EASY PUTNAM PROBLEMS

(Last updated: October 1, 2012)

Remark. The problems in the Putnam Competition are usually very hard, but practically every session contains at least one problem very easy to solve - it still may need some sort of ingenious idea, but the solution is very simple. This is a list of "easy" problems that have appeared in the Putnam Competition in past years-Miguel A. Lerma

2011-B1. Let h and k be positive integers. Prove that for every $\epsilon>0$, there are positive integers m and n such that

$$
\epsilon<|h \sqrt{m}-k \sqrt{n}|<2 \epsilon .
$$

2010-A1. Given a positive integer n, what is the largest k such that the numbers $1,2, \ldots, n$ can be put into k boxes so that the sum of the numbers in each box is the same? [When $n=8$, the example $\{1,2,3,6\},\{4,8\},\{5,7\}$ shows that the largest k is at least 3.]

2010-B1. Is there an infinite sequence of real numbers $a_{1}, a_{2}, a_{3}, \ldots$ such that

$$
a_{1}^{m}+a_{2}^{m}+a_{3}^{m}+\cdots=m
$$

for every positive integer m ?
2010-B2. Given that A, B, and C are noncollinear points in the plane with integer coordinates such that the distances $A B, A C$, and $B C$ are integers, what is the smallest possible value of $A B$?

2009-A1. Let f be a real-valued function on the plane such that for every square $A B C D$ in the plane, $f(A)+f(B)+f(C)+f(D)=0$. Does it follow that $f(P)=0$ for all points P in the plane?

2009-B1. Show that every positive rational number can be written as a quotient of products of factorials of (not necessarily distinct) primes. For example,

$$
\frac{10}{9}=\frac{2!\cdot 5!}{3!\cdot 3!\cdot 3!} .
$$

2008-A1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that $f(x, y)+f(y, z)+f(z, x)=0$ for all real numbers x, y, and z. Prove that there exists a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x, y)=g(x)-g(y)$ for all real numbers x and y.

2008-A2. Alan and Barbara play a game in which they take turns filling entries of an initially empty 2008×2008 array. Alan plays first. At each turn, a player chooses a real number and places it in a vacant entry. The game ends when all the entries are filled.

Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if it is zero. Which player has a winning strategy?

2008-B1. What is the maximum number of rational points that can lie on a circle in \mathbb{R}^{2} whose center is not a rational point? (A rational point is a point both of whose coordinates are rational numbers.)

2007-A1. Find all values of α for which the curves $y=\alpha x^{2}+\alpha x+\frac{1}{24}$ and $x=\alpha y^{2}+\alpha y+\frac{1}{24}$ are tangent to each other.

2007-B1. Let f be a polynomial with positive integer coefficients. Prove that if n is a positive integer, then $f(n)$ divides $f(f(n)+1)$ if and only if $n=1$. [Note: one must assume f is nonconstant.]

2006-A1. Find the volume of the region of points (x, y, z) such that

$$
\left(x^{2}+y^{2}+z^{2}+8\right)^{2} \leq 36\left(x^{2}+y^{2}\right)
$$

2006-B2. Prove that, for every set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of n real numbers, there exists a nonempty subset S of X and an integer m such that

$$
\left|m+\sum_{s \in S} s\right| \leq \frac{1}{n+1}
$$

2005-A1. Show that every positive integer is a sum of one or more numbers of the form $2^{r} 3^{s}$, where r and s are nonnegative integers and no summand divides another. (For example, $23=9+8+6$.)

2005-B1. Find a nonzero polynomial $P(x, y)$ such that $P(\lfloor a\rfloor,\lfloor 2 a\rfloor)=0$ for all real numbers a. (Note: $\lfloor\nu\rfloor$ is the greatest integer less than or equal to ν.)

2004-A1. Basketball star Shanille O'Keal's team statistician keeps track of the number, $S(N)$, of successful free throws she has made in her first N attempts of the season. Early in the season, $S(N)$ was less than 80% of N, but by the end of the season, $S(N)$ was more than 80% of N. Was there necessarily a moment in between when $S(N)$ was exactly 80% of N ?

2004-B2. Let m and n be positive integers. Show that

$$
\frac{(m+n)!}{(m+n)^{m+n}}<\frac{m!}{m^{m}} \frac{n!}{n^{n}}
$$

2003-A1. Let n be a fixed positive integer. How many ways are there to write n as a sum of positive integers, $n=a_{1}+a_{2}+\cdots+a_{k}$, with k an arbitrary positive integer and $a_{1} \leq a_{2} \leq \cdots \leq a_{k} \leq a_{1}+1$? For example, with $n=4$ there are four ways: $4,2+2$, $1+1+2,1+1+1+1$.

2002-A1. Let k be a fixed positive integer. The n-th derivative of $\frac{1}{x^{k}-1}$ has the form $\frac{P_{n}(x)}{\left(x^{k}-1\right)^{n+1}}$ where $P_{n}(x)$ is a polynomial. Find $P_{n}(1)$.

2002-A2. Given any five points on a sphere, show that some four of them must lie on a closed hemisphere.

2001-A1. Consider a set S and a binary operation $*$, i.e., for each $a, b \in S, a * b \in S$. Assume $(a * b) * a=b$ for all $a, b \in S$. Prove that $a *(b * a)=b$ for all $a, b \in S$.

2000-A2. Prove that there exist infinitely many integers n such that $n, n+1, n+2$ are each the sum of the squares of two integers. [Example: $0=0^{2}+0^{2}, 1=0^{2}+1^{2}, 2=1^{2}+1^{2}$.]

1999-A1. Find polynomials $f(x), g(x)$, and $h(x)$, if they exist, such that for all x,

$$
|f(x)|-|g(x)|+h(x)= \begin{cases}-1 & \text { if } x<-1 \\ 3 x+2 & \text { if }-1 \leq x \leq 0 \\ -2 x+2 & \text { if } x>0\end{cases}
$$

1998-A1. A right circular cone has base of radius 1 and height 3. A cube is inscribed in the cone so that one face of the cube is contained in the base of the cone. What is the side-length of the cube?

1997-A5. Let N_{n} denote the number of ordered n-tuples of positive integers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that $1 / a_{1}+1 / a_{2}+\ldots+1 / a_{n}=1$. Determine whether N_{10} is even or odd.

1988-B1. A composite (positive integer) is a product $a b$ with a and b not necessarily distinct integers in $\{2,3,4, \ldots\}$. Show that every composite is expressible as $x y+x z+y z+1$, with x, y, and z positive integers.

