
Lecture 24 : Galois Groups of Quartic Polynomials

Objectives

(1) Galois group as a group of permutations.

(2) Irreducibility and transitivity.

(3) Galois groups of quartics.

Keywords and phrases : Transitive subgroups of S4 Galois groups of

quartics, irreducibilty and transitivity.

Galois group as a group of Permutations

Let f(x) ∈ F [x] be a monic polynomial with distinct roots r1, r2, . . . , rn. Let

E = F (r1, r2, . . . , rn) and G = G(E/F ). Any σ ∈ G permutes the roots of

f(x). Define ψ : G = G(E/F ) → Sn by ψ(σ) = σ|R. Then ψ is an injective

group homomorphism. The subgroup ψ(G) is called the Galois group of

f(x), and it is denoted by Gf . By the FTGT, there is an intermediate

subfield of E/F corresponding to Gf ∩An.

Theorem 24.1. Let F be a field of characteristic 6= 2 and f(x) ∈ F [x], a

monic polynomial of positive degree with distinct roots r1, r2, . . . , rn ∈ F a.

Put E = F (r1, r2, . . . , rn). Put δ = Π1≤i<j≤n(ri − rj). Then

EGf∩An = F (δ).

Proof. Any transposition acting on δ maps δ to −δ. Hence all permutations

in Gf ∩An fix δ. Thus F (δ) ⊆ EGf∩An . Let |Gf/Gf ∩An| = d. Then d ≤ 2.

If d = 1 then Gf ∩ An = Gf and so Gf ⊆ An. Thus δ ∈ F . Let d = 2.

Then Gf ∩ An 6= Gf . So Gf has an odd permutation. Hence δ /∈ F . Thus

EGf∩An = F (δ).

�

Definition 24.2. A subgroup H ⊂ Sn is called a transitive subgroup if for

any i 6= j ∈ {1, 2, . . . , n}, there exists σ ∈ H such that σ(i) = j.

Theorem 24.3. Let f(x) ∈ F [x] be a polynomial of degree n with n distinct

roots r1, r2, . . . , rn in F a. Then f(x) is irreducible if and only if Gf is a

transitive subgroup of Sn.
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Proof. (⇐) Suppose Gf is a transitive subgroup of Sn. If f(x) is reducible

in F [x] then f(x) = g(x)h(x) for some g, h ∈ F [x] of positive degree. Let

g(r) = h(s) = 0 where r, s ∈ F a. Let σ ∈ Gf be a permutation which maps

r to s. We may assume that g(x) is irreducible. But then s has to be a root

of g(x). Since f(x) has no repeated roots, h(x) is a constant.

(⇒) Suppose f(x) is irreducible. Let r, s be roots of f(x). Then there exists

an F -isomorphism σ : F (r)→ F (s) such that σ(r) = s. It can be extended

to an automorphism of F (r1, . . . , rn). Hence Gf is transitive.

�

Transitive Subgroups of S4

Let H be a transitive subgroup of Sn. The orbit of action of H on [n] is

[n]. Thus n = | orbit (1)| = |H|/| stab (1)|. Hence n | |H|. The orders of

possible Galois groups of irreducible separable quartics are 4, 8, 12 and 24.

These groups are listed below.

(1) C4 = {(1234), (13)(24), (1432), (1)}.

A cyclic group of order 4 has two 4-cycles. There are six 4-cycles in

S4. Thus there are three transitive cyclic subgroups of order 4.

(2) Klein 4 -group V = {(1), (12)(34), (14)(32), (13)(24)} is a normal

subgroup of S4.

(3) There are 3- Sylow subgroups of order 8. They are all isomorphic to

D4. These are H1 = 〈V, (13)〉, H2 = 〈V, (12)〉, H3 = 〈V, (14)〉.
(4) A4 is the only subgroup of order 12 and it is normal in S4.

(5) S4 is the only subgroup of order 24.

Calculation of Galois group of quartic polynomials

Let F be a field of char 6= 2, 3. Let f(x) = x4 + b1x
3 + b2x

2 + b3x+ b4 ∈ F [x]

be separable. By the change y = x + b1
4 we may assume that there is no

x3 term. This change does not alter the Galois group and the discriminant.

So let f(x) = x4 + bx2 + cx + d ∈ F [x] be an irreducible polynomial with

roots r1, r2, r3, r4 in a splitting field E of f(x) over F. We write Gf ⊂ S4.

So Gf ' G(E/F ). Set

t = {t1 = r1r2 + r3r4, t2 = r1r3 + r2r4, t3 = r1r4 + r2r4}.
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Proposition 24.4. EGf∩V = F (t) and G(F (t)/F ) =
Gf

Gf∩V .

Proof. Clearly, F (t1, t2, t3) ⊆ EGf∩V . The element t1 is fixed by H1 =

〈(12), V )〉, a dihedral group of order 8 in S4. Moreover

S4 = H1 ∪ (13)H1 ∪ (14)H1.

ThusH1 is the stabilizer of t1. Similarly, H2 = Stab (t2) = 〈(13), V )〉, H3 =

Stab (t3) = 〈(14), V )〉. Since V = H1 ∩ H2 ∩ H3, if σ ∈ Gf fixes t1, t2, t3

then σ ∈ V. Hence G(E/F (t)) ⊆ Gf ∩ V which gives F (t) ⊇ EGf∩V . We

know that F (t1, t2, t3) is the splitting field of the resolvent cubic over F,

hence it is Galois. Thus G(F (t)/F ) ' Gf

Gf∩V . �

Proposition 24.5. The resolvent cubic of a separable irreducible quartic

has a root in F if and only if Gf ⊆ D4.

Proof. Let t1 ∈ F . Then G(E/F (t1)) = Gf = Gf ∩ H1 ⇒ Gf ⊆ H1.

Conversely if Gf ⊂ Hi for some i say i = 1, then each σ ∈ Gf fixes t1 and

hence t1 ∈ EGf = F . �

Theorem 24.6. Let f(x) be an irreducible separable quartic over a field F

of char F 6= 2 and E = F (r1, r2, r3, r4) be a splitting field where r1, . . . , r4

are the roots of f(x). Let r(x) denote resolvent cubic of f(x).

(1) If r(x) is irreducible in F [x] and disc (r(x)) /∈ F 2 then Gf ' S4.

(2) If r(x) is irreducible in F [x] and disc (r(x)) ∈ F 2 then Gf ' A4.

(3) If r(x) splits completely in F [x] then Gf ' V.

(4) Let r(x) have one root in F. Then

(a) If f(x) is irreducible over F (t) then Gf ' D4.

(b) If f(x) is reducible over F (t) then Gf ' C4.

Proof. Since f(x) is irreducible over F, Gf is a transitive subgroup of S4.

Hence |Gf | = 4, 8, 12, or 24, |Gf∩V | = 1, 2 or 4, and |Gf/Gf∩V | = |Gr(x)| =
1, 2, 3, 6. Thus |Gf ∩ V | > 1. We also have |V ∩Gf | × |

Gf

V ∩Gf
| = |Gf |. Thus

{2, 4} × {1, 2, 3, 6} = {4, 8, 12, 24}.

(1) If r(x) is irreducible over F and disc (r(x)) ∈ F 2 then Gr(x) ' A3.

Hence |Gf/Gf ∩ V | = 3. Hence |Gf | = 12 and therefore Gf ' A4.
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(2) If r(x) is irreducible over F and disc (r(x)) is not a square in F, then

Gr(x) ' S3. Hence |Gf/Gf∩V | = 6. Thus |Gf | = 12 or 24. If |Gf | = 12 then

Gf ' A4 and |Gf/Gf ∩ V | = 3 which is a contradiction. Hence Gf ' S4.

(3) If r(x) has all its roots in F, then EGf∩V = F = EGf . Thus Gf ⊆ V .

Since 4 | |Gf |, Gf = V .

(4) Now let r(x) have exactly one root in F . Then [F (t) : F ] = 2 =

|Gf/Gf ∩ V |. Thus |Gf | = 4 or 8.

(a) Suppose f(x) is irreducible over F (t). Then

[E : F (t)] = |Gf ∩ V | ≥ 4⇒ |Gf | = 8⇒ Gf ' D4.

(b) Suppose f(x) is reducible over F (t). If Gf ' D4 then

[E : F ] = 8⇒ [E : F (t)] = 4.

Hence G(E/F (t)) = V which is transitive. Hence f(x) is irreducible over

F (t). This is a contradiction. So |Gf | = 4. If Gf = V then Gr(x) =

Gf/Gf ∩ V = {1}. But |Gr(x)| = 2. Thus Gf ' C4. �

Example 24.7. (1) (Gf = V ) Let f(x) = x4+1 ∈ Q[x]. Then the resolvent

cubic is r(x) = x(x− 2)(x+ 2). Since f(x) is irreducible over Q, Gf = V .

(2) (Gf = C4) Consider f(x) = x4 + 5x2 + 5 which is irreducible over Q by

Eisenstein criterion. Then

r(x) = x3 − 5x2 − 20x+ 100 = (x− 5)(x− 2
√

5)(x+
√

5).

Thus t1 = 5, t2 = 2
√

5, t3 = −2
√

5. Hence F (t) = Q(
√

5) and

x4 + 5x2 + 5 =
(
x2 + 5+

√
5

2

)(
x2 − 5−

√
5

2

)
.

Therefore f(x) is reducible over F (t). Thus Gf ' C4.

(3) (Gf = S4) Consider f(x) = x4− x+ 1. Then f(x) is irreducible modulo

2, and hence it is irreducible over Q. The resolvent cubic r(x) = x3− 4x− 1

is irreducible over Q and disc (r(x)) = 229 /∈ Q2. Hence Gf = S4.

(4) (Gf = D4) The polynomial f(x) = x4 − 3 is irreducible over Q and

r(x) = x(x+ i2
√

3)(x− i2
√

3). Therefore F (t) = Q(i
√

3). Hence

f(x) = (x2 −
√

3)(x2 +
√

3) = (x− i 4
√

3)(x+ i
4
√

3)(x+
4
√

3)(x− 4
√

3).
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Thus f(x) has no root in Q(i
√

3). The splitting field of f(x) over Q is

Q(i, 4
√

3) which is a degree 8 extension of Q. Hence Gf = D4.

(5) (Gf = A4) Let f(x) = x4 − 8x+ 12. Then r(x) = x3 − 48x− 64. Using

Eisenstein’s criterion, f(x) is irreducible over Q. Since disc (r(x)) = 21234

is a perfect square in Q, Gf = A4.

Example 24.8. Let p be a prime number and f(x) = x4 + px + p. Then

r(x) = x3−4px−p2. Possible roots of r(x) in Q are ±1, ±p, ±p2. Check that

±1, ±p2 are not roots for any p. But r(p) = p2(p−5) and r(−p) = p2(3−p).
Hence r(x) has a rational root if and only if p = 3, 5. For p 6= 3, 5, the

resolvent cubic is irreducible over Q. Check that disc (f(x)) = p3(256−27p)

is never a perfect square in Q. Let G be the Galois group of f(x). Then

G = S4 if p 6= 3, 5.

If p = 3 then r(x) = (x+ 3)(x2− 3x− 3). Hence the splitting field L of r(x)

over Q is Q(
√

21). Check that x4 + 3x+ 3 is irreducible over Q(
√

21). Hence

G = D4.

Now let p = 5. The resolvent cubic of f(x) = x4 + 5x + 5 is r(x) = x3 −
20x− 25 = (x− 5)(x2 + 5x+ 5). Hence the splitting field of r(x) over Q is

Q(
√

5). Check that f(x) has two roots in Q(
√

5). Hence the Galois group is

C4.


