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Abstract 

Unramified coverings of the affine line in characteristic two are constructed having alternat- 
ing groups as Galois groups. The proof uses Jacobson’s criterion for the Galois group of an 
equation to be contained in the alternating group. Alternative proofs use the Berlekamp 
discriminant or the Revoy discriminant. These are related to the Arf invariant. 

1. Introduction 

In [I], the algebraic fundamental group za(L,) of the affine line L, over an 

algebraically closed ground field k of nonzero characteristic p was considered, and it 

was conjectured that xn,(Lk) coincides with the set of all quasi p-groups; note that 

n,(L,) is defined to be the set of all finite Galois groups of unramified coverings of L,, 

and a quasi p-group is a finite group which is generated by all its p-Sylow subgroups. 

The main aim of this paper is to prove that for p = 2 and every positive integer m different 

from 3,4, 6, 7 we have A,Ez~(L~). We shall deduce this from some results of [3] and 

[6]. The deduction will be based on Jacobson’s criterion for the Galois group of an 

equation to be contained in the alternating group. With an eye on future applications, 

we shall give several versions of Jacobson’s criterion as well as the said deduction. 

In greater detail, in support of the above conjecture, in [l], the equation 

Y” - X Y‘ + 1 =O, with n = q + t, giving an unramified covering of the X-axis Lk was 

written down, and it was suggested that its Galois group G,,, be computed; here q is 

a positive power of p, and t is a positive integer nondivisible by p. In [3], this 

computation was carried out when either q =p or t = 1, and as a consequence of it and 
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some other related computations it was shown that if: m >p > 2 then A,exnA(Lk), and 

if: map =2 then S,EZ~(L& for other results in support of the said conjecture see 

Abhyankar [2,4,5] and Serre [15]. Here A,,, is the alternating group and S, is the 

symmetric group for any positive integer m. Continuing this computation, in [6] it 

was shown that 

if q<t and p>2 then G,,g=A, 

whereas 

(1.0) 

if q<t and p=2 then C?n,q=An or S,. 

In the present paper we shall show that 

ifp=2<q and 2<t then G,,,cA,. 

(1.1) 

(1.1’) 

In view of (1.1) and (1.1’) we shall have shown that 

if p=2<q<t then c_=A,. (l.l*) 

In [3] we also computed the Galois groups (?,,t,s,. of the equation P-a Y’ + X”= 0 

which gives an unramified covering of Lk, where a is a nonzero element of k and n, t, s 

are positive integers with t <n E O(p) and GCD(n, t) = 1 and s = O(t). In particular we 

showed that 

ifp=2 and either l<t<4<n or l<t<n-3, then G,,,,,,=A, or S,. (1.2) 

In the present paper we shall show that 

if p=2<n then 6,,f,s,o~An. 

In view of (1.2) and (1.2’) we shall have shown that 

(1.2’) 

if p=2 and either l<t<4<n or l<t<n-3, then G,,,,,,,=A,. (1.2*) 

The proofs of (1.1’) and (1.2’) will be based on Jacobson’s criterion for the Galois 

group of an equation to be contained in the alternating group which is valid for any 

characteristic; this may be compared to the more classical criterion which requires the 

modified discriminant to be a square and which is not valid in characteristic two. In 

Section 2, we shall review Jacobson’s criterion and deduce from it a genera1 result on 

trinomials of which (1.1’) and (1.2’) are special cases; see (2.27). Although Jacobson’s 

criterion became more popular as Exercise 3 of Section 4.8 of Volume I of his 1974 

book on Basic Algebra 11131, it actually appeared as Exercise 1 of Section 1 of 

Chapter II of his 1964 Abstract Algebra III [12]. In Sections 3 and 4, which are 

independent of each other, we shall give several variations of Jacobson’s criterion and 

deduce several different proofs of the general trinomial result (2.27). In Section 5 we 

shall relate these variations to the invariant of Arf [8] and the discriminants of 

Berlekamp [lo] and Revoy [14] which were collated by Wadsworth [16], and we 
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shall also indicate that the basic function used in Jacobson’s criterion was redis- 

covered by Bertin [l I]. 

(1.3) Recall that n = q + t where q is any positive power of p, and t is any integer 

with t +0(p). Also let s be any positive integer, and let a be any nonzero element 

of k. By considering the polynomial pn,q,s,a= Y” -aX”Y’+ 1 and its Galois group 

Gn,W =Gal(p,,,,,,,, k(X)), in Theorem 4 of [6] it is shown that if 2 = p < q < t and if 

we know that (?“,,c A,, then the equation F”,q,s,o =0 gives an unramified covering of 

L, with G,,r_= A,. Therefore by (l.l*) we see that: 

(1.3.1) if2=p<q<t then FE,,,,,, =0 gives an unramified covering of Lk and for its 

Galois group we have (?,,q,s,a= A,,. 

Likewise, by considering the manic polynomial of degree n- 1 with coefficients in 

k[X] given by 

-, F n,q,s,a= t_‘[(Y+t)t- Y’](Y+t)q-aX-rsr=O 

with 

q-l 
GCD(q - 1, q + t) > 

and by considering its Galois group c:,,,,,,=GalF:,,,,,, k(X)), in Theorem 6 of [6] it 

is shown that: if 2 =p <q < t and if we know that cn,q c A,, then the equation 
-, F ,,q,s,o=Ogivesan unramifiedcoveringofLk with cb,q,s,o=An_l. Therefore by(l.l*) 

we see that: 

(1.3.2) if2=p<q<t then F&,,. =0 gives an unramified covering of Lk and for its 

Galois group we have cb,q,s,a= A,_ 1. 

Thus we get the following. 

(1.4) Theorem. For p = 2 and every positive integer m diferent from 3,4,6,7 we have 

Arn=~(Lk). 

Namely, if 9<mf0(2) then use (l.l*) with q=4 and m=n, if 8<m-O(2) then use 

(1.3.2) with q=4 and m=n-1, and if m=5 then note that A5=PSL(2, 4)e7cA(Lk) (see 

[2] for the fact that for any prime p we have PSL(2, q)Eza(Lk) for every positive power 

q of p). For 8 <m =0(2), we may alternatively use (1.2*) with m =n and with 

t =(n/2)- 1 or t=(n/2)-2 according as n/2 is even or odd. It may be noted that all 

these proofs have been elementary in the sense of not using CT (= the classification 

theorem of finite simple groups). Since Al = AZ = 1 and since A, and A4 are not quasi 

2-groups, this only leaves us with As and A,. The story will be completed in 

a forthcoming paper of Abhyankar and Yie [7] by writing down simple equations to 

show that A6 and A7 also belong to nA(Lk) in case of p=2. 
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The possibility of (l.l*) when 4 = 4 was first suggested to us by Serre. Then it was 

Leep who provided us with much information about the various discriminants which 

work in characteristic two. So to Serre and Leep, many thanks! 

2. Jacobson’s criterion 

Let n be an integer with n> 1, and consider the polynomials D(R), D*(R), A(R) in 

indeterminates R=(R,, R2, . . . , R,) with coefficients in Z given 

D(R)= C n R~~i,Tif and D*(R)= C fi RiTif 
neA, i= 1 aeS,\A, i= 1 

and 

by 

(2.1) 

A(R)= ii (Rj-Ri). 
l<i<j<n 

(2.2) 

Consider the n by n (van der Monde) determinant whose ith row is 

(1, Ri, RF, ... , Ry-‘) for 1 <i<n; by calculating it in two different ways, and then 

equating the two values so obtained we see that 

D(R)-D*(R)=A(R). (2.3) 

By squaring both sides of (2.3) and then adding 4D(R)D*(R) to them we get 

[D(R)+- D*(R)j2=4D(R)D*(R)+ A2(R). (2.4) 

Let B=(Br, B2, . . . . B,) be IZ indeterminates and, for 1 <i dn, let us assign weight i to 

Bi. Let C(R)=(C,(R), C,(R), . . . . C,(R)) where, for 1 <i < n, we have put C,(R) =( - 1)’ 

times the ith elementary symmetric function of R; in other words, we have 

Y”+ f: C,(R) Y’-‘= i ( Y-Ri). 
i=l i=l 

Now D(R)+ D*(R) is a symmetric homogeneous polynomial of degree n(n - 1)/2 in 

R with coefficients in Z and hence, by the fundamental theorem on symmetric 

functions, there exists a unique isobaric polynomial U(B) of weight n(n - 1)/2 in B with 

coefficients in Z such that 

U(C(R))=D(R)+D*(R). (2.5) 

Likewise D(R)D*(R) and A’(R) are symmetric homogeneous polynomials of degree 

n(n- 1) in R with coefficients in Z and hence there exist unique isobaric polynomials 

V(B) and W(B) of weight n(n- 1) in B with coefficients in Z such that 

V(C(R))=D(R)D*(R) and W(C(R))=A’(R). (2.6) 
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Since C,(R), C,(R), . . . . C,(R) are algebraically independent over Z, by (2.4)-(2.6) 

we get 

UZ(B)=4V(B)+ W(B) (2.7) 

as an identity in Z[B]. 

Let 

f=f( Y)= Y”+ ~ biY"-' (2.7*) 
i=l 

be a manic polynomial of degree n in Y with coefficients b =(bl, b,, . . . , b,) in a field K, 

and let r=(rl, rz, . . . . r,) be the roots off in some overfield of K. By substituting b for 

B in (2.7) we get 

U2(b)=4V(b)+ W(b). (2.8) 

Since C(r)= b, by substituting r for R in (2.2), (2.3), (2.5) and (2.6) we also get 

U(b)=D(r)+D*(r) and V(b)=D(r)D*(r) (2.9) 

and 

W(b)=d*(r)= [ fi 
lGi<j<n 

(rj-ri)]*=[O(r)-D*(r)]*. (2.10) 

As in Section 20 of [3], by Disc;(f) we shall denote the modified Y-discriminant of 

f which was defined by putting Disc; (f)=( - 1) n(“-1)/2 Disc,, (f) where Discr(f) is 

the Y-discriminant off; i.e., Discy(f)= Resy( f,fr); thus now by (2.10) we have 

Discf(f)=(- l)“(“-‘“*Disc,(f)= W(b). (2.11) 

For a moment assume that the roots offare pairwise distinct. Then by (2.10) we 

have D(r)#D*(r). By (2.1) we also see that n(D(r))=D(r) for all SEA,, and 

o(D(r))=D*(r) for all ~ES,\A,. Consequently Gal(f, K)cA, iff D(r) and D*(r) both 

belong to K. Therefore by (2.9) we see that Gal(J K)cA, iff the polynomial 

Z* - U(b)Z + V(b) factors into linear factors in K [Z]. In case U(b) #O, upon ‘multi- 

plying’ the roots of the polynomial Z*- U(b)Z+ V(b) by -U(b)-’ we obtain the 

polynomial Z* +Z + V(b) U(b)-*, and hence one of them factors into linear factors in 

K[Z] iff the other does. Thus we get the following. 

(2.12) Jacobson’s criterion. Assume that f has no multiple roots; [in view of(2.10) this is 

equivalent to assuming that W(b)#O], Then we have that Gal( f, K)cA, isf the 

polynomial Z* - U(b)Z + V(b) factors into linear factors in K [Z]. Moreover, in case 

U(b)#O, we have that Gal(f, K)cA, ifSthe polynomial Z*+Z+ V(b) U(b)-*factors 

into linear factors in K[Z], i.e. ifs- V(b) U(b)-* =z* fzfor some ZEK. 



30 S.S. Abhyankar et al./ Discrete Mathematics 133 (1994) 25-46 

To apply this criterion to a trinomial, let d and e be integers with 

O<e=n-d<d<n and GCD(n,d)=l (2.12’) 

and let U(B,, B,), v(B,, B,), W(B,, B,) to be the polynomials in B,, and B, with 

coefficients Z obtained by putting zero for the remaining variables in U(B), 
V(B), W(B) respectively. Now by (2.7) we get 

u2( Bd, B,) = 4 r( B‘,, B,) + m( Bd, B,) (2.13) 

and, in view of (2.1 l), by applying the discriminant calculations of Section 20 of [3] to 

the polynomial Y” + Bd Y’ + B, we also get 

~(Bd,B,)=(_1)“(“-1)/2n”B~-‘+(_1)(”+2)(”-’)/2dde’B~-‘B;. (2.14) 

Now B”,-’ has weight n(n- 1) and hence, because GCD(n, d)= 1, the only other 

possible monomials of weight n(n - 1) in B, and Bd are B;- ’ -d Bi, B;- ’ -2d Bin, . . . , ; 

since n-l-2d<O and n- 1-d=e-1, we see that B:-’ and B;-lB; are the only 

monomials of weight n(n - 1) in B, and B,; therefore Bt- lv2 and Bf- ‘)I2 Bf2 are the 

only possible monomials of weight n(n- 1)/2 in B, and Bd; out of the last two 

monomials, only the first makes sense if n is odd, and only the second makes sense if 

n is even. Therefore, since U(B) and V(B) are isobaric of weight n(n- 1)/2 and n(n- 1) 

respectively, we conclude that 

a(&, &)= 
i 

uBI:-‘)‘~ with UEE if n + O(2), 

u’B~-‘)‘~B~‘~ with U’EZ if n=0(2), 
(2.15) 

and 

V(Bd, B,)=vB$-‘+u’B~-‘Bi with V, u’EZ. (2.16) 

By (2.13) to (2.16) we see that 

(1/4)[u2-(-11)“(“-1)/2n”]EZ if nf0(2), 

(1/4)[-(- 1)“(“-“‘2nn]~2Z if nsO(2), 

and 

(2.17) 

‘(1/4)C-(-1) (n+ZHn-1)/2ddee]E2~ if nfO(2) and e>2; 

(1/4)C-(- 1) @+2)(n- “/2ddee-jE2z if n$0(2) and e=ltd-1; 

u’=( (l/4)[-(-1)(“+2)~“-‘)~2ddee]~Z\2h if nfO(2) and e=l=d-1; (2.18) 

(1/4)[-(-l)~“+2~~“-‘~~2dde’]&?\2Z if nfO(2) and e=2; 

~(1/4)[u’2-(-l)(“+2)(“-‘)~2ddee]~E if n=0(2). 

Clearly an integer is odd iff its square is odd, and hence by (2.15H2.18) we get 

0(&j, B,) = 
&p - 1)12 with UEZ\~H if nf0(2), 

u’B!,‘-‘)/~B~~~ with u’EE\~Z if nsO(2). 
(2.19) 
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For any odd integer w we have w = 1+2w* for some integer w* and this gives 

w2 = 1 + 4w*(w* + 1) and hence w2 = l(8) because w*(w* + 1) is always even; therefore, 

by (2.17H2.19) we see that 

(1/4)[~~--(-1)“(“-~)‘~,“]~2B if n z l(8), 

VI = 
(1/4)[~~-(-1)“‘“-‘“~n”]~22 if n~7(8), 

(1/4)[Iu2-(- 1) “(“-1)‘2n”]~Z\2Z if n-3(8), 

(l/4)cu2-(--) “(“-1)/2n”]~Z\2H if n=5(8) 

(2.20) 

and 

‘(1/4)[u’2-(- 1) (n+2)0-W&e-jE2~ if n-0(8), 

(1/4)[u’2-(- 1) (n+2)WWddeqE2~ if n =2(8) and e=d(8), 

VI = ( 
(l/4)[u’2-(-l)(“+2)(n-‘)12ddee]E22 if n=6(8) and e=d(8), (2.21) 

(1/4)[u’2-(-1)(“+2)(“-‘)/2dde”]C?\2Z if n=2(8) and efd(8), 

(1/4)[~‘~-(-l)(“+~)(“-~)/~d~e~]~Z\2Z if n=6(8) and efd(8), 

~(1/4)[~‘~-(-1)(“+~)(“-‘)‘~d~e’]~Z\22 if n=4(8). 

Remembering that K is a field, and considering the trinomial 

f=f( Y) = e-l- gd Ye + 5, with hd and g,, in K (2.21*) 

by (2.12) we get the following. 

(2.22) Special trinomial criterion. Assume that f has no multiple roots; [in view of(2.10) 

this is equivalent to assuming that p(b,, &) #O]. Then we have that Gal(l K) c A, ifs 
-- - 

the pO/ynOmid z2 - tj(6,,,, 6”)z-k V(bd, b,) fUCtOrS intO h?Ur fUCtOrS in K [z]. 
_- _ 

Moreover, in case U(bd, b,)#O, we have that Gal(f; K)c A,, ifl the polynomial 

Z2 +Z+ @d, 6,) U(bd, b,)-2 factors into linear factors in K[Z], i.e. ifs 

- V(bd, b,)U(bd, bJ2=z2+zfor some ZEK. 

Now Z2 +Z-t- 1 is the only irreducible polynomial of degree two over the 

prime field GF(2) of characteristic two, and its splitting field in the field GF(4) of 

cardinality 4. Hence by (2.14)--(2.22) we get the following. 

(2.23) Odd trinomial criterion. Assume that the characteristic of K is two, and n is odd. 

Also assume that f has no multiple roots; [in view of (2.10) and (2.14), this is equivalent to 
-- - 

assuming that 6” #O which, in view of (2.19), is equivalent to assuming that U(bd, b,) #O]. 

Then, in case either e=2 or e= 1 =d - 1, and either n- l(8) or nr7(8), we have that 

Gal(J K)c A, iff bidhi= z2 +z for some ZEK. Likewise, in case either e=2 or 

e= l=d-1, and either n=.(8) or nr 5(8), we huoe that Gal(x K)c A, ifl 

1 + bid6i=z2 +z for some ZEK. Moreover, in case either e> 2 or e= 1 <d - 1, and 

either n = l(8) or n = 7(8), we have Gal(x K) c A,. On the other hand, in case either e > 2 

ore=l<d-l,undeithern~3(8)orn~5(8),wehuvethutGal(~K)cA,ifSGF(4)cK. 
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Consequently, in case either e > 2 or e= 1 td - 1, we have that if GF(4)c K then 
Gal(j: K) c A,,. Hence, in case either e > 2 or e= 1 <d - 1, we have that ifK contains an 
algebraic closure of its prime subjield, then Gal(x K)c A,. 

Similarly, by (2.14)-(2.22) we also get the following. 

(2.24) Even trinomial criterion. Assume that the characteristic of K is two, and n is even. 
Also assume thatfhas no multiple roots; [in view of (2.10) and (2.14), this is equivalent to 
assuming that 5d#0 #&- ’ which, in view of (2.19), is equivalent to assuming that 
-- - 
U(bd, b,)#O]. Then, in case n=0(8), we have Gal(J K)c A,. Likewise, in case eEd(8) 
and either n=2(8) or n=6(8), we have; Gal(x K)c A,. On the other hand, in case 
n=4(8), we have that Gal(J K)cA, ifSGF(4)cK. Likewise, in case efd(8) and either 
nz2(8) or nr6(8), we have that Gal(JK)cA, ifl GF(4)cK. Consequently if 
GF(4) c K then Gal( f, K) c A,. Hence in particular ifK contains an algebraic closure of 

its prime field then Gal( x K) c A,, 

By combining the odd and even trinomial criteria, we get the following. 

(2.25) Characteristic two trinomial precriterion. Assume that the characteristic of K is 

two. Also assume thatfhas no multiple roots; [in view of (2.10) and (2.14), for odd n this is 
equivalent to assuming that &#O, and for even n it is equivalent to assuming that 
bd#O#g,‘-‘]. Thenfirstly, in case either e=2 or d=2, and either n= l(8) or n=7(8), 
we have that Gal(x K)c A, zf 6id6d=z2 +z for some ZEK. Secondly, in case either 
e=2 or d=2, and either n=3(8) or nE5(8), we have that Gal(xK)cA, QT 

1 +b,d6;=~2+zfor some ZEK. Thirdly, in case e#2#d, and either n= l(8) or n=7(8), 
we have Gal(x K)c A,,. Fourthly, in case e#2#d, and either n=3(8) or n=5(8), we 
have that Gal(J K)c A, ifSGF(4)c K. Fifhly, in case nz0(8), we have Gal(J K)c A,. 
Sixthly, in case e=d(8) and either n=2(8) or ns6(8), we have; Gal(J K)c A,. Seven- 
thly, in case n=4(8), we have that Gal(J K)cA, ifs GF(4)cK. Eighthly, in case 
efd(8) and either n-2(8) or n=6(8), we have that Gal(x K)c A, ifSGF(4)c K. [Note 
that, since GCD(n,d)= 1 =GCD(n,e), these eight cases are exhaustive and mutually 
exclusive]. Consequently, in case e #2 #d, we have that if GF(4) c K then 
Gal( J: K) c A,. Hence, in case e # 2 # d, we have that if K contains an algebraic closure 
of its prime subjield, then Gal(J K)c A,. 

Now let t be an integer with 

O<t<n and GCD(n,t)=l (2.25’) 

and consider the trinomial 

f*=f*(Y)=Y”+bX-,Y’+b,* with b$_, and b,* in K. (2.25*) 
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that by Section 20 of [3] we have 

Discy(f*)=n”b,*“-l +(-l)“-‘(n-t)“-‘t’b,*‘-‘b,*Z,. 

33 

(2.26) 

If t<(n/2) then upon takingf=f*, whereas if t>(n/2) and b,* #O then upon taking 

f=the ‘reciprocal’ equation Y”+ b$,bz-’ Y”-‘+ b,*-‘, by (2.25) we get the following. 

(2.27) Characteristic two trinomial criterion. Assume that the characteristic ofK is two, 

and n> 2. Also assume thatf* has no multiple roots; [in view of (2.26), for odd n this is 

equivalent to assuming that b,* #O, and for even n it is equivalent to assuming that 

b,*_,#O#b,*‘-’ 1. Then jirstly, in case either t = 2 or n-t =2, and either n = l(8) or 

n=7(8), we have that Gal(f*, K)cA, ifsbz’-“b*” n_r=z2+~for some ZEK. Secondly, in 

case either t = 2 or n - t = 2, and either n = 3(8) or n = 5(8), we have that Gal( f *, K) c A, 

ifSl+b,*‘-“b* “11, = z2 + z for some ZEK. Thirdly, in case t # 2 #n-t, and either n = l(8) 

or n = 7(8), we have Gal( f *, K) c A,,. Fourthly, in case t #2 # n- t, and either n z 3(8) 

or n- 5(8), we have that Gal( f *, K)c A, ifSGF(4)cK. Fifthly, in case n-0(8), we have 

Gal( f *, K)c A,. Sixthly, in case t =n- t(8) and either n=2(8), or nr6(8), we have 

Gal( f *, K)c A,. Seventhly, in case n =4(8), we have that Gal( f *, K) c A, if 

GF(4)cK. Eighthly, in case tfn- t(8) and either nz2(8) or n=6(8), we have 

Gal( f *, K)c Ai ifSGF(4)cK. [Note that, since GCD(n, t)= 1 and n>2, these cases 

are exhaustive and mutually exclusive.] 

As an immediate consequence of (2.27) we have the following. 

(2.28) Characteristic two trinomial corollary. Assuming that the characteristic K is two, 

f * has no multiple roots, n > 2, and t # 2 fn - t, we have thefollowing. If GF(4) c K then 

Gal( f *, K)c A,,. Hence in particular, if K contains an algebraic closure of its prime 

subjield then Gal( f *, K)c A,. 

Proof of (1.1’). Take K = k(X) and b,*_l = -X and bX = 1 in (2.28). q 

Proof of (1.2’). Take K = k(X) and b,*_, = -a and b,* = Xs in (2.28). q 

3. Resultant criterion 

In this section we shall describe a procedure for calculating the expression 

- V(b) U(b)-’ occurring in Jacobson’s criterion. 

Continuing the notation of Section 2, let 

d”(R)= IJ# (Rj+Ri). 
l<i<j<n 

(3.1) 
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Since plus and minus coincide in characteristic two, for the images D,(R), D,*(R), 

d,(R), d,,(R) of D(R), D*(R), d(R), d”(R) in (Z/2Z)[R] we have 

D,(R)+D:(R)=&(R)-D;(R) and &,(R)=&(R) 

and hence by (2.3) we get 

&(R)=Oo(~)+Oo*(~) 

and therefore, because J(R) and D(R)+D*(R) are both symmetric in R, we must have 

d"(R)=D(R)+D*(R)+2H(C(R)) with H(I+Z[B] (3.2) 

and we note that this defines H(B) uniquely. Let D"(R)EZ[R] and D"*(R)EH[R] be 

defined by putting 

D"(R)=D(R)+H(C(R)) and ~"*(R)+H(c(R)) (3.3) 

and note that now by (3.2) we get 

~(R)=~(R)+D;C(R). (3.4) 

By (3.1) it is clear that d"(R) is symmetric in R and hence there exists a unique 

~(B)EH[B] such that 

z(R)=o(C(R)). (3.5) 

By (2.1) and (3.3) we see that @R@*(R) is symmetric in R and hence there exists 

a unique ~(B)EZ[B] such that 

V(c(R))= ~(R@*(R). (3.6) 

By (2.3) and (3.3) we have 

and 

d(R)+d*(R)=D(R)+D*(R)+2H(C(R)) 

and hence by (2.5) (2.6), (3.4), (3.5) and (3.6) we get 

ii2(B)=4p(B)+ W(B) and 8(B)= U(B)+2H(B). (3.7) 

By (2.7) and (3.7) we respectively have 

4F((B)=[U’(B)- W(B)]+4[H(B)U(B)+HZ(B)] and U’(B)- W(B)=4V(B) 

and hence we get 

p(B)= V(B)+H(B)U(B)+H'(B). (3.8) 
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For everyf( Y) as in (2.7*), we dejnef C( Y) andf A (Y) to be the unique polynomials 

in Y with coefficients in K such that 

f(Y)= Yf"( Y2)+f”(Y2) (3.9) 

and we note that then the coefficients offO(Y) andfA( Y) are amongst the coefficients 

off( Y). We claim that 

Res,(f( Y),f”( Y*))= o*(b) (3.10) 

with the understanding that Resr( f( Y), 0) = 0. Namely, for the polynomial 

F(Y)= Y”+ 2 C,(R) Y"-'E(H[R]) [ Y] 
i=l 

by (3.1) we have 

Res,(F( Y), F(- Y))=(-1)“2”C,(R)d*(R) 

and clearly we have 

Res#‘(Y),F(-Y))=(-l)“Res,(F(Y),F(Y)-F(-Y)) 

and by (3.9) we have 

F( Y)--F(- Y)=2YFD(Y2) 

and obviously we have 

Res,(F( Y), 2YFc( Y*))=( - 1)“2”C,(R)Resr(F( Y), FU( Y*) 

and so conclude that 

Res,(F( Y), Fc(Y2))=z(R) 

and now, in view of (3.5), by substituting r for R in the above identity we get (3.10). By 

substituting b for B in (3.7) and (3.8), in view of (3.10) we get 

o(b)= U(b)+2H(b) (3.11) 

and 

P(b)= V(b)+H(b)U(b)+H*(b) (3.12) 

and 

Res,(f( Y),f”(Y*))= o*(b)=4?(b)+ W(b). (3.13) 

We introduce the numerator Y-discriminant off( Y), which we denote by Num,(f( Y)) 

or Num,(f) or Num(f) and which we define by putting 

Num(f)= v(b). (3.14) 
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Combining (2.11) and (3.14) we get 

Num(f)= P(b) and Discf(f)=(-1)“(“-‘)‘2Discy(f)= W(b). (3.15) 

Finally, in casef has no multiple roots, we introduce the rational Y-discriminant off(Y), 

which we denote by Raty( f( Y)) or Rat,(f) or Rat(f), and which we define by putting 

Rat( f ) = Num( f )/Disc,( f ). (3.16) 

In case the characteristic of K is two and f has no multiple roots, by (3.1 lH3.16) we 

see that g2(b)=U2(b)= W(b)=Discg(f)=Disc,(f)#O and Rat(f)= f(b)o-2(b)= 

- V(b)U-2(b)+2”2+Z with F=H(b)U-‘(b)eK, and clearly for every Z’EK we have 

z’ + ZE K with (z’ + 2)2 + (z’ + Z) = (zr2 + z’) + (2” + Z), and hence Rat( f ) = z2 + z for some 

ZEK iff - V(b)U-2(b)=z’2 +z’ for some z’EK; therefore by (2.12) we get the following. 

(3.17) Resultant criterion. Assume that the characteristic of K is two and f has no 
multiple roots. Then Gal(f, K) c A, ifs Rat( f) = z2 + z for some ZEK. 

Having expressed - V(b)U-‘(6) in terms of Rat(S), let us give some methods of 

computing Rat ( f ). 

So let P=(P1, P,, . . . . P,,,) be indeterminates where m is a positive integer, let 

E(P)=(E,(P), E,(P), . . . . E,(P)) where E,(P), E,(P), . . . , E,(P) are polynomials in 

P with coefficients in H, and consider the polynomial 

F’(Y)= Y”+ i E,(P) Y”-‘E(Z[P])[ Y]. 
i=l 

(3.17*) 

Now clearly there are unique polynomials U’(P), V’(P), W’(P) in P with coefficients 

in Z such that 

&E(P))= U’(P), @E(P)) = V’(P), W(E(P)) = W’(P) (3.18) 

and in view of (2.10), and (3.12H3.15) we get 

Res,(F’(Y), F’“(Y2))= U’2(P)=4V’(P)+ W’(P) (3.19) 

and 

Num(F’) = V’(P) and Disc;( F’) = W’(P) (3.20) 

and we have the following obvious. 

(3.21) First computational principle. Zffor some r’ =(r;, r;, . . . , rk) with r;, r;, . . . , rk in 
K we have b=E(r’), then 

o(b)= U’(r)) and Resy(f (y), f q ( Y))= c2(b)= U’2(r’) (3.21.1) 
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and 

Num(f)= P(b)= V’(r’) and Disc;(f)= W(b)= W’(r’). (3.21.2) 

With positive integer t as in (2.25’) and the trinomial f* as in (2.25*), by (2.26) we 

have Disc,(f*)=u*b*“-’ n +u’*b,*‘-‘!I,*:, with 

u*= n”CZ\2Z if nf0(2), 

n”E2Z if n~O(2) 

and 

(-l)n-1(n-t)“-‘t’E2z if nf:0(2), 

(-1)“-1(n-t)“-‘t’~Z\2Z if nsO(2) 

and hence 

Discy(f*)=U*b*“-l+U’*b*f-lb*” n n n_-f with u*, u’*EZ as above. (3.22) 

Alternatively, we can deduce (3.22) by noting that, for any c, c’EK, an easy calculation 

(similar to the discriminant calculation of Section 20 of [3]) shows that 

Resy(f*(Y), cY”-‘+c’b~_,Y’-‘)=c”b,*“-‘+(-l)“-’ 

x (c-c’)._‘c”b,*‘_‘b,*“,. (3.23) 

To find Num(f*), consider the trinomial 

F*(Y)=Y”+B,*_,Y’+B:E(Z[B,*_,,B,*])[Y-J (3.23*) 

with indeterminates B,f_, and B,*. Now by (3.15) and (3.22) we have 

Disc~(F*)=(_1)“(“-‘)/2n”B,*“-‘+(_1)(”+2)(”-’)/2(n_t)“-‘t’B,*’-’B,*IT, 

and clearly 

I 
Y”-‘+B,*_,Y’-’ if nfO(2) and t+0(2), 

F*n(y2)= y”-1 

i B,*_, r-1 

and hence, say by (3.23), we 

if nfO(2) and t=0(2), 

if n=0(2) and t+0(2), 

have 

ResY(F*(r), F*“(Y2))= 
BW-1 

B”,t-lB,. 
if nfO(2) 

n II-t if n=0(2) and t fO(2) 

and therefore, assuming n > 2, by (3.1 lH3.15) we get 

Num(F*)=u*B,*“-l+u’*B,*z-lB,*l, with ZI* IJ’*E~ ? 
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where 

‘(1/4)[1-(-l)“‘“-‘“%“]E27 if n=1(8), 

(1/4)[1 -(-l)“‘“-‘“%l”]E2H if n-7(8), 

u*= (1/4)[1-( - 1) “(“-1)/2nn]~E\2Z if n=3(8), 

(1/4X1 -(- 1) “(“-1)/2n”]~Z\2Z if n~.5(8), 

\(1/4)[-(-1)“‘“-‘“2n”]~2Z if n-0(2) 

and 

f (1/4)[-(-1)‘“+2”“-‘“2(n-t)“-‘t’]E2Z 

(1/4)[-(-1)‘“+2”“-‘“2(n-t)“-‘t’]~Z\2Z 

(1/4)[1-(- l)(n+2)(“-1)‘2(n-t)n-ftf]~2Z 

if n+0(2) and 2${t, n-t}, 

if nfO(2) and 2~{t,n--t}, 

if n-0(8), 

if n=2(8) and t=n-t(8), 

if n=6(8) and t=n-t(S), 

if n2(8) and t$n-r(8), 

if n-6(8) and 2fn-t(8), 

if n=4(8) 

and hence, by taking F * for F’ in (3.18) to (3.21), we conclude that 

Num(f*)=v*b,*“-‘+v’*b,*‘-lb,*, with v*, v’*EZ as above. 

Thus we have the following. 

(3.24) 

Second proof of (2.27). In view of (3.16) and (3.17), this follows from (3.22) and (3.24). 

To give a more general method of computing Num(f), for every f as in (2.7*), we 

dejine f ‘( Y)EK [Y] by putting 

f’(Y)= Y2fF(Y2)+ Yff(Y2) 

and we note that then 

(3.25) 

fYO(Y2)=fy(Y)-2f.(Y) (3.26) 

where fu( Y), f F ( Y), f y” ( Y) are the Y-derivatives of f ( Y), f ’ ( Y), f A ( Y) respectively. 

Let T be an indeterminate. Then, say be looking at the determinantal expression of the 

resultant, we see that Res,(f( Y), Tfy( Y)--f’( Y)) is a polynomial of degree dn in 

T with coefficients in the ring generated by the coefficients offover the prime subring 

of K. So, for O<i<n, we may introduce the ith numerator Y-discriminant off as an 

element of the said ring, which we denote by Numy)(f ( Y)) or Num$‘( f) or Num”‘( f ), 
and which we deJine by putting 

Res,(f (Y), Tfy( Y)--f’( Y))= i Num(‘)(f) T”-’ 
i=O 

(3.27) 
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and we note that then there exist unique polynomials 

B with coefficients in Z such that 

Num”)(F)= Ui(C(R)) for O,<idn 

and for these polynomials we clearly have 

Num(‘)(f)=Ui(b) for O<i<n. 

Let 

t?(B)= ~ 2i-3 ui(B)E~[B] 
i=3 

and for every rational number w let 

Int(w)= the largest integer not exceeding w. 

Now we are ready to prove the following. 

(3.32) Second computational principle. We have 

(1994) 25-46 39 

UdB), ul(B), . . . . u,(B) in 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

Disc,(f) = Num(“‘(f) and -Int(n/2)Discr(f)=Num”‘(f) (3.32.1) 

and 

Num(f)= -Int(n/4)DiscY(f)+Num(2)(f)+2fi(b) (3.32.2) 

and if the characteristic of K is two and f has no multiple roots then we also have 

Rat(f)=Int(n/4)+[Num(“(f )/Discr(f)]. (3.32.3) 

To see this, first note that by (3.27) and (3.28) we have 

Res,(F( Y), TF,( Y)- F’( Y)) = i Ui(C(R)) T”-’ (3.33) 
i=O 

which we regard as a polynomial identity in T over Q [R]. Given any 0 # QEQ, by 

substituting Q -‘T for Tin the above identity we get 

Res,(F( Y), Q-‘TFy( Y)-F’( Y))= i Q’-“Ui(C(R))T”-‘. 
i=O 

The LHS of the above equation equals Res,(F( Y), Q- ’ [TF( Y)- QF’( Y)]) which in 

turn equals Q-“Resr (F( Y), TF( Y) - QF’( Y)), and hence by multiplying both sides by 

Q” we get 

Res,(F( Y), TF,( Y)-QF’( Y))= i Q’U,(C(R))T”-’ 
i=O 
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and now by taking (2,l) for (Q, T), in view of (3.26), we get 

Res,(F( Y), F “(Y)) = i 2’Ui(C(R)) 
i=O 

and hence, in view of (3.13) and (3.30), we conclude that 

4@C(R))+ W(C(R))= U,(C(R))+~UI(C(R))+~U~(C(R))+~~?(C(R)). (3.34) 

By the expansion of the resultant in terms of roots, we see that the LHS of (3.33) equals 

the product n;= 1 [TF,(R,)- F’(R,)] and, since nl= 1 F,(Ri) = Disc,(F), the said 

product equals 

Disc(F)[T’-(il z) T “- ’ + terms of degree less than n- 1 in T 1 
and hence by (3.33) we get 

Disc,(F)= U,(C(R)) (3.35) 

and 

-Disc,,(F) i F’(Ri) ------= U,(C(R)). 
i=l F,(Ri) 

(3.36) 

By Lagrange interpolation, i.e., by noting that both sides of the following proposed 

equation are polynomials of degree less than n in Y and their values coincide for the 

n distinct values RI, Rz, . . . , R, of Y, we see that 

F.(Y)= 5 F’(Ri)F(Y) 
i= 1 (Y--Ri)F,(Rt) 

,and, since clearly the coefficient of Y”- ’ in the LHS equals Int(n/2) and the 

‘coefficient of Y”-’ in the RHS equals x:=1 F’(Ri)/F,(Ri), we conclude that 

Int(n/2)=Cy=, F’(Ri)/Fy(Ri) and therefore by (3.36) we get 

-Int(n/2)Discy(F)= U,(C(R)). (3.37) 

By (3.15) we have W(C(R))=(-1) “‘“-“iZDisc,(F) and hence by (3.34), (3.35) and 

(3.37) we conclude that 

v(C(R))= -Int(n/4)Discy(F)+ U,(C(R))+2I?(C(R)). (3.38) 

In view of (3.15) and (3.29), upon substituting r for R in (3.35), (3.37) and (3.38), we get 

(3.32.1) and (3.32.2). In view of (3.16), by (3.32.2) we get (3.32.3). 

Returning to t and f * as in (2.25’) and (2.25*), upon letting v=(n- 1)/2 or n/2 

according as n is odd or even, and z = (t - 1)/2 according as f is odd or even, we clearly 

have 

Tf$(Y)-f*‘(y)=(nT-v) Y’-‘+(tT-z)b,*_, Y’-’ 
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and hence by (3.23) and (3.27) we get 

i Num(i)(f*)~“-i=(~~-v)“~,*~-‘+(_l)”-~ 
i=O 

x [(n-t)T-(v-T)]“-‘(tT-z)‘b,*‘-lb,*”,. 

and therefore 

Num(2)(f*)=GbX”-1 +(- l)“-‘fi’b~‘-‘b~~, 

where 

O=v%“-I(,- 1)/2 

and 

,‘=[(n-t)“-fzY’(t-1)/2] 

+[(n-t)“-f-l(v--)(n-t)zt’] 

+[(n-t)“-f-2(V-~)+z-t)(n-t-l)t’/2]. 

Thus we have the following. 

(3.39) 

(3.40) 

(3.41) 

Third proof of (2.27). In view of (3.17) and (3.32.3), this follows from (3.22) and (3.39) 

to (3.41). 

4. Mod eight criterion 

Continuing the notation of Section 2, as another consequence and variation of 

Jacobson’s Criterion, let us now prove the following. 

(4.1) Mod eight criterion. Assume that the characteristic of K is two and f has no 

multiple roots. Let 4: K ‘+K be a ring homomorphism of a domain K’ of characteristic 

zero into thejeld K such that ker($)=2K’ and such that for some b’=(b;, b;, . . . , b;) 

with b;, hi, . . . . b; in K’ we have +(b:) = bi for 1 <i < n. Now considering the polynomial 

f’(Y)= Y”+Cf=, b;Y”-’ we have that: 

(4.1.1) ifDisct(f’)=x2+8yfor some x, ~EK’ then Gal(f; K)cA,, 

and conversely: 

(4.1.2) ifIm($)=K and Gal(J; K)cA, then Disc$(f’)=x2+8yfor some x, ~EK’. 

Proof. To prove (4.1.1) suppose that Disc$(f’)= x2 + 8y for some x, YE K’. Then by 

applying (2.8) and (2.11) to f’ we get 

U2(b’)-4V(b’)= W(b’)=x2+8y. 
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Consequently 4(x2)= 4(U2(b’)), and hence +(x)=$(U(b’)), and therefore 

x= U(b’)+ 2h’ for some h’EK’. Substituting this value of x in the above displayed 

equation we get 

U2(b’)-4V(b’)= U2(b’)+4h’U(b’)+4h’2+8y 

and substracting U2(b’) from both sides and then dividing them by 4 we obtain 
- V(V)= h’U(b’) + h’2 + 2y, and now by applying 4 to the last equation we get 

- V(b)=hU(b)+h’ with h=c$(h’)EK. 

Therefore -V(b)Up2(b)=z2+z with z=hU-‘(b)EK, and hence by (2.12) we get 

Gal(fT K)cA,. 

To prove (4.1.2) assume that Im(#)=K and Gal(f; K)cA,. Now by (2.12) we 

see that - V(b)=~(x’2)U2(b)+cJ(x’)UZ(b) for some x’EK’. It follows that 

- V(b’)=xf2U2(b’)+x’U2(b’)+2y for some ~EK’. Multiplying both sides by 4 we get 

-4V(b’)=4x’2U2(b’)+4x’U2(b’)+8y. Now by applying (2.8) and (2.11) tof’ we get 

Disc;(f’)= U’(b’)-4V(b’)= U2(b’)+4x’2U2(b’)+4x’U2(b’)+8y 

and hence Discg(f’)=x2+8y with x=U(b’)+2x’U(b’)~K’. 0 

As an application of (4.1.1), let us give the following. 

Fourth proof of (2.27). Note that now t andf* are as in (2.25’) and (2.25*), and we are 

assuming that K is a field of characteristic two,f* has no multiple factors, and n>2. 

Let us start by recalling the well-known fact that given any field K of characteristic 2, 

there exists a ring epimorphism 4 : K ‘-+K of a domain K’ of characteristic zero with 

Ker(4)=2K’; (although we shall not use the stronger fact that moreover K’ can 

be chosen to be a Henselian discrete valuation ring, for a proof of the weaker 

and stronger facts see (1.4) of Wadsworth’s paper [16]). Now we can take 

f’(Y)= Y”+b&,Y’+bL with bA_tE4-1(b,*-1) and bkE4-‘(b,*), and then by applying 

(2.11) and (2.26) tof’ we get 

Now upon letting 

1 

0 if either nil or n-7(8) or n-0(8), 

0 if t-n-t(8) and either n=2(8) or nr6(8), 

‘= 1 if either n=3(8) or n-5(8) or n-4(8), 

1 if t+n--t(8) and either n=2(8) or nr6(8) 

and 

x’= 
b’j- 1)/z if n+O(2), 
b’(‘-‘)/2b’$: n if nrO(2) 
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and 

if t=2#n-t, 

if either t=2 or n-t=2 

and 

y’=(1/8)[DiscF(f’)-(1 +4g)xf2-4y*] 

we see that ge{O, l} and x’, y*, ~‘EK’ with Disc~(f’)=(l+4g)x’2+4y*+8y’. 

As in the statement of (2.27), let us divide the situation into eight cases according as: 

(i) 2~{t, n-t} a d th n ei er n-1(8) or n=7(8), (ii) 2E{t,n-_tJ and either n-3(8) or 

n- 5(8), (iii) t #2 #n- t and either n= l(8) or n=7(8), (iv) t #2 fn- t and either 

n-3(8) or n=5(8), (v) n=0(8), (vi) t=n-t(8) and either n=2(8), or nr 6(8), 

(vii) n =4(8), and (viii) t f n - t(8) and either n = 2(8) or n = 6(8). 

Now in cases (iii), (v) and (vi) we have g = 0 = y* and hence (2.7) follows from (4.1.2). 

In cases (iv), (vii) and (viii), we have g = 1 and y* = 0, and hence assuming GF(4) c K, 

we can find z’, g’ EK’ such that z” + z’ -g = 2g’, and now have Disc; ( f ‘) = x2 + 8 y with 

x=(22’+ 1)X’EK and y=~‘-g’x’~~K’, and hence again by (4.1.1) we get 

Gal(f*, K) c A,. To complete the proof of (2.7) in cases (iv), (vii) and (viii), conversely 

assuming Gal(f*,K)cA,, by (4.1.2) we have Discc(f’)=x2+8y for some x, ~EK’, 

and equating the two evaluations of DiscF(f’) we get x2 + 8y = (1 + 4)~‘~ + 8y’, and 

hence we must have x =x’+21 for some ~EK’, and substituting this value of x in the 

previous equation we get x” +41x’ + 412 + 8y = (1 + 4)~‘~ + 8y’, and subtracting 

xl2 from both sides and then dividing by 4 and afterwords applying 4 we 

obtain 4(12)+ ~(Ix’)+~(x’~)=O, and since by the defining equation of x’ we 

clearly have 4(x’) #O, we conclude that z2 +z + 1 =0 with z= cj(l)~K, and hence 

GF(4)c K. 

In cases (i) and (ii), assuming g + b ,*‘-“b,*!!1=~2+~ for some ZEK, multiplying by 

b*“-’ we obtain gb,*“-‘+b,*‘-‘b,*1,=z2b,*n-1+zb,*”-’ and we can find some IEK’ 

w:th qS(1)=zb:‘“-“‘2, and then we get gxt2 + y* = 1’ + lx’ + 2L for some LEK’, and now 

multiplying by 4 and substituting in the equation Discc( f’) = (1 + 4g)x” + 4y* + 8y’ 

we get DiscF(f’)=x2+8y with x=x’+21~K’ and y=L+y’eK’, and hence by (4.1.1) 

we conclude that Gal(f*, K) c A,,. Finally, in cases (i) and (ii), conversely assuming 

Gal(f*, K) c A,, by (4.1.2) we have DiscF( f’)= x2 + 8y for some x, ~EK’, and equat- 

ing the two evaluations of Disc,*( f’) we get x2 + 8y = (1 + 4g)x” + 4y* + 8y’, and hence 

we must have x=x’+ 21 for some IEK’, and substituting this value of x in the previous 

equation we get x” +41x’ + 412 + 8y =( 1 + 4g)x” + 4y* + 8y’, and subtracting x” from 

both sides and then dividing by 4 and afterwords applying $J we obtain 

$(I’) + 4(1x’) + c$(gx’2) + 4(y*) =0, and since by the defining equation of x’ we clearly 

have 4(x’) # 0, we conclude that g + b ,*‘-“b,*l,=z’+z with z=$(l)/+(x’)~K. 0 

The above proofs suggest yet another variation of Jacobson’s Criterion, namely the 

following. 



44 S.S. Abhyankar et al./Discrete Mathematics 133 (1994) 25-46 

(4.2) Mod four criterion. In the notation of(4.1), without the condition Im(4)= K, but 

assuming that Disc~(f’)=(l+4~)~2+4~ with <,<, ~EK’, we have Gal(f, K)cA, ifs 

z~+~(~)z+$J([<~+v)=O~O~ some ZEK. 

Proof. Applying (2.8) and (2.11) tof’ we get 

Discf(f’)= U’(b’)-4V(b’) 

and hence, because of the assumed equation for Discg(f’), we must have 

U(b’)=c+20 for some f9EK’, and substituting this value of U(b’) in the above 

displayed equation we get 

and now equating the RHS of the last equation with the RHS of the assumed equation 

for Discf (f’) and subtracting t2 from both and then dividing everything by 4 we 

conclude that 

et + 82 - V(b’) = 152 + q. 

By(2.12) we know that Gal(f, K)~A,iffz*~- U(b)z* + V(b)=0 for some z*EK. Now 

-U(b)=$(U(b’))=4(5+2@=$(5) and Vb)=~(Vb’))=dW+02)+~(152+rl), 
and hence Gal(f; K)cA, iff z*~+~(<)z*+~(~<+~~)+~([~~+I~)=O for some z*EK. 

Upon letting z=z* +4(e) we see that: Zig +~(5)z*+~(eg+e2)+~(552+?)=0 for 
some Z*EK iff z’+~(~)z+~(<~~+~)=~ for some ZEK. 0 

Finally, as an application of (4.2) here is the following. 

Fifth proof of (2.27). In the above Fourth Proof, by taking (c, 5, q)=(g, x’, y* + 2~‘) we 

get DiscS(f’)=(l +4c)t2+4q with i, 5, I]EK’. Now apply (4.2). 0 

5. Arf invariant of Jacobson’s quadratic and discriminants of Berlekamp and Revoy 

In Section 2 we considered a manic polynomialf( Y) = Y” +x1= 1 bi Ynmi of degree 

n in Y with coefficients b =(bl, b2, . . . , b,) in a field K, and we defined U(b), V(b)EK. 

Now we may denote U(b) and V(b) by Jen(f) and Jum(f) and call them Jacobson’s 

denominator Y-discriminant off and Jacobson’s numerator Y-discriminant off respec- 

tively, and if U(b)#O then we may denote V(b) W2(b) by Jat(f) and call it Jacobson’s 

rational Y-discriminant of f: Moreover, the quadratic polynomial Z2 - Jen(f)Z+ 

‘Jum(f) may be denoted by J(f) and called Jacobson’s quadratic off: Assuming f to 

have no multiple roots, we may thus restate Jacobson’s Criterion (2.12) by saying that: 

The Galois group off over K is contained in the alternating group (of degree n) if 

Jacobson’s quadratic off has a root in K. 
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The philosophy behind the criterion is standard in Galois theory. We start with 

a general polynomial 

We find a function of the roots R = (RI, R2, . . . , R,) which is invariant under the action 

of the alternating group and has exactly two orbits under the action of the symmetric 

group. If such a function is found, then the condition for the Galois group to be 

contained in the alternating group is exactly that the function evaluated for the roots 

of the given polynomial gives an element of the ground field. 

In case of Jacobson’s criterion, the said function is precisely D(R) and its conjugate 

is precisely D*(R) and defined in (2.1). Since this is somewhat difficult to evaluate, or 

perhaps because people were unaware of it, other functions have been suggested and 

used which we now describe. 

Bertin [ 111 has the same function as Jacobson’s, except it is defined by induction on 

n and she derives the result that the function D(R) (1'"' in her notation) generates the 

field of invariants of the alternating group in characteristic two. 

Berlekamp [lo] used a different function, namely 

and deduces that 6 has conjugate 6 + 1 in characteristic two. His quadratic equation is 

then 

z2+z+fi=o 

where 

He observes that there are problems in evaluating p in terms of the polynomial 

directly and refers to his tricks in his earlier book [9]. His earlier calculations are 

similar to our resultant criterion and indeed his /I is equal to our Rat(f) in character- 

istic two. To see this, start with 

Multiply the above over all 1 d i < j < n. Then expanding the RHS we have 

Hence, in view of (3.13), we get the desired result in characteristic two. 

Revoy [14] gives an explicit formula for /? in terms of the elementary symmetric 

functions of the quantities Rj/(Ri + Rj) where 1 < i <j < n. There are no formulas, to 

compute the symmetric functions in terms of original equation, though. 
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In case the characteristic of K is two, p(K) denotes the additive subgroup of 

K consisting of all elements of the form z2+z with ZEK, and for a quadratic 

g=Z2+g,Z+g2 with O#glEK and g2EK, following Wadsworth [16], we let c((g) 

denote the Arf invariant of g as introduced by Arf [S], i.e., a(g) is the image of g2gL2 

under the residue class homomorphism o: K+K/p(K). 
Now we may rephrase the characteristic two case of Jacobson’s Criterion by saying 

that: 

In case the characteristic of K is two, the Galois group off over K is contained in the 
alternating group (of degree n), ifs a ( J (f )) = 0, i.e., ifs the Arf invariant of Jacobson’s 
quadratic off is zero. 

Without any restriction on the characteristic of K, in Section 3 we have introduced 

the rational Y-discriminant off and we have denoted it by Rat(f). Note that in case 

the characteristic of K is two, we clearly have a(J(f))=w(Jat(f))=o(Rat(f)). 

In view of Wadsworth’s theory ([16]) we may simply say that all these dis- 

criminants are the same when viewed as residue classes modulo p(K). 
To avoid confusion, let us note that Wadsworth refers to a different discriminant 

introduced by Revoy, which is related to Berlekamp’s but is not always equal. 
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