Lecture 24 : Galois Groups of Quartic Polynomials

Objectives
(1) Galois group as a group of permutations.
(2) Irreducibility and transitivity.
(3) Galois groups of quartics.

Keywords and phrases : Transitive subgroups of S; Galois groups of

quartics, irreducibilty and transitivity.

Galois group as a group of Permutations

Let f(z) € Fx] be a monic polynomial with distinct roots 1,79, ..., r,. Let
E = F(ri,rg,...,r) and G = G(E/F). Any o € G permutes the roots of
f(z). Define ¢ : G = G(E/F) — Sy, by ¥(0) = o|g. Then 1 is an injective
group homomorphism. The subgroup ¥ (G) is called the Galois group of
f(x), and it is denoted by G¢. By the FTGT, there is an intermediate
subfield of E/F corresponding to Gy N A,.

Theorem 24.1. Let F' be a field of characteristic # 2 and f(x) € Flx], a
monic polynomial of positive degree with distinct roots r1,re,...,r, € F®.
Put E = F(ri,re,...,ry). Put 0 =Ili<jcj<n(ri —1j). Then

ECN 4 = F(5).

Proof. Any transposition acting on 6 maps d to —d. Hence all permutations
in GyN A, fix 5. Thus F(8) C ES"4n . Let |G;/GyN Ap| = d. Then d < 2.
Ifd =1then GyNA, =Gy and so Gy C A,. Thus 6 € F. Let d = 2.
Then Gy N A, # Gy¢. So G has an odd permutation. Hence § ¢ F. Thus
EGiN4n = [(§).

O

Definition 24.2. A subgroup H C S, is called a transitive subgroup if for
any i # j € {1,2,...,n}, there exists c € H such that o(i) = j.

Theorem 24.3. Let f(z) € F[z] be a polynomial of degree n with n distinct
T00ts 71,72, ...,y in F*. Then f(x) is irreducible if and only if Gy is a

transitive subgroup of Sy.
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Proof. (<) Suppose G is a transitive subgroup of S,. If f(z) is reducible
in Flx] then f(x) = g(x)h(z) for some g,h € F[x] of positive degree. Let
g(r) = h(s) = 0 where r,s € F'*. Let 0 € Gy be a permutation which maps
r to s. We may assume that g(z) is irreducible. But then s has to be a root

of g(z). Since f(x) has no repeated roots, h(z) is a constant.

(=) Suppose f(x) is irreducible. Let r, s be roots of f(z). Then there exists
an F-isomorphism o : F'(r) — F(s) such that o(r) = s. It can be extended

to an automorphism of F(ry,...,r,). Hence G is transitive.
U

Transitive Subgroups of Sy

Let H be a transitive subgroup of S,,. The orbit of action of H on [n] is
[n]. Thus n = | orbit (1)| = |H|/| stab (1)|. Hence n | |H|. The orders of
possible Galois groups of irreducible separable quartics are 4,8,12 and 24.

These groups are listed below.
(1) Cy={(1234), (13)(24), (1432), (1)}

A cyclic group of order 4 has two 4-cycles. There are six 4-cycles in

Sy4. Thus there are three transitive cyclic subgroups of order 4.

(2) Klein 4 -group V' = {(1),(12)(34),(14)(32),(13)(24)} is a normal
subgroup of Sy.

(3) There are 3- Sylow subgroups of order 8. They are all isomorphic to
Dy. These are Hy = (V,(13)), Hy = (V, (12)), H3 = (V, (14)).

(4) Ay is the only subgroup of order 12 and it is normal in Sy.

(5) Sy is the only subgroup of order 24.

Calculation of Galois group of quartic polynomials

Let F be a field of char # 2,3. Let f(x) = 2* +b1a + bya® + b3z + by € F|x]
be separable. By the change y = x + % we may assume that there is no
23 term. This change does not alter the Galois group and the discriminant.
So let f(x) = z* + bx? + cx + d € F[z] be an irreducible polynomial with
roots r1,72,73,74 in a splitting field £ of f(x) over F. We write Gy C Sj.
So Gy~ G(E/F). Set

t= {tl =1r1re + 1r3rg,to = r1r3 + 1214, t3 = 174 + 7“2’/”4}.
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Proposition 24.4. B9 = F(t) and G(F(t)/F) = Gve

Proof. Clearly, F(t1,ts,t3) C ES/"V. The element t, is fixed by H; =
((12),V)), a dihedral group of order 8 in Sy. Moreover

Sy, =Hi U (13)H1 U (14)H1.

Thus H; is the stabilizer of ¢;. Similarly, Ho = Stab (t2) = ((13),V)), Hs =
Stab (t3) = ((14),V)). Since V.= Hy N Ha N H3, if 0 € Gf fixes t1,%9,t3
then o € V. Hence G(E/F(t)) C G¢ NV which gives F(t) 2 E¢. We
know that F'(t1,t2,t3) is the splitting field of the resolvent cubic over F),
hence it is Galois. Thus G(F(t)/F) ~ % O

Proposition 24.5. The resolvent cubic of a separable irreducible quartic

has a root in F if and only if Gy C Djy.

Proof. Let t; € F. Then G(E/F(t1)) = Gy = Gy Hy = Gy C H;.
Conversely if Gy C H; for some i say 7 = 1, then each o € G fixes ¢; and
hence t; € E¢f = F. O

Theorem 24.6. Let f(x) be an irreducible separable quartic over a field F
of char F # 2 and E = F(r1,r2,7r3,74) be a splitting field where ry, ..., ry4
are the roots of f(x). Let r(x) denote resolvent cubic of f(x).

(1) If r(zx) is irreducible in F[x] and disc (r(x)) ¢ F? then Gy ~ Sy.
(2) If r(z) is irreducible in F[z] and disc (r(x)) € F? then Gy ~ Aq.
(3) If r(x) splits completely in F|x] then Gy ~ V.
(4) Let r(x) have one root in F. Then

(a) If f(x) is irreducible over F(t) then Gy ~ Dj.

(b) If f(x) is reducible over F(t) then Gy ~ Cj.

Proof. Since f(x) is irreducible over F, Gy is a transitive subgroup of Sy.
Hence |Gf| = 4,8,12,0r 24, |GyNV| = 1,2 0r 4, and |Gy /GsNV| = |G, ()| =
1,2,3,6. Thus |Gy N V| > 1. We also have |V NG| x |%@f| = |Gy|. Thus
{2,4} x {1,2,3,6} = {4,8,12,24}.

(1) If r(z) is irreducible over F and disc (r(z)) € F? then Gr@) =~ As.
Hence |Gf/Gf N V| = 3. Hence |G| = 12 and therefore G ~ Ay.
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(2) If r(x) is irreducible over F' and disc (r(x)) is not a square in F, then
Gr(z) = S3. Hence |Gy/GyNV| = 6. Thus |G| = 12 or 24. If |G| = 12 then
Gy~ Ay and |Gy/GyNV| =3 which is a contradiction. Hence Gy ~ Sj.

(3) If r(x) has all its roots in F, then E¢/"V = [ = B9 Thus G; C V.
Since 4 | |Gy|, Gy = V.

(4) Now let r(x) have exactly one root in F. Then [F(¢t) : F|] = 2 =
|Gy/G¢yNV|. Thus |G¢| =4 or 8.

(a) Suppose f(z) is irreducible over F(t). Then
[E:Ft)]=|GfNV|>4=|Gf|=8= G¢~ Djy.
(b) Suppose f(x) is reducible over F(t). If Gy ~ D4 then
[E:F|=8=[E:F(t) =4.

Hence G(E/F(t)) = V which is transitive. Hence f(z) is irreducible over
F(t). This is a contradiction. So |Gy| = 4. If Gy = V then G, =
Gy/GyNV = {1}. But |G, (p)| = 2. Thus Gy ~ Cy. O

Example 24.7. (1) (Gy = V) Let f(z) = 2*+1 € Q[z]. Then the resolvent
cubic is r(z) = x(x — 2)(x + 2). Since f(x) is irreducible over Q, Gy = V.

(2) (Gy = Cy) Consider f(z) = z* + 52?2 + 5 which is irreducible over Q by

Eisenstein criterion. Then
r(z) = 2® — 52% — 20z + 100 = (z — 5)(z — 2V5)(x + V/5).
Thus t; = 5, to = 2v/5, t3 = —2+/5. Hence F(t) = Q(+/5) and
ot 4522 45 = (SE2+%> (xz—g’ai\/g).
Therefore f(x) is reducible over F'(t). Thus G ~ Cj.

(3) (G = Sa) Consider f(z) = 2% —x+1. Then f(z) is irreducible modulo
2, and hence it is irreducible over Q. The resolvent cubic r7(z) = 23 — 42 — 1
is irreducible over Q and disc (r(z)) = 229 ¢ Q. Hence G = Sj.

(4) (Gy = Dy4) The polynomial f(z) = z* — 3 is irreducible over Q and
r(x) = x(x + i2v/3)(x — i2v/3). Therefore F(t) = Q(iv/3). Hence

f() = (2%~ VB)(a® + VB) = (z — iV/3)(x +iVB)(x + V3)(x — V3).
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Thus f(z) has no root in Q(iv/3). The splitting field of f(z) over Q is
Q(i, v/3) which is a degree 8 extension of Q. Hence Gy = Dj.

(5) (Gy = A4) Let f(z) = 2* — 8z + 12. Then r(x) = 2® — 48z — 64. Using
Eisenstein’s criterion, f(x) is irreducible over Q. Since disc (r(z)) = 2'234

is a perfect square in Q, Gy = Aj.

Example 24.8. Let p be a prime number and f(x) = 2* + px + p. Then
r(x) = 23 —4pz—p?. Possible roots of 7(x) in Q are +1, +p, +p?. Check that
+1, 4p? are not roots for any p. But 7(p) = p?(p—>5) and r(—p) = p?(3—p).
Hence r(x) has a rational root if and only if p = 3,5. For p # 3,5, the
resolvent cubic is irreducible over Q. Check that disc (f(x)) = p®(256 —27p)
is never a perfect square in Q. Let G be the Galois group of f(x). Then
G = Sy if p #3,5.

If p = 3 then r(z) = (z + 3)(2? — 3z — 3). Hence the splitting field L of r(x)
over Q is Q(v/21). Check that x% + 3x + 3 is irreducible over Q(v/21). Hence
G = Dy.

Now let p = 5. The resolvent cubic of f(x) = 2% + 5z + 5 is r(z) = 23 —
20x — 25 = (x — 5)(2? + 52 + 5). Hence the splitting field of r(z) over Q is
Q(+/5). Check that f(x) has two roots in Q(v/5). Hence the Galois group is
Cy.



