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1 Ring axioms and definitions.

Definition: Ring We define a ring to be a non empty set R together with
two binary operations f, g : R×R⇒ R such that:

1. R is an abelian group under the operation f .

2. The operation g is associative, i.e. g(g(x, y), z) = g(x, g(y, z)) for all
x, y, z ∈ R.

3. The operation g is distributive over f . This means:

g(f(x, y), z) = f(g(x, z), g(y, z))

and
g(x, f(y, z)) = f(g(x, y), g(x, z))

for all x, y, z ∈ R.
Further we define the following natural concepts.

1. Definition: Commutative ring. If the operation g is also commu-
tative, then we say that R is a commutative ring.

2. Definition: Ring with identity. If the operation g has a two sided
identity then we call it the identity of the ring. If it exists, the ring is
said to have an identity.

3. The zero ring. A trivial example of a ring consists of a single element
x with both operations trivial. Such a ring leads to pathologies in many
of the concepts discussed below and it is prudent to assume that our
ring is not such a singleton ring. It is called the “zero ring”, since the
unique element is denoted by 0 as per convention below.

Warning: We shall always assume that our ring under discussion is
not a zero ring. However, when we construct a new ring from a given
ring, we need to make sure that we have not created the zero ring.

4. Conventions. To simplify notation, we write x+ y in place of f(x, y).
The corresponding identity element is naturally denoted by 0. The
operation is simply called the addition operation in the ring.

We shall also replace g(x, y) by x·y or simply xy, if there is no confusion.
We naturally call the resulting operation the multiplication in R.

The corresponding identity of multiplication, if it exists, is naturally
denoted by 1.1

1Some textbooks make a term “rng” to denote a ring possibly without the unity,
whereas the term “ring” is reserved for rings with unity. The idea is that the “i” in
the spelling stands for the unity! While cute, this is useless since it is hard to say “rng”!
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5. Note that there is a good reason not to make a fuss about the additive
identity 0, since it always exists. One sometimes distinguishes the
element 1 by calling it the multiplicative identity.

6. It can be shown that for rings with identity, the distributive law forces
the operation f to be commutative and hence our assumption of “abelian-
ness” is a natural one. 2

7. Definition: Zero divisor An element x ∈ R is said to be a zero
divisor if x 6= 0 and there is some nonzero y ∈ R such that xy = 0
or yx = 0. Sometimes people name these two possible cases (xy = 0
or yx = 0) as conditions for a left or right zero divisors. We shall not
emphasize this.

It is important to note that a zero divisor is never zero! 3

8. A related concept for the identity 1 is:

Definition: Unit in a ring. An element x ∈ R is said to be a unit
if xy = yx = 1 for some y ∈ R.

The set of units of a ring R is denoted by R×.

Note that in contrast with the zero divisor concept, the element 1 is
counted as a unit.

It is easily seen the the set R× is a group under multiplication.

9. Definition: divisibility in a ring. We say that an element x of a
ring divides y if y = xz for some z in the ring. In symbols we write x|y
and we may also say y is divisible by x or that x is a factor of y.

Thus units clearly divide every element of the ring. In a commutative
ring, it is easy to show that every factor of a unit is a unit.

10. Note that the set of units and the set of zero divisors are disjoint.

To see this, let x be a unit with xy = yx = 1. If xz = 0 then yxz =
y0 = 0 but at the same time, yxz = (1)z = z. Thus xz = 0 implies
z = 0 and this proves that x is not a zero divisor. The case when
zx = 0 is similar.

2To see this, simply expand (1 + 1)(x+ y) in two different ways to get:

x+ y + x+ y = x+ x+ y + y

and deduce y + x = x+ y by canceling x from left and y from right.
3It is tempting to define a zero divisor as any divisor (or factor) of zero. But then 0

will always be such a zero-divisor and we will need a term “proper zero divisor” to discuss
the interesting non zero factors of zero. We have chosen the current definition to avoid
adding the word proper every time!
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On the other hand, assume that z is a zero divisor, so that z 6= 0
and zw = 0 for some non zero w. We prove that z is not a unit. If
xz = 1 for some x, then xzw = (1)w = w 6= 0, but xzw = x(0) = 0, a
contradiction. The case when wz = 0 is similar.

11. One of the most useful type of a ring is defined next.

Definition: Integral domain.

A ring R is said to be an integral domain if it is commutative, con-
tains 1 6= 0 and has no zero divisors. In an integral domain, we
have cancellation for multiplication, namely xy = xz implies x = 0 of
y = z. To see this, simply rewrite the equation as x(y− z) = 0 and use
the condition on zero divisors.

Definition: Field.

An integral domain R is said to be a field if its non zero elements are
units, i.e. R× = R \ 0. Later on we will see how any integral domain
can be enlarged to a field called its quotient field.

Many examples of fields are well known, Q the field of rational num-
bers, < the field of real numbers, C the field of complex numbers and
ZZp the finite field with p elements when p is a prime.

The field Q is the so-called quotient field of ZZ.

Definition: Division ring.

A ring R is said to be a “division ring” if the condition R× = R \ 0
holds. Thus, we can define a field as a commutative division ring.

One of the best examples of a division ring is the ring of real Hamilton
Quaternions:

H = {a+ bi+ cj + dk|a, b, c, d ∈ <}

where the products are defined by

i2 = j2 = k2 = −1 and ij = k = −ji, jk = i = −kj, ki = j = −ik.

Verify that

(a+ bi+ cj + dk)(a− bi− cj − dk) = a2 + b2 + c2 + d2

and deduce that we indeed have a division ring!

12. Definition: Sub-ring. If R is a ring and S ⊂ R, then S is said to be
a sub-ring of R if S is a ring under the operations induced from R. It
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will follow that the 0 from R belongs to S, but the identity 1 may or
may not belong to S.

Clearly, a sub-ring S forms an additive subgroup of R and has to be
closed under multiplication.

Thus the set 3ZZ = {3n|n ∈ ZZ} is a sub-ring of ZZ which does not
contain the identity. In fact, if a sub-ring of ZZ contains 1, then it is
obvious that it coincides with ZZ.

13. For groups, we could use certain subgroups to create quotient groups,
namely the normal subgroups. For rings, we can make quotient rings
if our sub-rings are “ideal”.!

Definition: Ideal. A subset I of a ring R is said to be a left ideal if

• I is an additive subgroup of R and

• for every a ∈ I and x ∈ R we have xa ∈ I. This can be shortened
as RI ⊂ I.

A right ideal is defined similarly, where we require IR ⊂ I.

The subset I is said to be an ideal if it is both a left and a right ideal
(or the so-called two-sided ideal). Clearly, for commutative rings, we
only need to use the left ideal conditions above.

14. Let R be a ring and I an ideal in R. We define the quotient ring R/I
as follows.

Definition: Quotient ring.

Consider the set of additive cosets

S = {x+ I|x ∈ R}.

Since I is clearly a normal subgroup of the additive group R, we already
know that S is a well defined (abelian) quotient group. We define the
multiplicative structure on S by:

(x+ I)(y + I) = xy + I.

It is easy to check that this is well defined and defines a ring. 4

4The hardest part is to check that this is well defined. Thus, let x + I = p + I and
y + I = q + I, i.e. x = p+ p1 and y = q + q1 where p1, q1 ∈ I. Then

xy = pq + pq1 + qp1 + p1q1

where we note that the last three terms are in I by definition of an ideal. Hence xy+ I =
pq + I. Note how both left and right conditions on an ideal are used.

The rest of the check is easy.
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It is customary to denote this quotient ring as simply R/I without
introducing a new symbol S.

15. As in groups, we define a homomorphism or a map which respects the
ring structures. All definitions are similar except the the multiplicative
structure is also invoked.

Let φ : R→ S be a map of rings. We say that φ is a (ring-)homomorphism
if for all x, y ∈ R:

• φ(x± y) = φ(x)± φ(y) and

• φ(xy) = φ(x)φ(y).

The image of the homomorphism is the total image φ(R) = {φ(x)|x ∈
R} and it is easily seen to be a sub-ring of S.

The kernel of the homomorphism is the set of all elements mapping to
0, i.e.

Ker(φ) = {x ∈ R|φ(x) = 0}.

It is easy to check that Ker(φ) is a (two-sided) ideal of R.

Following the terminology in groups, we see that the homomorphism φ
is injective if and only if Ker(φ) = {0} and it is surjective if an only
if S = φ(R). As before, an isomorphism is a homomorphism which is
injective and surjective.

If we set I = Ker(φ), then the map ψ : R/I → φ(R) defined by
ψ(x+ I) = φ(x) is easily seen to be an isomorphism.

Thus, we have the basic identity

φ(R) ∼= R/Ker(φ).

2 Examples of rings.

We now list several important examples of rings which will be studied in
greater details later.

1. Rings derived from integers. A lot of insight in the rings comes
from the basic ring of integers ZZ. It is indeed an integral domain with
many special properties.

The finite rings ZZn derived from ZZ give basic examples of finite com-
mutative rings. In fact, in ZZn the identity 1 is written as [1]n in our
convention and has the property that r · [1]n or the sum of r terms
[1]n + [1]n + · · · is 0 = [0]n exactly when r is a multiple of n.
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We make a:

Definition: Characteristic of a ring. A ring R with 1 has character-
istic n if n is the first positive integer for which 1+1+ · · · n terms = 0.
In case, such an n does not exist, the characteristic is said to be 0.

A simpler description of the characteristic is as follows. Define a ho-
momorphism φ : ZZ → R by φ(1) = 1R where we have made up the
notation 1R for the identity in R. The Ker(φ) is then an ideal in ZZ
and it is easy to show that any ideal in ZZ is simply of the form dZZ
where d is some non negative integer. Indeed, d is simply the GCD of
all members of the ideal!

The characteristic of the ring R is n if Ker(φ) = nZZ. It is also clear
that the sub-ring φ(ZZ) of R is isomorphic to ZZn = ZZ/nZZ.

2. Polynomial rings and related costructions. We shall give a rather
general way of constructing rings from base rings which includes the
construction of polynomial and power series rings.

Let G be an abelian group. We say that G is an ordered abelian group
if G is a disjoint union of sets denoted as G+, G−, 0 such that:

(a) An element x ∈ G is in G+ if and only if −x ∈ G−. In particular,
G has no elements x with x+ x = 0, except 0.

(b) If x, y ∈ G+, then x + y ∈ G+ and similarly, if x, y ∈ G− then
x + y ∈ G−. In fact, the condition on G− can be deduced from
the condition on G+.

(c) This defines an order on G, namely we define x < y if an only if
y − x ∈ G+.

An abstract construction.

Let R be a commutative ring with 1 and consider the set of all functions
from G to R denoted by RG. For any function f ∈ RG we shall denote
its support by Supp(f) = {x ∈ G|f(x) 6= 0}.
Define WO(R,G) to be the set of all functions in RG whose support is
well ordered (under the given order on G).

We make WO(R,G) into a ring by defining component-wise addition
and multiplication by the Cauchy product defined thus:

If f, g ∈ WO(R,G), then the product fg ∈ WO(R,G) is defined by

fg(x) =
∑

y∈Supp(f),z∈Supp(g),x=y+z

f(y)f(z).
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Some serious work is involved in proving that the sum has only finitely
many terms and the resulting product also has well ordered support.

We shall leave further details of these concepts for private contempla-
tion for now. We only illustrate a few special cases which are funda-
mental to the ring theory.

• Polynomial ring.

If we take the ordered abelian group as ZZ and let S be the set of
non negative integers, then we can define the polynomial ring (in
one variable over R) as

{f ∈ RZZ|Supp(f) is a finite subset of S}.

If we consider a function h ∈ RZZ defined by h(1) = 1 and h(n) = 0
if n 6= 1 and for convenience denote it by X, then it is easy to see
that our ring contains all powers X,X2, X3, · · · and we simply get
the set

{
m∑
i=0

aiX
i| where some m ∈ S and ai ∈ R}.

This is usually denoted as R[X] where X is identified with the
special function. It is called the polynomial ring in one variable
over R (or with coefficients in R).

Having defined a polynomial ring in one variable, we may use
it as a base ring and create a polynomial ring in two variables as
R[X][Y ] which is briefly written as R[X, Y ]. In general, we can de-
fine and use a polynomial ring in several variables R[X1, · · · , Xn]
or even in infinitely many variables if convenient. 5

• Power series.

If we use the same setup as above, but drop the condition that
the supports of functions is finite, then we get the ring of formal
power series with elements of the form

∞∑
i=0

aiX
i.

The resulting ring is denoted by R[[X]]. As before, we can add
several variables at a time to make R[[X1, · · · , Xn]] or even in-
finitely many variables.

5If we allow infinitely many variables, then we have a choice to allow only finitely many
variables at a time in a given element, or allow infinitely many variables to appear in a
single element. We get different rings and both can be useful!
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• Generalized polynomial or power series rings. We may
allow the support to be a finite subset of ZZ and get a ring denoted
as R[X,X−1] where we allow finitely many positive or negative
exponents for X. This is called the ring of Laurent polynomials
over R.

A similar construction for power series requires assuming that the
support is well ordered and the ring is then denoted as R((X)). 6

3. Group rings.

If G is a finite group (not necessarily abelian) then we can repeat the
above abstract construction to make RG into a ring. This time, we
don’t worry about the order, since the order is only needed to make
sure that the product has only finitely many terms to collect at a time.
Since our whole set G is finite, this is not a problem at all.

The function f ∈ RG may be conveniently written as∑
f(g) · g

where the symbols “g” are simply place holders. This is called the
group ring of G over R and is simply denoted as RG.

4. Matrix rings. Let n be a natural number and let Mn(R) be the set of
n×n matrices with entries in R. The usual addition and multiplication
of matrices makes it into a ring and a rich source of examples of non
commutative rings. Note that we need to fix a positive integer n to
work with such rings. Sometimes, one defines a ring of infinite matrices
whose elements have the shape:(

A 0
0 I

)
where A is an n × n matrix for some finite n and I stands for an
infinite diagonal matrix with 1’s down its diagonal. Here the two 0’s
are supposed to represent zero matrices of appropriate sizes to fill up
an infinite square matrix.

This ring may be denoted with M(R). If we are working with finitely
many matrices of this ring, we can find an n such that all of them
can be thought to have a shape with an n × n part in the top left
corner, extended with I and 0’s. Then their matrix operations can be
essentially worked out in Mn(R) and filled out with I and 0’s.

6Why do we not write R[X,X−1] as R(X)? The reason is that this particular symbol
is used for the so-called quotient field (or the total quotient ring) to be defined later.
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3 Ideal operations.

Ideals are to be thought of as a natural generalization of integers. In ZZ the
ring of integers, we know how to work with individual integers, how to factor
and divide and otherwise combine them. In arbitrary rings, elements may
not have unique or finite factorization and to restore some of the properties
of integers, one defined what should ideally behave like numbers, hence the
word “ideal”.

Given an element r in a ring R, let a, b ∈ R and note that any (two-sided)
ideal containing r must also contain arb. If 1 ∈ R, then a, b are allowed to
be any integers (or really their images in the ring). If 1 6∈ R then we can still
make perfect sense out of nr as r + · · · + r - a sum of n terms if n > 0 and
−r − · · · − r - a sum of −n terms if n < 0. For convenience, we interpret
an as na. Thus we shall consider integers multiples of elements of R even
though integers themselves may not be in R.

Given a ring R and any subset S, it is easy to see that the set:

{a1s1b1 + · · ·+ amsmbm|ai, bi ∈ R , si ∈ S and m ∈ ZZ+}

is easily seen to be a two-sided ideal in R. It is called the ideal generated by
S and is denoted as (S). 7

Remark.
If the set S is finite, say S = {s1, · · · , sm}, then it is tempting to write

(S) = {
m∑
1

aisi|ai ∈ R}

but this is wrong if R does not contain 1. We need to modify it to:

(S) = {
m∑
1

(ai + di)si|ai ∈ R, di ∈ ZZ}

where disi is defined thus:

• If di > 0 then disi = si + si + · · · a sum of di terms.

• If di < 0 then disi = −(−disi), calculated using the above definition
for −di.

• If di = 0 then disi = 0.

7This is at variance with the “subgroup generated by” notation < S >, but is common
for ideals. Also, if S is a finite set, then we drop the set notation; for example, we write
(s, t) for ({s, t}).

10



If the ring is ZZ and S is any subset of ZZ, then we know that (S) = (d)
where d is the GCD of all the elements of S. This is the main consequence of
the Euclidean algorithm in ZZ which says that the GCD of any two integers
is a linear combination of the two with integer coefficients. Thus, every ideal
in integers is generated by one element, or principle. In general, we shall
study rings in which every ideal is finitely generated and these are called
Noetherian rings.

We now define a set of operations on ideals and illustrate each by their
counterpart in integers. We shall assume that the ring is commutative,
but the definitions can be suitably interpreted in non commutative rings also,
provided extra care is taken and suitable conditions imposed.

1. Given two ideals I, J in R, their sum I + J is defined as the ideal
generated by {a + b|a ∈ I, b ∈ J}. It is easy to show that if I = (S)
and J = (T ), then I + J = (S

⋃
T ).

Since ideals in ZZ are principle, we can say that I = (n), J = (m) for
some n,m ≥ 0 and then it is known that I + J = (n,m) = (d), where
d = GCD(n,m).

More generally, the idea of sum can be extended to even infinite col-
lection of ideals, where we consider elements which belong to the sum
of finitely many ideals at a time.

2. Given two ideals I, J in R, their intersection is defined as the usual set
theoretic intersection and is easily seen to be an ideal. As before, this
extends to an infinite set as well.

In ZZ the ideal (n)
⋂

(m) simply evaluates to (LCM(n,m)). Here an
infinite intersection will reduce to the zero ideal unless it is essentially
a finite intersection.

3. Given two ideals I, J in R, their product is defined as the ideal gener-
ated by {rs|r ∈ I, s ∈ J}. It is denoted as IJ and is really equal to
(IJ) in our usual convention for products of sets.

In ZZ we get that (n)(m) = (nm).

4. Given ideals I, J in R we define their quotient I : J to be the set
{r ∈ R|rJ ⊂ I}.
In ZZ, this gives (n) : (m) = (n/d) where d = GCD(n,m). Thus, for
example, (6) : (4) = (3). For proof, note that 3(4) ⊂ (12) ⊂ (6) and if
4x is divisible by 6, then clearly 3 must divide x.

5. Given an ideal I in R, by its radical, we mean the ideal

{x|xn ∈ I for some positive integer n}.
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The notation for this radical ideal is
√
I.

In ZZ, the (
√
n) is the ideal (m) where m is obtained from the product

of all distinct prime factors of n. Thus (
√

108) = (2 · 3) = (6).

Remark.

Avoid the confusion with the usual meaning of square root. In ideals
the symbol covers all n-th roots!

4 Extending rings.

We now discuss some useful ways of creating new rings out of old ones.
Convention.
For convenience, we shall assume that we have a commutative ring R

with 1. The reader may try to generalize the constructions by dropping
these conditions.

4.1 Adjoining one element to a ring.

Let R be a ring (with the convention in force, of course) and let S = R[X]
a polynomial ring over R. Note that R can be identified as the sub-ring of
R[X] consisting of polynomials of degree 0.

We shall do this identification without comment in the future.

4.1.1 Adjoining an integral element.

Definition: Integral element.
An element x ∈ A is said to be algebraic over a sub-ring B if it is the

root of some non zero polynomial with coefficients in B. This means:

b0x
n + b1x

n−1 + · · · bn = 0

for some b0, b1, · · · , bn ∈ B with b0 6= 0 and n ≥ 1. The element X is then a
root of the polynomial f(X) = b0X

n + b1X
n−1 + · · ·+ bn ∈ B[X].

An element x ∈ A is said to be transcendental over a sub-ring B if it
is not algebraic. In this case, it is easy to see that the set

B[x] = {p0xm + · · ·+ pm|pi ∈ B,m is a non negative integer }

is actually a ring isomorphic to the polynomial ring B[X] under the isomor-
phism mapping X to x.

A ring A is said to be algebraic over a sub-ring B if every element of A
is algebraic over B.
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An element x ∈ A is said to be integral over a sub-ring B if it is a root
of a monic polynomial with coefficients in B, i.e.

xn + b1x
n−1 + · · ·+ bn = 0

for some b1, · · · , bn in B.
A ring A is said to be integral over B if every element of A is integral

over B.
Example. Recall the Newton’s Rational Root Theorem: If a rational

number r is a root of a polynomial f(X) = a0X
n + · · · an of degree n with

integer coefficients and if r = p
q

in reduced form, then p divides an and q
divides a0.

This theorem applied to the case when f(X) is monic (or a0 = 1) gives
that r must be an integer factor of an.

In particular, it says that a rational root of a monic polynomial is an
integer! In other words, a rational number integral over the ring of integers
is actually an integer. This explains the term “integral”.

A similar argument can be used for k[X], a polynomial ring over a field
k. This gives a theorem which says that a rational function (ratio of two
polynomials in k[X]) is integral over k[X] iff it is in k[X].

Let
f(X) = Xn + a1X

n−1 + · · ·+ an

be a monic polynomial of degree n in S so that ai ∈ R.
Let I = (f(X)) the ideal generated by f(X) in S and let T = S/I and

let φ : S → T be the canonical residue class map φ(z) = z + I.
We claim that

1. φ restricted to R is an isomorphism onto φ(R).

2. w = φ(X) satisfies wn + φ(a1)w
n−1 + · · ·+ φ(an) = 0.

3. Now we identify R with φ(R), so for r ∈ R, we replace φ(r) by r.

Then we can simply say that T is a ring containing R and

f(w) = wn + a1w
n−1 + · · ·+ an = 0.

In other words, T is an extension of R containing a root w of f(X).

4. The ring T can be described thus:

T = {r0wn−1 + r1w
n−2 + · · ·+ rn−2w + rn−1|ri ∈ R}.

In other words T consists of expressions g(w) as g(X) varies over all
polynomials in X of degree at most n − 1 over R. To compute the
product g1(w)g2(w) we write

g1(X)g2(X) = q(X)f(X) + r(X)
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where r(X) is the remainder of g1(X)g2(X) mod f(X) and noting that
f(w) = 0 we get g1(w)g2(w) = r(w).

5. The ring T can be thought of as a ring obtained by adjoining a root of
f(X) to R.

PROOF. The first claim is easily checked. As for the second claim,
note that wn + φ(a1)w

n−1 + · · · + φ(an) = φ(f(X)) and this is zero since
f(X) ∈ I = Ker(φ).

Given any element g(X) ∈ R[X] we write g(X) = q(X)f(X) + r(X) by
the usual division algorithm and since φ(f(X)) = 0 we see that

φ(g(X)) = g(w) = φ(r(X)) = r(w).

The rest of the claims are now easy to verify.
Example. Let R = ZZ and f(X) = X2−D for some integer D. The ring

T = ZZ[X]/(X2 −D) can then be written as:

T = {aw + b|a, b ∈ ZZ}

where w = φ(X) satisfies w2 − D = 0, i.e. w =
√

(D). Thus T can be
thought of as ZZ[w] an extension of ZZ obtained by adjoining w, a square root
of D. It follows that −w is also a square root of D.

Several particular cases are noteworthy.

• If D = 2, then we get the ring ZZ[
√

2], the ring obtained by adjoining
the square root of 2.

• If we take D = −1 so that f(X) = X2 + 1, then we get the usual
imaginary square root of −1. Indeed, if we take R = < the field of reals
and make <[X]/(X2 + 1) then we get the field of complex numbers C .

• Food for thought. Notice that we have put no restriction on D. If
we take D = 1, then we already have two square roots 1,−1 of D in ZZ.
Our construction produces two more, namely w,−w. How can we have
four square roots? The problem is that our ring T has zero divisors.
Thus we have

0 = w2 − 1 = (w − 1)(w + 1)

yet neither w − 1 nor w + 1 are zero! Thus we need to be careful and
restrain our intuition when using this algebraic device!

We run into such problems only when we allow our f(X) to be re-
ducible.
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• Consider D = 5. Let g(X) = X2 + X − 1 and let S = ZZ[ω] the ring
obtained by adjoining a root ω of g(X).

Use ω2 + ω = 1 and we can see that for w = 2ω + 1 we have

w2 = (2ω + 1)2 = 4ω2 + 4ω + 1 = 4(ω2 + ω) + 1 = 5.

Thus our ring ZZ[
√

5] can be identified with the sub-ring ZZ[2ω + 1] of
S.

It can be shown that wheneverD = 1+4n we can use g(X) = X2+X−n
and get

ZZ[
√
D] = ZZ[2ω + 1] ⊂ ZZ[ω]

where g(ω) = 0.

The book defines O(D) to be ZZ[
√
D] if D is a square-free integer con-

gruent to 2 or 3 mod 4 and O(D) = ZZ[ω] if D is congruent to 1 mod
4.

This will be discussed in more details later.

4.1.2 Adjoining a general algebraic element.

If we work as above but now allow

f(X) = a0X
n + a1X

n−1 + · · ·+ an

where ai ∈ R and a0 6= 0 so f(X) has degree n.
The ring T = R[X]/(f(X)) is defined as above, but because of the leading

coefficient a0 not being a unit, we may not be able to carry out the usual
division algorithm completely.

Letting φ denote the usual canonical homomorphism and w = φ(X) we
still get that w is a root of f(X) after we identify R with φ(R).

The elements of T can be still expressed as polynomials in w, but we can
no longer restrict their degree to less than n.

Example. Let R = ZZ and f(X) = 2X − 1. Then T is identified with
ZZ[1

2
] since 1

2
is a unique root of f(X).

With R = ZZ we can also consider f(X) = 4X2 − 5 and note that our

ring T may be thought of as ZZ[
√
5
2

]. Note that T contains a subring ZZ[
√

5]
already known to us and this subring is integral over ZZ but the whole ring
T is not.

15



4.2 Inverting a set.

As we saw above, the result of adjoining a root of 2X − 1 was to allow the
fraction 1

2
into the ring ZZ. We now generalize this process for a general ring

R, with the continued
Convention: The ring R is assumed to be commutative with 1.
Let S be a subset of R which is multiplicatively closed, which means the

product of any two elements of S is again in S.
As a temporary convenience, we shall also assume that S contains no

zero divisors or zero. We shall drop this convention later.
We now construct a ring A containing R in which every element of S

becomes a unit. In principle, we could add the inverse of each element of S
but we we can do the whole set in in operation as follows.

1. Start with a set
RS = {(a, s)|a ∈ R, s ∈ S}

and define an equivalence relation on RS by (a, s) ∼= (b, t) iff there
exists s1 ∈ S such that

s1(at− bs) = 0.

We leave for the reader to check that this is an equivalence relation.

Now, under our temporary convenient assumption, it follows that s1 is
not needed, since every element of S is non zero and a non zero divisor,
so the condition reduces to at − bs = 0. We have included it so the
construction will work in general.

2. Let the equivalence class of a pair (a, s) be denoted by [a, s]. The
intention is that this class [a, s] shall represent the intended fraction a

s

in our resulting ring A.

Define
A = {[a, s]|a ∈ R, s ∈ S}.

Define ring operations on A by

[a, s] + [b, t] = [at+ bs, st] and [a, s][b, t] = [ab, st].

It is straightforward but tedious to check that these are well defined
and make a valid ring.

The set
{[a, 1]|a ∈ R}
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is seen to form a sub-ring isomorphic to R under the correspondence
[a, 1]↔ a.

The corresponding elements of S become [s, 1] and have the inverse
[1, s] ∈ A, thus we have accomplished our task.

3. The ring A is suggestively denoted by S−1R and its elements [a, s] may
be denoted as a

s
for convenience in actual use.

Examples. We give several illustrations of this construction.

1. Let R be an integral domain and let S = {s ∈ R|s 6= 0}. Then S−1R
is a field called the quotient field of R or the field of fractions of R.

We may use the notation qt(R) to denote it.

Thus qt(ZZ) = Q .

2. Let R be still a commutative ring with 1 and take S to be the set of
non zero divisors of R. Then the ring S−1R need not be a field but is
called the “Total Quotient Ring” of R.

We will still use the suggestive notation qt(R) for it.

Consider the ring R = Q [X, Y ]/(XY ) and for convenience denote by
x, y the natural images of X, Y respectively in R.

It is easy to see that elements of R can be described as a+xp(x)+yq(y)
where p(x) and q(y) are polynomial expressions in x, y over R.

It is not hard to see that a+ xp(x) + yq(y) = 0 iff a = 0 = p(x) = q(y)
and that a+ xp(x) + yq(y) is a non zero divisor iff a 6= 0. Let

S = {a+ xp(x) + yq(y) ∈ R|a 6= 0}

and verify that S is a multiplicatively closed set of non zero divisors as
required.

The ring S−1R is the desired total quotient ring qt(R). It is not a field
but its non units are zero divisors, which cannot be units any way!

3. We shall now use the same example R above to illustrate inverting mul-
tiplicative sets which contain zero divisors. Thus,we now drop the
convenient convention of avoiding zero divisors in our multi-
plicative sets.

Thus, let
M = {a+ xp(x) ∈ R|a 6= 0 or p(x) 6= 0}.

The set is multiplicatively closed but does contain the zero divisor x.

17



Form the ring A = M−1R and consider the map ψ : R → A defined
by ψ(r) = [r, 1]. Note that [y, 1] = [xy, x] = [0, x] = [0, 1] from known
equivalences of the classes.

Thus, the image of the whole ideal (y) is zero! It is easy to deduce that
Ker(ψ) = (y) and hence ψ(R) ∼= R/(y).

Now R/(y) can be thought of as Q [X, Y ]/(XY, Y ) and since the ideal
(XY, Y ) = (Y ) we see that R/(y) = Q [X, Y ]/(Y ) ∼= Q [X].

Thus the ring A contains an isomorphic copy of the ring Q [X] and fur-
ther calculations show it to be nothing but qt(Q [X]). It is customary
to denote this field as Q (X).

5 Important domains.

We now begin the study of some important integral domains which appear
as fundamental objects for many ring theoretic investigations.

5.1 Euclidean Domains.

The motivation for these domains is the pair of very familiar rings, the ring
of integers ZZ and the ring of polynomials in one variable k[X].

Both of these domains have a norm and a division algorithm. We explain
the meaning of this and give a definition at the same time.

Definition: Norm. Let R be a domain. A norm on R is a map
N : R → ZZ≥0 where N(0) = 0. The norm is said to be positive, if a 6= 0
implies N(a) 6= 0.

Definition: Euclidean Domain. A domain R is said to a “euclidean
domain” with respect to a norm N , if given any two elements a, b ∈ R
with b 6= 0 we can write a = qb + r for some q, r ∈ R such that r = 0 or
N(r) < N(b).

Examples.

• Define a norm in ZZ by N(x) = |x|. This is a positive norm. Then ZZ
becomes a euclidean domain since the usual division algorithm works.

• In k[X], let a norm be defined by N(f(X)) = degX(f(X)) if f(X) 6= 0
and for this discussion, we agree that N(0) = 0.

This is not a positive norm. It can be changed to a positive norm by
the simple trick of defining a different function:

N∗(f(X)) = 2degX(f(X)) if f(X) 6= 0 and N∗(0) = 0.
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The division algorithm is defined for the polynomials as well and yields
a euclidean domain.

• Another useful example of norm comes from the ring of algebraic inte-
gers which we now discuss.

Define O(D) to be ZZ[
√
D] if D is a square-free integer congruent to

2 or 3 mod 4 and O(D) = ZZ[ω] if D is congruent to 1 mod 4. Here

the ω is defined to be 1 +
√
D

2 and satisfies the quadratic equation

X2 −X − s = 0 where D = 1 + 4s.

Thus we have two cases:

Case 1 O(D) = ZZ[X]/(X2 −D) if D is square-free and 2 or 3 modulo 4,
while

Case 2 O(D) = ZZ[X]/(X2 − X − s) when D is square-free of the form
D = 1 + 4s.

In each case, define α to be the canonical image of X in O(D) and note
that every element of the ring is then of the form a+ bα where we are
identifying a, b ∈ ZZ with their images in O(D).

We define the norm when D is square-free negative.

We define the norm by N(a+ bα) = a2− b2D in Case 1. Note that this
is simply the product of a+ bα with its conjugate a− bα.

We define the norm to be N(a+ bα) = a2 +ab− sb2 in the second case.
Note that this is also a product of the conjugates, but this time, the
conjugate of a+ bα is a+ b(1− α).

Note that in either case, we need to show that the map is into ZZ≥0
and this is easy to see by the negative discriminant of the quadratic
expression.

5.1.1 Properties of euclidean domains.

The main properties of euclidean domains are the following. Let R be a
euclidean with norm N .

1. Given any two elements a, b ∈ R with at least one non zero, then there
is a d ∈ (a, b) such that a, b ∈ (d). In particular (d) = (a, b).

Proof. Take d 6= 0 to be an element of (a, b) such that N(d) is mini-
mum among all elements of (a, b). Then the division algorithm guaran-
tees that when any element of (a, b) is divided by d then the remainder
must be zero. Thus (a, b) ⊂ (d).
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In usual terminology, we can say that d divides both a, b and any com-
mon divisor of a, b divides d. Hence d = GCD(a, b). Moreover, if d∗ ∈ R
is any other element satisfying the same conditions, then (d) = (d∗)
guarantees that either is a multiple of the other by a unit. For conve-
nience we make a:

Definition: associate elements Two elements of a ring are said to
be associates of each other if one of them is a multiple of the other by
a unit. Note that associate elements generate the same ideal, but in
a ring with zero divisors, two elements generating the same ideal need
not be associates.

Remark. Note that in ZZ it is customary to make the GCD unique by
requiring it to be positive. In integers ±1 are the only units and so this
is possible.

2. The above proof also generalizes to any ideal I ⊂ R, since we can still
take d as the minimal norm non zero element. Thus every ideal of the
ring is generate by one element or is principal.

We thus make a:

Definition: Principal Ideal Domain P.I.D. An integral domain is
said to be a principal ideal domain (P.I.D. for short) if every ideal in it
is principal.

Note that there is no reason to require the ring to be an integral domain,
so we also make a:

Definition: Principal Ideal Ring. P.I.R. A commutative ring is
said to be a principal ideal ring (P.I.R. for short) if every ideal in it is
principal.

Remark. As we note below a P.I.D. is not necessarily a euclidean
domain. It is true that a P.I.D. can be shown to be equipped with
something called a Dedekind-Hasse norm which we briefly discuss.

A norm N on a domain S is said to be a Dedekind-Hasse norm if it
is positive and has the following property: Given any two elements
a, b ∈ S, either a ∈ (b) or there is some element 0 6= z ∈ (a, b) such
that 0 < N(z) < N(b).

Note that, z = sa + tb for some s, t ∈ S and this is almost like the
division algorithm, except in the usual division algorithm, s is required
to be 1.

Remark. It is known that existence of a Dedekind-Hasse norm is
equivalent to the P.I.D. property. It is easy to see why the Dedekind-
Hasse norm would imply the P.I.D. property; simply imitate the eu-
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clidean proof by taking a non zero least norm element in the ideal and
argue that it must generate the ideal. The converse needs properties
of unique factorization domains (U.F.D.) developed later.

Remark. In spite of the norm being available, we do not necessarily get a
euclidean domain in general. We discuss some special cases below.

1. The case of D = −5.

We shall show that this ring has non principal ideals and hence is not
euclidean.

Here O = ZZ[X]/(X2 + 5) and we set α as the canonical image of X.
Suppose 0 6= w = a(b+ cα) ∈ O where a, b, c ∈ ZZ with b, c co-prime.

First assume that c 6= 0.

Let I = (w) the principal ideal. What is I
⋂

ZZ, when we identify ZZ
with its canonical image in ZZ?

Here is the calculation. Let u = w(p+ qα) ∈ ZZ. Then we get

u = a(b+ cα)(p+ qα) = a(bp− 5cq) + a(bq + cp)α ∈ ZZ.

It follows that bq + cp = 0 and because of co-primeness of b, c we see
that (p, q) = λ(b,−c) for some λ ∈ ZZ.

It follows that u = a(b2 + 5c2)λ and thus I
⋂

ZZ = (a(b+ 5c2))ZZ.

If c = 0 then the calculation gets easier and we see that u = abp so
I
⋂

ZZ = (ab)ZZ.

Thus, in either case, I
⋂

ZZ = (a(b+ 5c2)).

We now claim that the ideal (3, 2 + α) cannot be principal.

Proof. Suppose it is generated by some w as above. Then 3 ∈ (a(b2 +
5c2)). But |a(b2 + 5c2)| ≥ 5, unless c = 0. Hence we must have c = 0
and w = ab, with 3 ∈ (ab). Clearly ab = ±1 is not an option, since
then I = (1), but O/I is easily seen to be a non zero ring.

Then we may assume w = ab = ±3. But then 2 +α 6∈ (w),since 3 does
not divide 2, a contradiction.

Exercise. The reader should work out the general case of intersection
of a principal ideal with ZZ in the ring O.

2. Some examples of Euclidean rings. We describe some O(D) which
are euclidean.
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(a) Case of D = −1,−2. O(D) = ZZ[X]/(X2 −D) and we shall write
α for the canonical image of X as before. We shall use the norm
N(a+ bα) = a2 −Db2.
We now show how the division algorithm works. Given p + qα ∈
O(D) and 0 6= a+ bα ∈ O(D), we let

u+ vα =
p+ qα

a+ bα

where u, v ∈ Q . Find r, s ∈ DZ such that

|u−r| ≤ 1

2
≥ |v−s| and hence N((u−r)+(v−s)α) ≤ 1

4
+

1

4
(−D).

For convenience set θ = (u− r)+(v−s)α and note that N(θ) < 1
when D = −1 or −2.

We have
p+ qα = (a+ bα)(r + sα) + (a+ bα)θ

and by multiplicativity of this norm function, the norm of the last
term is less than N(a+ bα), so (a+ bα)θ has the desired property
of the remainder.

(b) Case of D = −3,−7,−11. In these cases O(D) is ZZ[X]/(X2 −
X − s) where s = −1,−2,−3 respectively. Setting α to the the
image of X as before, we have the norm equal to

N(a+ bα) = a2 + ab− sb2 = (a+
b

2
)2 − (s+

1

4
)b2.

Noting that D = 1 + 4s we note that the last term simplifies to
−(D

4
)b2.

We imitate the above proof by writing

u+ vα =
p+ qα

a+ bα

where u, v ∈ Q .

Find r, s ∈ ZZ such that

|v − s| ≤ 1

2
≥ |(u+

v

2
)− (r +

s

2
)| = |(u− r) +

v − s
2
|.

Let as before θ = (u− r) + (v − s)α and note that

N(θ) =

(
(u− r) +

v − s
2

)2

− D

4
(v − s)2.
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Thus when D = −3,−7 or −11

N(θ) ≤ 1

4
+
|D|
16

=
4 + |D|

16
< 1.

The rest of the proof follows as before giving (a+ bα)θ as a valid
remainder.

3. A domain which is a P.I.D. but not euclidean. The ring O(−19)
is very special. It is shown to be non euclidean under any possible
norm and yet unlike the non euclidean ring O(−5) it is a P.I.D. - i.e.
a domain in which every ideal is principal!

Even though elementary, the proof is somewhat long and we leave it as
an assignment to look it up and digest.

6 Principal Ideal Domains. P.I.D.

We now discuss some useful properties of PID or more generally of PIR
(principal ideal ring).

1. Stability of an increasing sequence of principal ideals.

Let R be a principal ideal ring (PIR) and if (x1, x2, · · · , xn, · · · ) is a
sequence of elements in R, such that xn+1 divides xn for all n ≥ 1. (In
other words, xn ∈ (xn+1) = the ideal generated by xn+1.)

Then the sequence of ideals (In) stabilizes for n >> 0, which means
there is some sufficiently large N such that IN = In for all n ≥ N .

Proof. The ideal generated by all the xi is generated by some x, sinceR
is a PIR. Thus x =

∑N
1 aixi for some N where aN 6= 0. From the given

divisibility, we see that x ∈ xN . Since xN ∈ (x) we see that (x) = (xN).
It follows that for any n > N , we have IN = (xN) ⊂ (xn) = In from
hypothesis, while In ⊂ (x) = (xN) = IN from construction.

Hence In = IN for all n ≥ N .

2. Definition: Irreducible/reducible element An element x in a
domain R is said to be reducible if x = yz for some y, z ∈ R such that
x is not an associate of either y or z. Equivalently, we could also state
the condition as neither y nor z is a unit.

Yet another way of stating the condition is to write x = yz for some
y, z ∈ R such that (x) 6= (y) and (x) 6= (z).

An element x in a domain is said to be irreducible if it is not reducible.
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Note that units are irreducible under this definition and so is the zero
element.

Remark. If the ring is not an integral domain, then the different
formulations are not necessarily equivalent and we leave the general-
izations to the reader’s imagination at this point.

3. Factorization in a PID. We now prove that every element of a PID
can be written as a product of finitely many irreducible elements.

Proof. Suppose if possible we have a non empty collection of elements
which cannot be written as a product of finitely many irreducible ele-
ments. For convenience, let us call them “bad” elements. Any element
which is a product of finitely many irreducibles will be called good.
Note that product of finitely many good elements is obviously a prod-
uct of finitely many irreducibles and hence good.

Consider the set

S = {(x)|x ∈ R and x is bad.}

Note that a bad element x must be factor-able as x = yz such that at
least one of y, z is again bad and x is not an associate of either y or z.

For proof of this, note that x being bad, must be reducible, otherwise
it is a singleton product of irreducibles. Also, we already know that if
y, z were good then so would be x, a contradiction.

Thus, if y is bad then we get (x) ( (y) where (x), (y) both belong to
S. Repeating this process, we can get an infinite sequence of principal
ideals generated by bad elements:

(x1) ( (x2) ( · · · ( (xn) · · · with (xn) ∈ S for all n = 1, 2, · · · .

This is a contradiction to the stability of an increasing sequence of
ideals that we established.

4. Uniqueness of expression. Now that we have established existence of
factorization of elements as products of irreducibles, we investigate the
uniqueness of such an expression.

First we need a Lemma.

Lemma. Irreducible is prime in a PID. If x is an irreducible
element in a PID R, then the ideal (x) is a prime ideal.

Proof. Suppose that yz ∈ (x) where y, z ∈ R and y 6∈ (x). We wish
to show that z ∈ (x).
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Set the ideal I = (x, y) and assume that I = (w) for some w. Clearly,
we can write w = ax+by for some a, b ∈ R. Note that x, y ∈ (w). Since
x is irreducible, either w is a unit or (w) = (x). Clearly, if (w) = (x)
then we get y ∈ (w) = (x) a contradiction.

Hence w is a unit. Now wz = axz + byz ∈ (x), since yz ∈ (x). Since w
is a unit, z ∈ (x) as we needed.

Now we shall prove the uniqueness of the factorizations. Here is the
statement:

Given any non zero element x ∈ R where R is a PID, there is a finite
set of prime ideals P (x) = {(p1), · · · , (pn)}, and a set of non negative
integers {a1, · · · , an} such that x is an associate of

∏n
1 p

ai
i .

The set of prime ideals P (x) is uniquely determined by x and for each
(pi) ∈ P (x), the corresponding exponent ai is also uniquely determined
by x.

Proof. First we shall establish the uniqueness of P (x). So suppose, if
possible

x = ε
n∏

i=1

paii = τ
m∏
j=1

qbii

where ε, τ are units in R. Consider the corresonding sets of primes
S = {(pi)}n1 and T = {(qj)}m1 where we are naturally assuming that
{(pi)} are distinct primes and similarly {(qj)} are distinct primes.

Since qj divides x, it is clear that it divides one of p1, · · · , pn and if qj
divides pi, we must have (qj) = (pi), since pi is irreducible. Thus we
see that every member of T is in S. Similarly every member of S is
in T and thus S = T and this common set of prime ideals is the P (x)
which is thus uniquely determined by x.

The only remaining thing to prove is the uniqueness of exponents. Sup-
pose if possible we have an example of non uniqueness:

x = ε
n∏

i=1

paii = τ
n∏

i=1

pbii

where ε, τ are units. Moreover, all ai are non negative and some ai 6= bi.

Without loss of generality we may assume that 0 < a1 < b1. Clearly
x ∈ (pa11 ) and write x = ypa11 . Then we see that

y = ε

n∏
i=2

paii = τpb1−a11

n∏
i=2

pbii .
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Here the first expression for y is not divisible by p1, while the second
one is divisible by p1 since b1 − a1 > 0. This is a contradiction and we
have the uniqueness established.

7 Unique Factorization Domains. U.F.D.

Remark. What we have proved above is actually more general. We did not
really use the PID property, but used the following two properties:

1. R is a domain in which every element is a finite product of irreducible
elements times a unit. In notation this means:

x = ε
n∏
1

paii

where pi is irreducible and ε is a unit.

2. Every irreducible element p is prime, which means it generates a prime
ideal (p).

What we concluded is that then every element x ∈ R has an expression
as a unit times a finite product of prime elements:

x = ε
n∏

i=1

paii

where ε is a unit in R and the set of prime ideals {(pi)} is completely deter-
mined by x and is denoted as P (x). For every (p) ∈ P (x) the exponent of p
in the factorization is well defined and in this sense, the product expression
is unique up to rearrangement and choice of generators of prime ideals in
P (x).

Integral domains r in which such unique product expressions occur are
called unique factorization domains of U.F.D. for short.

Thus, the result of the previous section can now be summarized by saying
that a P.I.D. is a U.F.D.

It would be convenient to make a notation ord(p)(x) where (p) is any
principle prime ideal in a U.F.D. R and x is any non zero element of R.

We define ord(p)(x) = 0 if x 6∈ (p). If x ∈ (p), then we can find a largest
r such that x ∈ (pr) and thus x 6∈ (pr+1).

We define ord(p)(x) = r. It is easy to see that if we have a factorization:

x = ε

n∏
1

paii
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then ord(pi)(x) = ai for i = 1, · · · , n and ord(p)(x) = 0 if p 6∈ P (x).
A basic result about U.F.D. gives a large set of examples of U.F.D.s.
Theorem. Let R be a domain and S ⊂ R multiplicatively generated by

a set of non zero prime elements and all units of R. Suppose that the ring
S−1R is a U.F.D.

Finiteness Assumption. Also assume that a non zero element x ∈ R
can always be written as x = sy where s ∈ S and y is not divisible by
any prime element in S. For convenience, we may call this a convenient
factorization of x.8

Then R is a U.F.D.
Conversely, if R is a U.F.D., then so is S−1R.
Proof. Let B = S−1R and note that B is evidently a domain. The

natural map of R into B given by r → r
1

is injective and we naturally identify
R with its image. Thus we will simply assume that R is a sub-ring of B,
which, in turn is contained in the quotient field of R.

Let x = a
s
∈ B be a non zero element where a ∈ R and s ∈ S. We write

x = s1a1
s

where, s1a1 is a convenient factorization of a.
We may further assume that s, s1 don’t have any common factors, since

we could simply drop them off first.
We claim that a

s
is an irreducible non unit in B if and only if a1 is an

irreducible non unit in R.
For proof, note that, if a1 is a unit in R, then clearly x is a unit in B,

contrary to the hypothesis. Suppose, if possible a1 is reducible in R, say
a1 = uv, where u, v are non units in R outside S. Then clearly x = s1u

s
v
1

and
x becomes reducible in B contrary to the hypothesis. Thus an irreducible
element of B is simply an irreducible element a1 of R multiplied by a unit s1

s

in B.
Let r be any irreducible non unit element of R. If r ∈ S, then it must be

a prime element of R by our hypothesis.
If r 6∈ S, then it is not divisible by any element of S and we claim that it

is an irreducible element of B. Suppose if possible r = u1

s1

u2

s2
is a factorization

into non units in B.
Then we see that s1s2r = u1u2. Since S is generated by prime elements,

the element s1s2 can be canceled from both sides leaving a new factorization
r = v1v2 where each vi is equal to ui divided by suitable elements of S.

Since r is irreducible in R, one of {vi} must be a unit, i.e. the corre-
sponding ui must be a unit in B, a contradiction!

Now we claim that an irreducible r ∈ R is a prime element in R. As
before, if r ∈ S then we are done by hypothesis. If not, we know that r = r

1

is prime in B. Thus if r = xy is a factorization into non units in R, then r

8It may be shown that this is essentially unique, except for unit multipliers.
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divides one of x, y in B.
Without loss of generality, assume x = r z

s
, where z ∈ R and s ∈ S. Thus

sx = rz and no factors of s divide r. Therefor s divides z, i.e. z = sz1 with
z1 ∈ R. Then x = rz1, proving primeness of r.

Now we have everything we need to prove that R is a U.F.D.
Any x ∈ R can be written as a product of prime elements times a unit in

B. Clearing denominators and using the above analysis, we see that

sx = t
∏
i

ui

where s, t ∈ S and ui are irreducible elements of R which are not in S. Note
that the product is allowed to be empty.

Using primeness of factors of R and description of {ui} we see that t = sw
for some w ∈ S and we have the factorization

x =

(∏
j

wj

)(∏
i

ui

)

where we have split up w into its prime factors (all in S).
The uniqueness follows from the primeness of the factors as above.
The converse part is evident.
Remark. The finiteness condition is necessary as shown by the following

example.
Let K be any field and let A be the polynomial ring in two variables

K[X, Y ].
Pick any sequence of non zero irreducible polynomials y1, y2, · · · in K[Y ].

Let

R = K[X, Y,
X

y1
,
X

y1y2
, · · · , X

y1y2 · · · yn
, · · · ].

Let S be the multiplicative set generated by units of R and the polyno-
mials y1, · · · , yn, ·.

Then it can be shown that R is not a UFD since the element X in R is
divisible by y1y2 · · · yn for every n.

The ring S−1R is however a localization of K(Y )[X] and hence is a U.F.D.
Thus, it is necessary to assume the finiteness condition.
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8 Fields and Galois Theory.

We present a quick overview of Galois Theory of fields, with details to be
filled in as we go on.

1. Let F be a field and L an over-field. The field L is naturally a vector
space over F . The extension L/F is said to be finite if the dimF (L)
is finite and we shall denote this dimension by the suggestive notation
[L : F ].

2. The simplest example of a finite field extension is as follows. Let
f(X) = Xn + a1X

n−1 + · · · + an ∈ F [X] be an irreducible polyno-
mial. Then we know that I = (f(X)) ∈ F [X] is a maximal ideal and
hence F [X]/I is a field.

The field L = F [X]/I can be described more explicitly as follows. Set
α = X the image of X modulo I. Let F denote the set of elements of
F modulo I. We first note that the natural residue map F → F is a
homomorphism, and since F is a field and the map is not the zero map,
it is an isomorphism. Thus, we can and almost always do, replace the
residue class a by a when a ∈ F .

Thus, without further explanation, we declare that F ⊂ L when in
reality only an isomorphic copy F ⊂ L.

Now L can be described as the set of all possible residue classes of
polynomials modulo I. Clearly, for any polynomial g(X) we see that
g(X) ≡ r(X) mod (I) if r(X) is the remainder of g(X) when divided
by f(X). Using that X = α we see that

L = {rn−1αn−1 + · · ·+ r0 | ri ∈ F}.

Moreover, it is easy to see that 1, α, · · · , αn−1 is a basis of L over F
and thus we have the theorem that [L : F ] = n. We can, and do, write
L = F [α] = F (α). 9

3. Field Polynomials. Let z be any element of L and let φz denote the
multiplication map by z. This is clearly a linear transformation of the
vector space L over F and we can make equations

φz(vi) = zvi =
n∑

j=1

aijvj

9There is a subtle but important point here. As described, L is really the set of all
polynomials in α over F and hence F [α] is an appropriate notation. However, since it is
a field, it is equal to its quotient field, or the same as the field of all rational functions in
α. The second notation brings this fact out. In general, for an arbitrary element α these
notations make sense and are different entities.
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where v1 = 1, v2 = α, · · · , vn = αn−1 is a natural basis of L/F .

This gives a natural matrix equation:

(zI − A)V = 0

where V is the column vector formed by the basis elements and A is
the matrix formed by the (aij).

By Cramer’s Rule, we see that

det((zI − A))vi = 0 for all i = 1, · · · , n.

In particular, noting that v1 = 1 we get the polynomial equation
H(X) = det((XI − A)) = 0, satisfied by z.

Thus, we have proved that every element of L satisfies a polynomial
equation over F of degree at most n = [L : F ].

Remark. The above calculation can be extended by replacing φz by
any linear transformation of a vector space to itself and gives among
other things, the famous Cayley-Hamilton theorem and concepts of
determinants and traces of linear transformations. This is an important
technique in linear algebra.

4. Two facts may be noted about the above argument.

Working over a ring F. The above calculation can be redone by
assuming F to be only a ring and we can argue that F is still isomorphic
to its image F in F [X]/I. We simply need the fact that no multiple
of the monic polynomial f(X) can be a constant in F except for 0.
Indeed, the only reason we assumed monicness above was to make this
come out for the ring case.

The element α then is an integral element over F , where we use:

Definition: An element is said to be integral over a ring R if
it is the root of a monic polynomial over R.

Now, the argument with Cramer’s rule made any random element z
of F [α] to satisfy the corresponding polynomial equation H(X) = 0
where H(X) is visibly monic! Thus we have proved the

Theorem If α is integral over F , then so is every element of the ring
L[α]. Thus, it makes sense to say that L[α]/F is an integral extension.
This gives a natural definition of one ring being integral over another.

Definition: Integral extension. A ring S is said to be integral
over a ring R if every element of S is integral over R. This can also be
descibed by saying that S is integral over R.
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The ring S would be said to be an integral extension of R if R ⊂ S and
S is integral over R.

Naturally, we also make a:

Definition: Integrally closed. A ring R is said to be integrally
closed in S if every element of S integral over R is already in R. A
domain is said to be integrally closed or normal if it is integrally closed
in its quotient field.

If we take a polynomial g(X) whose image is the element z discussed
above, then we note that the resulting polynomial H(X) and in par-
ticular its constant term is completely defined by the two polynomi-
als f(X), g(X). In particular the constant term H(0) evaluates to
(−1)n det(A) and is of special significance. It is (−1)n times the resul-
tant of the polynomials f(X) and g(X) and in this form, it is called
the Bezout resultant. In practice the sign is normalized by people in
certain ways, since it clearly depends on the order of the basis.

If F is only a ring (and not a field), then the division by a monic
polynomial still keeps the remainders with coefficients in the ring and
we see that our resultant is a robust object defined over any base ring
when one of the polynomials is monic.

There is a version of the resultant which even lets go of the monicness
hypothesis and is called the Sylvester resultant. We don’t need
to worry about it at this point, except to note that it is far more
convenient to write and may be used in practice, since it avoids the
division algorithm altogether, at the cost of enlarging the size of the
determinant to (n+m)× (n+m).

5. Another free bonus. Let us generalize our calculations even further.

Thus let L/F be any finite field extension with [L : F ] = n. Let w =
(w1, · · · , wn) be any basis of L over F . We can do the same calculations
as above for any given z ∈ L and produce a monic polynomial H(X)
of degree n such that H(z) = 0.

With a little analysis of the change of basis formula, it is easy to show
that the polynomial is independent of choice of the basis. 10

Thus we may make a notation H
L/F
z (X) for our polynomial and it is

called the field polynomial of z for the extension L/F .

10Show that if another basis is given as wP where P is an invertible n× n matrix, then
the resulting matrix for the new basis is similar to the old, conjugated by the transpose
of P . Thus, the determinant is the same!
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If we consider the field F (z) generated by the element z, then it makes
sense to compare the two field polynomials

HL/F
z (X) and HF (z)/F

z (X).

By a suitable choice of basis, it can be shown that the first is a power
of the second by the field degree [L : F (z)]. Thus, this polynomial
contains lot of information about the field extension F (z). 11

6. The constant term H
L/F
z (0) of the field polynomial is important and

we have studied it before. It used to be called the field norm NL/F (z).
We, of course, did not mention the fields earlier, since they were fixed.

The comparison of field polnomials above gives a very useful result for
the norms, namely:

NL/F (z) = NF (z)/F (z)[L:F (z)].

8.1 Splitting field.

Let us fix a monic polynomial

f(X) = Xn + a1X
n−1 + · · · an where F is a field with ai ∈ F.

We wish to find an over-field L such that f(X) factors completely into linear
factors over L. We also wish to show that the smallest subfield of L over
which the factorization occurs is unique up to isomorphism.

First, we prove existence of a field L by induction on n.
It is obvious that for n = 1, we have nothing to prove since f(X) is

already linear.
If g(X) is a monic irreducible factor of f(X), then we know that L1 =

F [X]/(g(X)) is a field containing an isomorphic copy of F and having a
root of g(X). Identifying F with its image in L1 we see that over L1 we
have a factorization: f(X) = (X − α)f ∗(X) where X = α is a root of the
factor g(X) of f(X) in L1. Since the degree of f ∗(X) is n − 1, we know
that by induction, there is a field L containing L1 over which f ∗(X) factors
completely into linear factors.

Thus over L we have a complete factorization:

f(X) =
n∏
1

(X − αi)

11Pick a basis of L/F (z) as 1 = w1, · · · , wr and pick a basis of F (z)/F as
1 = t1, · · · , ts. Then it is not hard to see that a basis of L/F is obtained by
(w1t1, · · · , w1ts, w2t1, · · · , w2ts, · · · , wrt1, · · · , wrts) and with respect to this basis, the
matrix of the transformation φz has r identical blocks down the diagonal. Thus its deter-
minant is the determinant of the first block raised to the r-th power as required.
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where α = α1, · · · , αn are all the roots of f(X) in L.
A smallest subfield of L over which f(X) factors completely may be

described as F (α1, · · · , αn) which can be described as fields obtained by
successively adjoining one of these at a time.

We make a
Definition: Splitting field. The field F (α1, · · · , αn) is said to be a

splitting field of f(X) over F .
We shall now show that any two splitting fields of the same polynomial

f(X) are F -isomorphic, meaning, there is an isomorphism between them
which is identity on the field F .

It would be more convenient to prove the following more general
Theorem. Let σ : F1 → F2 be two fields with an isomorphism σ between

them. Let σ be naturally extended to polynomial rings σ : F1[X] → F2[X]
by defining σ(X) = X.

Let L1 = F1(α1, · · · , αn) and L2 = F2(β1, · · · , βn) be corresponding split-
ting fields for f1(X) = f(X) and f2(X) = σ(f(X)). Note that the roots are
repeated if necessary to match respective multiplicities.

Then L1
∼= L2.

Proof.
Again we shall make induction on n = degX(f(X)) and note that the

result is obvious for n = 1.
Assume that g1(X) is an irreducible monic factor of f1(X) with root α1.

By renumbering, if necessary, assume that β1 is a root of g2(X) = σ(f1(X)).
then clearly, we have:

F1(α1) ∼= F1[X]/(g1(X)) ∼= F2[X]/(g2(X)) ∼= F2(β1)

where the middle isomorphism comes from σ. Set K1 = F1(α1) and
K2 = F2(β1). Note that we have an isomorphism σ∗ from K1 to K2 which
takes α1 to β1.

Note that we have a factorization f1(X) = (X − α1)f
∗
1 (X) over K1 and

f2(X) = (X − β1)f ∗2 (X) over K2.
Moreover, L1, L2 are easily seen to be splitting fields for the polynomials

f ∗1 (X) over K1 and for f ∗2 (X) over K2 with σ∗(f ∗1 (X)) = f ∗2 (X).
It is then clear that the inductive hypothesis applying to the polynomials

f ∗1 (X) and f ∗2 (X) gives the result.

8.2 Outline of results.

We now present the outline of results to be proved.

1. Primitive Element Theorem (PET). Let L/F be a finite field ex-
tension. Then L can be clearly generated by adjoining a finite sequence
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of elements successively to F , i.e. L = F (x1, · · · , xm) for a finite se-
quence of algebraic elements. 12

It is very useful to be able to prove that L = F (x) for a single element
x and we say that x is a primitive element of the extension L/F . We
express this by saying L is a simple extension of F .

One necessary and sufficient condition for L/F to be simple is that
there are only a finitely many fields between F and L.

2. Of course, this condition can be difficult to check, but a simpler suffi-
cient condition is as follows.

Definition: Separable. A polynomial f(X) ∈ F [x] is said to be
separable if it has no multiple roots or equivalently, the GCD of f(X)
and f ′(X) is 1. Note that in characteristic p > 0 we can have f(X)
with degree bigger than 1 such that f ′(X) = 0 as a polynomial. In
this case the GCD is f(X) and the polynomial is not separable. This
is also stated as “the polynomial is inseparable”.

An element x ∈ L is said to be separable if the minimum polynomial
satisfied by x over F is separable.

The whole field extension L/F is separable if every element of L is
separable over F . It can be easily seen that it is enough that L is
generated by separable elements.

Remark. There is a definition of separability which is valid when L/F
is not even algebraic, but we postpone it to future.

An easier to check sufficient condition for simplicity of L/F is
that L/F is a finite separable extension.

3. Galois extension. An finite extension L/F is said to be Galois if it
is the splitting field of some separable polynomial over F .

Using the PET, we can deduce that L = F (x) for some x. Moreover,
it can be shown that the minimum polynomial f(X) of x over F is
separable and splits completely into linear factors in L, so L is indeed
also the splitting field of f(X).

The Galois group Gal(L/F ) is abstractly defined as Aut(L/F ) the
group of automorphisms of L which fix F element-wise.

It can be shown that F is exactly the set of elements fixed by all
elements of Aut(L/F ) and in turn, this property can be used as another
characterization of a finite Galois extension.

12Note that every element of a finite field extension satisfies a polynomial equation (even
a monic polynomial equation) over F as we have already shown.

34



Using that a Galois extension L of F is equal to F (x) we can deduce
the following. The minimum separable polynomial of x can be assumed
to be

f(X) = Xn + a1X
n−1 + · · ·+ an with ai ∈ F.

If x = x1, · · · , xn are all the distinct roots of f(X) then we know
that for each i = 1, · · · , n there are uniquely defined automorphisms
σi ∈ Aut(L/F ) such that σ(x) = xi. Moreover, the automorphism
group consists of exactly these n elements.

In particular,

|Aut(L/F )| = [L : F ] = n = degX(f(X)).

4. Fundamental Theorem of Galois Theory. Let L/F be a finite
Galois extension and let G = Aut(L/F ) = Gal(L/F ) be its Galois
group.

For convenience, we shall assume L = F (x) and set f(X) = Xn +
a1X

n−1 + · · ·+ an ∈ F [X].

Let H be any subgroup of G. Let SH = {i|σi ∈ H}. Then clearly the
polynomial

fH(X) =
∏
i∈SH

(X − xi)

is easily seen to be invariant under action of all elements of H (extended
by sending X to itself) and thus all its coefficients are fixed by every
element of H.

We define the fixed field of H by:

Fix(H) = {u ∈ L|σ(u) = u ∀σ ∈ H}

It is easy to show that Fix(H) is generated by all the coefficients of
FH(X) over F and L/Fix(H) is a Galois extension with Galois group
H.

Conversely, for any intermediate field F ⊂ K ⊂ L we can factor f(X)
over K and take the irreducible factor of f(X) which is divisible by
X − x1 over L.

Denote it by Kf(X).

It can be shown that

{σi|X − xi divides Kf(X) over L}.
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is a subgroup ofG and its fixed field isK. We shall denote this subgroup
by GK .

Thus we get a one to one correspondence between subgroups of G and
intermediate fields K.

5. Actually, the above description is unusual when compared to the stan-
dard descriptions. We are using the special structure of our Galois
group using the fact that L is generated by x which is being permuted
among conjugate roots.

Here is how the usual definition goes.

Consider the set

GK = {σ ∈ G|σ(a) = a ∀a ∈ K}.

Then we can show that GK is a subgroup of G and its fixed field
Fix(GK) is equal to K.

As a result, the field L can be thought of as a Galois extension of K
with Galois group GK . We note that L = F (x) implies L = K(x)
and it is clearly the splitting field of Kf(X) over K. This is why the
alternate description works.

6. In general, the field extension K/F is not Galois for an intermediate
field K. There is a simple group theoretic test for this.

The field extension K/F is Galois iff the corresponding subgroup GK

is normal in G.

7. Connection with solvability.

This is crucial in the analysis of the solvability of an equation by radi-
cals. A radical over a field is an m-th roots of an element of the field for
some natural number m. A radical extension of a field F is a field F (α)
where α is a radical over F . An iterated radical extension is a tower of
successive radical extensions. It can be shown that extending further,
if necessary, we can write an iterated radical extension as succession of
Galois extensions with cyclic Galois groups. Thus, its Galois group is
cyclic.

Thus, if our equations is solvable by radicals, then its Galois group is
seen to be a quotient of a solvable group, hence solvable by itself!

For polynomials of degrees 2, 3, 4, the classical formulas for roots can be
interpreted as consequences of the fact that the resulting Galois groups
are indeed solvable (being subgroups of Sn for n ≤ 4.)
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On the other hand, we can construct equations whose Galois groups
are alternating or full symmetric groups of any desired degree (i.e. An

or Sn) and from group theory, we know that these are not solvable as
groups.

This solved the fundamental problem of proving that an equation of
degree 5 or bigger cannot be solved by adjoining iterated radicals. This
is the genesis of the fame of Galois and his theory and one of the main
reason for continued activity in this field.

8.3 Problems of Galois Theory.

We list some problems that we can solve, some we may be able to solve in
due time and some which are not yet solved!

1. What are the possible Galois groups Gal(L/F ) when F is a finite field.
Answer. The Galois group is always cyclic and if |F | = q = pr for
some r, then it is generated by the Frobenius σq defined by σq(x) = xq.

2. What are the possible Galois groups for splitting fields of polynomials
of small degrees?

Answer. For polynomials of degrees 2, 3, 4 such groups are subgroups
of S2, S3, S4 respectively and there are explicit tests which will describe
what the groups are.

3. Galois Theory also answered old geometric problems attempted by
Greek geometers by showing that the equations to be solved give Ga-
lois groups which cannot be created by the allowed constructions using
ruler and compass.

This was another spectacular success.

4. An unsolved problem is the Dream of Kronecker, to show that every
finite group is the Galois group of some polynomial over Q .

The solution of this for An and Sn goes back to Hilbert. Many special
groups have been constructed by various mathematicians and have led
to advances in group theory or algebraic geometry.

Shafarevich is reputed to have proved that every solvable group is a
Galois group. This old theorem had acquired a possible flaw in it some
years back, the latest verdict needs to be checked.

5. The Above problem is completely known if we ask the question over
C (t) rather than Q . But it needs the full power of Riemann surfaces.
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6. In general, Galois groups over F (t) where F is a finite field or the
algebraic closure of a finite field was studied by Abhyankar and he gave
some necessary conditions on the Galois groups. Only in last few years,
these were shown to be sufficient.

His main condition was that the Galois group has to be quasi-p which
means it is generated by its p-sylow subgroups. One of the simplest
way to satisfy this condition is if the group is simple! Since one of the
recent successes of Group Theory is to classify all finite simple groups, it
becomes a natural research problem to construct equations with given
simple Galois groups over a characteristic p field. Abhyankar and his
several collaborators have solved this problems for many well known
simple groups, the problem is not quite finished; except for the fact
that the existence of such Galois groups has been established. Thus,
this has been a fertile research area over last few years and has led to
advances in Group theory as well as algebraic geometry.

7. We shall study several techniques to analyze the Galois group of a given
small degree polynomial over Q or some suitable field.

8. One important tool in all of the above is to start with a monic poly-
nomial over ZZ and reduce it modulo various primes. Since the Galois
group is known to be cyclic after reduction, we can deduce existence of
elements of certain type in the original Galois group. This combined
with group theory can often lead to deduce what the original Galois
group must be.

To be continued . . .
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