
Chapter 5
Field Theory

Abstract field theory emerged from three theories, which we would now call
Galois theory, algebraic number theory and algebraic geometry.

Field theoretic notions appeared, even though still implicitly, in the modern
theory of solvability of polynomial equations, as introduced by Abel and Galois
in the early nineteenth century. Galois had a good insight into fields obtained
by adjoining roots of polynomials, and he proved what we call now the Primitive
Element Theorem.

Independently, Dedekind and Kronecker came up with the notion of alge-
braic number fields, arising from three major number -theoretic problems: Fer-
mat’s Last Theorem, reciprocity laws and representation of integers by binary
quadratic forms.

Algebraic geometry is the study of algebraic curves and their generalizations
to higher dimensions, namely, algebraic varieties. Dedekind and Weber carried
over to algebraic functions the ideas which Dedekind had earlier introduced for
algebraic numbers, that is, define an algebraic function field as a finite extension
of the field of rational functions.

At the end of the nineteenth century, abstraction and axiomatics started to
take place. Cantor (1883) defined the real numbers as equivalence classes of
Cauchy sequences,von Dyck (1882) gave an abstract definition of group (about
thirty years after Cayley had defined a finite group). Weber’s definition of a
field appeared in 1893, for which he gave number fields and function fields as
examples. In 1899, Hensel initiated a study of p-adic numbers, taking as starting
point the analogy between function fields and number fields. It is the work of
Steinitz in 1910 that initiated the abstract study of fields as an independent
subject. A few examples of his results are: classification of fields into those
of characteristic zero and those of characteristic p, development of the theory
of transcendental extensions, recognition that it is precisely the finite, normal,
separable extensions to which Galois theory applies, proof of the existence of
the algebraic closure of any field.
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148 CHAPTER 5. FIELD THEORY

Major developments in field theory and related areas that followed Steinitz’s
work include valuation theory, class field theory, infinite Galois theory and finite
fields.

5.1 Field extension and minimal polynomial

Definition 5.1. If F and E are fields, and F ⊆ E, we say that E is an extension
of F , and we write either F ≤ E or E/F .

Examples 5.1. Here are some classical examples:

1. C = {a+ bi, a, b ∈ R} is a field extension of R.

2. Q(
√
2) = {a+ b

√
2, a, b ∈ Q} is a field extension of Q.

3. Q(i) = {a+ bi, a, b ∈ Q} is a field extension of Q.

If E is an extension of F , then in particular E is an abelian group under
addition, and we may multiply x ∈ E by λ ∈ F . We can see that this endows E
with a structure of F -vector space (the elements of E are seen as vectors, those
of F as scalars). It then makes sense to speak of the dimension of E over F .

Definition 5.2. Let E/F be a field extension. The dimension of E as F -vector
space is called the degree of the extension, written [E : F ]. If [E : F ] < ∞, we
say that E is a finite extension of F , or that the extension E/F is finite.

Let us get back to our examples:

Examples 5.2. 1. Consider the field extension C/R. We have that C is a
vector space of dimension 2 over R. It is thus an extension of degree 2
(with basis {1, i}).

2. The field extension Q(
√

(2))/Q is of degree 2, it is called a quadratic
extension of Q.

3. The field extension Q(i)/Q is a also a quadratic field extension of Q.

4. Both Q(
√

(2))/Q and Q(i)/Q are finite field extensions of Q. Finite ex-
tensions of Q are called number fields.

If we look at C, we see it is obtained by adding i to R, and i is a root of
the polynomial X2 + 1. Similarly, Q(

√
2)/Q is obtained by adding a root of

the polynomial X2 − 2. In what follows, we will make formal the connection
between roots of polynomials and field extensions.

Before we start, recall that if we have two fields E,F and a field homomor-
phism between them (that is, a ring homomorphism between two fields), then
f is a monomorphism. We have seen the argument in the previous chapter
already: the kernel of a ring homomorphism is an ideal, and a field has only
trivial ideals, namely {0} and itself, and it cannot be that the whole field is the
kernel.
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Theorem 5.1. Let f be a non-constant polynomial over a field F . Then there
is an extension E/F and an element α ∈ E such that f(α) = 0.

Proof. Recall that F [X] is a unique factorization domain, thus f can be factored
into a product of irreducible polynomials, and we may assume without loss of
generality that f is itself irreducible. Consider now the ideal

I = (f(X))

in F [X], the ring of polynomials with indeterminate X and coefficients in F .
Again using that F [X] is a unique factorization domain, we have that f(X) is
irreducible and equivalently prime, implying that (f(X)) is prime. Now F [X] is
furthermore a principal ideal domain. This means that I = (f(X)) is contained
in a principal maximal ideal (q(X)), so that q(X) divides the prime f(X). Since
f(X) = q(X)g(X) for some g(X), and q(X) cannot be a unit because f(X) is
irreducible, f(X) and q(X) are associates, and (f(X)) = (q(X)), proving that
(p(X)) = I is maximal. Thus by the characterization of maximal ideals with
respect to their quotient ring, we have that

E = F [X]/I

is a field. We now place an isomorphic copy of F inside E via the monomorphism

h : F → E, a 7→ a+ I.

This thus gives a field extension E/F . Now let

α = X + I ∈ E.

We are left to prove that α is a root of f(X). If f(X) = a0+a1X+ . . .+anX
n,

then

f(α) = (a0 + I) + a1(X + I) + . . .+ an(X + I)n

= a0 + I + a1X + a1I + . . .+ anX
n + . . .+ anIn

= (a0 + a1X + . . .+ anX
n) + I

= f(X) + I

which is zero in E.

The extension E is sometimes said to be obtained from F by adjoining a
root of f .

Remark. Note that in the above proof, we have shown that a prime ideal in a
principal ideal domain is maximal.

Definition 5.3. If E is an extension of F , an element α ∈ E is said to be
algebraic over F if there is a non-constant polynomial f ∈ F [X] such that
f(α) = 0. If α is not algebraic over F , it is said to be transcendental over F .
If every element of E is algebraic over F , then E is said to be an algebraic
extension of F .
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Suppose that α ∈ E is algebraic over F . Thus there exists by definition a
polynomial f ∈ F [X] with f(α) = 0. It thus makes sense to consider the set I
of all polynomials g ∈ F [X] such that g(α) = 0. Clearly

• if g1, g2 are in I, so does g1 ± g2,

• if g ∈ I and h ∈ F [X], then gh ∈ I.

This tells us that I = {g ∈ F [X], g(α) = 0} is an ideal of F [X].
Since F [X] is a principal ideal domain, we have

I = (m(X))

for some m(X) in F [X]. Any two generators of I are thus multiple of each
others, so they must be of same degree, and since m(X) is monic, it has to be
unique. This polynomial m(X) has the following properties:

1. If g ∈ F [X], then g(α) = 0 if and only if m(X) divides g(X). This is clear
from the definition of I.

2. m(X) is the monic polynomial of least degree such that m(α) = 0, which
follows from the above property.

3. m(X) is the unique monic irreducible polynomial such that m(α) = 0.
Indeed, if m(X) = h(X)k(X) with deg h < degm, deg k < degm, then
either h(α) = 0 or k(α) = 0, so that either h(X) or k(X) is a multiple of
m(X) by the first property, which is impossible. Thusm(X) is irreducible.
We are left to prove the unicity of m(X). This comes from the fact that
since m(X) is monic, then if there were two irreducible monic polynomials
m(X) and m′(X) such that m(α) = m′(α) = 0, they have α as common
root, and thus m(X) and m′(X) cannot be distinct (see the proposition
below).

Definition 5.4. The polynomial m(X) is called the minimal polynomial of α
over F . It may be denoted by min(α, F ) or µα,F .

Example 5.3. The polynomial X2 + 1 is the minimal polynomial of i over Q.
It also the minimal polynomial of i over R.

Proposition 5.2. 1. Let f and g be polynomials over the field F . Then f
and g are relatively prime if and only if f and g have no common root in
any extension of F .

2. If f and g are distinct monic irreducible polynomials over F , then f and
g have no common roots in any extension of F .

Proof. 1. If f and g are relatively prime, their greatest common divisor is 1,
so there are polynomials a(X) and b(X) over F such that

a(X)f(X) + b(X)g(X) = 1.
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If there is a common root say α, then we get that 0 = 1, a contradiction.

Conversely, let us assume that the greatest common divisor d(X) of f(X)
and g(X) is non-constant and show that then f(X) and g(X) have a
common root. By the above proposition, there exists E an extension of F
in which d(X) has a root α. Since d(X) divides both f(X) and g(X), α
is a common root of f and g in E.

2. By the first part, it is enough to show that f and g are relatively prime.
Assume to the contrary that h is a non-constant divisor of the polynomials
f and g which are irreducible. Then f = f ′h and g = g′h with f ′, g′ non-

zero constant, and h = f
f ′

= g
g′
, that is, f = f ′

g′
g. It is impossible for f to

be a constant multiple of g, because f and g are monic and distinct.

If E is an extension of F and α ∈ E is a root of a polynomial f ∈ F [X],
one may consider the field F (α) generated by F and α, which is the smallest
subfield of E containing both F and α. Alternatively, F (α) can be described
as the intersection of all subfields of E containing F and α, or the set of all
rational functions

a0 + a1α+ · · ·+ amα
m

b0 + ba1α+ . . .+ bnαn

with ai, bj ∈ F , m,n = 0, 1, . . . and the denominator is different from 0.

Theorem 5.3. Let α ∈ E be algebraic over F , with minimal polynomial m(X)
over F of degree n.

1. We have F (α) = F [α] = Fn−1[α] where Fn−1[α] denotes the set of all
polynomials of degree at most n− 1 with coefficients in F .

2. {1, α, . . . , αn−1} forms a basis for the vector space F (α) over the field F .
Consequently [F (α) : F ] = n.

Proof. Let us first prove that Fn−1[α] is a field. Let f(X) be any non-zero
polynomial over F of degree at most n − 1. Since m(X) is irreducible with
deg f < degm, f(X) andm(X) are relatively prime, and there exist polynomials
a(X) and b(X) over F such

a(X)f(X) + b(X)m(X) = 1.

Using that α is a root of m, we get

a(α)f(α) = 1

so that any non-zero element of Fn−1[α] has an inverse, and Fn−1[α] is a field.

1. Any field containing F and α must contain all polynomials in α, and in
particular all those of degree at most n− 1. Thus

Fn−1[α] ⊂ F [α] ⊂ F (α).



152 CHAPTER 5. FIELD THEORY

But F (α) is the smallest field containing F and α, so

F (α) ⊂ Fn−1[α]

and we conclude that

F (α) = F [α] = Fn−1[α].

2. Now 1, α, . . . , αn−1 certainly span Fn−1[α], and they are linearly indepen-
dent because if a non-trivial linear combination of them were zero, this
would yield a non-zero polynomial of degree less than that of m(X) with
α as a root, a contradiction.

Example 5.4. Let ζ5 denote a primitive 5th root of unity (that is, ζ55 = 1 and
ζk5 6= 1 for 1 ≤ k ≤ 4). We have that ζ5 ∈ Q(ζ5) is algebraic over Q, with
minimal polynomial X4 +X3 +X2 +X + 1 = 0 of degree 4 over Q. A Q-basis
is given by {1, ζ5, ζ25 , ζ35} and [Q(ζ5) : Q] = 4.

Once we have a field extension K/F , we can take again K as base field and
get another field extension E/K, yielding a tower of extensions E/K/F .

Proposition 5.4. Consider the field extensions E/K/F .

1. If αi, i ∈ I, form a basis for E over K, and βj, j ∈ J form a basis for K
over F , then αiβj, i ∈ I, j ∈ J , form a basis for E over F .

2. The degree is multiplicative, namely

[E : F ] = [E : K][K : F ].

In particular, [E : F ] is finite if and only if [E : K] and [K : F ] are finite.

Proof. 1. Take γ ∈ E. Then

γ =
∑

i∈I

aiαi, ai ∈ K

=
∑

i∈I

(
∑

j∈J

bijβj)αi, bij ∈ F.

Thus αiβj span E over F . We now check the linear independence.

∑

i,j

λijαiβj = 0 ⇒
∑

i

λijαi = 0

for all j and consequently λij = 0 for all i, j which concludes the proof.

2. It is enough to use the first part, with

[E : K] = |I|, [K : F ] = |J |, [E : F ] = |I||J |.
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Example 5.5. Consider the field extension Q(ζ8)/Q where ζ8 is a primitive 8th
root of unity. We have that

ζ8 =

√
2

2
+ i

√
2

2

and Q(ζ8)/Q is the same field extension as Q(i,
√
2)/Q. We have

[Q(i,
√
2) : Q] = [Q(i,

√
2) : Q(

√
2)][Q(

√
2) : Q] = 2 · 2 = 4.

Recall that an algebraic extension is a field extension where every element
is algebraic. The result below describes families of algebraic extensions.

Theorem 5.5. If E is a finite extension of F , then E is an algebraic extension
of F .

Proof. Let α ∈ E with degree [E : F ] = n. Then 1, α, . . . , αn are n+1 elements
while the dimension is n, so they must be linearly dependent, say

a0 + a1α+ . . .+ anα
n = 0, ai ∈ F.

Take p(X) = a0+a1X+. . .+anX
n ∈ F [X], α is a root of p(X) and by definition

α is algebraic over F .

Examples 5.6. 1. By definition, a number field is a finite extension of Q.
Thus a number field is an algebraic extension of Q.

2. The converse is not true. There are infinite algebraic extensions, for ex-
ample, the field of all algebraic numbers over the rationals is algebraic and
of infinite degree.

5.2 Splitting fields and algebraic closures

For α ∈ E, an extension of F , we have introduced above F (α) as the intersection
of all the subfields of E containing F and α. This can be of course generalized if
we pick α1, . . . , αk ∈ E, and F (α1, . . . , αk) is the intersection of all the subfields
of E containing F and α1, . . . , αk.

Definition 5.5. If E is an extension of F and f ∈ F [X], we say that f splits
over E if f can be written as λ(X − α1) · · · (X − αk) for some α1, . . . , αk ∈ E
and λ ∈ F .

Definition 5.6. If K is an extension of F and f ∈ F [X], we say that K is a
splitting field for f over F is f splits over K but not over any proper subfield
of K containing F .

Example 5.7. Consider the polynomial f(X) = X3 − 2 over Q. Its roots are

3
√
2,

3
√
2

(

−1

2
+ i

1

2

√
3

)

,
3
√
2

(

−1

2
− i

1

2

√
3

)

.
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Alternatively, if ζ3 denotes a primitive 3rd root of unity, we can write the roots
as

3
√
2, ζ3

3
√
2, ζ23

3
√
2.

The polynomial f is irreducible (for example using Eisenstein’s criterion). Since
it is also monic, it is the minimal polynomial of 3

√
2, and

[Q(
3
√
2) : Q] = 3.

Now since 3
√
2 and i

√
3 (or ζ3) generate all the roots of f , the splitting field of

f is
K = Q(

3
√
2, i

√
3) = Q(

3
√
2, ζ3).

We finish by computing the degree of K over Q. Clearly i
√
3 cannot belong to

Q( 3
√
2) which is a subfield of R, thus [Q( 3

√
2, i

√
3) : Q( 3

√
2)] is at least 2. Since

i
√
3 is a root of X2+3 ∈ Q( 3

√
2)[X], this degree is exactly 2. By multiplicativity

of the degrees, we get that
[K : Q] = 6.

Using that ζ3 is a root of X2 + X + 1 stays irreducible over Q(
√
2) gives the

same result.

Equivalently, K is a splitting field for f over F if f splits over K and K is
generated over F by the roots α1, . . . , αk of f , that is K = F (α1, . . . , αk).

If f ∈ F [X] and f splits over the extension E of F , then E contains a unique
splitting field for f , namely F (α1, . . . , αk).

Here is a result on the degree of splitting fields. Note that the above example
shows that this bound is tight.

Proposition 5.6. If f ∈ F [X] and deg f = n, then f has a splitting field K
over F with [K : F ] ≤ n!.

Proof. First we may assume that n ≥ 1, for if n = 0, then f is constant, and
we take K = F with [K : F ] = 1.

Thus f has at least one root α1, and by Theorem 5.1, there is an extension
E1 of F containing α1. Since f(α1) = 0, the minimal polynomial m1(X) of α1

divides f(X), that is f(X) = m1(X)f ′(X) for some f ′(X), and since deg f = n,
degm1(X) ≤ n, implying that F (α1)/F has degree at most n.

We may then further write f(X) = (X − α1)
r1g(X) where g(α1) 6= 0 and

deg g ≤ n − 1. If g is constant, then f(X) has no other root than α1, and its
splitting field is F (α1)/F whose degree is at most n which is indeed smaller
than n!.

Now if g is non-constant, we can iterate on g the reasoning we did on f .
Namely, we have that g has degree at least 1, and thus it has at least one root
α2. Invoking again Theorem 5.1, there is an extension of F (α1) containing α2

and the extension F (α1, α2) has degree at most n−1 over F (α1) (corresponding
to the case where r1 = 1). Thus we have

[F (α1, α2) : F ] = [F (α1, α2) : F (α1)][F (α1) : F ]

≤ (n− 1)n.
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We can now continue inductively to reach that if α1, . . . , αn are all the roots of
f , then

[F (α1, α2, . . . , αn) : F ] ≤ n!.

If f ∈ F [X] and f splits over E, then we may take any root α of f and
adjoin it to F to get the extension F (α). More precisely:

Theorem 5.7. If α and β are roots of the irreducible polynomial f ∈ F [X] in
an extension E of F , then F (α) is isomorphic to F (β).

Proof. If f is not monic, start by dividing f by its leading coefficient, so that we
can assume that f is monic. Since f is monic, irreducible and f(α) = f(β) = 0,
f is the minimal polynomial of α and β, say of degree n. Now if a ∈ F (α), then
a can be uniquely written as

a = a0 + a1α+ . . .+ an−1α
n−1.

The map

a0 + a1α+ . . .+ an−1α
n−1 7→ a0 + a1β + . . .+ an−1β

n−1

defines a field isomorphism between F (α) and F (β).

When discussing field isomorphisms, one may want to emphasize the base
field.

Definition 5.7. If E and E′ are extensions of F , and ι : E → E′ is an isomor-
phism, we say that ι is an F -isomorphism if ι fixes F , that is, if

ι(a) = a, a ∈ F.

Given a polynomial f ∈ F [X], we have discussed its splitting field, namely
the smallest field over which f splits. If F is Q, R or more generally C, not
only we can find a splitting field for each polynomial, but we know that there is
a field C with the property that any polynomial in C[X] splits over C, namely
C = C itself.

We now would like to express this property in general, without having to
assume that F is Q, R or C. Namely, for a general field F , we want an extension
C of F such that any polynomial in C[X] splits over C. We will later on add
the requirement that this extension is algebraic.

Proposition 5.8. If C is a field, the following conditions are equivalent.

1. Every non-constant polynomial f ∈ C[X] has at least one root in C.

2. Every non-constant polynomial f ∈ C[X] splits over C.

3. Every irreducible polynomial f ∈ C[X] is linear.
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4. C has no proper algebraic extension.

Proof. We prove 1.⇒ 2.⇒ 3.⇒ 4.⇒ 1.

1.⇒ 2. Take f ∈ C[X] a non-constant polynomial. Since f has at least one root,
we write f = (X − α1)g for g some polynomial in C[X]. If g is constant,
we are done since f splits. If g is non-constant, then again by assumption
it has one root and g = (X − α2)h for some h. We conclude by repeating
inductively.

2.⇒ 3. Take f ∈ C[X] which is irreducible, thus non-constant. By assumption it
is a product of linear factors. But f is irreducible, so there can be only
one such factor.

3.⇒ 4. Let E be an algebraic extension of C. Take α ∈ E with minimal polyno-
mial f over C. Then f is irreducible and of the form X − α ∈ C[X] by
assumption. Thus α ∈ C and E = C.

4.⇒ 1. Let f be a non-constant polynomial in C[X], with root α. We can adjoin
α to C to obtain C(α). But by assumption, there is no proper algebraic
extension of C, so C(α) = C and α ∈ C. Thus f has at least one root in
C and we are done.

Definition 5.8. A field C as described in the above equivalent properties is
said to be algebraically closed.

Examples 5.8. 1. The field R is not algebraically closed, since X2 + 1 = 0
has not root in R.

2. No finite field F is algebraically closed, since if a1, . . . , an are all the ele-
ments of F , then the polynomial (X − a1) . . . (X − an) + 1 has no zero in
F.

3. The field C is algebraically closed, this is the fundamental theorem of
algebra.

4. The field of all algebraic numbers is algebraically closed. (We will not
prove this here, but for a proof that algebraic numbers in a field extension
indeed form a field, see Corollary 5.11 below.)

We can embed an arbitrary field F in an algebraically closed field as follows.

Definition 5.9. An extension C of F is called an algebraic closure if C is
algebraic over F and C is algebraically closed.

Examples 5.9. To get examples of algebraic closures, we thus need to start
with known algebraically closed fields.

1. The field C is the algebraic closure of R.
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2. The field of all algebraic numbers is the algebraic closure of Q.

Note that C is minimal among algebraically closed extensions of F . Indeed,
let us assume that there is an algebraically closed field K such that C/K/F .
Let α ∈ C but α 6∈ K (it exists if we assume that C 6= K). Then α is algebraic
over F , and consequently algebraic over K. But since α 6∈ K, the minimal
polynomial of α over K cannot contain the factor X−α, which contradicts that
K is an algebraically closed field.

We can prove the following theorems (we will omit the proof).

Theorem 5.9. 1. Every field F has an algebraic closure.

2. Any two algebraic closures C and C ′ of F are F -isomorphic.

3. If E is an algebraic extension of F , C is an algebraic closure of F , and ι
is an embedding of F into C. Then ι can be extended to an embedding of
E into C.

Let us now prove the first transitivity property of field extensions. Several
will follow later on in this chapter.

Proposition 5.10. 1. If E is generated over F by finitely many elements
α1, . . . , αn algebraic over F , then E is a finite extension of F .

2. (Transitivity of algebraic extensions). If E is algebraic over K, and
K is algebraic over F , then E is algebraic over F .

Proof. 1. Set E0 = F , Ek = F (α1, . . . , αk), 1 ≤ k ≤ n, in particular En =
F (α1, . . . , αn) = E by definition of E. Then Ek = Ek−1(αk), where
αk is algebraic over F , and hence over Ek−1. Now [Ek : Ek−1] is the
degree of the minimal polynomial of αk over Ek−1, which is finite. By
multiplicativity of the degrees, we conclude that

[E : F ] =

n∏

k=1

[Ek : Ek−1] <∞.

2. Let α ∈ E with minimal polynomial

m(X) = b0 + b1X + . . .+ bn−1X
n−1 +Xn

over K since by assumption α is algebraic over K. The coefficients bi
are in K and thus are algebraic over F . Set L = F (b0, b1, . . . , bn−1), by
the first part, L is a finite extension of F . Therefore m(X) ∈ L[X], α is
algebraic over L, and L(α) is a finite extension of L. This gives us the
following tower of field extensions:

L(α)/L = F (b0, b1, . . . , bn−1)/F.

By transitivity of the degrees, since [L : F ] < ∞ and [L(α) : L] < ∞,
we get that [L(α) : F ] < ∞. We conclude since we know that all finite
extensions are algebraic, and thus α is algebraic over F .
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Corollary 5.11. If E is an extension of F and A is the set of all elements in
E that are algebraic over F , then A is a subfield of E.

Proof. If α, β ∈ A, then the sum, difference, product and quotient (if β 6= 0)
of α and β belong to F (α, β), which is a finite extension of F by the first part
of the above proposition. This is thus an algebraic extension since all finite
extensions are, and thus α+ β, α− β, αβ and α/β are in A, proving that A is
a field.

5.3 Separability

If f is a polynomial in F [X], we have seen above that we can construct a splitting
field K for f over F , and K is such that all roots of f lie in it. We can thus
study the multiplicity of the roots of f in K.

Definition 5.10. An irreducible polynomial f ∈ F [X] is separable if f has no
repeated roots in a splitting field. It is called inseparable otherwise. Note that if
f is not necessarily irreducible, then we call f separable if each of its irreducible
factors is separable.

For example f(X) = (X − 1)2(X − 2) ∈ Q is separable, since its irreducible
factors X − 1 and X − 2 are separable.

We start by computing a criterion to test if a polynomial has multiple roots.

Proposition 5.12. Consider

f(X) = a0 + a1X + · · ·+ anX
n ∈ F [X]

and its formal derivative

f ′(X) = a1 + 2a2X + · · ·+ nanX
n−1.

Then f has a repeated root in a splitting field if and only if the degree of the
greatest common divisor of f and f ′ is at least 1.

Proof. Let us assume that f has a repeated root in its splitting field, say α.
Then we can write

f(X) = (X − α)rh(X)

where r ≥ 2 since we consider a repeated root. Now we compute the derivative
of f :

f ′(X) = r(X − α)r−1h(X) + (X − α)rh′(X)

and since r − 1 ≥ 1, we have that (X − α) is a factor of both f and f ′.
Conversely, let us assume that the greatest common divisor g of f and f ′

has degree at least 1, and let α be a root of g (in a splitting field). By definition
of g, X − α is then a factor of both f and f ′. We are left to prove that α is a
repeated root of f . Indeed, if it were not the case, then f(X) would be of the
form f(X) = (X − α)h(X) where h(α) 6= 0 and by computing the derivative,
we would get (put r = 1 in the above expression for f ′) f ′(α) = h(α) 6= 0 which
contradicts the fact that X − α is a factor of f ′.
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As a corollary of this result, we can exhibit two classes of separable polyno-
mials.

Corollary 5.13. 1. Over a field of characteristic zero, every polynomial is
separable.

2. Over a field F of prime characteristic p, an irreducible polynomial f is
inseparable if and only if f ′ is the zero polynomial (equivalently f is in
F [Xp]).

Proof. 1. Without loss of generality, consider f an irreducible polynomial in
F [X], where F is of characteristic zero. If f is a polynomial of degree n,
then its derivative f ′ is of degree less than n, and it cannot possibly be
the zero polynomial. Since f is irreducible, the greatest common divisor
of f and f ′ is either 1 or f , but it cannot be f since f ′ is of smaller degree.
Thus it is 1, and f is separable by the above proposition.

2. We now consider the case where F is of characteristic p. As above, we
take f an irreducible polynomial of degree n in F [X] and compute its
derivative f ′. If f ′ is non-zero, we can use the same argument. But f ′

could also be zero, in which case the greatest common divisor of f and f ′

is actually f , and by the above proposition, f has a multiple root and is
then not separable. That f ′ = 0 means that f ∈ F [Xp] since we work in
characteristic p.

Example 5.10. Polynomials over R[X] and Q[X] are separable.

Another class of separable polynomials are polynomials over finite fields, but
this asks a little bit more work.

Lemma 5.14. Let F be a finite field of characteristic p. Consider the map

f : F → F, f(α) = αp.

Then f is an automorphism (called the Frobenius Automorphism). In particular,
we have for all α ∈ F that

α = βp

for some β ∈ F .

Proof. We have that f is a ring automorphism since

f(1) = 1

f(α+ β) = (α+ β)p = αp + βp = f(α) + f(β)

f(αβ) = (αβ)p = αpβp = f(α)f(β).

The second set of equalities uses the binomial expansion modulo p. Now f is a
monomorphism since F is a field, and an injective map from a finite set to itself
is necessarily surjective.
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Proposition 5.15. Every polynomial is separable over a finite field F (of prime
characteristic).

Proof. Suppose that f is an irreducible polynomial which, by contradiction, has
multiple roots in a splitting field. Using the criterion of the corollary, f(X)
must be in F [Xp], namely

f(X) = a0 + a1X
p + · · ·+ anX

np, ai ∈ F.

Using the bijectivity of the Frobenius automorphism, we can write ai = bpi ,
yielding

(b0 + b1X + · · ·+ bnX
n)p = bp0 + bp1X

p + · · ·+ bpnX
np = f(X)

which contradicts the irreducibility of f .

Definition 5.11. If E is an extension of F and α ∈ E, then α is said to be
separable over F if α is algebraic over F and its minimal polynomial µα,F is a
separable polynomial. If every element of E is separable over F , we say that E
is a separable extension of F or that E/F is separable.

Examples 5.11. 1. Typical examples of separable extensions are finite fields
and number fields.

2. If F is a field with algebraic closure C, then C contains a smallest field
containing all finite separable extensions of F , called the separable closure
of F . It is a separable extension of F .

Here is a first result on how separability behaves in a tower of extensions.

Lemma 5.16. If E/K/F and E is separable over F , then K is separable over
F and E is separable over K.

Proof. K/F is separable. Since K is a subfield of E, every element β ∈ K
belongs to E, and every element of E is separable over F by assumption.

E/K is separable. Take α ∈ E. Since E is separable over F , it is in
particular algebraic over F and we may consider the minimal polynomial µα,F

of α over F . Denote by µα,K the minimal polynomial of α over K, we have

µα,K | µα,F .

Since µα,F has no repeated root, neither has µα,K , and E/K is separable.

The converse is also true, and gives the transitivity of separable extensions:
If K/F and E/K are separable, then E/F is separable.

It is less easy to construct inseparable extensions, but here is a classical
example.
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Example 5.12. Let Fp denote the finite field of integers modulo p. Consider
the field F = Fp(t) of rational functions in t with coefficients in the finite field
with p elements Fp. We get a field extension of E/F by adjoining to F a root of
the polynomial Xp − t (one has to check that Xp − t is irreducible over Fp[t]).
The extension E/F is inseparable since

Xp − t = Xp − (
p
√
t)p = (X − p

√
t)p,

which has multiple roots.

Let E/F be a separable extension of F and let C be an algebraic closure of
E. We next count the number of embeddings of E in C that fix F , that is, the
number of F -monomorphisms of E into C. We start with a lemma.

Lemma 5.17. Let σ : E → E be an F -monomorphism and assume that f ∈
F [X] splits over E. Then σ permutes the roots of f , namely, if α is a root of f
in E then so is σ(α).

Proof. Write f(X) as

f(X) = b0 + b1X + · · ·+ bnX
n, bi ∈ F.

If α is a root of f in E, then

f(α) = b0 + b1α+ · · ·+ bnα
n = 0.

Apply σ to the above equation, and use that σ is a field homomorphism that
fixes F to get

b0 + b1σ(α) + · · ·+ bnσ(α)
n = 0,

showing that σ(α) is a root.

Theorem 5.18. Let E/F be a finite separable extension of degree n, and let σ
be an embedding of F into an algebraic closure C. Then σ extends to exactly n
embeddings of E in C. Namely, there are exactly n embeddings τ of E into C,
such that the restriction τ |F of τ to F coincides with σ. In particular, taking σ
to be the identity on F , there are exactly n F -monomorphisms of E into C.

Proof. We do a proof by induction. If n = 1, then E = F and σ extends to
exactly 1 embedding, namely itself.

We now assume that n > 1 and choose α ∈ E, α 6∈ F . Let f = µα,F be the
minimal polynomial of α over F of degree say r. It is irreducible and separable
(E/F is separable by assumption). In order to use the induction hypothesis,
we need to split the field extension E/F , which we do by considering the field
extension F (α), which satisfies

E/F (α)/F, [E : F (α)] = n/r, [F (α) : F ] = r.

We first take care of the extension F (α)/F . Let σ be an embedding of F into
C, and define the polynomial g = σ(f), where σ is applied on all the coefficients
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of f . The polynomial g inherits the property of being irreducible and separable
from f . Let β denotes a root of g. We can thus define a unique isomorphism

F (α) → (σ(F ))(β), b0 + b1α+ . . .+ brα
r 7→ σ(b0) + σ(b1)β + . . .+ σ(br)β

r

and restricted to F it indeed coincides with σ. This isomorphism is defined by
the choice of β, and there are exactly r choices for it, corresponding to the r
roots of g (note that this is here that the separability of g is crucial). For each of
these r isomorphisms, using the induction hypothesis on [E : F (α)] = n/r < n,
we can extend them to exactly n/r embeddings of E into C. This gives us a
total of n/r · r distinct embeddings of E into C extending σ. We conclude by
noting that we cannot have more than n such embeddings.

We conclude by giving a nice description of finite separable field extensions.

Theorem 5.19. (Theorem of the Primitive Element). If E/F is a finite
separable extension, then

E = F (γ)

for some γ ∈ E. We say that γ is a primitive element of E over F .

Proof. Since we have not studied finite fields yet, let us assume that F is an
infinite field. (If you have already studied finite fields, then you know we can
take γ to be any generator of the cyclic group E×).

We proceed by induction on the degree n of the extension E/F . If n = 1,
then E = F and we can take any element for α.

Let us thus assume n > 1, the assumption true up to n − 1, and say the
degree of E/F is n. Choose α ∈ E but not in F . We now look at the field
extension E/F (α). By induction hypothesis, there is a primitive element β
such that

E = F (α, β).

We are now going to prove that there exists a c ∈ F such that

E = F (α+ cβ),

that is

γ = α+ cβ

will be the primitive element. We will show that it is enough to take c 6∈ S, where
S is a finite subset of F defined as follows: let f be the minimal polynomial of
α over F , and let g be the minimal polynomial of β over F , the exceptional set
S consists of all c ∈ F such that

c =
α′ − α

β − β′

for α′ a root of f and β′ a conjugate of β (we extend F (α, β) to a field L in
which f and g both split to be able to speak of all their roots).
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To show that γ is primitive for c 6∈ S, it is enough to prove that F (α + cβ)
contains β and α = γ − cβ (clearly the reverse inclusion holds: F (α + cβ) ⊆
F (α, β)). To this end, it is enough to show that the minimal polynomial of β
over F (γ) cannot have degree greater or equal to 2, implying that β is in F (γ).

Note first that if we take the polynomial h(X) defined by

h(X) = f(γ − cX) ∈ F (γ)[X]

and evaluate it in β, we get

h(β) = f(γ − cβ) = f(α+ cβ − cβ) = 0.

Thus β is a root of h and the minimal polynomial of β over F (γ) divides both
g and h, so we are done if we show that the greatest common divisor of g and
h in F (γ)[X] cannot have degree greater or equal to 2.

Suppose the greatest common divisor does have degree≥ 2. Then g and h
have as common root in L not only β, but also β′ 6= β in L. This is where we
use the separability of g, since otherwise β could be a root with multiplicity 2.
Then

f(γ − cβ′) = 0 ⇒ γ − cβ′ = α′

for some root α′ of f , which can be rewritten as

α+ cβ − cβ′ = 0 ⇒ c =
α′ − α

β − β′

which is exactly what was ruled out by choosing c 6∈ S.

Definition 5.12. A simple extension is a field extension which is generated by
the adjunction of a single element.

Thus the primitive element Theorem above provides a characterization of
the finite extensions which are simple.

Example 5.13. Number fields are simple extensions.

5.4 Normality

So far, we have considered two properties of field extensions (both of them being
transitive): being algebraic and separable. We now introduce a third property,
which is not transitive, the one of being normal.

Definition 5.13. An algebraic extension E/F is normal if every irreducible
polynomial over F that has at least one root in E splits over E. If we call the
other roots of this polynomial the conjugates of α, we can rephrase the definition
by saying that if α ∈ E, then all conjugates of α over F are in E.

Note that this definition assumes that we start with an algebraic extension.
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Example 5.14. Consider the field extension E = Q( 3
√
2)/Q. The roots of the

irreducible polynomial f(X) = X3 − 2 are

3
√
2, ζ3

3
√
2, ζ23

3
√
2,

where ζ3 is a primitive 3rd root of unity (for example ζ3 = e2πi/3). Thus E is
not a normal extension.

We can give another characterization in terms of monomorphisms of E.

Theorem 5.20. The finite extension E/F is normal if and only if every F -
monomorphism of E into an algebraic closure C is actually an F -automorphism
of E. (Finite could be replaced by algebraic, which we will not prove).

Proof. If E/F is normal, then an F -monomorphism of E into C must map each
element of E to one of its conjugates (as is the case in the proof of Lemma 5.17).
Thus τ(E) ⊆ E, but τ(E) is an isomorphic copy of E and thus has the same
degree as E and E = τ(E), showing that τ is indeed an F -automorphism of E.

Conversely, consider α ∈ E and let β be a conjugate of α over F . There exists
an F -monomorphism of E into C that carries α to β (the construction is given
in the proof of Theorem 5.18). If all such embeddings are F -automorphisms of
E, that means β must be in E, and we conclude that E/F is normal.

Here is another characterization of normal extensions in terms of splitting
fields.

Theorem 5.21. The finite extension E/F is normal if and only if E is a
splitting field for some polynomial f in F [X].

Proof. Let E/F be a finite normal extension of degree n, and let α1, . . . , αn be
a basis for E over F . Consider for each αi its minimal polynomial fi over F .
By definition of normal extension, since fi has a root in E, then fi splits over
E, and so does the polynomial

f = f1 · · · fn.

To prove that E is a splitting field, we are left to prove it is the smallest field
over which f splits. This is here that we understand why we take such an f . If
f were to split over a subfield K, that is K such that

F ⊂ K ⊂ E

then each αi ∈ K, and K = E (this is a conclusion we cannot reach if we take
for f only one fi or a subset of them). This proves that E is a splitting field for
f over F .

Conversely, let E be a splitting field for some f over F , whose roots are
denoted by α1, . . . , αn. Let τ be an F -monomorphism of E into an algebraic
closure, that is τ takes each αi into another root of f .
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Since E is a splitting field for f , we have

F (α1, . . . , αn) = E

and τ(E) ⊂ E. Thus since E and τ(E) have same dimension, we get that

τ(E) = E

and τ is actually an automorphism of E, and by the above theorem, we conclude
the E/F is normal.

As a corollary, we see how a subextension inherits the property of normality.

Corollary 5.22. Let E/K/F be a finite extension ([E : F ] < ∞). If E/F is
normal, so is E/K.

Proof. Since E/F is normal, E is a splitting field for some polynomial f ∈ F [X],
that is E is generated over F by the roots of f . Since f ∈ F [X] ⊂ K[X], f can
also be seen as a polynomial in K[X] and E is generated over K by the roots
of f , and again by the above theorem, E/K is normal.

There is no reason for an arbitrary field extension E/F to be normal. How-
ever, if E/F is finite (or more generally algebraic) one can always embed it in
normal extension.

Definition 5.14. Let E/F be an algebraic extension. The normal closure of
E/F is an extension field N of E such that N/E is normal and N is minimal
with this property.

If E/F is finite, we can see it as follows: E is finitely generated over F , so
it can be written as E = F (α1, . . . , αn). Let now K be a normal extension of
F that contains E:

K/E/F.

Since K is normal, it must contain not only all the αi but also all their con-
jugates. Let fi be the minimal polynomial of αi, i = 1, . . . , n. Then we can
rephrase the last statement and say that K must contain all the roots of fi,
i = 1, . . . , n. Consider the polynomial

f = f1 · · · fn.

Then K must contain the splitting field N for f over F . But N/F is normal,
so N must be the smallest normal extension of F that contains E. Thus N is a
normal closure of E over F .
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The main definitions and results of this chapter are

• (3.1). Definitions of: field extension, minimal poly-
nomial, degree of a field extension, field homomor-
phism, algebraic, transcendental. That the degree is
multiplicative.

• (3.2). Definitions of: to split, splitting field, alge-
braically closed, algebraic closure. Transitivity of al-
gebraic extensions.

• (3.3). Definition of separability, typical separable ex-
tensions, separability in extension towers, number of
embeddings into an algebraic closure, primitive ele-
ment Theorem.

• (3.4). Definition of normality, two equivalent char-
acterizations of normal extensions.



Chapter 6
Exercises for Field Theory

Exercises marked by (*) are considered difficult.

6.1 Field extension and minimal polynomial

Exercise 88. 1. For which of the following p(X) do there exist extensions
K(α) of K for which α has minimal polynomial p(X)?

• p(X) = X2 − 4, K = R.

• p(X) = X2 + 1, K = Z5 (integers modulo 5).

• p(X) = X3 + 2, K = Q.

In the case where you obtain a field extension, what is the degree of the
extension?

2. Find an irreducible polynomial of degree 2 over the integers modulo 2.
Use it to construct a field with 4 elements. Describe the obtained field.

Answer.

1. p(X) = X2 − 4 = (X − 2)(X + 2), it is not irreducible so it cannot be
a minimal polynomial. Then p(X) = X2 + 1 = (X − 2)(X + 2) modulo
5, so it is not irreducible, and cannot be a minimal polynomial. Finally
X3 +2 is irreducible, monic, we obtain the field extension Q( 3

√
2)/Q, it is

of degree 3.

2. Take the polynomial X2 + X + 1, it has no root modulo 2 and is thus
irreducible. We can construct a field using the generic construction that
we know. The field Z2[X]/(X2+X+1) contains a root α of the polynomial,
it is a field containing 4 elements. Indeed, it is of degree 2 (degree of the
minimal polynomial), and a basis is given by {1, α}, thus every element

167
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can be written as a+ bα, a, b ∈ Z2. That makes 4 possible elements, and
the field is described by

Z2[X]/(X2 +X + 1) ≃ {a+ bα, a, b ∈ Z2}.

Exercise 89. 1. Show that C/R is an algebraic extension.

2. Compute the degree of the following extensions: Q( 3
√
2)/Q, Q(

√
3+

√
2)/Q.

3. Let E = Q(
√
2) and F = Q(i

√
2). Show that −1 is a sum of 2 squares in

F . Deduce that E and F are not isomorphic.
Answer.

1. C/R is an extension of degree 2 (a R-basis is {1, i}), it is thus finite, thus
algebraic.

2. [Q( 3
√
2) : Q] = 3 (a Q-basis is {1, 3

√
2, ( 3

√
2)2}), [Q(

√
3 +

√
2) : Q] = 4 (a

Q-basis is {1,
√
2,
√
3,
√
6}, because Q(

√
3 +

√
2) = Q(

√
3,
√
2)).

3. In F , we have that (i
√
2)2 + 12 = −1. Since both fields have the same

degree and knowing that a field homomorphism is always injective, we try
to build a ring homomorphism f from F to E. Thus

f((i
√
2)2 + 12) = f(−1) ⇒ f((i

√
2)2) + f(1) = −f(1)

since f is a ring homomorphism, furthermore, it must send f(1) to 1, thus
we must have

f((i
√
2))2 = −2

that is there must be an element of E whose square is negative which is
not possible.

Exercise 90. Consider the extension C/R. What are all the R-automorphisms
of C? Justify your answer.

Answer. Write an element x ∈ C as x = a + ib, a, b ∈ R, and let σ be an
R-automorphisms. Thus

σ(x) = σ(a) + σ(i)σ(b) = a+ σ(i)b

using for the first equality the property of ring homomorphism, and for the
second one that σ fixes R. Thus σ(x) is determined by σ(i). Since i2 = −1, we
have that σ(i2) = σ(−1), that is

σ(i)2 + 1 = 0.

Thus either σ(i) = i or σ(i) = −i, which are the only two possible R-automorphims
of C.
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Exercise 91. Prove that if [K(u) : K] is odd, then K(u) = K(u2).

Answer. We first notice that K(u2) ⊂ K(u), thus

[K(u) : K] = [K(u) : K(u2)][K(u2) : K].

Since u is a root of the polynomial X2 − u2 in K(u2)[X], we have that [K(u) :
K(u2)] ≤ 2, and it cannot be 2 because [K(u) : K] is odd, thus [K(u) : K(u2)] =
1 and the conclusion follows.

6.2 Splitting fields and algebraic closures

Exercise 92. What is the splitting field of the following polynomials?

1. f(x) = (x2 − 3)(x3 + 1) ∈ Q(x).

2. f(x) = x2 + x+ 1 ∈ F2[x].

Answer.

1. We have that f(X) = (x−
√
3)(x+

√
3)(x−1)(x2+x+1), thus the splitting

field of f must contain
√
3 and ζ3, the primitive third root of unity. This

then must be Q(i,
√
3).

2. We have that x2 + x + 1 is irreducible over F2, we can construct F4 as
F2[x]/(f(x)), that is F4 ≃ F2(w) where w

2+w+1 = 0. Thus the splitting
field of f is F4.

6.3 Separability

6.4 Normality

Exercise 93. Show that Q( 3
√
5)/Q is not normal.

Answer. The roots of x3 − 5 are 3
√
5, ζ3

3
√
5, ζ23

3
√
5, where ζ3 denote a primite

3rd root of unity. Since Q( 3
√
5)/Q is totally real, it cannot contain the complex

roots.

Exercise 94. Are the following claims true or false? Justify your answer.

1. Every polynomial splits over some field.

2. The polynomial x3 + 5 is separable over F7.

3. Every finite extension is normal.

4. Every separable extension is normal.

5. Every finite normal extension is a splitting field for some polynomial.
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6. A reducible polynomial cannot be separable.

Answer.

1. This is true, for every root of the polynomial, there is a field that will
contain this root, so that we can build a field extension containing all the
roots (if the polynomial has coefficients in R, then one can use C, but C
will not work if the polynomial has coefficients in a finite field).

2. True since F7 is a finite field.

3. False, Q( 3
√
5)/Q is finite but not normal.

4. False, Q( 3
√
5)/Q is separable (because Q is of characteristic zero) but not

normal.

5. True, we proved this.

6. False, when a polynomial is reducible, the definition of separability applies
on its irreducible factors, which may or may not be separable.

Exercise 95. True/False.

Q1. Every field has non-trivial extensions.

Q2. Every field has non-trivial algebraic extensions.

Q3. Extensions of the same degree are isomorphic.

Q4. Every algebraic extension is finite.

Q5. Every algebraic extension of Q is finite.

Q6. Every extension of a finite field is finite.

Q7. The polynomial X3 + 5 is separable over Z7 (= integers modulo 7).

Q8. Every finite extension is normal.

Q9. Every separable extension is normal.

Q10. Every K-monomorphism is a K-automorphism.

Q11. Every extension of a field of characteristic 0 is normal.

Answer.

Q1. That’s true! We are not speaking of algebraic extensions necessarily. Even
if you take C, you can for example get function fields over C by adding an
indeterminate.

Q2. We know that one of the characterizations of algebraically closed fields is
that they have no non-trivial algebraic extensions! So that is one counter
example.
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Q3. False! It’s the other way round: if two extensions are isomorphic, then
they have the same degree.

Q4. False, it is the other way round! If an extension is finite, it is algebraic. If
it is algebraic it does not have to be finite (take an algebraic closure).

Q5. Still false. Taking Q as the base field does not change anything to the
problem. The same counter example as in the previous question holds:
you can take an algebraic closure of Q, it is algebraic and infinite.

Q6. This is still false! You can build a function field as a counter example.

Q7. It is true. We have proved this result in general for fields of characteristic
zero and finite fields.

Q8. It’s false! There is no connection between both concepts. For example,
we know that Q(α) with α3 = 2 is finite and not normal.

Q9. It is false! There is no connection, you can take as above Q(α) with α3 = 2,
it is separable and not normal.

Q10. This is false! For a counter example, take any extension which is not
normal. You’ll find a K-monomorphism which is not a K-automorphism.

Q11. This is wrong! Imagine this were true, then all number fields would be
normal, this is surely not the case!!
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