Comments on Ch. 8 Homework

8.2.5 Think of $R = \mathbb{Z}[\sqrt{-5}]$ as $\mathbb{Z}[X]/(X^2 + 5)$. Let x denote the natural image of X in R. Argue that 2, 3 are irreducible by the usual norm argument. First, note that $u \in R$ is a unit iff N(u) = 1 iff $u = \pm 1$.

If $p \in \mathbb{Z}$ is a prime and p is reducible in R, then p = ab where a, b are non units. Then $p^2 = N(p) = N(a)N(b)$ implies N(a) = N(b) = p.

Since $N(f + gx) = f^2 + 5g^2$ this is not possible for p = 2, 3.

Note that if an ideal $I = (a, b) \neq R$ where a is irreducible and I = (f) for some f (i.e. I is principal), then f|a and since f is a non unit, f is an associate of a. Thus, a must divide b.

Now, it is easy to see that the ideals I_2, I_3, I_3' are non principal. To argue that the ideals are not unit ideals, calculate their residue class rings. Thus, $R/I_3 = \mathbb{Z}[X]/(J)$ where $J = (X^2 + 5, 3, 2 + X)$. Note that J = ((X + 2)(X - 2) + 9, 3, X + 2) = (3, X + 2) and so the ring is $\mathbb{Z}_3[X]/(X + 3) = \mathbb{Z}_3$.

This proof is better than the book's!

Here is an explicit proof for principalness of I_2I_3 . Consider its lift, say K in $\mathbb{Z}[X]$ generated by $a = (X^2 + 5), b = (2)(3), c = (2)(2 + X), d = (3)(1 + X), (1 + X)(2 - X)$. Combining a, d get 7 + X in K and then using b, deduce that $1 + X \in K$.

Claim that K is generated by a, 1 + X. Note that b = 6 = (1 + X)(1 - X) + a, c = 4 + 2X = 6 + 2(X + 1).

So, in R, the image of K is generated by (1 + x). 8.2.6 Some common omissions.

- A totally ordered set of ideals is best described as $\{I_r\}_{r\in S}$ where S is a totally ordered set. Writing a sequence is not sufficiently general!
- It is important to argue that the union I of such a totally ordered set is again non principal, for otherwise, its generator would be in some I_r and then $I_r = I$ will also be principal.
- The existence of *a*, *b* as stipulated in (b) should be proved by noticing that *I* being non principal, must not be prime!
- 8.2.6 Common omission was a detailed proof of (a) and not using induction for (b).
- 8.3.1 I would organize the argument differently.
 - Argue that the given multiplicative group is isomorphic to a direct sum G of additive groups G_i where each G_i is isomorphic to \mathbb{Z} for $i = 1, 2, \cdots$. The isomorphism is defined by $\psi(r) = (\operatorname{ord}_{p_1}(r), \operatorname{ord}_{p_2}(r), \cdots)$, where $p_1 = 2, p_2 = 3$ and generally p_i is the *i*-th prime.
 - The fundamental theorem of Arithmetic guarantees (is equivalent to) that this ψ is an isomorphism.

• The group G has infinitely many automorphisms given by fixed permutations of its components. We then get different automorphisms of \mathbb{Q}^{\times} by conjugation $\psi^{-1}\sigma\psi$.

The one given in the book swaps the first and the second component.

- 8.3.5 Start by writing the ring as $R = \mathbb{Z}[X]/(X^2 + n)$ and denote the image of X by x. The arguments will be similar to 8.2.5.
 - As before, units are still only ± 1 and irreducibility is deduced using norms. Thus, if 1 + x = ab, with a, b non units, note that 1 + n = N(a)N(b). Note that norm of a non unit u + vx is $u^2 + nv^2$ is bigger than n if v is non zero. It follows that at least one of a, b must be in \mathbb{Z} . But then it must divide 1 + n in Rand hence divides 1 in \mathbb{Z} .. So, it would be a unit, contrary to assumption.
 - To check if (1 + x) is prime, note that the residue class ring by it would be $\mathbb{Z}[X]/J$ where $J = (X^2 + n, 1 + X)$ But $X^2 + n = (X + 1)(X 1) + 1 + n$. So J = (1 + n, X + 1).

Now, $\mathbb{Z}[X]/(1+n, 1+X) \approx \mathbb{Z}_{1+n}[X]/(1+X) = \mathbb{Z}_{1+n}$. Thus, if 1+n is not prime, then 1+x is not prime! The case of x is similar.

Also, out of n and 1 + n, at least one is even and bigger than 2, so non prime.

- To find an explicit non principal ideal, consider (2, x). Since x is irreducible, this will be principal only if it is generated by x. But 2 is not in (x) since $R/(x) = \mathbb{Z}[X]/(X^2 + n, x) = \mathbb{Z}_n$ and the image of 2 in this ring is non zero, since n > 2.
- 8.3.6 The ring $\mathbb{Z}[i]/(1+i) = \mathbb{Z}[X]/J$ where $J = (X^2 + 1, 1 + X) = (2, 1 + X)$, so the ring is just \mathbb{Z}_2 as before.
 - If q is 2,3 modulo 4, then the ring is $\mathbb{Z}[X]/K$ where $K = (X^2 + 1, q)$. The ring is then $\mathbb{Z}_q[Y]/(Y^2 + 1)$ where Y is the image of X modulo q (still transcendental). By assumption on q the ideal $(Y^2 + 1)$ is prime and generated by a quadratic polynomial and hence the residue class ring is a 2 dimensional space over \mathbb{Z}_q .
 - The case when p is 1 mod 4.

Let $\pi = a + bx$ be an element with norm p. Then $\mathbb{Z}[X]/(X^2 + 1, a + bX) = \mathbb{Z}[X]/(p, a + bX) \approx \mathbb{Z}_p[Y]/(a + bY)$ where Y is the image of X modulo p (still transcendental). The last ring is clearly \mathbb{Z}_p since b cannot be zero modulo p.

The ring $\mathbb{Z}[X]/(X^2+1,p)$ is easily seen to be $\mathbb{Z}_p[Y]/(Y^2+1)$ and in the current case Y^2+1 is reducible. However, the residue class ring is still a vector space of dimension 2 and has p^2 elements.