial forms are the same,
since d̂(λ) divides λ. This easily gives the asserted expression.

5. Assumption: Now, for convenience, assume that k is algebraically
closed of characteristic zero. In many cases, this assumption can be
weakened to assuming that the characteristic does not divide certain
important numbers.

Now we give the more explicit form of s(λ), along with a few
other conventional characteristic terms, as promised.

Set ν = −n for our current application to meromorphic type curves.
In general, it is set to be ±n. For the minimum element α in Λ,
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set q(α) = α and s(α) = q(α)d(α). Inductively, if the quantities are
defined thru some β and λ is the next term in the well ordered set,
then we define q(λ) = λ − β and s(λ) = s(β) + q(λ)d(λ). In case,
λ does not have an immediate predecessor in Λ, we have to proceed
as follows. Pick some θ < λ in Λ such that d(θ) = d(β) = d(λ) for
all θ < β < λ with β ∈ Λ. 2 Define s(λ) = s(θ) + (λ − θ)d(λ). It
is not hard to see that if we replace θ by an intermediate β, then we
have s(β) = s(θ) + (β − θ)d(β) = s(θ) + (β − θ)d(λ) and clearly s(λ)
also equals s(β) + (λ− β)d(λ). Note that the quantity q(λ) cannot be
defined in this situation.

It is also clear that the s-function is an increasing function. The corre-
sponding r-function is defined by r(λ) = s(λ)/d̂(λ).

2.2 Newton Puiseux expansions and irreducibility

We constructed f = f(Y ) above which was a polynomial in Y with coeffi-
cients in k << xñ >> starting with a formal generalized power series. For
applications at hand, we study polynomials f = f(Y ) = f(Y,w1, · · · , wn) ∈
A[Y ] where A = k[w1][[w2, · · · , wp]].

A generalized Newton Puiseux expansion (NP expansion) for such a poly-
nomial is an expansion y = y(x) ∈ k << x >> such that f(y(x), xn1

1 , · · · , xnp
p ) =

0 for some integers n1, · · · , np.
To be consistent with our conventions, we need n2, · · · , np to be positive

integers.
Actually, we will be interested in a generalization of usual uni-

branch curves and so we restrict our attention to them by declaring
the following:

For f = f(Y ) ∈ A[Y ] a generalized NP expansion shall be taken to
mean a substitution Y = y(x), w1 = xν1, w2 = x2, · · · , wp = xp, such that
f(y(x), xν1, x2, · · · , xp) = 0.

Here ν is an integer and the case when ν is positive is described as the
generalized algebroid curve, while the case of a negative ν is the gener-
alized meromorphic curve.

Convention: We may simplify our statements by declaring Y = y(x)
to be a root of f(Y ) normalized to (ν, 1, · · · , 1) or simply to ν, if the

2Such a θ exists, since there are only a finitely many values of the d-function and d(λ)
is the gcd of n and all possible β with β < λ in Λ.
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meaning is clear., when we substitute for wi as described above.
We generally do not require the power series y(x) to have integral expo-

nents in x1, but require that for some positive integer D, the power series
y(x) is a member of k << x

1/D
1 , x2, · · · , xp >>.

Clearly, if the x1 is replaced by xd1 for some positive d, then we get an
equivalent but different NP expansion. We can avoid this ambiguity in ex-
pansions, if we use fractional powers of w1 in place of integral powers of
x1.

Further, replacing x1 by ωx1 where ω is a |ν|-th root of unity, we get
a conjugate expansion which is also considered equivalent. In case of frac-
tional power series, we can allow |ν|-th roots of unity where ν is a common
denominator for exponents of w1.

The curve f(Y ) is said to be unibranch, if as a polynomial in Y , f(Y ) ∈
A[Y ] is monic of degree n and its roots are a complete set of conjugates by
n-th roots of unity, where any one root is Y = y(x) ∈ k << x1, · · · , xp >>
which is normalized to (ν, 1, · · · , 1) with |ν| = n. As usual, we extend the
definition of unibranch to curves which become unibranch after multiplication
by a nonzero constant.

Now we assume that our f is unibranch of degree n as described above.
We thus have a factorization as stated before

f = f(Y ) =
∏
ω∈µn

(Y − ω(y(x)) with y(x) ∈ k << x1, · · · , xp >> .

REMARK:
Given another power series y∗(x) =

∑
c∗ιx

ι, let λ be the largest order
among the set ord (y∗(x)−ω(y(x))). Without loss of generality, assume that
this maximum is reached with ω = 1, i.e. y∗(x) − y(x) has order λ. Then
is easy to check, using our above calculations with λ-deformations, that the
order of f(y∗(x)) is s(λ).

Note that the gcd d of n and the first components λ of λ in the support
of y(x) is necessarily 1, since otherwise y(x) would have only n/d distinct
conjugates contrary to the assumption.

2.2.1 Irreducibility criterion

Definition of maximal contact Let us formally declare the maximal con-
tact of a polynomial g(Y ) with respect to the given f(Y ) normalized to
(ν, 1, · · · , 1)) to be the maximum of the orders of differences of
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y∗(x) − y(x), where y∗(x) runs over all roots of g(Y ) normalized to
(ν, 1, · · · , 1), and y(x) ranges over similar roots for f(Y ).

We shall prove the following claim:
Now assume that f(Y ) = f(Y,w1, · · · , wp) is unibranch of degree n as

above.
Let g(Y ) = g(Y,w1, · · · , wp) ∈ A[Y ] be monic of degree m in Y such that

m = n/d(λ) for some λ and assume that the order of g(y(x), xν1, x2, · · · , xp) =
θ where θ ≥ s(λ)/d(λ).

Then g(Y ) is unibranch with an expansion Y = y∗(x), w1 = xν1, w2 =
x2, · · · , wp = xp, so that y∗(x) ∈ k << x1, · · · , xp >> and y∗(x) − y(x) has
order at least λ for one of the roots y(x) of f(Y ).

The proof of this claim is a simple adaptation of the original proof of
Abhyankar and Moh.[AM1, AM2] and can also be located in the more recent
[A3].

To see this, let β be the maximal contact of g(Y ) with f(Y ) normalized
to (ν, 1, · · · , 1).

Let Res (f, g, Y ) be the usual Y resultant, which is, upto a sign, the
product of differences of roots of f, g. From our calculation above, we see
that the order of Res (f, g, Y ) is at most s(β)m when we view the resultant
as product of evaluations of f(Y ) at roots of g(Y ). Conversely, when we
think of it as evaluations of g(Y ) at roots of f(Y ), we note that we get the
same order θ repeated n times, since the roots of f are conjugate.

Thus we have ms(β) ≥ nθ ≥ ms(λ).
Hence, g(Y ) has a root y∗(x) which differs from a root of f past β ≥ λ.

Moreover, such a root has clearly n/d(λ) conjugates (by n/d(λ)-th roots of
unity), and since m = n/d(λ) coincides with degree of g(Y ), the conjugates
must exhaust all the roots of g(y).

This proves that all the roots of g(Y ) are conjugate by m = n/d(λ)-th
roots of unity and that any one of them differs from a root of f at or past λ,
after we normalize it by substituting w1 = xν1. This finishes the claim.

2.3 The g-sequence

Now we construct the generalized version of the usual g-sequence, which is
also known as the sequence of (certain chosen) approximate or pseudoap-
proximate roots.

We begin with a unibranch f = f(Y ) ∈ A[Y ] with a generalized NP
expansion Y = y(x), w1 = xν1, w2 = x2, · · · , wp = xp, as before, where ν = −n
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for the meromorphic case and ν = n for the algebroid case. Let Λ be the
support of y(x).

First, we recall the usual sequence of approximate roots of f(Y ) as ex-
plained in section 3 of [S1]. 3 Please note that we are using G in place
of g in order to save the notation g for the more generalized versions
of these approximate roots. While we don’t repeat any proofs, we will
explain the inductive construction, partly because we have not introduced
the notation mi yet.

Let α be the order of y(x) and set G1 = G1(Y ) = Y . Set r1 = r(α) = α
and m1 = α.

Note that G1(Y ), is a polynomial of degree n/d1 = n/|ν| = 1 and is
unibranch with maximal contact r1 with f normalized to (ν, 1, · · · , 1), or
simply put, normalized to ν.

Set d2 = gcd(r1, d1) and let m2 be the first exponent in Λ which has the
property that m2 is not divisible by d2. Define G2(Y ) to be the approximate
d2-th root of f(Y ), i.e. the unique polynomial of degree n/d2 satisfying the
condition that f(Y )−G2(Y )d2 has Y -degree less than n− n/d2.

Continuing in this fashion, if we have constructed G1(Y ), · · · , Gi−1(Y ),
then we set di = gcd(ri−1, di−1) and define mi to be the first exponent in Λ
for which mi is not divisible by di. Define Gi(Y ) to be the approximate di-th
root of f(Y ). Set ni = di/di+1 = n(mi).

The process stops when we reach some number h such that dh+1 is the
gcd of n and all λ for λ ∈ Λ. Indeed, since f(Y ) is unibranch, dh+1 = 1.
Then, we can define Gh+1(Y ) to be simply the polynomial f(Y ) itself, since
its degree is supposed to be n/dh+1 = n.

We note that the polynomials G1(Y ), · · · , Gh(Y ) having the following
properties.

1. The polynomialGi(Y ) is a monic polynomial inA[Y ] of degree n/d(λ(i)).

2. Gi(Y ) has maximal contact r(mi) with f(Y ) normalized to ν. For
convenience, we denote it as ri.

3. Moreover, having fixed an mi-deformation ymi
(x) of some fixed root

y(x) of f(Y ), we have that

Info (Gj(ymi
(x)) = 0 xri for 1 ≤ j < i

3We take this opportunity to correct a couple of typos in 3.1 of [S1]. First, the notation
G in 3.1.1, 3.1.2 should be g. Further, ge in 3.1.6 should be g.
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while
Info (Gi(ymi

(x)) = 0 (Z − c∗mi
)xri .

In particular, all the Gi(Y ) are unibranch.

4. Define a permissible monomial
∏
j Gj(Y )aj to be a monomial such that

0 ≤ aj < ni.

Let M(i) denote all permissible monomials in {Gj(Y ))|1 ≤ j < i}.
Then M(i) form an A- basis for all polynomials in A[Y ] of degree less
than the degree of Gi(Y ), i.e. n/di.

5. In particular, the polynomial f(Y ) has a well defined Gi(Y )-adic ex-
pansion

f(Y ) = Gi(Y )di + U1(Y )Gi(Y )di−1 + · · ·+ Udi(Y )

where Ui are combinations of elements of M(i) over A. Also, by our
assumption, U1(Y ) = 0 for i ≥ 2.

6. We also have an expression for Gi+1 in terms of M(i) given by

Gi+1 = Gni
i +

∑
HaG

a where Ga = Ga1
1 · · ·G

ai
i ∈M(i+1) and Ha ∈ A.

We further expandHa =
∑
ιHa,ιw

ι as an element ofA = k[w1][[w2, · · · , wp] =
k[xν1][[x2, · · · , xp]], so that Ha,ι ∈ k.

Let Θ : A[Y ] −→ A[Y ]/(f(Y )) = A[y(x)] be the canonical map send-
ing Y to y(x). Let θ be the induced order given by θ(H(Y )) =
ord x(H(y(x)). Note that θ(Gi) = ri.

7. As explained in section 3 of [S1], the distinct terms Θ(wιGa) have
distinct x-orders as long as the monomials Ga are permissible. It follows
that

θ(
∑
{Ha,ιG

a|θ(Ha,ιG
a) ≥ λ} = λ

. Thus, for every λ = Ha,ιG
a between θ(Gni

i ) = niri and θ(Gi+1) = ri+1,
we have that

θ(Gni
i +

∑
{Ha,ιG

a|θ(Ha,ιG
a) < λ} = θ({Ha,ιG

a) = λ.

Denote the resulting polynomial by G∗i,λ(Y ). We have now constructed
a Well ordered set of (unibranch) polynomials, G∗i,λ(Y ), which can be
lexicographically ordered by their subscripts.
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8. For any fixed i, as a temporary notation, let G∗i,β(Y ) be the first poly-
nomial in our set. Then G∗i, β is of degree ni as a polynomial in Gi(Y )
with coefficients in A[G1(Y ), · · · , Gi−1(Y )], where we only keep permis-
sible monomials.

Further, for all G∗i,β∗(Y ) with β∗ > β, the expression is simply lin-
ear in G∗i,β with coefficients in A[G1(Y ), · · · , Gi−1(Y )] using permissible
monomials.

9. For each Gi,λ(Y ), note that its maximal contact with f(Y ) is between
mi and mi+1 and steadily increases with λ.

Let us denote the corresponding contact by κ(i, λ).

We are finally ready to define the desired g-sequence to match the
u-sequence as explained in the introduction.

Set gβ(Y ) = G∗i,λ(Y ) if β = κ(i, λ). Note that, we can recover (i, λ) from
κ by first finding i usingmi < κ ≤ mi+1, and then finding λ = θ(gβ(Y )).

3 Application to Daigle and Freudenburg Con-

jecture

We start with the ring R[[t]] as explained in the introduction. We can choose
a uniformizing parameter x∗1 for the valuation v, such that R[[t]] ⊂ k <<
x∗1 >> [[t]] ⊂ k << x∗1 >><< t >>. By a suitable change of variables, we
can find some x1 such that

u0 = x−n1 and k << x∗1 >><< t >>= k << x1, t >> .

As usual, this is done by taking x1 to be the −1/n-th root of u0 viewed as
an element of k << x∗1 >><< t >> and noticing that x1 = x∗1+ terms in
the ideal generated by x∗21, t.

Now we can match our setup. In this case, p = 2 and x2 = t. Let us take
ν = −n. Let A = k[xν1][[x2]] = k[u0][[t]], so w1 = u0, w2 = t.

Now u1 = u1(x1, x2) =
∑
λ cλx

λ in our notation and this is a generalized
NP expansion as above.

It is possible that the gcd of λ with λ in the support of u1 is
d > 1. In this case, we will replace x1 by x

1/d
1 and this will arrange
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that the new gcd is 1. We will always assume that this is done,
beforehand.

Now we take its minimum polynomial

f(Y ) =
∏
ω∈µn

(Y − ω̃(u1))

where ω̃ as before sends x1 to ωx1 and x2 to itself for all n-th roots of unity
ω.

3.1 Main property of f(Y )

Clearly F (Y ) ∈ k << xn1 , x2 >>. But we claim that it lives inside the
smaller ring k[w1][[w2]][Y ] = A[Y ]. This will let us use our above setup and
conclusions.

We will now show that the element u1 is algebraic of degree n over the field
k << xn1 , x2 >> and is indeed integral over the ring k[w1][[w2]] = k[x−n1 ][[x2]].
This will clearly establish that the f(Y ) is its minimum polynomial and hence
in the indicated ring.

1. Since the element u0(0), obtained from u0 ∈ R[[t]] by setting t = 0 is
in R and has order −n 6= 0, it is transcendental over k. Note that R
is integral over any of its subring which contains at least one element
transcendental over k, hence in particular, it is integral, and hence a
finite module over k[u0(0)]. Indeed, the integral closure R of R is a
finite free module of rank n over the principal ideal Dedekind domain
k[u0(0)].

Given any such n-element basis for R over k[u0(0)], we claim that it
serves as a generating set for R[[t]] over k[u0][[t]].

This is simply done as follows.

Fix a generating set v1, · · · , vn for R over k[u0(0)].

Note that u0(0) = u0 + tu∗ for some u∗ ∈ R[[t]]. Let R1 be the ring
k[u0][[t]]. Given any element tmh in tmR we claim that there is an
element h∗ in the R1 module generated by v1, · · · , vn, such that tmh =
tmh∗+ tm+1h∗∗, with h∗∗ ∈ R[[t]]. Thus we get the desired power series
expansion for any element of R by repeated application of this process.

To prove the claim, write h =
∑
i hi(u0(0))vi and take h∗ =

∑
i hi(u0)vi.

Clearly hi(u0(0)) − hi(u0) ∈ tR and the element
∑
i hi(u0) − hi(u0(0))

gives the desired th∗∗.
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2. Thus u1 is integral over A = k[u0][[t]] and indeed satisfies an integral
equation of degree n.

On the other hand, our polynomial f(Y ) must divide the integral equa-
tion and since both are monic of equal degrees, must coincide. There-
fore, the coefficients of f(Y ) are necessarily in A as desired.

3. We thus have shown that f(Y ) is unibranch in the sense explained
above. We now have an associated sequence gλ(Y ) of unibranch poly-
nomials corresponding to maximal contacts λ with f(Y ). If we substi-
tute, y = u1 in gλ(Y ) we clearly get the order to be r(λ) = s(λ)/d(λ)
and so we can write:

gλ(u1) = g∗λt
π(r(λ)).

Then g∗λ ∈ k[u0, u1][[t]] and we claim that the g∗λ are essentially the ui
of the conjecture.

The reason to use the word “essentially” is that in general, there will
be more g∗λ than the ui, since the ui only correspond to those gλ(u1)
for which there is a jump in the t-order.

We next explain this in greater detail.

4 Properties of the u-sequence.

4.1 Observations about the current setup

(a) In general, the sequence gλ(Y ) is of a large ordinal type, but for
our application, it is actually a genuine sequence, i.e. of the same
type as the natural numbers.

To see this, note that the sequence of the orders r(λ) of the ex-
pressions gλ(u1) has the property that r(λ) ≤ 0 for all λ in our
sequence. The reason is simply that the expression gλ(u1) ∈ R[[t]]
is of the form

∑∞
i=m ait

i, where ai ∈ R and am 6= 0. Then, the
order r(λ) = (v(am),m), so r(λ) = v(am) ≤ 0 since R has v as
the only valuation at infinity.

From the fact that s(λ) forms a lexicographically increasing se-
quence, it is not hard to deduce that for every fixed m, there are
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only a finite number of λ with π(r(λ)) = m. This proves the
claim.

(b) For our semigroup, we paid attention to only the first components
r(λ) of the orders r(λ) of gλ(u1). Now we wish to pay attention to
the t-orders as well, or the component π(r(λ)). In general, recall
that we construct gλ∗(Y ) ,the next polynomial from a given gλ(Y )
by adding suitable permissible terms fromM(λ) to gλ(Y )n(λ) and
the expected t-order of gλ∗(u1) satisfies:

ord t(gλ∗(u1)) ≥ n(λ)ord t(gλ(u1)).

We say that λ∗ is special if the above inequality is strict.

We now construct a subsequence of our gλ(Y ) by keeping exactly
those terms which correspond to special λ. Let us reindex
them, using an indexing function θ, as G1(Y ), G2(Y ), · · · so that
Gi(Y ) = gθ(i)(Y ).

Throw in the initial term G0(Y ) = u0 and note that G1(Y ) = Y .
We propose that our u-sequence is nothing but Gi(u1) divided by

tord t(Gi(u1)) which is also seen to be given by ui = Gi(u1)/tπ(r(θ(i))).

(c) We now need some new notation for further calculation. In anal-
ogy with our notation n(λ) we now need n∗(i) which shall be
defined as d(θ(i))/d(θ(i + 1)). If θ(i) = β and θ(i + 1) = λ, then
this is easily seen as the product of all n(β∗) with β∗ ranging from
β up to (but not including) λ.

For convenience, let Ψ : R[[t]] −→ R be the residue class map given by
setting t to 0.

We will now show that the sequence ui described above satisfies the
conditions set in the conjecture. Clearly u0, u1 are correct by definition.
Set u∗i = Ψ(ui) and let Ki be the field generated by u∗0, · · · , u∗i .
We wish to show that the minimum polynomial satisfied by u∗i overKi−1

is simply read from the expression of Gi+1(Y ) as a standard expression
in terms of permissible monomials in terms of the earlier gβ(Y )’s.

First, note that

Gi+1(Y ) = Gi(Y )n
∗(i)+ permissible monomials from intermediate gβ(Y )

14



and when we substitute u1 for Y , then the minimum t-order of terms
on the right hand side is n∗(i)ord t(Gi(u1)), but since i+ 1 corresponds
to a special index, the t-order of the resulting sum is larger than this
order. We substitute Y = u1 on both sides and divide both sides by

tn
∗(i)ord t(Gi(u1)). After expressing terms in terms of ui

4 and taking
image of both sides by Ψ we get a monic equation of degree n∗(i)
satisfied by u∗i = Ψ(ui) of the promised degree over the ring generated
by u∗0, · · · , u∗i−1.

On the other hand, the field degree of u∗i over the field Ki−1 generated
by u∗0, · · · , u∗i−1 cannot be any less than this n∗(i) since the v-orders of
all elements in Ki−1 are divisible by d(θ(i)) while the gcd of the orders
drops down to d(θ(i+ 1)), when we include the v-order of ui.

4This actually involves some rearrangement of the usual permissible expression in terms
of {gβ(u1)} and reinterpreting it as expression in terms of our special Gj(u1).
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