Hw1: Noetherian Rings.
All rings shall be commutative with $1 \neq 0$. Unless otherwise stated, we only consider non unit ideals (i.e. ideals different from R.)
(1) Write down a proof that every ideal I in a Noetherian ring is an intersection of finitely many irreducible ideals.
(2) Prove that every irreducible ideal I is primary.
(3) Prove that the radical \sqrt{Q} of a primary ideal is prime. Note: We say that an ideal Q is primary for P, if

$$
x y \in Q \Rightarrow x \in Q \text { or } y \in P
$$

where we assume that $P \subseteq \sqrt{Q}$.
Prove that Q is primary for P iff Q is primary and $P=\sqrt{Q}$.
(4) Prove that if Q_{1} and Q_{2} are primary for P, then so is $Q_{1} \cap Q_{2}$.
(5) Prove that if Q is primary for P and $x \notin Q$, then $[Q:(x)]$ is also primary for P.
(6) Prove that any ideal I in a Noetherian ring R is an intersection of finitely many primary ideals $Q_{i}, i=1, \cdots, r$ such that the prime ideals $P_{i}=\sqrt{Q_{i}}$ are distinct for distinct i.

Note: We usually say that Q_{i} is a primary ideal belonging to P_{i}.
(7) Moreover we may arrange that the intersection is irredundent, i.e. I is not an intersection of a proper subset of the Q_{i}.

Suppose that $I=\bigcap_{i=1}^{r} Q_{i}$ is an irredundent intersection with $P_{i}=\sqrt{Q_{i}}$.

The prime ideals P_{i} are said to be associated primes of \mathbf{I}.
Any one of these P_{i} is said to be isolated if it does not contain any P_{j} for $j \neq i$.

Any one of these primes P_{i} said to be embedded if it contains one of the other P_{j}.
(8) Prove that if P is an isolated associated prime of I, then there is an $x \in R$ such that $P=(I:(x))$.

Hint: Prove that there exists $x \in R$ which is not in the primary component Q corresponding to P, but is in all other primary components.

Moreover prove that there is $y \in R$ such that $Q=(I:(y))$, if Q belongs to the isolated associated prime P.

Thus the isolated prime component as well as the corresponding primary are completely determined by the ideal I alone.
(9) Consider the ideal $I=\left(x^{2}, x y\right)$ in $K[x, y]$, the polynomial ring in two variables over a field K. Determine a primary decomposition and the associated primes.
(10) Find two different irredundent intersections for the above ideal. Note that the isolated component stays the same.

