Lecture 24 : Galois Groups of Quartic Polynomials

Objectives

(1) Galois group as a group of permutations.
(2) Irreducibility and transitivity.
(3) Galois groups of quartics.

Keywords and phrases : Transitive subgroups of S_{4} Galois groups of quartics, irreducibilty and transitivity.

Galois group as a group of Permutations

Let $f(x) \in F[x]$ be a monic polynomial with distinct roots $r_{1}, r_{2}, \ldots, r_{n}$. Let $E=F\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ and $G=G(E / F)$. Any $\sigma \in G$ permutes the roots of $f(x)$. Define $\psi: G=G(E / F) \rightarrow S_{n}$ by $\psi(\sigma)=\left.\sigma\right|_{R}$. Then ψ is an injective group homomorphism. The subgroup $\psi(G)$ is called the Galois group of $f(x)$, and it is denoted by G_{f}. By the FTGT, there is an intermediate subfield of E / F corresponding to $G_{f} \cap A_{n}$.

Theorem 24.1. Let F be a field of characteristic $\neq 2$ and $f(x) \in F[x]$, a monic polynomial of positive degree with distinct roots $r_{1}, r_{2}, \ldots, r_{n} \in F^{a}$. Put $E=F\left(r_{1}, r_{2}, \ldots, r_{n}\right)$. Put $\delta=\Pi_{1 \leq i<j \leq n}\left(r_{i}-r_{j}\right)$. Then

$$
E^{G_{f} \cap A_{n}}=F(\delta) .
$$

Proof. Any transposition acting on δ maps δ to $-\delta$. Hence all permutations in $G_{f} \cap A_{n}$ fix δ. Thus $F(\delta) \subseteq E^{G_{f} \cap A_{n}}$. Let $\left|G_{f} / G_{f} \cap A_{n}\right|=d$. Then $d \leq 2$. If $d=1$ then $G_{f} \cap A_{n}=G_{f}$ and so $G_{f} \subseteq A_{n}$. Thus $\delta \in F$. Let $d=2$. Then $G_{f} \cap A_{n} \neq G_{f}$. So G_{f} has an odd permutation. Hence $\delta \notin F$. Thus $E^{G_{f} \cap A_{n}}=F(\delta)$.

Definition 24.2. A subgroup $H \subset S_{n}$ is called a transitive subgroup if for any $i \neq j \in\{1,2, \ldots, n\}$, there exists $\sigma \in H$ such that $\sigma(i)=j$.

Theorem 24.3. Let $f(x) \in F[x]$ be a polynomial of degree n with n distinct roots $r_{1}, r_{2}, \ldots, r_{n}$ in F^{a}. Then $f(x)$ is irreducible if and only if G_{f} is a transitive subgroup of S_{n}.

Proof. (\Leftarrow) Suppose G_{f} is a transitive subgroup of S_{n}. If $f(x)$ is reducible in $F[x]$ then $f(x)=g(x) h(x)$ for some $g, h \in F[x]$ of positive degree. Let $g(r)=h(s)=0$ where $r, s \in F^{a}$. Let $\sigma \in G_{f}$ be a permutation which maps r to s. We may assume that $g(x)$ is irreducible. But then s has to be a root of $g(x)$. Since $f(x)$ has no repeated roots, $h(x)$ is a constant.
(\Rightarrow) Suppose $f(x)$ is irreducible. Let r, s be roots of $f(x)$. Then there exists an F-isomorphism $\sigma: F(r) \rightarrow F(s)$ such that $\sigma(r)=s$. It can be extended to an automorphism of $F\left(r_{1}, \ldots, r_{n}\right)$. Hence G_{f} is transitive.

Transitive Subgroups of S_{4}

Let H be a transitive subgroup of S_{n}. The orbit of action of H on $[n]$ is $[n]$. Thus $n=\mid$ orbit (1)| $=|H| / \mid$ stab (1)|. Hence $n||H|$. The orders of possible Galois groups of irreducible separable quartics are $4,8,12$ and 24 . These groups are listed below.
(1) $C_{4}=\{(1234),(13)(24),(1432),(1)\}$.

A cyclic group of order 4 has two 4 -cycles. There are six 4 -cycles in S_{4}. Thus there are three transitive cyclic subgroups of order 4.
(2) Klein 4 -group $V=\{(1),(12)(34),(14)(32),(13)(24)\}$ is a normal subgroup of S_{4}.
(3) There are 3- Sylow subgroups of order 8. They are all isomorphic to D_{4}. These are $H_{1}=\langle V,(13)\rangle, H_{2}=\langle V,(12)\rangle, H_{3}=\langle V,(14)\rangle$.
(4) A_{4} is the only subgroup of order 12 and it is normal in S_{4}.
(5) S_{4} is the only subgroup of order 24 .

Calculation of Galois group of quartic polynomials

Let F be a field of $\operatorname{char} \neq 2,3$. Let $f(x)=x^{4}+b_{1} x^{3}+b_{2} x^{2}+b_{3} x+b_{4} \in F[x]$ be separable. By the change $y=x+\frac{b_{1}}{4}$ we may assume that there is no x^{3} term. This change does not alter the Galois group and the discriminant. So let $f(x)=x^{4}+b x^{2}+c x+d \in F[x]$ be an irreducible polynomial with roots $r_{1}, r_{2}, r_{3}, r_{4}$ in a splitting field E of $f(x)$ over F. We write $G_{f} \subset S_{4}$. So $G_{f} \simeq G(E / F)$. Set

$$
\underline{t}=\left\{t_{1}=r_{1} r_{2}+r_{3} r_{4}, t_{2}=r_{1} r_{3}+r_{2} r_{4}, t_{3}=r_{1} r_{4}+r_{2} r_{4}\right\}
$$

Proposition 24.4. $E^{G_{f} \cap V}=F(\underline{t})$ and $G(F(\underline{t}) / F)=\frac{G_{f}}{G_{f} \cap V}$.
Proof. Clearly, $F\left(t_{1}, t_{2}, t_{3}\right) \subseteq E^{G_{f} \cap V}$. The element t_{1} is fixed by $H_{1}=$ $\langle(12), V)\rangle$, a dihedral group of order 8 in S_{4}. Moreover

$$
S_{4}=H_{1} \cup(13) H_{1} \cup(14) H_{1} .
$$

Thus H_{1} is the stabilizer of t_{1}. Similarly, $\left.H_{2}=\operatorname{Stab}\left(t_{2}\right)=\langle(13), V)\right\rangle, H_{3}=$ $\left.\operatorname{Stab}\left(t_{3}\right)=\langle(14), V)\right\rangle$. Since $V=H_{1} \cap H_{2} \cap H_{3}$, if $\sigma \in G_{f}$ fixes t_{1}, t_{2}, t_{3} then $\sigma \in V$. Hence $G(E / F(\underline{t})) \subseteq G_{f} \cap V$ which gives $F(\underline{t}) \supseteq E^{G_{f} \cap V}$. We know that $F\left(t_{1}, t_{2}, t_{3}\right)$ is the splitting field of the resolvent cubic over F, hence it is Galois. Thus $G(F(\underline{t}) / F) \simeq \frac{G_{f}}{G_{f} \cap V}$.

Proposition 24.5. The resolvent cubic of a separable irreducible quartic has a root in F if and only if $G_{f} \subseteq D_{4}$.

Proof. Let $t_{1} \in F$. Then $G\left(E / F\left(t_{1}\right)\right)=G_{f}=G_{f} \cap H_{1} \Rightarrow G_{f} \subseteq H_{1}$. Conversely if $G_{f} \subset H_{i}$ for some i say $i=1$, then each $\sigma \in G_{f}$ fixes t_{1} and hence $t_{1} \in E^{G_{f}}=F$.

Theorem 24.6. Let $f(x)$ be an irreducible separable quartic over a field F of char $F \neq 2$ and $E=F\left(r_{1}, r_{2}, r_{3}, r_{4}\right)$ be a splitting field where r_{1}, \ldots, r_{4} are the roots of $f(x)$. Let $r(x)$ denote resolvent cubic of $f(x)$.
(1) If $r(x)$ is irreducible in $F[x]$ and disc $(r(x)) \notin F^{2}$ then $G_{f} \simeq S_{4}$.
(2) If $r(x)$ is irreducible in $F[x]$ and disc $(r(x)) \in F^{2}$ then $G_{f} \simeq A_{4}$.
(3) If $r(x)$ splits completely in $F[x]$ then $G_{f} \simeq V$.
(4) Let $r(x)$ have one root in F. Then
(a) If $f(x)$ is irreducible over $F(\underline{t})$ then $G_{f} \simeq D_{4}$.
(b) If $f(x)$ is reducible over $F(\underline{t})$ then $G_{f} \simeq C_{4}$.

Proof. Since $f(x)$ is irreducible over F, G_{f} is a transitive subgroup of S_{4}. Hence $\left|G_{f}\right|=4,8,12$, or $24,\left|G_{f} \cap V\right|=1,2$ or 4 , and $\left|G_{f} / G_{f} \cap V\right|=\left|G_{r(x)}\right|=$ $1,2,3,6$. Thus $\left|G_{f} \cap V\right|>1$. We also have $\left|V \cap G_{f}\right| \times\left|\frac{G_{f}}{V \cap G_{f}}\right|=\left|G_{f}\right|$. Thus $\{2,4\} \times\{1,2,3,6\}=\{4,8,12,24\}$.
(1) If $r(x)$ is irreducible over F and disc $(r(x)) \in F^{2}$ then $G_{r(x)} \simeq A_{3}$. Hence $\left|G_{f} / G_{f} \cap V\right|=3$. Hence $\left|G_{f}\right|=12$ and therefore $G_{f} \simeq A_{4}$.
(2) If $r(x)$ is irreducible over F and $\operatorname{disc}(r(x))$ is not a square in F, then $G_{r(x)} \simeq S_{3}$. Hence $\left|G_{f} / G_{f} \cap V\right|=6$. Thus $\left|G_{f}\right|=12$ or 24 . If $\left|G_{f}\right|=12$ then $G_{f} \simeq A_{4}$ and $\left|G_{f} / G_{f} \cap V\right|=3$ which is a contradiction. Hence $G_{f} \simeq S_{4}$.
(3) If $r(x)$ has all its roots in F, then $E^{G_{f} \cap V}=F=E^{G_{f}}$. Thus $G_{f} \subseteq V$. Since $4\left|\left|G_{f}\right|, G_{f}=V\right.$.
(4) Now let $r(x)$ have exactly one root in F. Then $[F(\underline{t}): F]=2=$ $\left|G_{f} / G_{f} \cap V\right|$. Thus $\left|G_{f}\right|=4$ or 8 .
(a) Suppose $f(x)$ is irreducible over $F(\underline{t})$. Then

$$
[E: F(\underline{t})]=\left|G_{f} \cap V\right| \geq 4 \Rightarrow\left|G_{f}\right|=8 \Rightarrow G_{f} \simeq D_{4} .
$$

(b) Suppose $f(x)$ is reducible over $F(\underline{t})$. If $G_{f} \simeq D_{4}$ then

$$
[E: F]=8 \Rightarrow[E: F(\underline{t})]=4 .
$$

Hence $G(E / F(\underline{t}))=V$ which is transitive. Hence $f(x)$ is irreducible over $F(\underline{t})$. This is a contradiction. So $\left|G_{f}\right|=4$. If $G_{f}=V$ then $G_{r(x)}=$ $G_{f} / G_{f} \cap V=\{1\}$. But $\left|G_{r(x)}\right|=2$. Thus $G_{f} \simeq C_{4}$.

Example 24.7. (1) $\left(G_{f}=V\right)$ Let $f(x)=x^{4}+1 \in \mathbb{Q}[x]$. Then the resolvent cubic is $r(x)=x(x-2)(x+2)$. Since $f(x)$ is irreducible over $\mathbb{Q}, G_{f}=V$.
(2) $\left(G_{f}=C_{4}\right)$ Consider $f(x)=x^{4}+5 x^{2}+5$ which is irreducible over \mathbb{Q} by Eisenstein criterion. Then

$$
r(x)=x^{3}-5 x^{2}-20 x+100=(x-5)(x-2 \sqrt{5})(x+\sqrt{5}) .
$$

Thus $t_{1}=5, t_{2}=2 \sqrt{5}, t_{3}=-2 \sqrt{5}$. Hence $F(\underline{t})=\mathbb{Q}(\sqrt{5})$ and

$$
x^{4}+5 x^{2}+5=\left(x^{2}+\frac{5+\sqrt{5}}{2}\right)\left(x^{2}-\frac{5-\sqrt{5}}{2}\right) .
$$

Therefore $f(x)$ is reducible over $F(\underline{t})$. Thus $G_{f} \simeq C_{4}$.
(3) $\left(G_{f}=S_{4}\right)$ Consider $f(x)=x^{4}-x+1$. Then $f(x)$ is irreducible modulo 2 , and hence it is irreducible over \mathbb{Q}. The resolvent cubic $r(x)=x^{3}-4 x-1$ is irreducible over \mathbb{Q} and $\operatorname{disc}(r(x))=229 \notin \mathbb{Q}^{2}$. Hence $G_{f}=S_{4}$.
(4) $\left(G_{f}=D_{4}\right)$ The polynomial $f(x)=x^{4}-3$ is irreducible over \mathbb{Q} and $r(x)=x(x+i 2 \sqrt{3})(x-i 2 \sqrt{3})$. Therefore $F(\underline{t})=\mathbb{Q}(i \sqrt{3})$. Hence

$$
f(x)=\left(x^{2}-\sqrt{3}\right)\left(x^{2}+\sqrt{3}\right)=(x-i \sqrt[4]{3})(x+i \sqrt[4]{3})(x+\sqrt[4]{3})(x-\sqrt[4]{3})
$$

Thus $f(x)$ has no root in $\mathbb{Q}(i \sqrt{3})$. The splitting field of $f(x)$ over \mathbb{Q} is $\mathbb{Q}(i, \sqrt[4]{3})$ which is a degree 8 extension of \mathbb{Q}. Hence $G_{f}=D_{4}$.
(5) $\left(G_{f}=A_{4}\right)$ Let $f(x)=x^{4}-8 x+12$. Then $r(x)=x^{3}-48 x-64$. Using Eisenstein's criterion, $f(x)$ is irreducible over \mathbb{Q}. Since disc $(r(x))=2^{12} 3^{4}$ is a perfect square in $\mathbb{Q}, G_{f}=A_{4}$.

Example 24.8. Let p be a prime number and $f(x)=x^{4}+p x+p$. Then $r(x)=x^{3}-4 p x-p^{2}$. Possible roots of $r(x)$ in \mathbb{Q} are $\pm 1, \pm p, \pm p^{2}$. Check that $\pm 1, \pm p^{2}$ are not roots for any p. But $r(p)=p^{2}(p-5)$ and $r(-p)=p^{2}(3-p)$. Hence $r(x)$ has a rational root if and only if $p=3,5$. For $p \neq 3,5$, the resolvent cubic is irreducible over \mathbb{Q}. Check that disc $(f(x))=p^{3}(256-27 p)$ is never a perfect square in \mathbb{Q}. Let G be the Galois group of $f(x)$. Then $G=S_{4}$ if $p \neq 3,5$.

If $p=3$ then $r(x)=(x+3)\left(x^{2}-3 x-3\right)$. Hence the splitting field L of $r(x)$ over \mathbb{Q} is $\mathbb{Q}(\sqrt{21})$. Check that $x^{4}+3 x+3$ is irreducible over $\mathbb{Q}(\sqrt{21})$. Hence $G=D_{4}$.

Now let $p=5$. The resolvent cubic of $f(x)=x^{4}+5 x+5$ is $r(x)=x^{3}-$ $20 x-25=(x-5)\left(x^{2}+5 x+5\right)$. Hence the splitting field of $r(x)$ over \mathbb{Q} is $\mathbb{Q}(\sqrt{5})$. Check that $f(x)$ has two roots in $\mathbb{Q}(\sqrt{5})$. Hence the Galois group is C_{4}.

