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1 Preparation.

Be sure to read through the Preliminaries: pages 1-15 from the book. I will
assume that you have understood them and can do the exercises. Of course,
you are free to ask questions about the material, privately, or in class, and
get it clarified.

2 Group axioms and definitions.

Definition: Group We define a group to be a non empty set G together
with a binary operation f : G×G⇒ G such that:

1. f is associative. (What does it mean?)

2. There exists an element e ∈ G such that

f(e, g) = f(g, e) = g ∀g ∈ G.

3. For each g ∈ G there is some element g′ ∈ G such that

f(g, g′) = f(g′, g) = e.

We shall take the following shortcuts.

1. Definition: commutative group A group G is said to be com-
mutative if f(g, h) = f(h, g) ∀g, h ∈ G. Such a group is also called
abelian.

2. We shall rewrite f(g, h) as g + h if the group is abelian and g · h or
just gh in general, dropping all reference to “f”. On rare occasions, for
comparing different operations, we may use other symbols to denote
the operation.

3. Extended product notation. Suppose we are using the convention
to write the product of elements g, h as simply gh. We shall extend
this to subsets S, T ⊂ G as follows.

By ST we shall denote the set {st|s ∈ S, t ∈ T}.
We shall extend this to products of several sets as needed.

If a set is a singleton, then we may simply write the element in place
of the set. Thus {s}T can be shortened to sT .

We may also use the inverses of sets, thus S−1 = {s−1|s ∈ S}. We could
also use powers S2 = SS etc., but we prefer not to take this shortcut!
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4. f(g, g) will become g2 with no mention of “f”. This is naturally ex-
tended to gn. The same expression becomes ng in case the group is
abelian and we are using “+” as the operation symbol.

5. The element e is proved to be unique and is called the identity ele-
ment of the group. It may be denoted by 0 for an abelian group and
by 1 or e in general.

6. The associated element g′ is also shown to be unique and is called the
inverse of g. It is denoted by the more suggestive notation g−1 which
is replaced by −g when the group is abelian and the operation symbol
is +.

2.1 Cyclic groups.

Definition: Subgroup Suppose that G is a group with binary operation f .

• Suppose that H ⊂ G is a non empty subset which is closed under the
binary operation f , i.e. f(h1, h2) ∈ H whenever h1, h2 ∈ H.

• Also suppose that for every h ∈ H the inverse h−1 also belongs to H.

Then it is easy to see that the restriction of the operation f to H makes
it into a group and H is said to be a subgroup of G.

We shall write this in notation as H < G. Caution! Note that this
notation may lead you to believe that H has to be smaller than G, so H
cannot equal G. That is not the implication! Many authors on group theory
avoid this notation, perhaps to avoid this confusion!

Definition: Order of an element If G is a group and g ∈ G then we
define:

order of g = |g| = min{n|gn = e}.

Remember the convention that the minimum of an empty set is ∞.
We shall use the notation:

< g >= {gn|n ∈ ZZ}

and call it the cyclic group generated by g. Note that we are tacitly claiming
that it is a subgroup of G, i.e. < g >< G.

Alternatively we could define < g > as the smallest subgroup of G
which contains g.

Also note that if n = −m a negative integer, then by gn we mean (g−1)
m

.
It is easy to note that (g−1)

m
gm = e and hence (g−1)

m
= (gm)−1.

It can be easily show that the set < g > is an infinite set if |g| =∞ and
has exactly d elements if |g| = d.
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Moreover, if |g| = d is finite, then this set < g > can be explicitly written
as {e = g0, g = g1, g2, · · · , gd−1}.

Further, for any n ∈ ZZ, we can prove that gn = gr where r is the remain-
der when n is divided by d.

Observation. If the elements of H are of finite order, then the condition
about the inverses can be omitted, since the inverse of an element with order
d is seen to be its (d− 1)-th power.

Note that the cyclic group generated by a single element g ∈ G can be
also characterized as the smallest subgroup of G containing g. Equivalently,
it can be also defined as

< g >=
⋂
{H | g ∈ H < G}

or the intersection of all subgroups of G containing g.
This observation can be strengthened to the
Definition: Group generated by a set . Given a set S ⊂ G, we define

a subgroup of G generated by S as:

< S >=
⋂
{H | S ⊂ H < G}.

For calculation purposes, it can also be characterized as a set of finite
products s1 · · · sr with si ∈< ti > where ti ∈ S for i = 1, · · · , r.

Despite the simple definition, the actual calculation of the resulting group
can be quite complicated!

To prove these observations, you only need to know that an arbitrary
intersection of subgroups of G is also a subgroup of G. This is easy to prove!

2.1.1 Exercises on groups.

1. For any subset S ⊂ G recall:

SS = {s1s2 | s1, s2 ∈ S}.

Prove that S < G iff SS = S and for every s ∈ S, we have s−1 ∈ S.

As before, if every element of S has a finite order, then S < G iff
SS = S.

In particular, if G is a finite group, then S < G iff SS = S.

2. Given elements g, h ∈ G the element ghg−1 will turn out to be very
useful. We shall call it the conjugate of h by g. It may be denoted by
the suggestive notation hg.

Prove that |h| = |ghg−1|.
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Deduce that |xy| = |yx| for any x, y ∈ G.

Note that the equations are supposed to work naturally even for infinite
orders.

3. Conjugate subgroups.

Prove that if H < G and g ∈ G, then gHg−1 < G.

For proof, simply note that (gHg−1)(gHg−1) = gHHg−1 = gHg−1, the
last equation follows since H < G.

Also, it is obvious that gHg−1 contains the inverses of all its elements,
since (

ghg−1
)−1

= gh−1g−1 ∈ gHg−1

since H < G implies h−1 ∈ H when h ∈ H.

The group gHg−1 is said to be a conjugate of H by g and is also written
in the suggestive notation Hg.

4. This calculation also leads to the most important concept in group
theory.

Definition: Normal subgroup. A subgroup H < G is said to be a
normal subgroup if gHg−1 = H for all g ∈ G.

We shall use the customary notation

H C G

to indicate that H is a normal subgroup of G.

Prove that the subgroups < e > and G are always normal. These are
also called the trivial subgroups for obvious reasons.

Definition: Simple group. A group G is said to be simple if < e >
and G are the only normal subgroups, i.e. G has only trivial normal
subgroups.

One of the biggest achievements of group theory is considered to be the
classification of all finite simple groups. 1

1Despite the announcement of this great theorem some years back, some doubts still
persist about the complete validity of this theorem. The number of mathematicians in the
world who may know the complete proof of the theorem is rather small and people are
still working on writing the definitive version.

Many group theorists are said to have left group theory after the announcement of the
theorem, considering that there was not much left to prove!
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5. Prove that if |g| = d <∞ and n is any integer, then:

|gn| = d

GCD(n, d)
.

Make and prove an appropriate statement if |g| =∞.

6. Deduce that if |g| = d <∞ and if h = gn ∈< g > then

< h >=< g > iff GCD(n, d) = 1.

Make and prove an appropriate statement if |g| =∞.

7. We shall say that an element g ∈ G generates G if G =< g >, i.e.
G is a cyclic group consisting of all powers of g.

Let n be a positive integer and define ZZn by:

ZZn = ZZ/nZZ.

Prove that ZZn is an abelian group under the usual “+” inherited from
ZZ. Prove that it is a cyclic group.

Prove that a ∈ ZZn is a generator of ZZn iff GCD(a, n) = 1.

Deduce that the number of distinct generators of ZZn are exactly φ(n)
the Euler φ function evaluated at n.

8. Commutativity in groups.

• Prove that for any elements g, h ∈ G we have (gh)−1 = h−1g−1.
More generally (g1g2 · · · gr)−1 = g−1

r · · · g−1
2 g−1

1 .

• We say that elements g, h ∈ G commute with each other if gh =
hg.

Prove that g, h commute with each other iff ghg−1h−1 = e. Thus
the element ghg−1h−1 measures how far the elements don’t com-
mute!

We define the Commutator of elements g, h ∈ G to be the
element ghg−1h−1. We shall denote it by the symbol [g, h].

The group generated by all the commutators of elements of G is
called the Commutator subgroup of G. It is often denoted by
the convenient symbol G′, or by a more suggestive [G,G].

Caution: Don’t forget that elements of [G,G] are products of
Commutator elements and cannot, in general, be written as a
single Commutator.

Thus gh = hg iff [g, h] = e.

Note: We could write [g, h] = hgh−1 = g(g−1)h. This can be
useful later!
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• Prove the formula [g, h]−1 = [h, g].

• Prove that if a group has the property that |g| ≤ 2 for each g ∈ G
then G is abelian.

Hint: Try to show that [g, h] = e for all g, h ∈ G.

• Challenging problem!

Let us say that a group has property Pm if (gh)m = gmhm for all
g, h ∈ G.

Note that G is abelian iff G has property Pm for each m =
1, 2, 3, · · · .
Prove that G is abelian iff there is some non negative integer n
such that G has property Pn, Pn+1, Pn+2.

Hint: Note that P0 and P1 are trivially true. Prove that P2 alone
implies that G is abelian.

Thus, the first non trivial case is n = 3.

• Another challenging problem!

Suppose we replace our group axioms by the following apparently
weaker ones:

– G is a non empty set with a binary associative operation de-
noted by “·”.

– G has an element e such that a · e = a ∀a ∈ G.

– Each element a ∈ G has an associated element denoted as
h(a) such that a · h(a) = e.

Prove that (G, ·) is a group! So, the axioms are not weaker at all,
despite their appearance!

Now here is a shocker. Suppose that we keep the first two axioms
as they are but replace the third axiom by a similar but different
one thus:

Each element a ∈ G has an associated element denoted as h(a)
such that h(a) · a = e.

Find an example (G, ·) where the new axioms are satisfied, but G
is not a group!

2.2 Permutation groups.

A more useful way of thinking about a group is this.
Fix some set Ω. Define SΩ to be the set of all bijective functions from Ω

to itself. If the set Ω is finite, then these are easily viewed as permutations of
the set. The same can be thought for infinite sets with a suitable imagination.
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The set SΩ with the binary operation of composition of the functions
forms a natural group. The identity is the identity function and is often
denoted as I or Id. The inverse is simply the inverse function.

Later on, we shall prove a theorem which says that all groups can be
viewed as subgroups of SΩ for some Ω.

For a finite set Ω, it is convenient to develop efficient notation and con-
ventions. Since most of our groups will be finite, this will be very useful.

2.2.1 Conventions for a finite permutation group.

Here are the usual simplifications.

1. If Ω has n elements, we agree to list them as simply the natural numbers
1, 2, · · · , n and simplify the notation SΩ to Sn.

The permutation functions are then best described by simply listing
the images of various elements of Ω in the form of a table. Example:

σ =

(
1 2 3 4
3 2 1 4

)
2. While this is efficient, it has two drawbacks. We keep on writing the

same first row of n numbers for every element and we probably should
economize on the second row.

For example, this σ above can be quickly described as “exchange 1 and
3, leave the rest unchanged”.

In symbols, we shall agree to write it as
(

1 3
)

which tells us about
swapping 1, 3 and we agree that the unmentioned ones are unchanged!

More generally, we shall agree that
(

2 3 4
)

shall be the permutation
which send 2 to 3, 3 to 4 and 4 to 2. It then leaves 1 unchanged.

We formalize this thus:

Cycle notation A sequence
(
a1 a2 · · · ar−1 ar

)
is called a cycle

of length r (or simply an r-cycle) and intended to permute the elements(
a1 a2 · · · ar−1 ar

)
in a cycle.

3. Combining cycles In permutation groups we often omit the com-
position symbol and simply write cycles next to each other, with the
understanding that each cycle represents a function and these are to
be composed from right to left.

Thus
(

1 3
) (

2 4
)

is the same as the permutation(
1 2 3 4
3 4 1 2

)
.
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When the cycles have no common elements, then they commute, but
not otherwise.

It is a theorem that every permutation can be written as a product of
disjoint cycles and the expression is unique, except for the order of the
cycles and the fact that entries of a cycle can be permuted in a cyclic
manner without changing its meaning.

An example of permuting the entries in a cycle is:(
1 2 3

)
=
(

2 3 1
)

=
(

3 1 2
)

4. Orders of permutations. It is easy to check that the order of an
r-cycle is simply r. If a permutation σ is equal to a product σ1σ2 · · ·σm
of m mutually disjoint cycles, then it is easy to see that

σi = σi1σ
i
2 · · ·σim

and indeed, this expression gives a disjoint cycle representation (after
breaking up the powers separately into cycles if needed).

Then we can easily see that

σn = Id iff σni = Id ∀i = 1, · · · ,m.

Thus clearly σn = Id iff LCM(|σ1|, |σ2|, · · · , |σm|) divides n.

In other words |σ| = LCM(|σ1|, |σ2|, · · · , |σm|).
Warning: If the cycles are not disjoint, then the formula is not even
expected to work! For example,

|
(

1 2
) (

1 3
)
| = |

(
1 3 2

)
| = 3

but the LCM of the orders of the separate cycles is only 2.

2.2.2 Exercises on Permutations.

1. Conjugation. Given two permutations σ and τ we observe the fol-
lowing fact for the conjugate θ = τστ−1:

θ(τ(i)) = τ ◦ σ ◦ τ(τ−1(i)) = τ(σ(i)).

Thus, the easiest way to describe θ is to take the display of σ and if it
has i→ σ(i) act by τ on both the entries to write τ(i)→ τ(σ(i)).

The best way to understand this is to work this example:
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Let σ =
(

1 2 3
) (

4 5
)

and τ =
(

1 4
) (

2 5
)
.

Then prove that

στ = τστ−1 =
(
τ(1) τ(2) τ(3)

) (
τ(4) τ(5)

)
=
(

4 5 3
) (

1 2
)
.

Verify this with the observation as well as with direct computation.
This justifies the notation στ , since it is τ acting on σ.

Similarly, show that

τσ =
(

2 5
) (

3 4
)
.

2. Use the above to give another proof that a permutation has the same
order as that of any of its conjugate.

It is useful define the type of a permutation to be a sequence of
pairs [r, s] if the permutation contains s disjoint r-cycles in its cycle
representation. To make the definition meaningful, we list the cycle
lengths in decreasing order. Also, for convenience, we shall drop the
“1-cycles” from consideration! 2

Thus our σ above has type ([3, 1], [2, 1]) while the τ above has type
([2, 2]).

As a convention, we define the type of identity to be ([0, 0]). This is a
technical convenience!

Prove that a permutation has the same type as any of its conjugates.
Also, prove that the order of a permutation of type ([r1, s1], · · · , [rm, sm])
is LCM(r1, · · · , rm).

3. Define the function

M(n) = max{|σ| | σ ∈ Sn}.

Determine the values of M(n) for n = 1, 2, · · · , 10.

Challenge: Can you make a formula for M(n) in general?

4. Suppose that σ is of type ([r, 1]), i.e. is an r-cycle.

Prove that for every i = 1, 2, · · · we have that σi has type ([a, b]) where
ab = r or σi = Id. In words, this says that a power of a cycle breaks
up into a certain number of cycles of equal length.

Hint: Identify the formula for cycles of small length and then guess.
Try cycles of lengths 5, 6, 9, 10, 12.

2Be aware that some people might choose to keep them in notation, so that the sum
of the terms rs is always equal to n.
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5. Prove that a permutation is of order 2 iff it has type ([2, s]) for some s.

6. Conjugacy classes. The conjugacy class of an element g ∈ G is said
to be {gh | h ∈ G}. The number of elements in a conjugacy class is
going to be an important concept later on.

Prove that the conjugacy class of a permutation σ ∈ Sn is the set of
permutations with the same type as σ.

For σ =
(

1 2 3
) (

4 5
)
∈ S5, determine its conjugacy class ex-

plicitly.

Note that the class depends on the group, so for the same σ
the class is bigger if we work in S6.

7. Let n ≥ 4.

Prove that the conjugacy class of τ =
(

1 2
) (

3 4
)
∈ Sn has

n(n−1)(n−2)(n−3)
8

elements.

Hint: You are counting all permutations of type ([2, 2]).

2.3 Matrix Groups.

The Euclidean or affine spaces <n as well as the general vector spaces F n

over a field F are extremely important in many branches of mathematics as
well as applications.

These spaces naturally give rise to a nice collection of groups which
described the “change of coordinate” transformations. These can also be
thought of as invertible transformations on the underlying set of points with
certain extra restrictions, depending on the kind of geometry being studied.

Rather than get into the details of these spaces, we shall concentrate on
the underlying groups as follows.

1. Field A field is an abelian group under an addition operation with
identity 0 together with a commutative multiplicative group structure
on its non zero elements, conveniently denoted by F× = {a ∈ F |a 6= 0}.
Further the addition and the multiplication operations satisfy the dis-
tributive law:

a(b+ c) = ab+ ac ∀a, b, c ∈ F.

2. General Linear Group The set of all n× n-matrices with entries in
F and a non zero determinant is denoted by GLn(F ).

Abstractly, the group can be thought off as the set of invertible linear
transformations of an n-dimensional vector space over F . The columns
of the matrix, then can be thought of as the images of standard basis
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vectors, if we identify the vector space with columns of vectors with
n-entries.

The identity of GLn(F ) is the identity matrix In.

Many people use a simpler notation GL(n, F ) with a similar change for
the other notations below.

We shall have use for the Special Linear Group SLn(F ) which con-
sists of those matrices in GLn(F ) which have determinant 1. It is easy
to see that SLn(F ) < GLn(F ).

An n×n matrix A is said to be elementary if its entries are the same
as that of In, except for one entry, say Aij = c with i 6= j. (This means
Aij is allowed to be non zero.) We shall denote such a matrix by Eij(c).

We shall define En(F ) to be the group generated by the various Eij(c).
As before, this can be simply thought of as the smallest subgroup of
GLn(F ) which contains all the elementary n× n matrices. 3

It is evident that all elementary matrices are in SLn(F ) and it is an
important theorem that they generate SLn(F ) in the sense that every
element of SLn(F ) is a product of elementary matrices! 4

3. Finite fields Of vital interest in group theory and many applications,
including Engineering, is the concept of finite fields. The simplest ex-
amples of finite fields are ZZ/nZZ or what we called ZZn earlier.

The field axioms force the value of n to be a prime number and it is
called the characteristic of the field.

Explicitly, we make the Definition: Characteristic of a field

char(F ) = min{m|m · 1 = 0 ∈ F}.

Here, by m · 1 we mean the sum 1 + · · · + 1 with m terms. If no
such m exists (as in the case of the usual real field <), then we define
char(F ) = 0. 5

3As before, we caution the reader that a product of elementary matrices cannot usually
be written as a single elementary matrix. It is customary to define a product of elementary
matrices to be also an elementary matrix, but don’t let it confuse you!

4At higher level of group theory, we may replace the field F by a commutative ring
and investigate corresponding theorems, which lead to very important and interesting
concepts!

5You may object, saying that this does not conform with our earlier convention of the
minimum of an empty set being infinity! However, the problem is only with our wording!
If we define it as the GCD of the set of all n such that n · 1 = 0 then in the real field, the
GCD comes out to be 0.
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It is proved that a finite field F contains a unique ZZp where p is its
characteristic. This ZZp is said to be its prime field. For characteristic
zero, the prime field, the field is always infinite and contains the prime
field Q .

Moreover, a finite field F is an n-dimensional vector space over its
prime field ZZp and hence has pn elements. It is customary to write q
for the power pn and the book denotes the finite field as IFq.

6

2.3.1 Exercises on Matrices.

1. In GLn(F ) we make a:

Definition: A diagonal matrix is an n × n matrix M such that
Mij = 0 if 1 ≤ i, j ≤ n and i 6= j. In other words, its non zero entries
are all on the main diagonal.

Note that if M ∈ GLn(F ), then none of the Mii are zero.

A diagonal matrix of the form d · In is said to be a scalar matrix.
where we are using the scalar multiplication by d ∈ F .

Note that a 2 × 2 matrix D =

(
a 0
0 b

)
with ab = 1 is in SL2(F ),

since its determinant is ab = 1.

Prove that D is a product of elementary 2 × 2 matrices. Hint: Try
to multiply it by a sequence of elementary matrices to convert it to I2.
Recall that this amounts to making elementary row transformations.

If you recall the so-called LU-decomposition from your Linear Algebra,
this calculation will put you on track to proving that every member of
SL2(F ) is a product of elementary matrices.

Usually we define En(F ) to be the set of all products of elementary
matrices in GLn(F ). This is seen to be a group and indeed proved to
be equal to SLn(F ).

2. The Heisenberg Group We can extend the book definition by setting
Hn(F ) to be the set of n×n unit upper triangular matrices, i.e. matrices
M which satisfy:

• Mii = 1 for each i = 1, · · · , n.

• Mij = 0 if i > j.

6Other conventional notations are GF (n, p) or GF (q) where GF is short for Galois
Field in honor of E. Galois.
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Prove that every element of Hn(F ) is a product of upper triangular
elementary matrices, i.e. matrices Eij(c) with i < j and c ∈ F . Hint:
Imitate the Gauss Elimination proof.

In particular, you get that Hn(F ) is a subgroup of En(F ).

2.4 Dihedral groups.

One of the simplest and ubiquitous examples of non abelian groups are the
so-called dihedral groups. These are given by: Definition: Dihedral group
A group generated by elements r, s satisfying the relations

s2 = e = rn, rs = r−1

is said to be a dihedral group of order n. It is denoted by the symbol D2n.
Important. We shall follow the convention in the book and assume that

n ≥ 3 for a dihedral group. The group, as defined, even makes sense for
n = 1, 2 but it comes out to be a less interesting abelian group in each case.

Caution: Be aware that some books use the notation Dn for the same
group.

The group can be explicitly listed as

D2n = {e, r, r2, · · · , rn−1, s, sr, sr2, · · · , srn−1}.

In short, its elements can be listed as sirj where i = 0, 1 and j =
0, 1, · · · , (n − 1). It is easy to explicitly describe the product of any two
elements

sirjslrm = sprq

as follows:

• If l = 0 then p = i and q equals the remainder of m+ j modulo n.

• If l = 1, then p is the remainder of i+l modulo 2 and q is the remainder
of m− j modulo n.

This can be established by induction.

2.4.1 Exercises on dihedral groups.

As stated above, let D2n be the dihedral group of order 2n with n ≥ 3.

1. Prove that < r >C D2n, i.e. < r > is a normal subgroup of the dihedral
group D2n.

2. Prove that < s > is not a normal subgroup of D2n. (You will need
to use n ≥ 3.)
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3. Prove that every element of D2n outside < r > is of order 2. Hint:
Compute (sri)2 from the known formula.

4. For any i, prove that [s, sri] = r2i. Deduce that ri commutes with s iff
2i ≡ 0 mod n.

5. Determine all elements of D2n which commute with every element of
D2n, i.e. find all z ∈ D2n such that [z, sirj] = e for all i = 0, 1 and
j = 0, 1, · · · , (n− 1).

First observe that it is enough to check the conditions:

[z, r] = [z, s] = e.

By calculating the commutators explicitly, show that the only possibil-
ity for z is z = e or when z = rk with n = 2k.

You may wish to prove these formulas first:

[srp, r] = r−2 , [rp, r] = e , [rp, s] = r2p.

2.5 Homomorphisms and Isomorphisms.

We have discussed many ways of looking at the groups. So, it becomes
essential to decide when a group is essentially the same as another.

For this, we need two main definitions.
Definition: Homomorphism of group. Given groups G,H and a

map φ : G → H we say that φ is a group homomorphism if it satisfies the
condition:

φ(g1g2) = φ(g1)φ(g2) ∀g1, g2 ∈ G.

These observations are useful and immediate.

• Here, we have used no group operation symbol in G as well as H. It
may have to be used, especially if G,H happen to be the same sets!
It is stated in the book with separate operation symbols to clarify this
point.

• The total image (usually called the range of φ) is easily seen to be a
subgroup of H.

Here are the steps for this:

– For convenience, write eG and eH for the identities in G and H
respectively. ¿From eGeG = eG, deduce that φ(eG)φ(eG) = φ(eG).
This shows that φ(eG) = eH (why?)
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– By calculating φ(gg−1) = φ(eG) as φ(g)φ(g−1) = φ(eG) = eH ,
deduce that φ(g)−1 = φ(g−1) ∈ φ(G).

– Now it is easy to deduce that φ(G) is actually a group and a
subgroup of H.

• We make a Definition: Kernel of a homomorphism The set {g ∈
G | φ(g) = eH} is said to be the kernel of the homomorphism φ : G→
H.

We shall use the notation Ker(φ) to denote this set. The most impor-
tant property of the kernel is that it is a normal subgroup of G.

The verification of the subgroup condition is easy. Now if g ∈ G and
k ∈ Ker(φ), then note that

φ(gkg−1) = φ(g)φ(k)φ(g−1) = φ(g)eHφ(g)−1 = eH

and thus kg ∈ Ker(φ) whenever k ∈ Ker(φ). This proves the normal-
ity.

Later on, we shall see how creating a suitable homomorphism helps us
locate a normal subgroups of a group.

Now we make the next Definition: Isomorphism of a group Given
groups G,H and a map φ : G→ H we say that φ is a group isomorphism if
φ is an isomorphism which is both injective and surjective.

Typically, the definition of injectivity requires one to prove that every
pair of distinct elements has distinct images. However, the homomorphism
hypothesis says that a homomorphism φ is injective iff Ker(φ) = {eG}.

Proof. Note that

φ is injective
iff φ(g1) = φ(g2) implies g1 = g2

iff φ(g1g
−1
2 ) = eH implies g1g

−1
2 = eG

iff g ∈ Ker(φ) implies g = eG
iff Ker(φ) = {eG}

If G = H then we say that an isomorphism from G to H is an automor-
phism.

2.5.1 Exercises on Homomorphisms.

1. Consider two groups ZZn,ZZm in our usual notation. The notation a
used so far is not sufficient since for the same integer a, we need to
distinguish between the two barred elements in the different groups.
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So, we shall make a better notation [a]n to denote the a ∈ ZZn and
similarly [a]m for a ∈ ZZm.

With this in mind, answer the following questions.

(a) For any [x]n ∈ ZZn, we have |[x]n| divides n.

(b) If F : ZZn → ZZm is a homomorphism and F ([1]n) = [a]m then
|[a]m| divides n.

(c) Deduce that if GCD(m,n) = 1 then there is only one possible
homomorphism F : ZZn → ZZm, namely the zero homomorphism,
i.e. F ([x]n) = [0]m for all x ∈ ZZ.

(d) Suppose that GCD(m,n) = d > 1 and write m = bd.

Then we can define a homomorphism F : ZZn → ZZm by F ([x]n) =
[bx]m.

Hint: The main problem in defining a homomorphism is to verify
that it is well defined.

This means to prove that [x]n = [y]n implies [bx]m = [by]m.

The homomorphism condition itself is trivial for all such defini-
tions.

Determine all possible homomorphisms from ZZn to ZZm in this
situation (i.e. the situation of GCD being bigger than 1).

(e) Prove that if n 6= m then there is no isomorphism from ZZn to ZZm.

2. Suppose that G is a cyclic group of finite order n > 1 generated by
x ∈ G. Let t be any integer and consider the map Ft : G→ G defined
by Ft(y) = yt for any y ∈ G.

Prove that Ft is a homomorphism.

3. Prove that the homomorphism Ft as described above is injective iff
GCD(t, n) = 1.

Also prove that the homomorphism Ft as described above is surjective
iff GCD(t, n) = 1.

4. Prove that for any homomorphism H : G→ G there is a unique integer
t between 0 and n− 1 such that H = Ft.

Moreover, H is an automorphism iff the corresponding t is coprime
with n.

This is often stated by saying that the number of automorphisms of a
cyclic group of order n is exactly φ(n) the Euler φ-function evaluated
at n.
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5. Let G be any group. Prove that F : G → G defined by F (g) =
g−1 is a homomorphism iff G is abelian. Moreover, in case it is a
homomorphism, it is actually an automorphism.

6. Let G be a group two elements x, y of order 2. Let n = |xy|. If G is
generated by x, y, then prove that G is isomorphic to D2n.

Hint: The elements xy, x can be thought of as r, s in the definition of
the dihedral group.

7. Challenging Problem. Let G be a finite group and σ an automor-
phism of G. Assume that σ2 = σ ◦ σ = Id.

Also assume that σ(x) = x iff x = e.

Prove that G is abelian!

Hint: Try the following steps.

(a) Consider the map x → x−1σ(x) from G to G. Using the given
conditions prove that this map is injective.

Since the group G is finite, every element y of the group can be
written as y = x−1σ(x) , i.e. σ(x) = xy for some x.

(b) Using σ deduce that yσ(y) = e.

(c) Use known results to finish!

2.6 Group Actions.

If G is a permutation group contained in some Sn, then every elements of
the group permutes elements of the set {1, 2, · · · , n}. We say that the group
G acts on the set {1, 2, · · · , n}.

We now generalize this concept by letting an abstract group act on a set.
We make a
Definition: Group acting on a set Let G be a group and let A be

some set. Suppose that we have a map T : G × A → A such that for every
fixed g ∈ G the map a→ T (g, a) is a permutation of the set A.

We also require the following compatibility conditions:

1.
T (g1, T (g2, a)) = T (g1g2, a) ∀g1, g2 ∈ G and a ∈ A.

2.
T (e, a) = a ∀a ∈ A

where e = eG the identity of G.
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Then we say that T is a group action and that G acts on A by the
action T .

As before, we shorten the notation, letting go of the symbol T in favor of
a single dot, so instead of T (g, a) we agree to write g · a.

Warning: It is important not to confuse the “·” with the group opera-
tion.

2.6.1 Properties of group actions.

Here are a few observations about the group actions.

1. Let T be a group action of a group G on a set A. Let the permutation
defined by a→ T (g, a) be denoted by σg. Then it is easy to see that the
map σ : G → SA given by g → σg is a group homomorphism! Indeed,
the compatibility conditions are designed to exactly guarantee this.

Thus, we could have simply defined a group action of G on A as a
homomorphism of G in to SA.

2. It is possible to have a trivial action, defined as T (g, a) = a for all
g ∈ G and a ∈ A. It is not very interesting, of course.

3. It is more interesting to consider actions for which σg 6= Id unless g = e.
Such actions are said to be faithful. In this case the kernel of the
homomorphism g → σg reduces to identity {e} and the homomorphism
is injective.

4. One of the simplest actions is obtained when we let a group act on itself
by left multiplication. Thus, we define T (g, a) = ga for all g, a ∈ G.

Note that this action is always faithful and it is called the left reg-
ular action. We can obviously define a corresponding right regular
action by taking T (g, a) = ag.

When the action is faithful, the homomorphism g → σg is indeed an
isomorphism between G and its image. Thus the group can be thought
of as a subgroup of the permutation group SA up to isomorphism.

Thus, we have proved the famous Cayley Theorem Every group is
isomorphic to a subgroup of a permutation group.

5. Given a finite group G with n > 1 elements, we can think about the
smallest d for which G has an isomorphic copy in some Sd.

Cayley’s Theorem shows that the smallest d is less than or equal to n.
There are examples of groups of arbitrary order for which the smallest
d is equal to n. (Can you find them?)
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Thus, in some sense, the regular representation is the best possible.
However, for many groups, we can make isomorphic copies in smaller
permutation groups, which helps in their study.

We introduce some new concepts to help us develop a few more inter-
esting useful actions.

2.7 Cosets of a subgroup.

Let H be a subgroup of a group G. We make a Definition: Coset For each
g ∈ G the set gH = {gh|h ∈ H} is defined to be the left coset of H and is
called the left coset of H defined by g.

It is easy to define a right coset Hg similarly and it is shown to have
similar properties. We leave the parallel treatment for the reader to finish.

It is however important to remember that in general as sets gH 6= Hg
and the condition of when they are equal has important theoretical conse-
quences.

We easily see that g1H = g2H iff g−1
1 g2 ∈ H. Moreover

z ∈ g1H
⋂

g2H iff z = g1h1 = g2h2

for some h1, h2 ∈ H. Thus we see that z ∈ g1H
⋂
g2H implies that g−1

1 g2 ∈
H.

Thus, we have proved that two cosets g1H, g2H are either disjoint or
equal.

For technical convenience Assume that G is a finite group. This
guarantees that we have only finitely many left cosets of H. We can handle
the case of infinite groups as well, but some adjustments are needed. These
will be taken up later.

Choose elements g1 = e, g2, · · · , gr,∈ G such that A = {giH|i = 1, · · · , r}
is the set of all possible distinct left cosets of H in G.

It is then obvious that G is the disjoint union of all the left cosets of H
and moreover any two cosets obviously have the same number of elements,
namely |H|.

Thus, we see that |G| = r|H| and we have proved the famous
Lagrange Theorem For any finite group G of finite order n, the order

|H| of any subgroup H divides n. In particular, the order |g| of any element
of G also divides n, since we already know that |g| equals the order of the
cyclic subgroup < g >.

The number r = |G|
|H| is clearly useful and is called the index of H in G.

We shall use the notation [G : H]
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Now we describe the action of a group on its cosets. 7

Define an action T of G on A, the left cosets of H, as follows:
For a given g ∈ G and giH ∈ A we know that the coset (ggi)H is a

member of A and hence is equal to gjH for some j. Define T (g, giH) = gjH.
For convenience, let us denote the map from G into SA by the symbol ψ

and let us agree to write the permutation ψ(g) by setting σg(giH) = gjH if
ggiH = gjH. Thus, σg is the name of the permutation function corresponding
to the element ψ(g) ∈ SA. 8

This gives a homomorphism of G into Sr, where r is the index [G : H].
Is this faithful?

The kernel is the set of those elements h ∈ G such that hgH = gH for
all g ∈ G. What does this mean?

We see that

hgH = gH iff g−1hgH = H iff g−1hg ∈ H.

Since the condition g−1hg ∈ H holds for all g, applying it with g = e we see
that h ∈ H.

Indeed the kernel of the homomorphism is a subgroup K of H such that
all conjugates of K are again contained in H and it is the largest such sub-
group!(This needs a little thought.) It is often called the core of H in G.

2.8 Applications of the above theory.

1. Groups of prime order Let G be a group of order p > 1, a prime
number. Then G is a cyclic group isomorphic to ZZp.

PROOF. Let x ∈ G such that x 6= e. Then |x| > 1 and divides the
prime p, so |x| = p. Thus the < x >⊂ G both have the same number
of elements and hence G =< x >.

Define a map ψ : ZZp → G by ψ(a) = xa ∀a ∈ ZZ.

Note that we defined the map by choosing a ∈ ZZ and describing ψ(a).
This has the advantage that it is easy to write, but we need to show that
it is well defined. For this, we write:

We check that ψ is well defined, i.e. if a = b then ψ(a) = (b) i.e.
xa = xb.

Now we know that:

a = b iff a = b+mp for some m ∈ ZZ.

7This action will become a very important tool later on. Be sure to study many
examples.

8In some sense, we don’t need a new symbol, we could have simply written, ψ(g)(giH) =
ggiH = gjH. If you find it more convenient, you may skip the notation σg.
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Also we know that:

xa = xb iff a = b+mp for some m ∈ ZZ.

Hence ψ is well defined. The homomorphism property is easy. The
two observations above also show that the map is injective. Hence
|ψ(ZZp)| = p = |G|. Therefore the map is also surjective, thus ψ is an
isomorphism from ZZp to G.

This is often paraphrased by saying that for a given prime p, up to
isomorphism, there is only one group of order p.

Moreover, note that we never used the primeness while proving the
properties of ψ. Hence, the above argument also shows that any cyclic
group G of order n is isomorphic to ZZn.

2. Analyzing the dihedral groups. Recall that a dihedral group D2n

was described as a group with generators r, s such that |r| = n, |s| = 2
and rs = r−1. Since s2 = e we see that rs = srs−1 = srs = r−1.

We shall now study the group action on cosets for the example of a
dihedral group.

• Let G = D2n and H =< r >. As usual, assume n ≥ 3. Note that
|H| = n and hence |G| = 2|H|.
Thus we have only two cosets, eH = H and sH. For any ri ∈ H
we see that T (ri, H) = riH = H and using s2 = e as well as
srs = r−1 we see that:

T (ri, sH) = risH = ssrisH = sr−iH = sH.

Thus each ri ∈ Ker(T ), i.e. induces the identity permutation on
the pair (H, sH).

The element s in turn, produces the swap of the two cosets, namely
T (s,H) = sH and T (s, sH) = ssH = H. Further, it now ob-
vious that T (sri, H) = T (s, T (ri, H)) = sH and T (sri, sH) =
T (s, T (ri, sH)) = H.

• Now take G = D2n with n ≥ 3 as above, but take the subgroup
to be K =< s >. Then we have n cosets K, rK, · · · , rn−1K. For
convenience, name them as Ki = ri−1K.

Consider the corresponding action T (g,Ki) = gri−1K.

First, we look for the kernel. By theory, it is a subgroup of K, so
we only need to check T (s,Ki) = sri−1K. But

sri−1K = sri−1ssK = r1−isK = rjK
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where j is the remainder of 1− i modulo n. Already, for i = 2 we
get T (s,K2) = T (s, rK) = r−1K = rn−1K = Kn. Since n ≥ 3, we
get that this is not the identity permutation and hence the kernel
Ker(ψ) = {e}.
Thus, G is isomorphic to its copy in the permutation group S{K1,··· ,Kn}.
We shall explicitly calculate the image by determining the permu-
tations σr, σs. For convenience and understanding, we shall write
these as permutations of (1, 2, · · · , n), i.e. elements of Sn rather
that S{K1,··· ,Kn}.

Note that σr(Ki) = rri−1K = riK. Thus as a member of Sn we
get σr =

(
1 2 · · · n

)
.

Now, σs(Ki) = sri−1K = r1−isK = rn+1−iK = Kn−i. Thus
σs(K1) = Kn−1 and σs(Kn−1) = K1. Thus clearly

σs =
(

1 (n− 1)
) (

2 (n− 2)
)
· · ·
(
i (n− i)

)
· · · .

Note that the middle two cycle may collapse.

For example, for n = 3, we get
(

1 3
) (

2 2
)

=
(

1 3
)
.

For n = 4 on the other hand, we get
(

1 4
) (

2 3
)
.

The resulting isomorphic copy of G is generated by the two ele-
ments σr and σs.

For concrete values of n, the permutation representation is easier
to calculate with.

3. Existence of a normal group. Let G be a group of order 15. Assume
that G has an element x of order 5 and y an element of order 3.9

Here is a dramatic conclusion.

We claim that the group H =< x > is necessarily a normal subgroup
of G.

Proof. Consider the cosets of H in G. We must have exactly 3 = [G :

H] = |G|
|H| .

We claim that y 6∈ H, since otherwise the group H of order 5 will
contain a subgroup < y > of order 3 which is not a factor of 5.

Thus H 6= yH. By a similar reasoning using < y2 >=< y >, we see
that the three cosets are A = {H, yH, y2H}.
Thus the coset action map gives

ψ : G→ SA ∼= S3.

9Both of these assumptions will be known facts after some more theory. See Cauchy
Theorem proved later.

23



Now ψ(G) the image of G, is a subgroup of a group of order 6 (namely
SA.) Hence ψ cannot be injective. (Otherwise, the order of ψ(G) would
be also 15 and cannot divide 6.)

The Ker(ψ) 6= {e} being a subgroup of H, must be a group of order 5
(since the order divides 5 = |H|) and hence Ker(ψ) = H.

As we already know, kernel of any homomorphism is a normal sub-
group, hence our claim is proved.

4. We can indeed go on to prove that the group G of order 15 is
actually abelian and in fact, a cyclic group generated by xy.

We shall then consider a challenge to extend this to groups of order pq
where 1 < p < q are prime numbers.

This uses other ideas already developed and goes thus:

(a) First we show that G is abelian:

Suppose, if possible, that G is not abelian. Note that then x, y
don’t commute, since otherwise, it is easy to see that all elements
of G commute with each other.

Now that we know that H C G, we know that yxy−1 = xi ∈ H
for some i = 1, 2, 3, 4, 5. Define the map θ : H → H by θ(g) = gy.

Since x, y don’t commute by assumption, we see that i 6= 1 and
that θ is an automorphism of H. Thus i is one of i = 2, 3, 4.

Now θ2(x) = θ(xi) = xi
2

and θ3(x) = xi
3
. But θ3(x) = y3xy−3 =

x. Since y3 = e, we must have i3 ≡ 1 (mod 5). By checking
i = 2, 3, 4, we see a contradiction in each case!

(b) Now we have shown G to be abelian and |x| = 5, |y| = 3. The
intersection of the two subgroups < x > and < y > must be {e}
since its order must divide the coprime numbers 3, 5 (by Langrange
Theorem).

We claim that |xy| = LCM(3, 5) = 15. First note that (xy)15 =
x15y15 = e, so |xy||15.

Suppose |xy| = n.

Now (xy)n = e implies xnyn = e and this means

xn = y−n ∈< x >
⋂

< y >=< e > .

It follows that xn = y−n = e and hence LCM(3, 5)|n.

Thus |xy| = n = 15 and the cyclic group < xy > must coincide
with the group G having the same order.
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(c) Challenge. The above argument can be repeated for several pos-
sible cases as follows.

Let G be a group of order pq where 1 < p < q are primes. As
we shall show later, by the Cauchy Theorem, G necessarily has
elements of orders p, q called y, x respectively.

Find out conditions on primes p,q for which you can prove
that G must be a cyclic group of order pq.

Hint: Note that for p = 2, you always have the example of the
dihedral group, so you cannot allow p = 2.

Also, for p = 3 and q = 7, it is possible to have a non abelian group
defined by y3 = x7 = e, xy = x2. Check it out and understand
why it escapes our method of proof above.

3 Preliminary Theorems in Groups.

3.1 Normalizers, centralizers and stabilizers.

Suppose that a group G acts on a set A and let σg denote the permutation
of A defined by a→ g · a.

We define the orbit of a subset B ⊂ A as follows:
The orbit of B under the action of G is

G ·B = {g · b|g ∈ G, b ∈ B}.

We are using our convenient notation G ·B.
As before, if B is a singleton {b}, then we agree to shorten the notation

G · {b} to G · b.
We now define two important concepts associated with a subset of A.
We define the stabilizer of a set B ⊂ A to be

GB = {g ∈ G|g ·B ⊂ B}.

It is easy to show that GB is indeed a subgroup of G and is the largest
subgroup which induces an action on the subset B.

When B = {b} for some element b ∈ A, we may simplify the notation
G{b} to Gb.

Given a subset B ⊂ A, we can consider another smaller subgroup of G,
namely

{g ∈ G|g · b = b ∀b ∈ B}.

This is easily seen to be the intersection
⋂
{Gb|b ∈ B}. We can call it the

fixer of the subset B ⊂ A.
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We may use more suggestive notations as follows:

Stabilizer Stab(B;G) = GB

and
Fixer Fix(B;G) =

⋂
{Gb|b ∈ B}.

Note that in general, the fixer is a smaller subgroup than the stabilizer.
Given any two elements a, b ∈ A it is easy to see that the orbits G · a and

G · b are either equal or disjoint.
To see this, first note that for any a ∈ A, G · (g · a) = (Gg) · a = G · a.
Thus, if G·a and G·b have a common element c ∈ A, then c = g1 ·a = g2 ·b

for some g1, g2 ∈ G. Hence G · c = G · a. Similarly, G · c = G · b and hence
our claim is proved.

We now make a series of simple calculations leading to a theorem.

Orbit length The number of elements in the orbit containing a is exactly
[G : Ga].

PROOF. Consider the left cosets of Ga. First observe that for any
Ga · a = {a}. Now we see that for any coset gGa we get gGa · a =
{g · a}. Also, then for different elements g1 · a, g2 · a in the orbit of a
the corresponding cosets g1Ga and g2Ga must be distinct, since their
actions on a give different elements g1 · a and g2 · a.

Orbit Equation Let us choose a collection of m elements of A, say {ai}
such that every orbit contains exactly one ai. Then we have the obvious
equation:

|A| =
∑
i

|G · ai| =
∑
i

[G : Gai ].

This equation is seen by writing A as a disjoint union of orbits and
adding up the number of elements in each.

Now we apply the above equation to various special actions and derive
useful theorems.

Case of ZZp acting on a subset of Gp

Let G be a finite group and p a prime factor of |G|. Let A be the subset
of Gp defined as follows:

A = {(g1, g2, · · · , gp)|gi ∈ G and g1g2 · · · gp = e}.

Let the group ZZp act on A by the action

1 · (g1, g2, · · · , gp) = (g2, g3, · · · , gp, g1).
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In other words, 1 rotates the sequence cyclically to the left. In general,
a acts by rotating a times to the left.

To check the required properties, it is necessary to note that for for any
p-tuple g = (g1, g2, · · · , gp) ∈ A the resulting p-tuple is also in A, i.e.
g2g3 · · · gpg1 is also equal to e.

For any such g ∈ A, we can also see that the stabilizer (ZZp)g is either
{0}, if at least two of the gi are different and equal to ZZp in case all
components of g are the same as g1 and thus gp1 = e.

Thus the orbit of a g with at least two different components has ex-
actly p elements (i.e. [ZZp :< 0 >]) or exactly 1 element when g =
(g1, g1, · · · , g1).

It is easy to count that |A| = |G|p−1 since the p-tuples of A can be
thought of as random (p− 1) elements of G followed by the inverse of
their product as the last element.

Thus we have an equation

|G|p−1 = number of singleton orbits+p( number of distinct orbits of length p).

Since the left hand side of this equation as well as the second part of
the right hand side are both divisible p, the number of singleton orbits
is also a multiple of p. One singleton orbit is {(e, e, · · · , e)} and so
there must exist an element x 6= e in G such that (x, x, · · · , x) ∈ A, i.e.
x 6= e but xp = e.

Thus we have proved the

Cauchy Theorem. If a prime p divides |G|, then G has an element
x of order p. This is actually the elegant proof by McKay of the
original Cauchy Theorem.

The original proof is an intricate induction proof with a special argu-
ment for the abelian case. It is a good exercise in induction!

Food for thought. The proof shows that indeed there are at least
p− 1 elements of order p. Do you see how to get the others?

Where did we use the fact that p was a prime? Could the proof still
work if p is an arbitrary integer? Should the theorem be even expected
to be true?

The Class Equation An important group action happens when a group G
acts on itself by conjugation. Thus here for elements g, h ∈ G we let
g · h be hg = ghg−1.
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It is well worth redefining and renaming the various subgroups men-
tioned above.

For h ∈ G the stabilizer is defined as

CG(h) = {g ∈ G|ghg−1 = h}.

Its elements commute with h and the group is called the centralizer
of h.

The fixer of any subset S ⊂ G is also called its centralizer

CG(S) = {g ∈ G|gsg−1 = s ∀s ∈ S}.

On the other hand the stabilizer of the subset S is denoted by

NG(S) = {g ∈ G|gSg−1 ⊂ S}.

This is called the normalizer of S.

There is a reason for the term normalizer. If S is a subgroup of G then
the normalizer NG(S) is a group between S and G with the property
that S is a normal subgroup of NG(S). Moreover, it can be shown to
be the largest such group.

Under the conjugation action, the orbit of an element h is the set of all
possible conjugates ghg−1 of h and the number of such conjugates is the
index of its centralizer [G : CG(h)]. A singleton orbit clearly consists
of an element which commutes with every element of the group. Such
elements are said to be central. In turn, it is possible to prove that all
central elements form a subgroup of G called its center and this group
is denoted by the symbol

Z(G) = {g ∈ G|ghg−1 = e i.e. gh = hg ∀h ∈ G}.

The orbit equation now takes the following shape:

|G| = number of singleton orbits +
∑

[G : CG(h)]

where the sum is taken by choosing one representative from each con-
jugation orbit with at least two elements. In view of the definition of
the center, we get the famous Class Equation:

|G| = |Z(G)|+
∑

[G : CG(h)]

the sum being over distinct non singleton orbits as before.
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A property of a p-group. Let p be a prime. We define a group P to be
a p-group if |P | is a power of p. 10

Theorem on p-groups. If p is a prime and P is a p-group, then the
center Z(P ) is non trivial, i.e. has at least one non identity element.

Let P act on itself by conjugation and notice that all the indices ap-
pearing as lengths of non singleton orbits are powers of p, so at least
divisible by p.

Since the left hand side |P | of the class equation is also divisible by
p, we get that p divides |Z(P )|. Since e ∈ Z(P ) we have |Z(P )| 6= 0,
hence it contains non identity elements!

3.2 Quotient groups.

Before we proceed further it is useful to understand how the homomorphisms
and especially their kernels arise.

We have already shown that the kernel of any homomorphism is a normal
subgroup of the domain. We shall now show the converse that a normal
subgroup of a group is always the kernel of a certain natural homomorphism.

Existence of a quotient group Let G be any group and H a subgroup.
Let A be the collection of all left cosets of H in G.

Assume that H is a normal subgroup of G. Then A is naturally a group
such that

1. For any g1H, g2H we define g1Hg2H = g1g2H.

2. There is a natural homomorphism Ψ : G→ A defined by ψ(g) = gH.

3. The homomorphism Ψ is surjective and its kernel is exactly H.

Proof. Here are the steps of the proof.

1. Note that the normality of H implies gH = Hg as sets for any g ∈ G.
Thus the definition g1Hg2H = g1g2H is simply a calculation

g1Hg2H = g1(Hg2)H = = g1(g2H)H = g1g2(HH) = g1g2H

where the last equation follows from the fact that H is a subgroup and
hence HH = H.

10We can alternatively define a p-group as a group where the order of every element
is a power of the prime p. Then we need to use the Cauchy Theorem to show that this
definition is equivalent to the above for a finite group. This definition has the advantage
that it makes sense even for infinite groups!
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2. The fact that A becomes a group under this operation is left for the
reader to verify. Let us record that the identity is simply the coset
eGH = H and we shall call it eA.

Moreover, (gH)(g−1H) = (gg−)H = H implies that (gH)−1 = g−1H.

3. The fact that Ψ is a homomorphism is evident from its definition.

4. The map Ψ is surjective since any gH ∈ A is equal to Ψ(g) by definition.
Also Ψ(g) = eA iff gH = H iff g ∈ H. hence Ker(Ψ) = H.

Notation. We shall conveniently write G/H for the set of cosets A and
call it the quotient group of G by H.

Warning: It is important to remember that the quotient group G/H is
defined only when H is a normal subgroup, but the cosets as a set are defined
for any subgroup. We don’t get the group structure if H is not normal.

3.2.1 Generation of groups.

Let G be a group and H,K its subgroups. We consider the set HK =
{hk|h ∈ H, k ∈ K}. We are interested in deciding if it a subgroup and if
indeed it is equal to G itself.

Here is a sequence of useful results.

1. HK is a subgroup of G iff HK = KH.

PROOF. We use our convenient subgroup criterion, namely L ⊂ G is
a subgroup iff LL = L and L−1 = L.

Suppose HK = KH. Then HKHK = H(KH)K = HHKK and
hence reduces to HK since the fact that H,K are subgroups says that
HH = H and KK = K.

Also, (HK)−1 = K−1H−1 reduces to KH since H,K are subgroups
and hence to HK by hypothesis.

Thus HK < G.

Now assume that HK < G. Then (HK)−1 = K−1H−1 = KH since H
and K are subgroups. But (HK)−1 = HK since HK is a subgroup,
thus we have proved HK = KH.

2. If H,K are subgroups of G and if H < NG(K) then HK < G. Simi-
larly, if K < NG(H) then we also get HK < G.

PROOF. If H < NG(K) then hK = Kh for each h ∈ H and hence
HK = KH. Therefore we are done by the above result.

Similar proof holds if K < NG(H).
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In view of this result, we make a

Definition: A group H normalizes a group K (in G) if H <
NG(K).

Similarly, we make a

Definition: A group H centralizes a group K (in G) if H <
CG(K).

3. Corollary. If H,K are subgroups of G and either H or K is normal
then HK is a subgroup of G.

PROOF. The hypothesis means either NG(H) or NG(K) equals G and
hence we are done by the above result.

4. Counting HK. If H,K are finite subgroups of G then we can count
the elements of the set HK regardless of whether it is a subgroup and
this is sometimes useful.

We can regard HK as a union of left cosets of K by elements of H.

Let L be the subgroup H
⋂
K (This is easily seen to be a subgroup).

Note that L is a subgroup of both H,K. Using this, write

K =
m⋃
i=1

kiL where m = |K|/|L| = [K : L].

Similarly, write

H =
n⋃
j=1

hjL where n = |H|/|L| = [H : L].

Then we see that 11

HK =
n⋃
j=1

m⋃
i=1

(hjkiL)

and hence

|HK| = nm|L| = |H||K||L|
|L||L|

=
|H||K|
|L|

.

Thus we have proved:

|HK| = |H||K|
|H
⋂
K|

.

11First write HK =
⋃
hjK noticing that these are exactly all the distinct cosets of this

form. Then write K =
⋃
kiL in the usual coset representation.
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3.2.2 Isomorphism Theorems.

Preamble.
If G is a group and φ : G → L is a homomorphism, then we know that

φ(G) < L and Ker(φ) < G. We also know that Ker(φ) is in fact a normal
subgroup, say H / G. Thus the quotient group G/H is defined as the group
formed by the left cosets of H in G.

The first important theorem states that
First Isomorphism Theorem. With the preamble in force, we have

G/H ∼= φ(G).
PROOF. Define a map θ : G/H → φ(G) by θ(gH) = φ(g).
We note that if g1H = g2H then g1 = g2h for some h ∈ H = Ker(φ) and

hence φ(g1) = φ(g2h) = φ(g2)φ(h) = φ(g2) since φ(h) = eL.
This shows that θ is well defined. The fact that it is a homomorphism is

now easily checked.
Also, θ(gH) = eL iff g ∈ Ker(φ) = H iff gH = H. Thus Ker(θ) = {H}.
Thus θ is injective. It is clearly surjective onto φ(G) proving the result.
Next we have the
Second Isomorphism Theorem. Let A,B be subgroups of a group G

such that A < NG(B) and thus AB is a subgroup of G.
Then we have:

1. B is a normal subgroup of AB

2. A
⋂
B is a normal subgroup of A and

3. We have:
AB/B ∼= A/(A

⋂
B).

PROOF. The normality of B follows since A < NG(B). The same fact
says that for a ∈ A and b ∈ B we have ba ∈ B. Moreover, if b is also in A,
then we also have ba ∈ A. Thus ba ∈ A

⋂
B for all b ∈ A

⋂
B; this proves

the second claim.
Finally, let F : A→ AB/B be the map defined by F (a) = aB. We show

that F is a surjective homomorphism with kernel A
⋂
B, thereby proving the

result from the first isomorphism theorem.
First F (a1a2) = a1a2B = a1Ba2B since B is normal in AB. Thus F is a

homomorphism.
For any abB ∈ AB/B we see that abB = aB since b ∈ B and thus F is

surjective.
Now for a ∈ A, we see that F (a) = B iff aB = B i.e. a ∈ B. Thus the

kernel is exactly A
⋂
B.

Hence, we are done by the first isomorphism theorem.
We now derive a very useful Homomorphism Principle.
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Assume that we have a group G with a normal subgroup H and some
group K.

Then any homomorphism F from G/H to K induces a homomorphism
F ∗ from G to K such that F ∗(H) = {eK}. This is defined as F ∗(g) = F (gH).

Conversely, given any homomorphism F ∗ fromG toK satisfying F ∗(H) =
{eK} we can find a homomorphism F from G/H to K defined by F (gH) =
F ∗(g).

We describe this by saying that F is a factor of F ∗.
Typically, homomorphisms from a quotient group G/H are created as

factors of convenient homomorphisms of G.
PROOF. The first part is obvious by the definition of the quotient group.

The second part only needs the verification that the map is well defined,
i.e. to check that g1H = g2H implies F (g1H) = F (g2H), i.e. F ∗(g1) =
F ∗(g2), but this follows since g1 = g2h for some h ∈ H and hence F ∗(g1) =
F ∗(g2)F ∗(h) = F ∗(g2) by hypothesis.

Third Isomorphism Theorem. Suppose we have a tower of groups
H < K < G. Further assume that H,K are normal subgroups of G. Then
it is obvious that K/H is a normal subgroup of G/H.

Further, we have
(G/H)/(K/H) ∼= G/K.

PROOF. Define a homomorphism ψ : G/H → G/K by ψ(gH) = gK.
We have the natural surjective homomorphism ψ∗ from G to G/K defined by
ψ∗(g) = gK. Clearly ψ∗(k) = K if k ∈ K and hence by the homomorphism
principle, we get that ψ factors this ψ∗.

Now the kernel of ψ is the set of cosets of the form kH where k ∈ K, i,e,
K/H. Thus, K/H is a normal subgroup of G/H and by the first isomorphism
theorem we get the result.

3.3 Sylow Theorems.

Now we come to some of the most powerful theorems in group theory. We
begin with a far reaching generalization of Cauchy Theorem.

First some terminology. Given a finite group G and a prime p let pr be
the highest power of p dividing |G|. Any subgroup of G with order pr is said
to be a p-Sylow subgroup of G. The set of all such Sylow subgroups shall
be denoted by Sylp(G). The number of distinct Sylow subgroups shall be
denoted by the np(G). We may drop the G from these notations, if clear
from the context.

We begin by proving that Sylp(G) is a non empty set.
First Sylow Theorem. Given a prime p, amy finite group G has a

p-Sylow subgroup.
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Note that by definition, if p does not divide d, then the trivial subgroup
{eG} satisfies the definition of a p-Sylow subgroup and the theorem is clearly
true.

PROOF. First we prove a
LEMMA. Let B be a normal subgroup of a group A and C a subgroup

A/B. Let C∗ be the subgroup of A defined as the union of the cosets xB ∈ C.
Then |C∗| = |C||B|.

PROOF of Lemma. Note that C is isomorphic to C∗/B and hence the
result follows.

Now we prove the theorem by induction on d = |G|. The result being
trivial for d = 1 we assume the result for all groups with order less than d
and prove it for the given G.

Suppose that pr is the highest power of p which divides d. As already
observed, it is enough to consider the case when p divides d and thus r ≥ 1.

If the center Z(G) of the group contains an element x of order p, then
note that < x > / G and pr−1 is the highest power of p which divides
|G|/| < x > | = |G|/|x|.

By induction hypothesis G/ < x > contains a p-Sylow subgroup C of
order pr−1 and the corresponding subgroup consisting of the union of cosets
g < x > such that g < x >∈ C forms a subgroup of G of order pr−1p = pr,
by the LEMMA. It gives the necessary p-Sylow subgroup of G.

Now assume that p does not divide |Z(G)|. Let G act on itself by conju-
gation and write the class equation:

|G| = |Z(G)|+
∑

[G : CG(h)]

the sum being over distinct non singleton orbits.
Since p divides the left hand side of the equation and does not divide

the first term of the right hand side, it must not divide at least one of
the terms [G : CG(h)] on the right hand side. But then pr must divide

|CG(h)| = |G|
[G : CG(h)]

.

Clearly CG(h) is necessarily a group of smaller order that G, and hence
it contains a p-Sylow subgroup of order pr which is automatically the needed
subgroup of G.

Having proved the existence of p-Sylow subgroups, we learn to count their
number.

Sylow Theorem Part 2. Let p be a prime dividing the order of a
group G and let P ∈ Sylp(G). Then the number of p-Sylow subgroups of G
conjugate to P is congruent to 1 modulo p.

PROOF. Let S be the set of p-Sylow subgroups of G conjugate to P .
Let P act on this set by conjugation. Since P is a p-group, it follows that
every orbit has length equal to a power ps of p for some integer s ≥ 0.
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All orbits of length bigger than 1 will then have orbit length divisible by
p.

We know one orbit with length p0 = 1, namely the orbit of P itself. If
we show that there is no other singleton orbit then our orbit equation shows
that

|S| = 1 + ( sum of orbits lengths which are bigger than 1 ) = 1 +mp

where m is some non negative integer.
Now suppose if possible, that Q is another p-Sylow subgroup which also

leads to a singleton orbit, i.e. for all x ∈ P we get xQx−1 = Q. This means
P normalizes Q. It follows that PQ is a subgroup of G. Moreover,

|PQ| = |P ||Q|
|P
⋂
Q|

would say that |PQ| ≥ |P |. On the other hand, since every term in the
fraction is a power of p, it follows that |PQ| is also a power of p and by the
“Sylow-ness” of P we get |PQ| ≤ |P |. It follows that PQ = P and then
Q < P and consequently Q = P since |Q| = |P |. 12

Now we show:
Sylow Theorem Part 3. If p is a prime dividing |G|, then Sylp(G) = S.

Thus, any two p-Sylow subgroups are conjugate in G.
In particular np(G) = |S| = [G : NG(P )] where P is some p-Sylow sub-

group.
PROOF. We already know that S ⊂ Sylp(G).
Suppose if possible, that R is another p-Sylow subgroup outside S. Let R

act on S. By the argument used in the above proof, we see that this action
would have no singleton orbits!

But then we get that |S| = 1 +mp is a sum of orbit lengths of the action
by R, i.e. is a sum of numbers divisible by p. This is clearly a contradiction!

The last part is obvious.
Sylow Theorem Complete. Let G be a finite group and p a prime

dividing |G|. Then we have the following:

1. Sylp(G) is non empty.

2. The number np(G) of p-Sylow subgroups = |Sylp(G)| ≡ 1 (mod p).

Moreover, np(G) = [G : NG(P )] for any P ∈ Sylp(G) and thus np(G)
is a factor of [G : P ] and is equal to 1 modulo p.

12Actually what we have established is that if Q < G is any p-group which is normalized
by P , then Q < P .
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3.4 Applications of the Sylow Theorems.

1. Let G be a finite group and let p be a prime dividing |G|. Prove that
a P ∈ Sylp(G) is normal in G iff np(G) = 1.

2. If G is a group of order pq where p < q are prime numbers then G is
cyclic unless q ≡ 1 (mod p).

Hint: Let P and Q be the Sylow subgroups of orders p, q respectively.
Prove that Q is a normal subgroup and P is also normal unless q ≡ 1
(mod p).

If both P,Q are normal, then prove that G is abelian and indeed cyclic.

Definitive form. Let G be a group of order pq where p < q are primes.
Assume that q ≡ 1 (mod p). Then either G is cyclic or G is a group
generated by x, y with |x| = p, |y| = q and xyx−1 = ym for some m
such that mp ≡ 1 (mod q).

It turns out that indeed there is an integer m such that q = 1 + mp
and this is one good choice of m. More on this will be discussed later.
The choice of m is not unique, but there is essentially only one choice
up to automorphism.

3. Let G be a group of order pq where p < q are prime numbers and
assume that q ≡ 1 (mod p). Then either G is cyclic or a group which
which generated with x, y of orders |x| = p, |y| = q and xyx−1 = ym for
some m such that mp ≡ 1 (mod q).

4. Let G be a group of finite order d. Prove that G is not simple in each
of the following cases. (i) d = 12 (ii) d = 24 (iii) d = 72 (iv) d = 312
(v) d = 351

5. Prove that a group of order 56 has a normal p-Sylow subgroup for some
p > 1.

6. Let n ≥ 2 be an integer and let G be a group of order 2np, where
p = 2n − 1 is a prime number. For example:

12 = 22(22 − 1) , 56 = 23(23 − 1) , 992 = 25(25 − 1)

Show that G is not a simple group.

7. Suppose that a finite group G has np(G) = 5 for some prime p. Prove
that G has elements of order 5 and 2.

More generally, assume that a finite group G has np(G) = 2n + 1 for
some n ≥ 1. Prove that G has elements of order 2 as well as order q
for every prime factor q of 2n + 1.
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8. Prove that there is no simple group of order 96.

9. Let G be a group of order 2006. Prove that it is abelian or has a cyclic
subgroup of index 2.

3.5 Simplicity of An.

Now we discuss a large family of known simple groups. These are the so-
called alternating groups An which are defined as follows.

Let n ≥ 2 be an integer and let Sn be the usual permutation group acting
on the set {1, 2, · · · , n}. We have already discussed the cycle decomposition
of a permutation into disjoint cycles. Recall that an r-cycle is a cycle which
permutes r objects in a cyclic manner. We may call a 2-cycle a transposition.

¿From a sample calculation like(
1 2 3 4 5

)
=
(

1 5
) (

1 4
) (

1 3
) (

1 2
)

we see that any r-cycle can be written as a product of (r− 1)-transpositions.
¿From a calculation like(

1 5
)

=
(

1 2
) (

2 5
) (

1 2
)

we can see that the above 5-cycle can also be rewritten as a product of 6
transpositions instead of the original 4.

What is surprizing is the
Theorem of the parity of a permutation. Any permutation σ ∈ Sn

can be written as a product of a finite number of transpositions. While the
expression is not unique, the parity of the number of transpositions (oddness
or evenness) depends only on the permutation.

Thus we make a
Definition: Sign of a permutation.
A permutation is said to be odd if it can be written as a product of an

odd number of permutations and its sign is said to be −1.
A permutation is said to be even if it can be written as a product of an

even number of permutations and its sign is said to be 1.
PROOF of the Theorem of the parity. Given a permutation σ ∈ Sn

and a pair of integers i 6= j in {1, 2, · · · , n} consider a rational number

i− j
(σ(i)− σ(j))

.

Note that interchanging the order of i, j does not change the value of this
rational number. Thus, we can define a well defined function

ψ(σ, {i, j}) =
i− j

(σ(i)− σ(j))
.
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Let Tn be the set of all two element subsets of {1, 2, · · · , n} and note that ψ
is a function from Sn × Tn into Q .

Now define
θ(σ) =

∏
t∈Tn

ψ(σ, t).

We claim that θ is a function from Sn into the multiplicative group
{−1, 1} ⊂ Q and in fact it is a group homomorphism.

It is easy to check that θ(σ) = −1 if σ is a transposition thus θ(σ) is 1
if σ is an even permutation and θ(σ) is −1 if σ is an odd permutation; thus
proving the theorem.

Note that when we write out the product in θ(σ) the absolute values of
the terms in the numerator are |(i− j)| for {i, j} ∈ Tn and the same is true
for the denominator. Thus, the ratio is clearly ±1.

Also note that for convenience the members of Tn can be chosen in any
convennient order. Thus we could let i = 1, · · · , n and then let j = i+1, · · ·n.
So

θ(σ) =
n∏
i=1

n∏
j=i+1

(ψ(σ, {i, j})) .

Now, given any permutation τ ∈ Sn we see that another way of listing
members of Tn might be to consider {τ(i), τ(j)} as i varies from 1, · · · , n and
for a fixed i, the index j varies from i+ 1 to n.

Thus we also have

θ(σ) =
n∏
i=1

n∏
j=i+1

(ψ(σ, {τ(i), τ(j)})) .

Then we can write

θ(σ)θ(τ) =

(
n∏
i=1

n∏
j=i+1

(ψ(σ, {τ(i), τ(j)}))

)(
n∏
i=1

n∏
j=i+1

(ψ(τ, {i, j}))

)
.

A simple cancellation between the numerator of the first product with
the denominator of the second product shows that

θ(σ)θ(τ) =
n∏
i=1

n∏
j=i+1

ψ(σ ◦ τ, {i, }) = θ(σ ◦ τ).

Thus, we have proved that θ is a group homomorphism from Sn into the
multiplicative group {1,−1}.

The kernel of the homomorphism is then a well defined normal subgroup
of Sn and we define:
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Definition: Alternating group An is the set of permutations σ in Sn
such that θ(σ) = 1. Equivalently it is an even permutation. If its type is
([r1, s1], · · · , [rm, sm]), then it is easy to check that

θ(σ) =
m∏
i=1

(
(−1)(ri−1)si

)
.

We have seen above that every permutation in Sn can be written as a
product of transpositions

(
i j

)
where 1 ≤ i < j ≤ n. We now refine this

to:
Theorem on generation of Sn and An. We have the following gener-

ations.

1. Let n ≥ 2. Then every permutation in Sn can be written as product of
permutations of the form

(
1 i

)
where 1 < i ≤ n.

PROOF. (
i j

)
=
(

1 i
) (

1 j
) (

1 i
)
.

2. Let n ≥ 2. Then every permutation in Sn can be written as product of
permutations of the form

(
(i− 1) i

)
where 1 < i ≤ n.

Idea of the proof. Induct from these calculations.(
(i− 2) i

)
=
(

(i− 2) (i− 1)
) (

(i− 1) i
) (

(i− 2) (i− 1)
)
.(

(i− 3) i
)

=
(

(i− 3) (i− 2)
) (

(i− 2) i
) (

(i− 3) (i− 2)
)
.

3. Let n ≥ 2. Then every permutation in Sn can be generated with(
1 2

)
and

(
1 2 · · · n

)
.

Idea of the proof. Conjugate the first one repeatedly by the second.
Then use earlier result!

4. Let n ≥ 3. Then every element of An is a product of 3-cycles, not
necessarily disjoint, of course!

PROOF. It is enough to show that a product of two transpositions is
a product of 3-cycles.

Here are the calculations:

(
a b

) (
c d

)
=
(
a c b

) (
a c d

)
.

(
a b

) (
a c

)
=
(
a c b

)
.

Note. This gives another proof that An is a normal subgroup of Sn,
since under conjugation, a 3-cycle always goes to a 3-cycle!
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5. Let n ≥ 5. Any two 3-cycles are conjugate to each other by elements
of An.

PROOF. Let two 3-cycles be u =
(
x1 x2 x3

)
and v =

(
y1 y2 y3

)
.

Make two permutations of {1, 2, · · · , n} as

x =
(
x1 x2 x3 x4 x5 · · ·

)
and y =

(
y1 y2 y3 y4 y5 · · ·

)
.

If the permutation σ defined by σ(xi) = yi is even then it is the even
permutation which conjugates u into v and our proof is done.

If σ is odd, set z =
(
y1 y2 y3 y5 y4 · · ·

)
and note that the per-

mutation τ defined by τ(xi) = zi is then an even permutation and it
also conjugates u into v.

Thus, u, v are conjugate by elements of An.

Think! See what can go wrong if n = 2, 3, 4.

6. Let n ≥ 5. Let H be any normal subgroup of An. If H contains a
3-cycle, then H = An.

PROOF. If it contains one 3-cycle, then it contains all 3-cycles, since
these are conjugate in An and H is normal in An. Then H contains all
the necessary generators of An and we are done!

We are now set to prove the main
Theorem. An is simple if n ≥ 5.
PROOF. Let n ≥ 5 and let H < An be a normal subgroup. By a

sequence of calculations, we shall show that if H 6= {Id}, then H contains
all 3-cycles and hence H = An.

Setup.
Thus, assume that H is not {Id} and let T be the set of all integers r

such that some element of H has a cycle of length r ≥ 2 in its disjoint cycle
representation.

Let s = max{r|r ∈ T}.
We shall show that 3 ∈ T and indeed a 3-cycle belongs to H. Then we

are done by the above generation results.

1. Main principle. If h ∈ H and g ∈ An then [h, g] = h(gh−1g−1) ∈ H,
since H / An.

This is obvious since the two displayed parts are clearly both in H.
Typically, this is used by calculating [h, g] as (hgh−1)g−1 after fixing
h ∈ H and choosing convenient g ∈ G.
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2. Suppose that s ≥ 4. Then H contains a 3-cycle.

Without loss of generality we can assume that

σ =
(

1 2 3 4 · · ·
)
· · · ∈ H.

Set τ =
(

1 2 3
)
∈ An. Then

[σ, τ ] =
(

2 3 4
) (

1 3 2
)

=
(

1 4 2
)
.

This is in H by the main principle, hence we are done.

3. Suppose that s = 3 then H contains a 3-cycle.

PROOF. Without loss of generality we have σ ∈ H of the form σ =(
1 2 3

)
· · · . If σ is just a 3-cycle, then we are done. Hence we may

assume:
σ =

(
1 2 3

) (
4 5 · · ·

)
· · · .

Let τ =
(

1 2 4
)
∈ An.

Then we see

[σ, τ ] =
(

2 3 5
) (

1 4 2
)

=
(

1 4 3 5 2
)
∈ H.

Thus s ≥ 5 and we have a contradiction!

4. We now claim that s ≥ 3.

PROOF. Suppose if possible s = 2. Then we can assume without loss
of generality that

σ =
(

1 2
) (

3 4
)
· · · ∈ H.

Take τ =
(

1 3 5
)
∈ An. Here, we seriously need n ≥ 5. There are

two possible cases.

Case 1. σ =
(

1 2
) (

3 4
)
. In this case, we see:

[σ, τ ] =
(

2 4 5
) (

1 5 3
)

=
(

1 2 4 5 3
)
∈ H.

Thus we have s ≥ 5. Thus s = 2 is not possible!

Case 2. σ =
(

1 2
) (

3 4
) (

5 6
)
· · · . In this case, we see:

[σ, τ ] =
(

2 4 6
) (

1 5 3
)
∈ H.

But then s ≥ 3, another contradiction!
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5. Done!

We have shown that s ≥ 3 and for each of the possibilities s = 3, s ≥ 4
we have shown that H contains a 3-cycle as promised!

Remark. We now finish off the discussion by describing the situation for
n < 5.

1. If n = 2 then A2 is the identity subgroup and is trivially simple.

2. If n = 3, then A3 is the cyclic group of order 3 generated by
(

1 2 3
)
.

It is clearly simple, being of prime order.

3. If n = 4, then A4 contains a famous normal subgroup, namely K, the
Klein 4-group defined as

K = {Id,
(

1 2
) (

3 4
)
,
(

1 3
) (

2 4
)
,
(

1 4
) (

2 3
)
}.

Note that in our above notation, here s = 2 is possible, because we
don’t have a fifth element to create our τ . This K is a proper normal
subgroup of A4 and is abelian. Hence, every subgroup of K is normal
in K, though not in A4. The subgroup K is indeed the unique proper
normal subgroup of A4.

It can be shown that K is in fact the commutator subgroup [A4, A4].

3.6 Building new groups from old.

Given two groups H,K we now investigate various possible ways of putting
them together to form a new group. This naturally helps in analyzing a given
group as developed from smaller groups.

The first construction is the simplest product.
Direct product: Given groups H,K by their direct product we mean

the set H ×K together with the group operation defined by

(h1, k1)(h2, k2) = (h1h2, k1k2).

Note that to avoid cluttering our notation, we are not identifying the symbols
for the different group operations and thus h1h2 is defined as the product in
H while k1k2 is defined as the product in K.

This direct product is also called the external direct product in contrast
with the internal direct product defined below.

We note the following easy facts about the direct product.

1. If H,K are finite then |H ×K| = |H||K|.
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2. If L is a subgroup of H ×K then

LH = {h ∈ H|(h, k) ∈ L for some k ∈ K}

is a subgroup of H. Similarly

LK = {k ∈ H|(h, k) ∈ L for some h ∈ H}

is a subgroup of K.

The group L∗ = {(h, k)|h ∈ LH , k ∈ LK} is a subgroup of H ×K. It
evidently contains L but can be bigger!

3. G = H × K contains two subgroups H1, K1 isomorphic to H and K
respectively. namely H1 = {(h, 1)|h ∈ H} and K1 = {(1, k)|k ∈ K}.
Note that we are using the symbol “1” to denote the identity in both
the groups. This is an abuse of notation, but helps us keep the
notation short.

4. We shall name the natural projection map πH : G → H defined by
πH(h, k) = h. Similarly πK(h, k) = k.

Note that then LH = πH(L) and LK = πK(L). Both projections are
group homomorphisms with Ker(πH) = K1 and Ker(πK) = H1. Thus
G/H1

∼= K and G/K1
∼= H.

5. Internal direct product. Note that H1, K1 are subgroups of G sat-
isfying these properties:

• H1

⋂
K1 = {1}. Convention: Note that this 1 is really the

identity (1, 1) ∈ G. We may often just write 1 for {1} in order
to denote the appropriate group containing just the appropriate
identity, or the so-called identity subgroup.

• G = H1K1.

• [H1, K1] = 1. This cryptic notation is saying that elements of
H1, K1 commute with each other and hence their commutators
reduce to the identity subgroup.

We shall say that the group G is an internal direct product of H1, K1

if the above conditions hold.

It can be deduced from the given conditions that every element g ∈ G
is uniquely a product of some h1 ∈ H1 and k1 ∈ K1 so that g = h1k1.
As a result, it is also easy to prove that an internal direct product is
in turn isomorphic to an external direct product. We simply take the
map H1 ×K1 → G defined by (h1, k1)→ h1k1.
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Example. Let G = ZZ15 and H1 =< [3]15 > and K1 =< [5]15 >. Check
that G is an internal direct product of H1, K1. 13

Note, in turn, that H1
∼= ZZ5 and K1

∼= ZZ3 and this is simply the
reaffirmation that ZZ15

∼= ZZ5 × ZZ3.

6. Semidirect product. Now consider the example of the dihedral group
D2n with n ≥ 3.

Let H =< r > where r is the usual element of order n and K =< s >
where s is the element of order 2 satisfying srs = r−1. Then H

⋂
K = 1

and D2n = HK but [H,K] 6= 1. The group H, however is a normal
subgroup and D2n/H is isomorphic to ZZ2

∼= K.

We formalize a product concept to model this behavior.

Let H,K be groups and φ : K → Aut(H) a group homomorphism.
Definition: The semidirect product of H with K induced by φ
is denoted by H oφ K and is defined thus:

• HoφK = H×K, i.e. as a set it coincides with the direct product.

• The product (i.e. the group operation) is defined by

(h1, k1)(h2, k2) = (h1φ(k1)(h2), k1k2).

This is sometimes written by using the suggestive notation h
φ(k1)
2

for φ(k1)(h2). Thus we write:

(h1, k1)(h2, k2) = (h1(h2)φ(k1), k1k2).

The idea is that φ(k1) is an automorphism of H and hence we let
it act on h2. 14

• Just as in the case of the direct product, we have subgroups H1, K1

isomorphic to H,K respectively. This time, only H1 is expected
to be a normal subgroup and we have only one projection map
πH : H oφ K → K. 15

• Convention. We can drop the reference to φ in the notation if
it is clear from the context.

13Remember that we need to use the additive notation here.
14The book shortens the notation to k1 · h2. Some people write it as hk1

2 suppressing
the notation φ. No matter how you shorten it, it is hiding many calculations and hence
needs to be well defined and understood!

15The other projection map does exist, but won’t be a group homomorphism! You
should check in D2n.
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Example. Thus in the D2n example, we can take φ(s) to be the
automorphism of H =< r > which takes r to r−1. For convenience,
denote this automorphism of H by τ .

Then the image φ(< s >) is simply < τ >. Thus we have

D2n
∼= ZZn oφ DZ2

where, we have identified < r > with ZZn, < s > with ZZ2 and Aut(H)
with ZZ×n .

Remark.

1. We may think of the direct product as a special case of a semidirect
product by taking the trivial homomorphism φ, namely taking φ(k) to
be the identity automorphism for all k ∈ K.

2. If H / G is a normal subgroup and K < G is any subgroup such that
H
⋂
K = 1 then we know that HK is a subgroup of G. We can iden-

tify it as a semidirect product by defining φ(k) to be the conjugation
automorphism (inner automorphism) φ(k)(h) = khk−1.

It can be easily seen that then H oφ K ∼= HK with the identification
(h, k)→ hk. We only show the homomorphism property.

We have:
(h1, k1)(h2, k2) = (h1(k1h2k

−1
1 ), k1k2)

and the homomorphism condition requires that

(h1k1)(h2k2) = (h1(k1h2k
−1
1 ))(k1k2)

which is evident! The rest of the claim follows.

We can simply call this an internal semidirect product and write
HK as HoK. Note that the map φ is not mentioned, if it corresponds
to matching elements with the inner automorphisms induced by them.

3.7 Some examples and exercises.

Here are some examples with details left for the reader and some exercises
to be completed.

1. Another view of an abelian group. Let G be a group and use the
usual notation G′ to denote its commutator subgroup [G,G].

Prove that G/G′ is an abelian group. (Remember that the notation
implies that G′ is a normal subgroup and this also needs a proof!)
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Prove that if G/H is abelian for some normal subgroup H, then G′/H.
This is sometimes described as “G′ is the smallest normal subgroup with
abelian quotient.”

2. Prove that if A,B are subgroups of G such that G/A and G/B are
abelian, then G/(A

⋂
B) is also abelian.

3. Let K be a cyclic group of order n > 1.

Deduce from old exercises that Aut(K) is isomorphic to ZZ×n - the mul-
tiplicative group {[a]n|GCD(a, n) = 1} of order φ(n).

In particular, note that Aut(K) is abelian.

4. Let K be a cyclic normal subgroup of G. Prove that G′ ⊂ CG(K).
Hint: You need to prove that conjugation by any element of G′ is the
identity automorphism of K. Use knowledge of the Aut(K) above.

5. Prove that a group of order p2 where p is a prime is either cyclic or
isomorphic to ZZp × ZZp. Thus, in either case, it is abelian.

6. Let G be a group of order p3 where p is a prime. Recall the proof that
G has a non trivial center and deduce that there is an element z ∈ G
of order p such that [z,G] = {e}.
Conclude that the commutator subgroup G′ ⊂< z >.

7. Assume that the elements x, y ∈ G commute with [x, y]. Prove the
formula:

(xy)n = xnyn[y, x]
n(n−1)

2 .

Hint: Use induction on n.

8. Let G be a group of order p3 where p is an odd prime. Prove that the
map t→ tp is a homomorphism of G into Z(G).

Why does p have to be odd? What changes when p = 2?

9. Combine the above results to describe all groups of order p3 where p is
an odd prime.

Hint: Start with z in the center as above and separately consider the
cases when G/ < z > is either cyclic or isomorphic to ZZp × ZZp.

4 Further Theorems in Groups.

We now turn our attention to some topics of importance in applications of
Group Theory. We may not get to the actual applications for some time,
though!
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4.1 Fundamentals of p-groups.

Having studied the existence p-Sylow groups, we now turn our attention to
the structure of the p-Sylow subgroups themselves.

First some definitions.
Definition: Maximal subgroup.
A subgroup H < G is said to be maximal if H 6= G and there is no

subgroup K strictly between H and G.
Definition: Characteristic subgroup.
A subgroup H < G is said to be characteristic if for every automorphism

σ ∈ Aut(g) we have σ(H) = H. We can alternatively describe this as “ every
automorphism stabilizes H ”.

We write H char G, if H is a characteristic subgroup of G.
Note that a normal subgroup only requires that it is stabilized by all inner

automorphisms, so a characteristic subgroup is necessarily normal.
Here are some facts about characteristic subgroups worthy of re-

membering:

• {e} and G are trivial characteristic subgroups.

The commutator subgroup G′ is also characteristic. The center Z(G)
is also characteristic.

• If G has a unique p-Sylow subgroup, then it is clearly characteristic.

• If K char H and H / G, then K / G. For proof, we simply note
that the inner automorphism given by conjugation by an element of G
induces an automorphism of H since H is normal in G and hence an
automorphism of K since K is characteristic in H.

Here are some important properties of p-groups. Let p be a prime.
Let P be a p-group. The Sylow theorems don’t say anything further about
it, since it is its own p-Sylow subgroup. So we need further analysis to
understand its properties.

1. P has non trivial center i.e. |Z(P )| > 1.

This is already established by considering the conjugation action of P
on itself and invoking the class equation:

|P | = |Z(P )|+ sum of lengths of non singleton orbits .

Since the LHS and the second term of RHS are divisible by p, so is
|Z(P )| and since Z(P ) contains at least the identity element, |Z(p)| is
at least p, giving the result!
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2. Every normal subgroup H of P also contains non trivial central ele-
ments.

This is done by repeating the above argument, but this time letting
P act on H by conjugation. (This is meaningful, since H is normal!)
Thus we get:

|H| = |Z(P )
⋂

H|+ sum of lengths of non singleton orbits

and thus, as before |Z(P )
⋂
H| > 1.

3. Every normal subgroup H of P of order ps contains subgroups of order
pi, for i = 0, 1, · · · , s which are normal in P.

To see this, note that we already know the result for i = 0, 1 since H
contains the identity as well as a nontrivial central element (which we
may assume to be of order p by raising to a power if necessary).

By induction, assume that Hi is a subgroup of H with |Hi| = pi and
0 ≤ i < s. We will show that there is Hi+1 < H such that Hi+1 / P
and |Hi+1| = pi+1.

For proof, simply consider K = H/Hi < P/Hi and note that |H/Hi| =
ps−i > 1. Hence, we can choose an element z ∈ H such that its image
z in H/Hi is a non trivial central element of P/Hi. Further arrange
that |z| = p by raising it to a suitable power if necessary.

With a little work, we see that Hi+1 =< Hi, z >, satisfies all the needed
conditions.

4. In particular, P contains normal subgroups of all orders dividing
|P |.
We simply apply the above to H = P . The main point is that a
sequence of elements z1, z2, · · · , zj generates a normal subgroup if each
zi is central modulo the subgroup generated by z1, · · · , zi−1. It is this
fact that leads to the idea of studying upper central series.

5. For any proper subgroup H of P , we have that NP (H) is strictly bigger
than H.

We make an induction on |P |. If |P | = 1 or p or even p2, then the
group is abelian and there is nothing to prove.

We have two cases.

• Case 1. Suppose Z(P ) contains an element x 6∈ H. Then x ∈
NP (H) \H and the proof is finished!
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• Case 2. Suppose Z(P ) ⊂ H. Then we go modulo Z(P ) and note
that |P/Z(P )| < |P |, so induction hypothesis can be applied to
the group H/Z(P ).

Write P = P/Z(P ) and H = H/Z(P ).

Thus, there is x ∈ P such that x 6∈ H but x ∈ NP (H).

It is easy to check that x is then in NP (H) \H.

6. Every maximal subgroup Q of P is normal. Moreover, such a maximal
Q has index p.

This is immediate from the above, since the normalizer NP (Q) can only
be P by maximality of Q, so Q is normal! Moreover, the p-group P/Q
has no proper subgroups and hence must be the smallest non trivial
p-group, namely the cyclic one of order p.

4.2 Fundamental Theorem of finite abelian groups.

The fundamental theorem of finitely generated abelian groups states that
any finitely generated abelian group A is isomorphic to a direct product of
cyclic abelian groups. Note that a finite cyclic group is isomorphic to ZZn for
some n, whereas an infinite cyclic group is isomorphic to ZZ.

There are further uniqueness statements associated with this theorem.

1. The number of infinite cyclic groups appearing in the direct product
only depends on the group and is called its free rank or Betti num-
ber.

2. The product representation of the finite cyclic groups is not unique,
unless one makes some restrictions. One way is to require that all cyclic
factors be p-groups for various primes p and then the representation is
unique except for order.

It is customary to use a more natural decomposition in terms of the
so-called invariant factors, but since it can be uniquely deduced from
the p-group factorization, we postpone its discussion until it comes up
naturally in a more general context (where p-group concept does not
generalize well).

In this section, we only prove the version for finite groups, so the free
rank is 0 and no copies of ZZ appear!

We make a
Definition: Exponent of a group. A positive integer m is said to be

the exponent of a group G if gm = e for each g ∈ G and that m is the least
such integer.
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If such an integer does not exist, then we define it to be ∞. It is clearly
the LCM of the orders of elements of G.

Note that a finite group always has a finite exponent and it is a factor of
|G|, in view of Lagrange’s Theorem.

Let us note that in the additive notation of abelian groups, we rewrite
the condition as mg = 0.

Preamble for the Fundamental Theorem of finite abelian groups.
Let A be a finite abelian group of order n and exponent m|n. We shall assume
that p1, · · · , pr are the different prime factors of n

Thus, the theorem we aim to prove is that:

A =
r∏
i=1

Ai where Ai is a pi-group.

Here we are using the internal direct product.
Further, if we let ni = ordpi(n) then Ai is the unique normal pi-Sylow

subgroup of A of order pni
i and itself is congruent to a product of pi-groups,

Ai1 , · · · .

1. Reduction to the p-group case. We prove a

Lemma. Suppose that the exponent m of A has a factorization m = ab
where GCD(a, b) = 1, then

A = H ×K

where H and K have exponents a, b respectively. Here, we are actually
claiming that A is an internal direct product of H,K.

Proof. Define H = {x ∈ A|xa = e} and K = {x ∈ A|xb = e}. Using
the abelian nature of A we see that H,K are subgroups. 16

Since a, b are coprime, there exist integers u, v such that au+ bv = 1.

If x ∈ H
⋂
K then from xa = xb = e we note that

x = x1 = xau+bv = (xa)u(xb)v = e.

Thus H
⋂
K = {e}.

Moreover, given any x ∈ A, note that xb ∈ H since clearly (xb)a =
xm = e. Similarly, xa ∈ K since (xa)b = xm = e.

Thus, by the same calculation as above x = (xb)v(xa)u ∈ HK. We
have thus proved that A is the internal direct product of H and K as

16Simplest precise argument might be to note that H is simply the kernel of the a-power
homomorphism Fa from A into A. Similarly for K.
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asserted. Clearly, the exponent of H is some a1 dividing a and the
exponent of K is some b1 dividing b.

¿From A = HK it follows that xa1b1 = e for all x ∈ A and hence
m = ab divides a1b1. From coprimeness of a, b it follows that a1 = a
and b1 = b.

The reduction. Applying the above lemma repeatedly, it is easy to
see that the group A is isomorphic to the direct product of groups Ai
whose orders are powers of a single prime pi. This reduces the proof
of the theorem to the case where we only need to consider a to be a
p-group for some prime p.

2. Case of a p-group. Now we simplify our notation by assuming
that p is a prime and A is a finite abelian p-group of order n and
exponent m.

Important change of representation. We will find it more conve-
nient to think of our abelian group in additive notation.

We now list the changes in our language caused by this conversion.

• The identity of the group A is now 0 and the exponent m is the
smallest positive integer such that mx = 0 for all x ∈ A.

• We shall use induction on n, the case of n = 1, p being trivial.

• The elementary abelian case. An abelian p-group A is said
to be elementary abelian, if every non zero element (non identity
element) has order p, i.e. pA = {0}.
Another way of saying this is to note that equivalently, the expo-
nent is p.

Drawing on our knowledge from elementary algebra and linear
algebra, we note that such a group is naturally a vector space over
the field ZZp. We use the usual additive group structure and the
scalar multiplication [r]px when r ∈ ZZp is simply defined as rx.
The condition of being elementary abelian makes this well defined.

Now, the usual basis of the vector space gives the generators nec-
essary to make the direct product (or direct sum in conformity
with the additive notation).

Thus, if x1, · · · , xt is a basis of A, then

A =
t∏
i=1

< xi > .

This is easy to see from the vector space theory. Thus our theorem
is now considered proved for elementary abelian p-groups.
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We shall prove that A is a product of cyclic p-groups( or the so-called
direct sum in conformity with the additive notation.)

3. General case of the p-group. Let H = pA = {px|x ∈ A} and
K = {x ∈ A|px = 0}.
Note that the homomorphism x → px has kernel K and image H, so
we get that |A| = |K||H|.
It is easy to see that |H| < |A| since otherwise we will get an infinite
sequence of elements x1, ·, xs, · · · such that xi = pxi+1, in contradiction
with the finiteness of A.

Thus, we may assume H to be a direct product of cyclic p-groups
< hi >, for i = 1, · · · , r, say. For each hi we can find gi ∈ A such that
pgi = hi.

Then we can easily see that the group generated by {g1, · · · , gr} is the
internal direct product of {< gi >} and we shall denote it by A0.

Suppose that |hi| = pni for each i. Then it is easy to see from the direct
product condition that |H| =

∏r
i=1(pni) and |A0| =

∏r
i=1(pni+1) =

|H|pr.
Moreover, clearly,

H
⋂

K =< pn1−1h1 > × · · ·× < pnr−1hr > .

Thus |H
⋂
K| = p · · · p = pr.

Now, if K ⊂ H then

|K| = |H
⋂

K| = pr

and we see that |A0| = |H|pr = |H||K| = |A|. Then A0 = A and the
direct product structure of A0 finishes the proof.

In case K 6∈ H we need to enlarge A0. Actually, in this case, we invoke
the induction in a different attack.

Consider the group A/H which is clearly elementary abelian by defini-
tion of H. Let x ∈ K \H and note that x ∈ A/H is a non zero element.
We can make a basis for the ZZp-vector space A/H as x = y1, · · · , ys.
We claim that

A =< x > × < y2, · · · , ys > .

If we have an element in the intersection of < x > and < y2, · · · , ys >,
then it must be also in H, since it goes to zero modulo H. But < x >
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⋂
H = {0} and hence the intersection of the two groups is the zero

group.

Let B be the group generated by < x > and < y2, · · · , ys >. It remains
to show that every element g ∈ A can be written as an element of
B. Clearly, we can write g = u1 + pg1 where u ∈ B and pg1 ∈ H.
Applying a similar process to g1 and collecting terms, we can write
g = u1 + pu2 + p2g2. Continuing, we see write

g = u1 + pu2 + · · ·+ piui+1gi.

For large enough i, we will have pi divisible by the exponent of A and
hence pigi+1 = 0. Thus g = u1 + pu2 + · · ·+ pi−1ui ∈ B.

4. Uniqueness considerations. We have now shown that for any abelian
p-group, we have a sequence of non negative integers di, i = 1, · · · , t
such that A is a direct product of d1 copies of ZZp, d2 copies of ZZp2 and
so on until dt copies of ZZpt , where dt 6= 0.

It can be shown, say by counting elements of various order in A that
the sequence of numbers d1, · · · , dt is completely determined by the
group A.

This will be done in exercises. We only illustrate two simple results
along these lines.

• The value of t corresponding to the highest nonzero dt is simply
determined by the exponent being pt. This follows from the fact
that the exponent of such a direct product is clearly the exponent
of ZZpt .

• Each copy of ZZpt contains exactly pt − pt−1 elements of order pt.
Then the product of dt copies of these clearly contains (pt−pt−1)dt

such elements of order pt. Thus, the number dt is uniquely deter-
mined as the log to the base pt − pt−1 of the number of elements
of order pt.

• Continuing this way, we can successively determine each of dt, dt−1, · · · d1.

• Even though the above is simple, it is also kind of tedious to keep
track of. Thus, a better strategy is a suitable induction. We do
this next.

5. Formula for the number of elements of a given order.
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5 Extra Topics.

The edits are just finished. It may still need minor proof reading. 9:50 AM
10/5

5.1 Symmetric Functions

We discuss an important application of the ideas of group actions and orbits
to the study of symmetric functions which are essential in theory of equations
and Galois Theory.

We start with:
Definition: symmetric function A function f(X1, · · · , Xn) of several

variables X1, · · · , Xn is said to be a symmetric function if it is invariant under
any rearrangement of its arguments. Of course, the notion is of interest only
when n > 1.

For example, X1+X2, X1X2 and a+b(X1+X2)

X2
1+X2

2+cX1X2
are all symmetric functions

of X1, X2 where a, b, c are parameters and not involved in the permutation.
We begin with some convenient notations:

1. As usual, let IN be the set of all non negative integers. We will denote a
monomial X i1

1 · · ·X in
n by X i where i = (i1, · · · , in) and each ij ∈ IN. We

will also use the symbol X to denote (X1, · · · , Xn) when convenient.

Let M = {X i | 0 ≤ ij ≤ n∀1 ≤ j ≤ n}.
Then, any polynomial in h(X) ∈ K[X] = [X1, · · ·Xn] can be expressed
as h(X)

∑
i∈A hiX

i, where the coefficients hi ∈ K and A is a finite
subset of INn.

If A is empty, then the polynomial is the zero polynomial.

For any non zero polynomial h(X) ∈ K[X] we define its support
Supp(h(X)) by {i | hi 6= 0}

2. We define an order among the monomial in K[X] by X i >M Xj if there
is an s such that 1 ≤ s ≤ n such that iu = ju if u < s and is > js. This
is one of the lexicographical orders and it totally orders the set of all
monomials M in X with 1 = X(0,··· ,0) as the smallest and there is no
largest.

However, if we restrict the total degree to an integer D, then the largest
would be XD

1 = X(D,··· ,0).

3. For any non zero h(X) ∈ K[X] we define its leading form Lf(h(X)) =
hiX

i if X i is the largest monomial in Supp(h(X)).
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The corresponding exponent i = (i1, · · · , in) ∈ M may be denoted as
deg(h(X);M) and we may clearly extend the >M to the exponents by
defining i >M j if and only if X i >M Xj. We may call the largest i in
the support of h(X) as the M − degree of h(X).

4. We define the action of the permutation group Sn on M by σ(X i) =
Xσ(i) where σ ∈ Sn and σ(i) = (iσ(1), · · · , iσ(n)). We extend this action
by linearity on K[X] by σ(

∑
i∈A ciX

i) =
∑

i∈A ciX
σ(i).

5. We, next define some basic symmetric functions. If X i ∈ M , then we
define

• Sym(i) =
∑

σ∈Sn
σ(X i).

• Let f(i) denote the order of subgroup FixSn(i). Then each term
in Sym(i) s repeated exactly f(i) times.

We define Sym∗(i) to be the corresponding sum where we let σ
vary only over the coset representatives of FixSn(i). If f(i) is not
divisible by the characteristic of K, then we could simply note
that Sym∗(i) = 1

f(i)
Sym(i).

• We note that the largest monomial in the support of Sym(i) as
well as Sym∗(i) is j such that j1 ≥ j2 ≥ · · · jn.

• Let Z be a new indeterminate. If we expand the polynomial∏n
i=1(Z + Xj) as Zn + e1Z

n−1 + · · · en, then it is easy to see
that e1 = Sym∗(1, 0, · · · , 0), e2 = Sym∗(1, 1, · · · , 0), · · · , en =
Sym∗(1, 1, · · · , 1) and these are the usual basic symmetric func-
tions.

• Another important set of symmetric functions, often called New-
tonian symmetric functions are sj = Sym∗(j, 0, · · · , 0).

6. We now prove the

Fundamental Theorem of Symmetric Functions which states
that the set of symmetric polynomials in X is a subring of K[X] gen-
erated by e1, · · · , en.

Proof. Let E = K[e1, · · · , en] be the ring of polynomials generated by
e1, · · · , en.

Let h(X) ∈ K[X] be a symmetric polynomials. We wish to show that
h(X) ∈ E.

Since the zero polynomial belongs E, it is enough to assume h(X) to
be non zero.
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We shall denote the usual total degree in (X,

cdots,Xn) as degX(h(X)).

We make induction on (degX(h(X)), deg(h(X);M)). We note that for
the smallest degX(h(X)) = 0, we have 0 6= h(X) ∈ K ⊂ E and hence
the theorem holds.

If degX(h(X)) = 1, then for u = (1, 0, · · · , 0) we have Sym∗(u) = e1

and by symmetric property of h(X) all linear terms must have the
same coefficient as hu, so h(X) = huSym

∗(u) + c for some c ∈ K.
Thus, h(X) = hue1 + c ∈ E.

Now let Lf(h(X)) = hvX
v and thus deg(h(X);M) = v. Assume that

the theorem holds for all smaller M −degree polynomials as well as for
smaller total degree polynomials.

We first note that for all permutations σ ∈ Sn we must have that
hσ(v) = hv and thus deg(h(X)− hvSym∗(v);M) <M deg(h(X);M).

So, it is enough to prove that Sym∗(v) ∈ E. We note that Sym∗(v) =
Sym∗(σ(v)) for all σ ∈ Sn and so, without loss of generality, we may
assume that v1 ≥ v2 ≥ · · · ≥ vn. 17

We shall continue to use the induction hypothesis and consider µv(X) =∏n
i=1 e

dj
j ∈ E where dn = vn and by decreasing induction, we set dj =

vj −
∑n

r=j+1 dr for j = n− 1, n− 2, · · · , 1.

We note that

Lf(µv(X)) = X(d1,0,··· ,0)X(d2,d2,0,··· ,0) · · ·X(dn,dn,··· ,dn) = Xv.

Hence, deg(Sym∗(v) − µv(X);M) < deg(Sym∗(v);M) and so by in-
duction, the difference Sym∗(v)− µv(X) is in E.

Therefore, (Sym∗(v)− µv(X)) + µv(X) = Sym∗(v) ∈ E.

Thus, our Theorem is established.

7. We immediately get the Corollary: The field of symmetric rational
functions in X is equal to the field of rational functions in e1, · · · en.

Proof. Let f(X)
g(X)

be a symmetric rational function. Consider the

polynomial G(X) = g(X)
∏

σ∈Sn\Id σ(g(X)). Then it is evident that

g(X)G(X) is symmetric and thus, our rational function is equal to
f(X)G(X)
g(X)G(X)

whose denominator is a symmetric function. It follows that
the numerator is also symmetric and hence by our theorem both the
numerator and denominator in this expression are in E.

This proves the Corollary.

17This condition is really equivalent to the assumption that Xv is indeed Lf(Sym∗(v)).
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8. We now consider the extension of fieldsK(e1, · · · , en) ⊂ K(X1, · · · , Xn).
Both these fields are said to be “pure transcendental of dimension n”
which means they are generated by n algebraically independent ele-
ments. It is easily seen that they are therefore isomorphic even though
one is a proper subfield of the other. The field derived from E may be
conveniently described as FixSn(k(X)).

Naturally, we may replace the group Sn by other subgroups of Sn. The
question of determination of the fixed field is interesting and unsolved.

First, there is the well known E. Noether’s problem which asked if the
fixed field is always rational. She proved it for small n (n ≤ 4). R. G.
Swan found a counterexample for n = 47. The problem was tantalizing
because, if true, it would have given an easy proof of a fundamental
question of Galois Theory; namely, is every finite group representable
as a Galois group of some polynomial over Q ?

An old Algebra book of Jacobsen posed an exercise to show that the
fixed field of the alternating group An is always pure transcendental.
This field, at least has an explicit description, namely it is generated
by the square root of the Z-discriminant of

∏n
i=1(Z+Xi) over the field

generated by E. After several years, the exercise was removed, since
so far, only small values of n have been successfully tackled.

9. While the {ei} is a good finite set of generators for E, often an infinite
set of generators is more useful in computations. These are the “New-
tonian elementary functions” and we now give the necessary formulas.
Their drawback is that they don’t generate the same ring in positive
characteristic, but they work fine in characteristic zero.

We now prove the basic identities due to Newton.

Define si for i ∈ IN by si =
∑n

j=1 X
i
j.

We have Theorem: Newton

Let

P (X) =
n∏
i=1

(X −Xi) = Xn + p1X
n−1 + · · ·+ pn.

Note: We have pi = (−1)iei.

Then we have

(a) For 1 ≤ m ≤ n− 1 we have:

sm + p1sm−1 + · · ·+ pm−1s1 + pmm.
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(b) For m ≥ n we have:

sm + p1sm−1 + · · ·+ pn−1sm+1−n + pnsm−n

Proof:

By logarithmic differentiation, we have

P ′(X)

P (X)
=
nXn−1 + (n− 1)p1X

n−2 + · · ·+ pn−1

Xn + p1Xn−1 + · · ·+ pn−1X + pn
=

n∑
i=1

1

X −Xi

.

We put X = T−1, and first note that

P ′(X)

P (X)
=
nT−(n−1)) + (n− 1)p1T

−(n−2) + · · ·+ pn−1

T−n + p1T−(n−1) + · · ·+ pn
.

Further simplification gives:

P ′(X)

P (X)
= T

n+ (n− 1)p1T + · · ·+ pn−1T
(n−1)

1 + p1T + · · ·+ pnT n
.

Using Geometric series expansion and a similar substitution, we deduce:

1

X −Xi

=
1

T−1(1− TXi)
= T

∞∑
j=0

Xj
i T

j.

Putting it together, we get:

T
n+ (n− 1)p1T + · · ·+ pn−1T

(n−1)

1 + p1T + · · ·+ pnT n
= T

(
n∑
i=1

∞∑
j=0

Xj
i T

j

)
.

The RHS is now seen to be T
∑∞

j=0 sjT
j.

Canceling T from both sides and multiplying both sides by 1 + p1T +
· · · pnT n and collecting coefficients of powers of T on the right, we get:

n+ (n− 1)p1T + · · ·+ pn−1T
(n−1) = (1 + p1T + · · · pnT n)

(
∞∑
i=0

siT
i

)
.

The necessary identities can now be read off by comparing the coeffi-
cients of powers of T .
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Thus, if m < n by comparing coefficients of Tm on both sides, we see
that:

(n−m)pm = sm + p1sm−1 + · · ·+ pms0.

Since, s0 = n we cancel npm from both sides and moving all terms to
one side, we get

sm + p1sm−1 + · · ·+mpm.

If m ≥ n, then the LHS has 0 coefficient and the result follows just
from the Cauchy product on the right.

To be continued . . .
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