Objectives

- (1) Galois group as a group of permutations.
- (2) Irreducibility and transitivity.
- (3) Galois groups of quartics.

Keywords and phrases : Transitive subgroups of S_4 Galois groups of quartics, irreducibility and transitivity.

Galois group as a group of Permutations

Let $f(x) \in F[x]$ be a monic polynomial with distinct roots r_1, r_2, \ldots, r_n . Let $E = F(r_1, r_2, \ldots, r_n)$ and G = G(E/F). Any $\sigma \in G$ permutes the roots of f(x). Define $\psi : G = G(E/F) \to S_n$ by $\psi(\sigma) = \sigma|_R$. Then ψ is an injective group homomorphism. The subgroup $\psi(G)$ is called the Galois group of f(x), and it is denoted by G_f . By the FTGT, there is an intermediate subfield of E/F corresponding to $G_f \cap A_n$.

Theorem 24.1. Let F be a field of characteristic $\neq 2$ and $f(x) \in F[x]$, a monic polynomial of positive degree with distinct roots $r_1, r_2, \ldots, r_n \in F^a$. Put $E = F(r_1, r_2, \ldots, r_n)$. Put $\delta = \prod_{1 \leq i < j \leq n} (r_i - r_j)$. Then

 $E^{G_f \cap A_n} = F(\delta).$

Proof. Any transposition acting on δ maps δ to $-\delta$. Hence all permutations in $G_f \cap A_n$ fix δ . Thus $F(\delta) \subseteq E^{G_f \cap A_n}$. Let $|G_f/G_f \cap A_n| = d$. Then $d \leq 2$. If d = 1 then $G_f \cap A_n = G_f$ and so $G_f \subseteq A_n$. Thus $\delta \in F$. Let d = 2. Then $G_f \cap A_n \neq G_f$. So G_f has an odd permutation. Hence $\delta \notin F$. Thus $E^{G_f \cap A_n} = F(\delta)$.

Definition 24.2. A subgroup $H \subset S_n$ is called a transitive subgroup if for any $i \neq j \in \{1, 2, ..., n\}$, there exists $\sigma \in H$ such that $\sigma(i) = j$.

Theorem 24.3. Let $f(x) \in F[x]$ be a polynomial of degree n with n distinct roots r_1, r_2, \ldots, r_n in F^a . Then f(x) is irreducible if and only if G_f is a transitive subgroup of S_n .

Proof. (\Leftarrow) Suppose G_f is a transitive subgroup of S_n . If f(x) is reducible in F[x] then f(x) = g(x)h(x) for some $g, h \in F[x]$ of positive degree. Let g(r) = h(s) = 0 where $r, s \in F^a$. Let $\sigma \in G_f$ be a permutation which maps r to s. We may assume that g(x) is irreducible. But then s has to be a root of g(x). Since f(x) has no repeated roots, h(x) is a constant.

 (\Rightarrow) Suppose f(x) is irreducible. Let r, s be roots of f(x). Then there exists an F-isomorphism $\sigma: F(r) \to F(s)$ such that $\sigma(r) = s$. It can be extended to an automorphism of $F(r_1, \ldots, r_n)$. Hence G_f is transitive.

Transitive Subgroups of S_4

Let H be a transitive subgroup of S_n . The orbit of action of H on [n] is [n]. Thus n = | orbit (1) | = |H|/| stab (1)|. Hence n | |H|. The orders of possible Galois groups of irreducible separable quartics are 4, 8, 12 and 24. These groups are listed below.

(1) $C_4 = \{(1234), (13)(24), (1432), (1)\}.$

A cyclic group of order 4 has two 4-cycles. There are six 4-cycles in S_4 . Thus there are three transitive cyclic subgroups of order 4.

- (2) Klein 4 -group $V = \{(1), (12)(34), (14)(32), (13)(24)\}$ is a normal subgroup of S_4 .
- (3) There are 3- Sylow subgroups of order 8. They are all isomorphic to D_4 . These are $H_1 = \langle V, (13) \rangle, H_2 = \langle V, (12) \rangle, H_3 = \langle V, (14) \rangle.$
- (4) A_4 is the only subgroup of order 12 and it is normal in S_4 .
- (5) S_4 is the only subgroup of order 24.

Calculation of Galois group of quartic polynomials

Let F be a field of $char \neq 2, 3$. Let $f(x) = x^4 + b_1 x^3 + b_2 x^2 + b_3 x + b_4 \in F[x]$ be separable. By the change $y = x + \frac{b_1}{4}$ we may assume that there is no x^3 term. This change does not alter the Galois group and the discriminant. So let $f(x) = x^4 + bx^2 + cx + d \in F[x]$ be an irreducible polynomial with roots r_1, r_2, r_3, r_4 in a splitting field E of f(x) over F. We write $G_f \subset S_4$. So $G_f \simeq G(E/F)$. Set

$$\underline{t} = \{t_1 = r_1 r_2 + r_3 r_4, t_2 = r_1 r_3 + r_2 r_4, t_3 = r_1 r_4 + r_2 r_4\}.$$

Proposition 24.4. $E^{G_f \cap V} = F(\underline{t})$ and $G(F(\underline{t})/F) = \frac{G_f}{G_f \cap V}$.

Proof. Clearly, $F(t_1, t_2, t_3) \subseteq E^{G_f \cap V}$. The element t_1 is fixed by $H_1 = \langle (12), V \rangle \rangle$, a dihedral group of order 8 in S_4 . Moreover

$$S_4 = H_1 \cup (13)H_1 \cup (14)H_1.$$

Thus H_1 is the stabilizer of t_1 . Similarly, $H_2 = \text{Stab}(t_2) = \langle (13), V \rangle \rangle$, $H_3 = \text{Stab}(t_3) = \langle (14), V \rangle \rangle$. Since $V = H_1 \cap H_2 \cap H_3$, if $\sigma \in G_f$ fixes t_1, t_2, t_3 then $\sigma \in V$. Hence $G(E/F(\underline{t})) \subseteq G_f \cap V$ which gives $F(\underline{t}) \supseteq E^{G_f \cap V}$. We know that $F(t_1, t_2, t_3)$ is the splitting field of the resolvent cubic over F, hence it is Galois. Thus $G(F(\underline{t})/F) \simeq \frac{G_f}{G_f \cap V}$.

Proposition 24.5. The resolvent cubic of a separable irreducible quartic has a root in F if and only if $G_f \subseteq D_4$.

Proof. Let $t_1 \in F$. Then $G(E/F(t_1)) = G_f = G_f \cap H_1 \Rightarrow G_f \subseteq H_1$. Conversely if $G_f \subset H_i$ for some i say i = 1, then each $\sigma \in G_f$ fixes t_1 and hence $t_1 \in E^{G_f} = F$.

Theorem 24.6. Let f(x) be an irreducible separable quartic over a field F of char $F \neq 2$ and $E = F(r_1, r_2, r_3, r_4)$ be a splitting field where r_1, \ldots, r_4 are the roots of f(x). Let r(x) denote resolvent cubic of f(x).

- (1) If r(x) is irreducible in F[x] and disc $(r(x)) \notin F^2$ then $G_f \simeq S_4$.
- (2) If r(x) is irreducible in F[x] and disc $(r(x)) \in F^2$ then $G_f \simeq A_4$.
- (3) If r(x) splits completely in F[x] then $G_f \simeq V$.
- (4) Let r(x) have one root in F. Then
 - (a) If f(x) is irreducible over $F(\underline{t})$ then $G_f \simeq D_4$.
 - (b) If f(x) is reducible over $F(\underline{t})$ then $G_f \simeq C_4$.

Proof. Since f(x) is irreducible over F, G_f is a transitive subgroup of S_4 . Hence $|G_f| = 4, 8, 12, \text{ or } 24, |G_f \cap V| = 1, 2 \text{ or } 4, \text{ and } |G_f/G_f \cap V| = |G_{r(x)}| = 1, 2, 3, 6$. Thus $|G_f \cap V| > 1$. We also have $|V \cap G_f| \times |\frac{G_f}{V \cap G_f}| = |G_f|$. Thus $\{2, 4\} \times \{1, 2, 3, 6\} = \{4, 8, 12, 24\}.$

(1) If r(x) is irreducible over F and disc $(r(x)) \in F^2$ then $G_{r(x)} \simeq A_3$. Hence $|G_f/G_f \cap V| = 3$. Hence $|G_f| = 12$ and therefore $G_f \simeq A_4$. (2) If r(x) is irreducible over F and disc (r(x)) is not a square in F, then $G_{r(x)} \simeq S_3$. Hence $|G_f/G_f \cap V| = 6$. Thus $|G_f| = 12$ or 24. If $|G_f| = 12$ then $G_f \simeq A_4$ and $|G_f/G_f \cap V| = 3$ which is a contradiction. Hence $G_f \simeq S_4$.

(3) If r(x) has all its roots in F, then $E^{G_f \cap V} = F = E^{G_f}$. Thus $G_f \subseteq V$. Since $4 \mid |G_f|, G_f = V$.

(4) Now let r(x) have exactly one root in F. Then $[F(\underline{t}) : F] = 2 = |G_f/G_f \cap V|$. Thus $|G_f| = 4$ or 8.

(a) Suppose f(x) is irreducible over $F(\underline{t})$. Then

$$[E:F(\underline{t})] = |G_f \cap V| \ge 4 \Rightarrow |G_f| = 8 \Rightarrow G_f \simeq D_4.$$

(b) Suppose f(x) is reducible over $F(\underline{t})$. If $G_f \simeq D_4$ then

$$[E:F] = 8 \Rightarrow [E:F(\underline{t})] = 4.$$

Hence $G(E/F(\underline{t})) = V$ which is transitive. Hence f(x) is irreducible over $F(\underline{t})$. This is a contradiction. So $|G_f| = 4$. If $G_f = V$ then $G_{r(x)} = G_f/G_f \cap V = \{1\}$. But $|G_{r(x)}| = 2$. Thus $G_f \simeq C_4$.

Example 24.7. (1) $(G_f = V)$ Let $f(x) = x^4 + 1 \in \mathbb{Q}[x]$. Then the resolvent cubic is r(x) = x(x-2)(x+2). Since f(x) is irreducible over \mathbb{Q} , $G_f = V$.

(2) $(G_f = C_4)$ Consider $f(x) = x^4 + 5x^2 + 5$ which is irreducible over \mathbb{Q} by Eisenstein criterion. Then

$$r(x) = x^3 - 5x^2 - 20x + 100 = (x - 5)(x - 2\sqrt{5})(x + \sqrt{5}).$$

Thus $t_1 = 5$, $t_2 = 2\sqrt{5}$, $t_3 = -2\sqrt{5}$. Hence $F(\underline{t}) = \mathbb{Q}(\sqrt{5})$ and $x^4 + 5x^2 + 5 = \left(x^2 + \frac{5+\sqrt{5}}{2}\right)\left(x^2 - \frac{5-\sqrt{5}}{2}\right)$.

Therefore f(x) is reducible over $F(\underline{t})$. Thus $G_f \simeq C_4$.

(3) $(G_f = S_4)$ Consider $f(x) = x^4 - x + 1$. Then f(x) is irreducible modulo 2, and hence it is irreducible over \mathbb{Q} . The resolvent cubic $r(x) = x^3 - 4x - 1$ is irreducible over \mathbb{Q} and disc $(r(x)) = 229 \notin \mathbb{Q}^2$. Hence $G_f = S_4$.

(4) $(G_f = D_4)$ The polynomial $f(x) = x^4 - 3$ is irreducible over \mathbb{Q} and $r(x) = x(x + i2\sqrt{3})(x - i2\sqrt{3})$. Therefore $F(\underline{t}) = \mathbb{Q}(i\sqrt{3})$. Hence

$$f(x) = (x^2 - \sqrt{3})(x^2 + \sqrt{3}) = (x - i\sqrt[4]{3})(x + i\sqrt[4]{3})(x + \sqrt[4]{3})(x - \sqrt[4]{3}).$$

Thus f(x) has no root in $\mathbb{Q}(i\sqrt{3})$. The splitting field of f(x) over \mathbb{Q} is $\mathbb{Q}(i, \sqrt[4]{3})$ which is a degree 8 extension of \mathbb{Q} . Hence $G_f = D_4$.

(5) $(G_f = A_4)$ Let $f(x) = x^4 - 8x + 12$. Then $r(x) = x^3 - 48x - 64$. Using Eisenstein's criterion, f(x) is irreducible over \mathbb{Q} . Since disc $(r(x)) = 2^{12}3^4$ is a perfect square in \mathbb{Q} , $G_f = A_4$.

Example 24.8. Let p be a prime number and $f(x) = x^4 + px + p$. Then $r(x) = x^3 - 4px - p^2$. Possible roots of r(x) in \mathbb{Q} are ± 1 , $\pm p$, $\pm p^2$. Check that ± 1 , $\pm p^2$ are not roots for any p. But $r(p) = p^2(p-5)$ and $r(-p) = p^2(3-p)$. Hence r(x) has a rational root if and only if p = 3, 5. For $p \neq 3, 5$, the resolvent cubic is irreducible over \mathbb{Q} . Check that disc $(f(x)) = p^3(256 - 27p)$ is never a perfect square in \mathbb{Q} . Let G be the Galois group of f(x). Then $G = S_4$ if $p \neq 3, 5$.

If p = 3 then $r(x) = (x+3)(x^2 - 3x - 3)$. Hence the splitting field L of r(x) over \mathbb{Q} is $\mathbb{Q}(\sqrt{21})$. Check that $x^4 + 3x + 3$ is irreducible over $\mathbb{Q}(\sqrt{21})$. Hence $G = D_4$.

Now let p = 5. The resolvent cubic of $f(x) = x^4 + 5x + 5$ is $r(x) = x^3 - 20x - 25 = (x - 5)(x^2 + 5x + 5)$. Hence the splitting field of r(x) over \mathbb{Q} is $\mathbb{Q}(\sqrt{5})$. Check that f(x) has two roots in $\mathbb{Q}(\sqrt{5})$. Hence the Galois group is C_4 .