Marie Meyer

- (1) Let G be a finite group and let P be a normal p-subgroup of G. Show that P is contained in every Sylow p-subgroup of G.
- (2) Determine all groups of order 21 up to isomorphism.
- (3) Let P be s Sylow p-subgroup of G and let H be any subgroup of G. Prove that $P \cap H$ is the unique Sylow p-subgroup of H.
- (4) Let G be a finite group of composite order n with the property that G has a subgroup of order k for each positive integer k dividing n. Prove that G is not simple.

Fouché F. Smith

- (1) Scavenger Hunt 1 : Algebra Prelim June 2004 Let (G, \cdot) be a group with identity element e. Suppose that $a \neq e$ is an element of G such that $a^6 = a^{1}0 = e$. Determine the order of a.
- (2) Scavenger Hunt 2 : J. Fraleigh Section 6 Exercise 44 Let G be a cyclic group with generator a, and let G' be a group isomorphic to G. If $\phi : G \to G$ is an isomorphism, show that, for every $x \in G$, $\phi(x)$ is completely determined by the value $\phi(a)$. That is, if $\phi : G \to G'$ and $\psi : G \to G'$ are two isomorphisms such that $\phi(a) = \psi(a)$, then $\phi(x) = \psi(x)$ for all $x \in G$.
- (3) Scavenger Hunt : D. Dummit Section 1.6 Exercise 22 Let A be an abelian group and fix some $k \in \mathbb{Z}$. Prove that the map $a \mapsto a^k$ is a homomorphism from A to itself. If k = -1prove that this homomorphism is an isomorphism (i.e, is an automorphism of A.)
- (4) Scavenger Hunt : D. Dummit Section 3.2 Exercise 31 Let $N \leq G$ and N is a normal subgroup of H, then $H \leq N_G(N)$. Deduce that $N_G(N)$ is the largest subgroup of G in which N is normal(i.e., is the join of all subgroups H for which $N \triangleleft H$)

Sarah Orchard

(1) 1. Let G be a finite group and let H be a normal Sylow psubgroup of G. Show that $\alpha(H) = H$ for all authomorphisms α of G.

- (2) 2. Suppose that G is a group of order p^n , where p is prime, and G has exactly one subgroup for each divisor of p^n . Show that G is cyclic.
- (3) 3. Let H be a Sylow p-subgroup of G. Prove that H is the only Sylow p-subgroup of G contained in N(H).
- (4) 4. Show that if G is a group of order 168 that has a normal subgroup of order 4, then G has a normal subgroup of order 28.

Florian Kohl

- (1) Prove that there are 45 elements of order 2 in A_6 .
- (2) Let G be an abelian group, K a group and $f: G \to K$ a group homomorphism. Prove that $f(G) \subset K$ is an abelian subgroup of K.
- (3) Prove that G is abelian if and only if the map $f: G \to G$ by $f(g) = g^2$ is a group homomorphism.
- (4) Prove that $(\mathbb{Q} \setminus 0, \cdot)$ is not a cyclic group.

George Lytle

- (1) Let K be a Sylow p-subgroup of G and N a normal subgroup of G. Prove that $K \cap N$ is a Sylow p-subgroup of N.
- (2) Prove that there are no simple subgroups of order 30.
- (3) Let K be a p-Sylow subgroup of G and N a normal subgroup of G. If K is a normal subgroup of N, prove that K is normal in G.
- (4) If K is a p-Sylow subgroup of G and H is a subgroup that contains N(K), prove that $[G:H] \equiv 1 \mod p$.¹

Lola Davidson

- (1) How many elements of order 5 does a non-cyclic group of order 55 have?
- (2) If P is a Sylow p-subgroup of G, prove that P is the only Sylow p-subgroup of N(P).
- (3) Let G be a group of order 105. Show that G has a subgroup of order 35.
- (4) If |G| = pqr with $p \le q \le r$ primes, prove that G is not simple. Ian Barnett
- (1) Prove that every non-abelian group of order 6 has a non-normal subgroup of order 2, and in fact there is only one such group.
- (2) Prove that there are 28 homomorphisms from $\mathbb{Z}_2 \times \mathbb{Z}_2$ to D_4 .
- (3) Prove that for every integer $1 \le n \le 59$ there are no non-abelian simple groups of order n.

2

¹All problems are from *Abstract Algebra: an Introduction* Second Edition by Thomas Hungerford

(4) An abelian group has 8192 has elements of the following orders:

order	1	2	4	8	16	32
# of elements	1	31	224	1792	2048	4096

Determine the isomorphism type of the group.

Robert Cass

1.: Show that the multiplicative group $(\mathbb{Z}/2^{l}\mathbb{Z})^{*}$ for $l \geq 3$ is a direct product of a cyclic group of order 2 and another cyclic group of order 2^{l-2} .

To do this, it will help to show that $\{(-1)^{a}5^{b}|a = 0, 1 \text{ and } 0 \leq b < 2^{l-2}\}$ is a reduced residue system mod 2^{l} . You may also use the fact that the order of 5 modulo 2^{l} is 2^{l-2} .

Source: Ireland and Rosen, A Classical Introduction to Modern Number Theory, Second Edition.

- **2.:** Let H be a proper subgroup of a finite group G. Prove the group G is not the union of the conjugate subgroups of H. Source: Artin, Algebra, Second Edition.
- **3.**: Prove that any group of order 1365 is not simple.

Source: Jim Brown, homework problem from MA 851 Fall 2010 at Clemson University

4.: Show that there are two isomorphism classes of groups of order 6, the class of the cyclic group with six elements and the class of the symmetric group S_3 .

Source: Artin, Algebra, Second Edition.

Cyrus Hettle

- 1. Count and give a combinatorial interpretation of the number of abelian groups of order 2^n for $n \in \mathbb{N}$. Give a geometric interpretation of the abelian groups of order 8.
- 2. Suppose a group G has elements u and v such that $u^m = e, uvu^{-1} = v^k$, where k > 1, m > 0. Prove that |v| is finite.
- 3. Let G be a group, and let $f: G \to G$ be defined by $f(g) = g^2$. Give necessary and sufficient conditions for f to be an automorphism.
- 4. Let G be a finite group and let P be a normal p-subgroup of G. Show that P is contained in every Sylow p-subgroup of G.

Eric Kaper

- (1) Show that \mathbb{A}_5 has no subgroup of order 15.
- (2) Show that A_5 has no subgroup of order 30. (One possible approach to this is showing that every group of order 30 has a subgroup of order 15).

- (3) Show that the number of conjugacy classes in S_n is p(n) where p(n) is the number of ways, neglecting the order of the summands, that n can be expressed as a sum of positive integers. The number p(n) is the number of partitions of n.
- (4) Show that the number of conjugacy classes in S_n is also the number of different abelian groups (up to isomorphism) of order p^n , where p is a prime number.
- (5) Let H be a normal subgroup of order p^k of a finite group G. Show that H is contained in every p-Sylow subgroup of G.
- (6) Let G be a finite group with the property that for each positive integer n, the equation $x^n = 1$ has at most n solutions in the group. Prove that G is cyclic.
- (7) Show that any finite p-group G is isomorphic to a group of upper triangular matrices with ones on the diagonal (unitriangular matrices) over \mathbb{F}_p .

A possible approach to this problem follows:

- Take $n \in \mathbb{N}$ to be given. Use a counting argument to show that the unitriangular group (group of all $n \times n$ unitriangular matrices) is a p-Sylow subgroup of the general linear group (group of all invertible $n \times n$ matrices) over \mathbb{F}_p .
- Note that the symmetric group embeds in the general linear group using permutation matrices.
- Note that G is isomorphic to a subgroup of a symmetric group.
- Apply the fact that any two *p*-Sylow subgroups are conjugate.

Chase Russell

- (1) Let G be a group, and let $\operatorname{Aut}(G)$ be the group of all automorphisms of G together with the operation of function composition. Suppose that G is non-Abelian. Show that $\operatorname{Aut}(G)$ is not cyclic.
- (2) Let G be a group and p be a prime. Suppose that $H = \{g^p | g \in G\}$. Show that H is a normal subgroup of G and that every nonidentity element of G/H has order p.
- (3) Let G be an Abelian group. Determine all homomorphisms from S_3 to G.
- (4) Let G be an Abelian group and let n be a positive integer. Let $G_n = \{g \in G | g^n = e\}$ and $G^n = \{g^n | g \in G\}$. Prove that G/G_n is isomorphic to G^n .

Olsen McCabe

4

- (1) How many elements of order 5 does a non-cyclic group of order 55 have?
- (2) Prove that there are no simple groups of order 120.
- (3) Show that every group of order 56 has a proper normal subgroup.
- (4) If |G| = pqr, with p < q < r primes, the G is not simple.
- (5) If G/Z(G) is cyclic, prove that G is abelian.
- (6) Prove that a non-cyclic group of order 21 must have 14 elements of order 3.