
GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN

CHARACTERISTIC 2)

KEITH CONRAD

We will describe a procedure for figuring out the Galois groups of separable irreducible
polynomials in degrees 3 and 4 over fields not of characteristic 2. This does not include
explicit formulas for the roots, i.e., we are not going to derive the classical cubic and quartic
formulas.

1. Review

Let K be a field and f(X) be a separable polynomial in K[X]. The Galois group of f(X)
over K permutes the roots of f(X) in a splitting field, and labeling the roots as r1, . . . , rn
provides an embedding of the Galois group into Sn. We recall without proof two theorems
about this embedding.

Theorem 1.1. Let f(X) ∈ K[X] be a separable polynomial of degree n.

(a) If f(X) is irreducible in K[X] then its Galois group over K has order divisible by
n.

(b) The polynomial f(X) is irreducible in K[X] if and only if its Galois group over K
is a transitive subgroup of Sn.

Definition 1.2. If f(X) ∈ K[X] factors in a splitting field as

f(X) = c(X − r1) · · · (X − rn),

the discriminant of f(X) is defined to be

disc f =
∏
i<j

(rj − ri)2.

In degree 3 and 4, explicit formulas for discriminants of some monic polynomials are

disc(X3 + aX + b) = −4a3 − 27b2,

disc(X4 + aX + b) = −27a4 + 256b3,

disc(X4 + aX2 + b) = 16b(a2 − 4b)2,

Theorem 1.3. Let f(X) ∈ K[X] be a separable polynomial of degree n. If K does not have
characteristic 2, the Galois group of f(X) over K is a subgroup of An if and only if disc f
is a square in K.

This theorem is why we will assume our fields do not have characteristic 2.
1
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2. Galois groups of cubics

The Galois group of a cubic polynomial is completely determined by its discriminant.

Theorem 2.1. Let K not have characteristic 2 and f(X) be a separable irreducible cubic
in K[X]. If disc f = 2 in K then the Galois group of f(X) over K is A3. If disc f 6= 2 in
K then the Galois group of f(X) over K is S3.

Proof. The permutation action of the Galois group of f(X) on its roots turns the Galois
group into a transitive subgroup of S3 (Theorem 1.1). The only transitive subgroups of
S3 are A3 and S3, and we can decide when the Galois group is in A3 or not using the
discriminant (Theorem 1.3). �

Example 2.2. In Table 1 we list the discriminants and Galois groups over Q of cubics
X3 − aX − 1, where 1 ≤ a ≤ 6. We skipped X3 − 2X − 1 since it is reducible. The second
row, where a = 3, has a square discriminant and Galois group A3. The other Galois groups
in the table are S3. It is a hard theorem that X3− aX − 1 with a ∈ Z has Galois group A3

only when a = 3.

f(X) disc f Galois group

X3 −X − 1 −23 S3

X3 − 3X − 1 81 A3

X3 − 4X − 1 229 S3

X3 − 5X − 1 473 S3

X3 − 6X − 1 837 S3
Table 1. Some Galois groups over Q

If a cubic polynomial has Galois group A3 over Q, its roots all generate the same field
extension of Q, so all the roots are real since at least one root is real. But if all the roots
are real the Galois group does not have to be A3. The polynomial X3− 4X − 1 has all real
roots but its Galois group over Q is S3. Each real root of X3− 4X − 1 generates a different
cubic field in R.

Remark 2.3. The cubics X3 − 2X + 1 and X3 − 7X − 6 have respective discriminants 5
and 400 = 202, but this does not mean by Theorem 2.1 that their Galois groups over Q
are S3 and A3. Both polynomials are reducible (factoring as (X − 1)(X2 + X − 1) and
(X + 1)(X + 2)(X − 3)). Do not forget to check that a cubic is irreducible before you use
Theorem 2.1! You also need to check it is separable if you’re working in characteristic 3.
Outside characteristic 3, irreducible cubics are automatically separable.

Example 2.4. Let F be a field and u be transcendental over F . In F (u)[X], the polynomial
X3+uX+u is irreducible by Eisenstein’s criterion at u. The discriminant is −4u3−27u2 =
−u2(4u+27). If F does not have characteristic 2 or 3, this has a simple linear factor 4u+27,
so the discriminant is not a square in F (u). If F has characteristic 3, the discriminant is
−4u3 = −u3, which is not a square in F (u). Therefore when F does not have characteristic
2, the Galois group of X3 + uX + u over F (u) is isomorphic to S3.

We can’t say anything here about the Galois group of X3 + uX + u over F (u) when F
has characteristic 2. Its discriminant is −4u3 − 27u2 = u2, a perfect square, but this does
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not mean the Galois group of X3 +uX+u over F (u) is A3. Theorem 2.1, and Theorem 1.3
which it depended upon, require the base field K not have characteristic 2. In characteristic
2 we can’t tell if the Galois group is in An or not by checking if the discriminant is a square.

If you write down a random cubic over Q, it is probably irreducible and has Galois group
S3. Therefore it’s nice to have a record of a few irreducible cubics over Q whose Galois
group is A3. See Table 2, where each discriminant is a perfect square. (The polynomials in
the table are all irreducible over Q since ±1 are not roots or because they are all irreducible
mod 2.) We list in the table all three roots of each cubic in terms of one root we call r.
That list of roots is essentially telling us what the three elements of Gal(Q(r)/Q) are, as
each automorphism is determined by its effect on r.

f(X) disc f Roots

X3 − 3X − 1 92 r, r2 − r − 2, −r2 + 2

X3 −X2 − 2X + 1 72 r, r2 − r − 1, −r2 + 2

X3 +X2 − 4X + 1 132 r, r2 + r − 3, −r2 − 2r + 2

X3 + 2X2 − 5X + 1 192 r, r2 + 2r − 4, −r2 − 3r + 2
Table 2. Some cubics with Galois group A3 over Q

Here is an infinite family of A3-cubics over Q.

Corollary 2.5. For any integer k, set a = k2 + k + 7. The polynomial X3 − aX + a is
irreducible over Q and has Galois group A3.

Proof. For any odd number a, X3− aX + a ≡ X3 +X + 1 mod 2, which is irreducible mod
2, so X3 − aX + a is irreducible over Q. Its discriminant is −4(−a)3 − 27a2 = a2(4a− 27).
To have Galois group A3 we need 4a − 27 to be a square. Writing 4a − 27 = c2, we get
a = 1

4(c2 + 27). To make this integral we need c odd, and writing c = 2k + 1 gives us

a = 1
4(4k2 + 4k + 28) = k2 + k + 7. For any integer k, k2 + k + 7 is odd so if we define this

expression to be a then X3 − aX + a has Galois group A3 over Q. �

Without using Galois groups, we can describe the splitting field of any separable cubic
(not necessarily irreducible) in terms of one root and the discriminant.

Theorem 2.6. Let K not have characteristic 2 and f(X) ∈ K[X] be a separable cubic with

discriminant ∆. If r is one root of f(X) then a splitting field of f(X) over K is K(r,
√

∆).

In particular, if f(X) is a reducible cubic then its splitting field over K is K(
√

∆).

Proof. Without loss of generality, f(X) is monic. Let the roots of f(X) be r, r′, and
r′′. Write f(X) = (X − r)g(X), so r′ and r′′ are the roots of g(X). In particular,
g(r) 6= 0. By the quadratic formula for g(X) over K(r), K(r, r′, r′′) = K(r)(r′, r′′) =
K(r)(

√
disc g). Since f(X) is monic, so is g(X) and a calculation shows disc f = g(r)2 disc g,

so K(r,
√

disc g) = K(r,
√

disc f) = K(r,
√

∆).

If f(X) is reducible, we can take for r above a root of f(X) in K. Then K(r,
√

∆) =

K(
√

∆). �

It is crucial here that K does not have characteristic 2. The proof used the quadratic
formula, which doesn’t work in characteristic 2, but maybe the theorem itself could be
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proved by a different argument in characteristic 2? No: the theorem as written is wrong in
characteristic 2. Here is a counterexample. Let K = F (u), where F has characteristic 2 and
u is transcendental over F . The cubic polynomial X3 + uX + u is irreducible in K[X] with

discriminant u2, so K(r,
√

∆) = K(r). It can be shown that the degree of the splitting field

of X3 + uX + u over K is 6, not 3, so K(r,
√

∆) is not the splitting field of the polynomial
over K.

3. Galois groups of quartics

To compute Galois groups of separable irreducible quartics, we first list the transitive
subgroups of S4. These are the candidates for the Galois groups, by Theorem 1.1.

Type S4 A4 D4 Z/4Z V
(1, 1, 1, 1) 1 1 1 1 1
(1, 1, 2) 6 2
(2, 2) 3 3 3 1 3
(1, 3) 8 8
(4) 6 2 2

Sum 24 12 8 4 4
Table 3

The heading of Table 3 includes all the transitive subgroups of S4, up to isomorphism,
and the entries of the table are the number of permutations of each cycle type in such a
subgroup. (We write V for Klein’s four-group Z/2Z × Z/2Z.) Inside S4 there are three
transitive subgroups isomorphic to D4:

(3.1) 〈(1234), (13)〉, 〈(1324), (12)〉, 〈(1243), (14)〉.
These are the only subgroups of S4 with order 8 and they are conjugate to each other.
There are three transitive subgroups of S4 isomorphic to Z/4Z:

(3.2) 〈(1234)〉, 〈(1243)〉, 〈(1324)〉.
These are the the only cyclic subgroups of order 4 in S4 and they are conjugate to each
other. The unique transitive subgroup of S4 isomorphic to V is

(3.3) {(1), (12)(34), (13)(24), (14)(23)}.
There are other subgroups of S4 that are isomorphic to V , such as {(1), (12), (34), (12)(34)},
but they are not transitive so they can’t occur as the Galois groups we are looking for. We
will henceforth write V for the group (3.3).

We will often treat D4 and Z/4Z as if they are subgroups of S4 rather than just subgroups
known up to conjugation. Since a Galois group as a subgroup of Sn is only determined up
to conjugation anyway, this isn’t a bad convention provided we are careful when we refer
to specific elements of S4 lying in the Galois group.

A few observations from Table 3:

(1) The only transitive subgroups of S4 which are inside A4 are A4 and V . (In fact V
is the only subgroup of A4 with order 4, transitive or not).

(2) The only transitive subgroups of S4 with size divisible by 3 are S4 and A4.
(3) The only transitive subgroups of S4 containing a transposition (cycle type (1, 1, 2))

are S4 and D4.



GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2) 5

Let f(X) = X4 + aX3 + bX2 + cX + d be monic irreducible1 in K[X], so disc f 6= 0.
Write the roots of f(X) as r1, r2, r3, r4, so

(3.4) X4 + aX3 + bX2 + cX + d = (X − r1)(X − r2)(X − r3)(X − r4).
The Galois group of a separable irreducible cubic polynomial in K[X] is determined by

whether or not its discriminant ∆ is a square in K, which can be thought of in terms of the
associated quadratic polynomial X2 −∆ having a root in K. We will see that the Galois
group of a quartic polynomial depends on the behavior of an associated cubic polynomial.

We want to create a cubic polynomial with roots in the splitting field of f(X) over K
by finding an expression in the roots of f(X) which only has 3 possible images under the
Galois group. Since the Galois group is in S4, we look for an polynomial in 4 variables
which, under all 24 permutations of the variables, has 3 values. One such expression is

x1x2 + x3x4.

Under S4, acting on F (x1, x2, x3, x4), x1x2 + x3x4 can be moved to

x1x2 + x3x4, x1x3 + x2x4, and x1x4 + x2x3.

When we specialize xi 7→ ri, these become

(3.5) r1r2 + r3r4, r1r3 + r2r4, and r1r4 + r2r3.

It might not be the case that these are all K-conjugates, since not all 24 permutations of
the ri’s have to be in the Galois group. But the K-conjugate of a number in (3.5) is also in
(3.5), so we are inspired to look at the cubic

(X − (r1r2 + r3r4))(X − (r1r3 + r2r4))(X − (r1r4 + r2r3)).

Its coefficients are symmetric polynomials in the ri’s because the three factors are permuted
amongst themselves by any element of the Galois group (a subgroup of S4). So the coeffi-
cients must be in K by Galois theory. What are the coefficients of this cubic, in terms of
the coefficients of f(X)?

Write

(3.6) (X − (r1r2 + r3r4))(X − (r1r3 + r2r4))(X − (r1r4 + r2r3)) = X3 +AX2 +BX + C.

We seek expressions for A, B, and C as polynomials in the elementary symmetric functions
of the ri’s, which are a, b, c, and d up to sign. The value of A is easy:

A = −(r1r2 + r3r4 + r1r3 + r2r4 + r1r4 + r2r3) = −b.
The others require more effort. Multiplying out (3.6),

B = r21r2r3 + r1r
2
2r4 + r1r

2
3r4 + r2r3r

2
4 + r21r2r4 + r1r

2
2r3 + r1r3r

2
4 + r2r

2
3r4 + r21r3r4 +

r1r2r
2
3 + r1r2r

2
4 + r22r3r4

and
C = −(r1r2 + r3r4)(r1r3 + r2r4)(r1r4 + r2r3).

Using the algorithm in the proof of the symmetric function theorem,

B = s1s3 − 4s4 = ac− 4d

and
C = −(s21s4 + s23 − 4s2s4) = −(a2d+ c2 − 4bd).

1Irreducibility of a quartic implies separability outside of characteristic 2, so we don’t have to assume
separability explicitly since our running hypothesis is that K does not have characteristic 2.
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Thus

(3.7) X3 +AX2 +BX + C = X3 − bX2 + (ac− 4d)X − (a2d+ c2 − 4bd).

Definition 3.1. When f(X) is a quartic with roots r1, r2, r3, r4, its cubic resolvent R3(X)
is the cubic polynomial (3.6).

When f(X) is monic, we just checked that

R3(X) = X3 − bX2 + (ac− 4d)X − (a2d+ c2 − 4bd).

This may or may not be irreducible over K.
It is useful to record a special case of the cubic resolvent. Letting a = b = 0,

(3.8) f(X) = X4 + cX + d =⇒ R3(X) = X3 − 4dX − c2.

Example 3.2. We compute the Galois group of X4 − X − 1 over Q. This polynomial is
irreducible over Q since it is irreducible mod 2. By (3.8), the cubic resolvent of X4−X − 1
is X3 + 4X − 1, which is irreducible over Q (±1 are not roots). That shows the splitting
field of X4 −X − 1 contains a cubic subfield (namely Q(r1r2 + r3r4)), so the Galois group
of X4 −X − 1 over Q has order divisible by 3. The splitting field also contains Q(r1), so
the Galois group is also divisible by 4. Therefore the Galois group is either A4 or S4. The
discriminant of X4 − X − 1 is −283, which is not a rational square, so the Galois group
must be S4.

Example 3.3. Let’s determine the Galois group of X4 + 8X + 12 over Q. First we show
the polynomial is irreducible. If it is reducible then it has a linear factor or is a product of
two quadratic irreducibles. There is no rational root (a rational root would be an integer
factor of 12, and they are not roots), so there is no linear factor. To rule out two quadratic
irreducible factors over Q, consider the mod 5 irreducible factorization

X4 + 8X + 12 ≡ (X − 4)(X3 + 4X2 +X + 2) mod 5.

If X4 + 8X + 12 were a product of two quadratics over Q, it would be a product of two
(monic) quadratics over Z, and compatibility with the mod 5 factorization above would
force there to be at least two roots mod 5, which there are not.

By (3.8), the cubic resolvent of X4+8X+12 is X3−48X−64, which is irreducible mod 5
and thus is irreducible over Q, so the Galois group of X4 +8X+12 over Q has size divisible
by 3 (and 4), so the Galois group is either A4 or S4. The discriminant of X4 + 8X + 12 is
331776 = 5762, a perfect square, so the Galois group is A4.

Theorem 3.4. The quartic f(X) and its cubic resolvent R3(X) have the same discriminant.
In particular, R3(X) is separable since f(X) is separable.

Proof. A typical difference of two roots of R3(X) is

(r1r2 + r3r4)− (r1r3 + r2r4) = (r1 − r4)(r2 − r3).
Forming the other two differences, multiplying, and squaring, we obtain discR3 = disc f . �

Remark 3.5. There is a second polynomial that can be found in the literature under
the name of cubic resolvent for f(X). It’s the cubic whose roots are (r1 + r2)(r3 + r4),
(r1 + r3)(r2 + r4), and (r1 + r4)(r2 + r3). This amounts to exchanging additions and
multiplications in the formation of the resolvent’s roots. An explicit formula for the cubic
with these roots, in terms of the coefficients of f(X), is

X3 − 2bX2 + (b2 + ac− 4d)X + (a2d+ c2 − abc),
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which resembles the formula for R3(X) in (3.7), although the X-coefficient of R3(X) is a
bit simpler. This alternate resolvent, like R3(X), has the same discriminant as f(X). We
will not use it.

Let Gf be the Galois group of f(X) over K.

Theorem 3.6. With notation as above, Gf can be described in terms of whether or not
disc f is a square in K and whether or not R3(X) factors in K[X], according to Table 4.

disc f in K R3(X) in K[X] Gf
6= 2 irreducible S4
= 2 irreducible A4

6= 2 reducible D4 or Z/4Z
= 2 reducible V

Table 4

Proof. We check each row of the table in order.
disc f is not a square and R3(X) is irreducible over K: Since disc f 6= 2, Gf 6⊂ A4.

Since R3(X) is irreducible over K and its roots are in the splitting field of f(X) over
K, adjoining a root of R3(X) to K gives us a cubic extension of K inside the splitting field
of f(X), so #Gf is divisible by 3. It’s also divisible by 4, so Gf = S4 or A4, which implies
Gf = S4. This is like Example 3.2.

disc f is a square and R3(X) is irreducible over K: We have Gf ⊂ A4 and #Gf is divis-
ible by 3 and 4, so Gf = A4. This is like Example 3.3.

disc f is not a square and R3(X) is reducible over K: Since disc f 6= 2, Gf is not in A4,

so Gf is S4, D4, or Z/4Z. We will show Gf 6= S4.
What distinguishes S4 from the other two choices for Gf is that S4 contains 3-cycles. If

Gf = S4 then (123) ∈ Gf . Applying this hypothetical automorphism in the Galois group
to the roots of R3(X) carries them through a single orbit:

r1r2 + r3r4 7→ r2r3 + r1r4 7→ r3r1 + r2r4 7→ r1r2 + r3r4.

These numbers are distinct since R3(X) is separable. At least one root of R3(X) lies in K,
so the Gf -orbit of that root is just itself, not three numbers. We have a contradiction.

disc f is a square and R3(X) is reducible over K: The group Gf lies in A4, so Gf = V
or Gf = A4. We want to eliminate the second choice. As in the previous case, we can
distinguish V from A4 using 3-cycles. There are 3-cycles in A4 but not in V . If there were
a 3-cycle on the roots of f(X) in Gf then applying it to a root of R3(X) shows all the roots
of R3(X) are in a single Gf -orbit, which is a contradiction since R3(X) is (separable and)
reducible over K. Thus Gf contains no 3-cycles. �

Table 5 gives some examples of Galois group computations over Q using Theorem 3.6.
The discriminant of f(X) is written as a squarefree number times a perfect square and
R3(X) (computed from (3.8)) is factored into irreducibles over Q.

Example 3.7. Let F be a field and u be transcendental over F . In F (u)[X], the polynomial
X4 + uX + u is irreducible. Its discriminant is −27u4 + 256u3 = u3(256 − 27u). When F
doesn’t have characteristic 2 or 3, the discriminant has a simple factor 256 − 27u, so it is
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f(X) disc f R3(X) Gf

X4 −X − 1 −283 X3 + 4X − 1 S4

X4 + 2X + 2 101 · 42 X3 − 8X − 4 S4

X4 + 8X + 12 5762 X3 − 48X − 64 A4

X4 + 3X + 3 21 · 152 (X + 3)(X2 − 3X − 3) D4 or Z/4Z

X4 + 5X + 5 5 · 552 (X − 5)(X2 + 5X + 5) D4 or Z/4Z

X4 + 36X + 63 43202 (X − 18)(X + 6)(X + 12) V
Table 5

not a square. When F has characteristic 3, the discirminant is 256u3 = u3, which is not a
square. Therefore the discriminant is not a square when F doesn’t have characteristic 2.

The cubic resolvent of X4 + uX + u is X3 − 4uX − u2, which is irreducible in F (u)[X]
since it is a cubic without roots in F (u) (for degree reasons). Theorem 3.6 tells us the
Galois group of X4 + uX + u over F (u) is S4.

By Theorem 3.6, R3(X) is reducible over K only when Gf is D4, Z/4Z, or V . In the
examples in Table 5 of such Galois groups, R3(X) has one root in Q when Gf is D4 or
Z/4Z and all three roots are in Q when Gf is V . This is a general phenomenon.

Corollary 3.8. With notation as in Theorem 3.6, Gf = V if and only if R3(X) splits
completely over K and Gf = D4 or Z/4Z if and only if R3(X) has a unique root in K.

Proof. The condition for Gf to be V is: disc f = 2 and R3(X) is reducible over K. Since
discR3 = disc f , Gf = V if and only if discR3 is a square in K and R3 is reducible over K.

By Theorem 2.6, a splitting field of R3(X) over K is K(r,
√

discR3), where r is any root of
R3(X). Therefore Gf = V if and only if R3 splits completely over K.

The condition for Gf to be D4 or Z/4Z is: disc f 6= 2 in K and R3(X) is reducible over
K. These conditions, by Theorem 2.6 for the cubic R3(X), are equivalent to R3(X) having
a root in K but not splitting completely over K, which is the same as saying R3(X) has a
unique root in K. �

Theorem 3.6 does not decide between the Galois groups D4 and Z/4Z. The following
theorem provides a partial way to do this when the base field is Q, by checking the sign of
the discriminant.

Theorem 3.9. Let f(X) be an irreducible quartic in Q[X]. If Gf = Z/4Z then disc f > 0.
Therefore if Gf is D4 or Z/4Z and disc f < 0, Gf = D4.

Proof. If Gf = Z/4Z, the splitting field of f(X) over Q has degree 4. Any root of f(X)
already generates an extension of Q with degree 4, so the field generated over K by one
root of f(X) contains all the other roots. Therefore if f(X) has one real root it has 4 real
roots: the number of real roots of f(X) is either 0 or 4.

If f(X) has 0 real roots then they fall into complex conjugate pairs, say z and z and w
and w. Then disc f is the square of

(3.9) (z − z)(z − w)(z − w)(z − w)(z − w)(w − w) = |z − w|2|z − w|2(z − z)(w − w).

The differences z − z and w −w are purely imaginary (and nonzero, since z and w are not
real), so their product is real and nonzero. Thus when we square (3.9), we find disc f > 0.
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If f(X) has 4 real roots then the product of the differences of its roots is real and nonzero,
so disc f > 0. �

Example 3.10. The polynomial X4 + 4X2 − 2, which is irreducible by the Eisenstein
criterion, has discriminant−18432 and cubic resolvent X3−4X2+8X−32 = (X−4)(X2+8).
Theorem 3.6 says its Galois group is D4 or Z/4Z. Since the discriminant is negative,
Theorem 3.9 says the Galois group must be D4.

Theorem 3.9 does not distinguish D4 and Z/4Z as Galois groups when disc f > 0, since
some polynomials with Galois group D4 have positive discriminant. For example, we can’t
decide yet in Table 5 if X4 + 5X + 5 has Galois group D4 or Z/4Z over Q.

Remark 3.11. Any quartic in Q[X], reducible or not, has its nonreal roots coming in
complex-conjugate pairs, so a separable quartic f(X) has either 0, 2, or 4 nonreal roots,
and thus 4, 2, or 0 real roots respectively. The computation in the proof of Theorem 3.9
shows disc f > 0 if f(X) has 0 or 4 real roots, whether or not f(X) is irreducible. When
f(X) has 2 real roots, disc f < 0.

Remark 3.12. More careful methods lead to a stronger conclusion in Theorem 3.9: if
Gf = Z/4Z then disc f is a sum of two rational squares. This is a much stronger constraint
on the condition Gf = Z/4Z than saying disc f > 0, and can be used quite effectively to
show a Galois group is not Z/4Z in case disc f > 0. But it is not an if and only if criterion:
some quartics with Galois group D4 have a discriminant that is a sum of two squares.

4. Galois groups of quartics: D4 and Z/4Z

In this section we develop a method that separates D4 from Z/4Z as Galois groups of
quartics Let f(X) ∈ K[X] be an irreducible quartic where K does not have characteristic
2. By Theorem 3.6, Gf is D4 or Z/4Z if and only if

∆ := disc f 6= 2 in K and R3(X) is reducible over K.

When this happens, Corollary 3.8 tells us R3(X) has a unique root r′ in K.

Theorem 4.1 (Kappe, Warren). Let K be a field not of characteristic 2, f(X) = X4 +
aX3 + bX2 + cX+d ∈ K[X], and ∆ = disc f . Suppose ∆ 6= 2 in K and R3(X) is reducible
in K[X] with unique root r′ ∈ K. Then Gf = Z/4Z if the polynomials X2 + aX + (b− r′)
and X2 − r′X + d split over K(

√
∆), while Gf = D4 otherwise.

Proof. Index the roots r1, r2, r3, r4 of f(X) so that r′ = r1r2 + r3r4. Both D4 and Z/4Z, as
subgoups of S4, contain a 4-cycle. (The elements of order 4 in S4 are 4-cycles.) In Table 6
we describe the effect of each 4-cycle in S4 on r1r2 + r3r4 if the 4-cycle were in the Galois
group. The (distinct) roots of R3(X) are in the second column, each appearing twice.

Since r1r2 + r3r4 is fixed by Gf , the only possible 4-cycles in Gf are (1324) and (1423).
Both are in Gf since at least one is and they are inverses. Let σ = (1324).

If Gf = Z/4Z then Gf = 〈σ〉. If Gf = D4 then (3.1) tells us Gf = 〈(1324), (12)〉 =
{(1), (1324), (12)(34), (1423), (12), (34), (13)(24), (14)(23)} and the elements of Gf fixing r1
are (1) and (34). Set τ = (34). Products of σ and τ as disjoint cycles are in Table 7.

The subgroups of 〈σ〉 and 〈σ, τ〉 look very different. See the diagrams below, where the
subgroup lattices are written upside down.
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(abcd) (abcd)(r1r2 + r3r4)
(1234) r2r3 + r4r1
(1432) r4r1 + r2r3
(1243) r2r4 + r1r3
(1342) r3r1 + r4r2
(1324) r3r4 + r2r1
(1423) r4r3 + r1r2

Table 6

1 σ σ2 σ3 τ στ σ2τ σ3τ
(1) (1324) (12)(34) (1423) (34) (13)(24) (12) (14)(23)

Table 7

{id}

{id} 〈τ〉 〈σ2τ〉 〈σ2〉 〈στ〉 〈σ3τ〉

〈σ2〉 〈σ2, τ〉 〈σ〉 〈σ2, στ〉

〈σ〉 〈σ, τ〉
Corresponding to the above subgroup lattices we have the following subfield lattices of

the splitting field, where L in both cases denotes the unique quadratic extension of K inside
K(r1): if Gf = Z/4Z then L corresponds to 〈σ2〉, while if Gf = D4 then L corresponds to

〈σ2, τ〉. Since ∆ 6= 2 in K, [K(
√

∆) : K] = 2.

K(r1, r2, r3, r4)

K(r1) K(r1) K(r3) ? ? ?

L L ? K(
√

∆)

K K

If Gf = Z/4Z, then L = K(
√

∆) since there is only one quadratic extension of K in the
splitting field.
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If Gf = D4, then let’s explain how, in the subgroup and subfield lattice diagrams above,

we know K(r1) corresponds to 〈τ〉, K(r3) corresponds to 〈σ2τ〉, and K(
√

∆) corresponds
to 〈σ2, στ〉. The degree [K(r1) : K] is 4, so its corresponding subgroup in D4 = 〈σ, τ〉
has order 8/4 = 2 and τ = (34) fixes r1 and has order 2. Similarly, [K(r3) : K] = 4 and

σ2τ = (12) fixes r3. The subgroup corresponding to K(
√

∆) is the even permutations in
the Galois group, and that is {(1), (12)(34), (13)(24), (14)(23)} = 〈σ2, στ〉.

Although the two cases Gf = Z/4Z and Gf = D4 are different, we are going to develop
some common ideas for both of them concerning the quadratic extensions K(r1)/L and
L/K before we distinguish the two cases from each other.

If Gf = Z/4Z, Gal(K(r1)/L) = {1, σ2}. If Gf = D4, Gal(K(r1)/L) = 〈σ2, τ〉/〈τ〉 =
{1, σ2}. So in both cases, the L-conjugate of r1 is σ2(r1) = r2 and the minimal polynomial
of r1 over L must be

(X − r1)(X − r2) = X2 − (r1 + r2)X + r1r2.

Therefore r1 + r2 and r1r2 are in L. Since [K(r1) : K] = 4, this polynomial is not in K[X]:

(4.1) r1 + r2 6∈ K or r1r2 6∈ K.

If Gf = Z/4Z then Gal(L/K) = 〈σ〉/〈σ2〉 = {1, σ}, and if Gf = D4 then Gal(L/K) =
〈σ, τ〉/〈σ2, τ〉 = {1, σ}. The coset of σ in Gal(L/K) represents the nontrivial coset both
times, so Lσ = K. That is, an element of L fixed by σ is in K. Since σ(r1 + r2) = r3 + r4
and σ(r1r2) = r3r4, the polynomials

(4.2) (X − (r1 + r2))(X − (r3 + r4)) = X2 − (r1 + r2 + r3 + r4)X + (r1 + r2)(r3 + r4),

and

(4.3) (X − r1r2)(X − r3r4) = X2 − (r1r2 + r3r4)X + r1r2r3r4

have coefficients in Lσ = K.
The linear coefficient in (4.2) is a and the constant term is

(r1 + r2)(r3 + r4) = r1r3 + r1r4 + r2r3 + r2r4 = b− (r1r2 + r3r4) = b− r′,

so (4.2) equals X2 + aX + (b− r′). The quadratic polynomial (4.3) is X2− r′X + d. When
r1 + r2 6∈ K, (4.2) is irreducible in K[X], so its discriminant is a nonsquare in K, and if
r1 + r2 ∈ K then (4.2) has a double root and its discriminant is 0. Similarly, (4.3) has a
discriminant that is a nonsquare in K or is 0. Therefore the splitting field of (4.2) or (4.3)
over K is either L or K and (4.1) tells us at least one of (4.2) and (4.3) has a nonsquare
discriminant in K (so has splitting field L).

Since r1 + r2 and r1r2 are in L and [L : K] = 2, each one generates L over K if it is not
in K. This happens for at least one of the two numbers, by (4.1).

First suppose Gf = Z/4Z. Then L = K(
√

∆), so X2 + aX + (b− r′) and X2 − r′X + d

both split completely over K(
√

∆), since their roots are in L.

Next suppose Gf = D4. Then L 6= K(
√

∆). By (4.1) at least one of (4.2) or (4.3) is

irreducible over K, so its roots generate L over K and therefore are not in K(
√

∆). Thus

the polynomial in (4.2) or (4.3) will be irreducible over K(
√

∆) if it’s irreducible over K.

Since the conclusions about the two quadratic polynomials over K(
√

∆) are different
depending on whether Gf is Z/4Z or D4, these conclusions tell us the Galois group. �



12 KEITH CONRAD

Remark 4.2. The proof of Theorem 4.1 by Kappe and Warren shows Gf = Z/4Z if and

only if X2 + aX + (b − r′) and X2 − r′X + d split completely over K(
√

∆), thereby not
having to treat the case Gf = D4 directly.

Corollary 4.3. When K does not have characteristic 2 and

f(X) = X4 + aX3 + bX2 + cX + d

is an irreducible quartic in K[X], define

∆ = disc f and R3(X) = X3 − bX2 + (ac− 4d)X − (a2d+ c2 − 4bd).

The Galois group of f(X) over K is described by Table 8.

∆ in K R3(X) in K[X] (a2 − 4(b− r′))∆ and (r′2 − 4d)∆ Gf
6= 2 irreducible S4
= 2 irreducible A4

6= 2 root r′ ∈ K at least one 6= 2 in K D4

6= 2 root r′ ∈ K both = 2 in K Z/4Z
= 2 reducible V

Table 8

Proof. The polynomials X2 + aX + (b− r′) and X2− r′X + d split completely over K(
√

∆)

if and only if their discriminants a2− 4(b− r′) and r′2− 4d are squares in K(
√

∆). We saw
in the proof of Theorem 4.1 that these discriminants are either 0 or nonsquares in K. A
nonsquare in K is a square in K(

√
∆) if and only if its product with ∆ is a square, and

this is vacuously true for 0 also. �

In Table 9 we list the Galois groups over Q of several quartic trinomials X4 +cX+d. All
but the last is Eisenstein at some prime; check as an exercise that the last polynomial in
the table is irreducible over Q. Verify all of the Galois group computations using Corollary
4.3. If you pick a quartic in Q[X] at random it probably will be irreducible and have Galois
group S4, or perhaps A4 if by chance the discriminant is a square, so we only list examples
in Table 9 where the Galois group is smaller, which means the cubic resolvent is reducible.
Since a = b = 0, so a2−4(b− r′) = 4r′, to decide when Gf is D4 or Z/4Z we need to decide
when the rational numbers 4r′∆ and (r′2 − 4d)∆ are both squares in Q.

X4 + cX + d ∆ X3 − 4dX − c2 4r′∆ and (r′2 − 4d)∆ Gf

X4 + 3X + 3 21 · 152 (X + 3)(X2 − 3X − 3) −56700, −14175 D4

X4 + 5X + 5 5 · 552 (X − 5)(X2 + 5X + 5) 5502, 2752 Z/4Z

X4 + 8X + 14 2 · 5442 (X − 8)(X2 + 8X + 8) 46082, 21762 Z/4Z

X4 + 13X + 39 13 · 10532 (X − 13)(X2 + 13X + 13) 273782, 136892 Z/4Z

X4 + 36X + 63 43202 (X − 18)(X + 6)(X + 12) irrelevant V
Table 9
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Remark 4.4. Remark 2.3 about cubics also holds for quartics: don’t forget to check that
your quartic is irreducible before applying Corollary 4.3. For example, X4 + 4 has discrimi-
nant 1282 and cubic resolvent X3−16X = X(X+4)(X−4). Such data (square discriminant,
reducible resolvent) suggest the Galois group of X4 +4 over Q is V , but X4 +4 is reducible:
it factors as (X2+2X+2)(X2−2X+2). Both factors have discriminant −4, so the splitting
field of X4 + 4 over Q is Q(

√
−4) = Q(i) and the Galois group of X4 + 4 over Q is cyclic

of order 2.
As another example, X4 + 3X+ 20 has discriminant ∆ = 77 ·1632 and its cubic resolvent

is (X − 9)(X2 + 9X + 1), which suggests the Galois group is D4 or Z/4Z. Since r′ = 9 and
(r′2 − 4d)∆ = 77 · 1632 is not a square, it looks like the Galois group is D4, but the quartic
is reducible: it is (X2 +3X+4)(X2−3X+5). The factors have discriminants −7 and −11,
so the splitting field of X4 + 3X + 20 over Q is Q(

√
−7,
√
−11), whose Galois group over

Q is V .

Exercise. Show X4 + 24X + 36 has Galois group A4 over Q and X4 + 24X + 73 has
Galois group V over Q. Remember to prove both polynomials are irreducible over Q first!

From Corollary 4.3 we obtain the following Galois group test for irreducible quartics of
the special form X4 + bX2 + d.

Corollary 4.5. Let f(X) = X4 + bX2 + d be irreducible in K[X], where K does not have
characteristic 2. Its Galois group over K is V , Z/4Z, or D4 according to the following
conditions.

(1) If d = 2 in K then Gf = V .
(2) If d 6= 2 in K and (b2 − 4d)d = 2 in K then Gf = Z/4Z.
(3) If d 6= 2 in K and (b2 − 4d)d 6= 2 in K then Gf = D4.

In the second condition, we could simplify the hypothesis to just (b2 − 4d)d = 2 in K
since this forces d 6= 2: if (b2 − 4d)d = 2 and d = 2 then b2 − 4d = 2, which contradicts
irreducibility of X4 + bX2 + d.

Proof. The discriminant of X4 + bX2 + d is 16d(b2 − 4d)2. By hypothesis the discriminant
is nonzero, so up to square factors it is the same as d.

The cubic resolvent is

X3 − bX2 − 4dX + 4bd = (X − b)(X2 − 4d),

which is reducible over K with b as a root. In the notation of Corollary 4.3, if ∆ is not a
square then r′ = b, so r′2 − 4d = b2 − 4d and a2 − 4(b− r′) = 0. Translating Corollary 4.3
into the three conditions above is left to the reader. �

In Table 10 are some examples over Q.
The roots of a polynomial X4 + bX2 + d can be written down explicitly, using iterated

square roots. Therefore it will come as no surprise that Corollary 4.5 was known before
Corollary 4.3. The earliest reference to Corollary 4.5 which I know is an exercise in [1,
p. 53].

Appendix A. The Old Distinction Between D4 and Z/4Z

Before Kappe and Warren proved Theorem 4.1, the following theorem was the classical
procedure to decide between D4 and Z/4Z as Galois groups (outside of characteristic 2).
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X4 + bX2 + d d (b2 − 4d)d Gf

X4 + 4X2 + 1 1 12 V

X4 − 4X2 + 2 2 16 Z/4Z

X4 + 4X2 − 2 −2 −16 D4

X4 + 5X2 + 2 2 34 D4

X4 − 5X2 + 5 5 25 Z/4Z

X4 − 5X2 + 3 3 13 D4

Table 10

Theorem A.1. Let f(X) ∈ K[X] be an irreducible quartic, where K does not have char-
acteristic 2, and set ∆ = disc f . Suppose ∆ is not a square in K and R3(X) is reducible in
K[X], so Gf is D4 or Z/4Z.

(1) If f(X) is irreducible over K(
√

∆) then Gf = D4.

(2) If f(X) is reducible over K(
√

∆) then Gf = Z/4Z.

Proof. We will make reference to the field diagrams for the two possible Galois groups in
Section 4.

When Gf = D4, the field diagram in this case shows the splitting field of f(X) over K

is K(r1,
√

∆). Since [K(r1,
√

∆) : K] = 8, [K(r1,
√

∆) : K(
√

∆)] = 4, so f(X) must be

irreducible over K(
√

∆).

When Gf = Z/4Z, the splitting field of f(X) over K(
√

∆) has degree 2, so f(X) is

reducible over K(
√

∆).

Because the different Galois groups imply different behavior of f(X) over K(
√

∆), these

properties of f(X) over K(
√

∆) tell us the Galois group. �

Example A.2. Taking K = Q, the polynomials X4 + 3X + 3 and X4 + 5X + 5 from Table
5 both fit the hypotheses of Theorem A.1. We will use Theorem A.1 to show the Galois
groups over Q are as listed in Table 11.

f(X) disc f R3(X) Gf

X4 + 3X + 3 21 · 152 (X + 3)(X2 − 3X − 3) D4

X4 + 5X + 5 5 · 552 (X − 5)(X2 + 5X + 5) Z/4Z
Table 11

To compute the Galois groups using Theorem A.1, we need to decide if X4 + 3X + 3 is
irreducible over Q(

√
21) and if X4 + 5X + 5 is irreducible over Q(

√
5). Theorem A.1 says

that when the polynomial is irreducible over the quadratic field, its Galois group over Q is
D4. If it factors over the quadratic field then the Galois group is Z/4Z.

These quartics are both irreducible over Q, so their roots have degree 4 over Q and
therefore don’t lie in a quadratic field. That means if either of these quartics factors over
a quadratic field, it must be a product of two quadratic factors rather than into a linear
times a cubic.

To decide if X4+3X+3 is irreducible over Q(
√

21), we set up a hypothetical factorization

(A.1) X4 + 3X + 3 = (X2 +AX +B)(X2 + CX +D)
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and read off the algebraic conditions imposed on the coefficients:

(A.2) A+ C = 0, B +D +AC = 0, AD +BC = 3, BD = 3.

Therefore C = −A and D = −AC −B = A2 −B, so the third condition in (A.2) becomes
A(A2 − 2B) = 3. Necessarily A 6= 0 and we can solve for B:

B =
A3 − 3

2A
.

Therefore the condition BD = 3 becomes

3 =
A3 − 3

2A

(
A2 − A3 − 3

2A

)
=
A6 − 9

4A2
.

Clearing the denominator,

(A.3) 0 = A6 − 12A2 − 9 = (A2 + 3)(A4 − 3A2 − 3).

This equation needs to have a solution A in Q(
√

21). The condition A2 + 3 = 0 obviously
has no solution in Q(

√
21) ⊂ R. Since X4 − 3X2 − 3 is irreducible over Q, its roots have

degree 4 over Q and therefore can’t lie in Q(
√

21). So we have a contradiction, which proves
X4 + 3X + 3 is irreducible over Q(

√
21), and that means the Galois group of X4 + 3X + 3

over Q is D4. Compare the way this method treats X4 + 3X + 3 and the earlier procedure
in Table 9!

If we set up a hypothetical factorization of X4 +5X+5 over Q(
√

5) as in (A.1), but with
coefficients of 5 in place of 3 on the left side of (A.1), we get constraints similar to (A.2),
and the analogue of (A.3) is

(A.4) 0 = A6 − 20A2 − 25 = (A2 − 5)(A4 + 5A2 + 5),

which has an obvious solution in Q(
√

5): A =
√

5. This leads to the factorization

X4 + 5X + 5 =

(
X2 +

√
5X +

5−
√

5

2

)(
X2 −

√
5X +

5 +
√

5

2

)
,

so X4 + 5X + 5 has Galois group Z/4Z over Q.
It’s intriguing that to solve for A, the right sides of both (A.3) and (A.4) equal the cubic

resolvent from Table 11 evaluated at A2. Is A always a root of R3(X
2)? No. For example,

if
f(X) = X4 + 2X3 − 6X2 − 2X + 1

then its cubic resolvent (using (3.7)) is

R3(X) = X3 + 6X2 − 8X − 32 = (X + 2)(X2 + 4X − 16),

and in a factorization f(X) = (X2 +AX +B)(X2 +CX +D) computations similar to the
ones above show A is a root of

X6 − 6X5 + 40X3 − 20X2 − 56X + 16 = (X2 − 2X − 4)(X4 − 4X3 − 4X2 + 16X − 4),

which is not R3(X
2). But it is R3(X

2−2X−6). Further investigation into the relationship
between factorizations of f(X) and R3(X) is left to the reader.

As this example illustrates, Theorem A.1 is tedious to use by hand to distinguish between
Galois groups D4 and Z/4Z. The theorem of Kappe and Warren is a lot nicer. Of course
if you have access to a computer algebra package that can factor quartic polynomials over
quadratic fields, then Theorem A.1 becomes an attractive method.
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