Comments on Ch. 8 Homework

8.2.5 Think of $R=\mathbb{Z}[\sqrt{-5}]$ as $\mathbb{Z}[X] /\left(X^{2}+5\right)$. Let x denote the natural image of X in R. Argue that 2,3 are irreducible by the usual norm argument. First, note that $u \in R$ is a unit iff $N(u)=1$ iff $u= \pm 1$.

If $p \in \mathbb{Z}$ is a prime and p is reducible in R, then $p=a b$ where a, b are non units. Then $p^{2}=N(p)=N(a) N(b)$ implies $N(a)=N(b)=$ p.

Since $N(f+g x)=f^{2}+5 g^{2}$ this is not possible for $p=2,3$.
Note that if an ideal $I=(a, b) \neq R$ where a is irreducible and $I=(f)$ for some f (i.e. I is principal), then $f \mid a$ and since f is a non unit, f is an associate of a. Thus, a must divide b.

Now, it is easy to see that the ideals $I_{2}, I_{3}, I_{3}{ }^{\prime}$ are non principal.
To argue that the ideals are not unit ideals, calculate their residue class rings. Thus, $R / I_{3}=\mathbb{Z}[X] /(J)$ where $J=\left(X^{2}+5,3,2+X\right)$. Note that $J=((X+2)(X-2)+9,3, X+2)=(3, X+2)$ and so the ring is $\mathbb{Z}_{3}[X] /(X+3)=\mathbb{Z}_{3}$.

This proof is better than the book's!
Here is an explicit proof for principalness of $I_{2} I_{3}$. Consider its lift, say K in $\mathbb{Z}[X]$ generated by $a=\left(X^{2}+5\right), b=(2)(3), c=$ $(2)(2+X), d=(3)(1+X),(1+X)(2-X)$. Combining a, d get $7+X$ in K and then using b, deduce that $1+X \in K$.

Claim that K is generated by $a, 1+X$. Note that $b=6=(1+$ $X)(1-X)+a, c=4+2 X=6+2(X+1)$.

So, in R, the image of K is generated by $(1+x)$.
8.2.6 Some common omissions.

- A totally ordered set of ideals is best described as $\left\{I_{r}\right\}_{r \in S}$ where S is a totally ordered set. Writing a sequence is not sufficiently general!
- It is important to argue that the union I of such a totally ordered set is again non principal, for otherwise, its generator would be in some I_{r} and then $I_{r}=I$ will also be principal.
- The existence of a, b as stipulated in (b) should be proved by noticing that I being non principal, must not be prime!
8.2.6 Common omission was a detailed proof of (a) and not using induction for (b).
8.3.1 I would organize the argument differently.
- Argue that the given multiplicative group is isomorphic to a direct sum G of additive groups G_{i} where each G_{i} is isomorphic to \mathbb{Z} for $i=1,2, \cdots$. The isomorphism is defined by $\psi(r)=$ $\left(\operatorname{ord}_{p_{1}}(r), \operatorname{ord}_{p_{2}}(r), \cdots\right)$, where $p_{1}=2, p_{2}=3$ and generally p_{i} is the i-th prime.
- The fundamental theorem of Arithmetic guarantees (is equivalent to) that this ψ is an isomorphism.
- The group G has infinitely many automorphisms given by fixed permutations of its components. We then get different automorphisms of \mathbb{Q}^{\times}by conjugation $\psi^{-1} \sigma \psi$.
The one given in the book swaps the first and the second component.
8.3.5 - Start by writing the ring as $R=\mathbb{Z}[X] /\left(X^{2}+n\right)$ and denote the image of X by x. The arguments will be similar to 8.2.5.
- As before, units are still only ± 1 and irreducibility is deduced using norms. Thus, if $1+x=a b$, with a, b non units, note that $1+n=N(a) N(b)$. Note that norm of a non unit $u+v x$ is $u^{2}+n v^{2}$ is bigger than n if v is non zero. It follows that at least one of a, b must be in \mathbb{Z}. But then it must divide $1+n$ in R and hence divides 1 in \mathbb{Z}.. So, it would be a unit, contrary to assumption.
- To check if $(1+x)$ is prime, note that the residue class ring by it would be $\mathbb{Z}[X] / J$ where $J=\left(X^{2}+n, 1+X\right)$ But $X^{2}+n=$ $(X+1)(X-1)+1+n$. So $J=(1+n, X+1)$.
Now, $\mathbb{Z}[X] /(1+n, 1+X) \approx \mathbb{Z}_{1+n}[X] /(1+X)=\mathbb{Z}_{1+n}$.
Thus, if $1+n$ is not prime, then $1+x$ is not prime!
The case of x is similar.
Also, out of n and $1+n$, at least one is even and bigger than 2 , so non prime.
- To find an explicit non principal ideal, consider $(2, x)$. Since x is irreducible, this will be principal only if it is generated by x. But 2 is not in (x) since $R /(x)=\mathbb{Z}[X] /\left(X^{2}+n, x\right)=\mathbb{Z}_{n}$ and the image of 2 in this ring is non zero, since $n>2$.
8.3.6
- The ring $\mathbb{Z}[i] /(1+i)=\mathbb{Z}[X] / J$ where $J=\left(X^{2}+1,1+X\right)=$ $(2,1+X)$, so the ring is just \mathbb{Z}_{2} as before.
- If q is 2,3 modulo 4 , then the ring is $\mathbb{Z}[X] / K$ where $K=$ $\left(X^{2}+1, q\right)$. The ring is then $\mathbb{Z}_{q}[Y] /\left(Y^{2}+1\right)$ where Y is the image of X modulo q (still transcendental). By assumption on q the ideal $\left(Y^{2}+1\right)$ is prime and generated by a quadratic polynomial and hence the residue class ring is a 2 dimensional space over \mathbb{Z}_{q}.
- The case when p is $1 \bmod 4$.

Let $\pi=a+b x$ be an element with norm p. Then $\mathbb{Z}[X] /\left(X^{2}+\right.$ $1, a+b X)=\mathbb{Z}[X] /(p, a+b X) \approx \mathbb{Z}_{p}[Y] /(a+b Y)$ where Y is the image of X modulo p (still transcendental). The last ring is clearly \mathbb{Z}_{p} since b cannot be zero modulo p.
The ring $\mathbb{Z}[X] /\left(X^{2}+1, p\right)$ is easily seen to be $\mathbb{Z}_{p}[Y] /\left(Y^{2}+1\right)$ and in the current case $Y^{2}+1$ is reducible. However, the residue class ring is still a vector space of dimension 2 and has p^{2} elements.

