MY PUTNAM PROBLEMS

These are the problems I proposed when I was on the Putnam Problem Committee for the 1984-86 Putnam Exams. Problems intended to be A1 or B1 (and therefore relatively easy) are marked accordingly. The problems marked with asterisks actually appeared on the Putnam Exam (possibly reworded). - R. Stanley

1. (A1 or B1 problem) Given that

$$
\int_{0}^{1} \frac{\log (1+x)}{x} d x=\frac{\pi^{2}}{12}
$$

evaluate

$$
\int_{0}^{1} \int_{0}^{y} \frac{\log (1+x)}{x} d x d y
$$

2. (A1 or B1 problem) Let B be an $a \times b \times c$ brick. Let C_{1} be the set of all points p in \mathbb{R}^{3} such that the distance from p to C (i.e., the minimum distance between p and a point of C) is at most one. Find the volume of C_{1}.
3. (A1 or B1 problem) If n is a positive integer, then define

$$
f(n)=1!+2!+\cdots+n!
$$

Find polynomials $P(n)$ and $Q(n)$ such that

$$
f(n+2)=P(n) f(n+1)+Q(n) f(n)
$$

for all $n \geq 1$.
4. (A1 or B1 problem) Let C be a circle of radius 1 , and let D be a diameter of C. Let P be the set of all points inside or on C such that p is closer to D than it is to the circumference of C. Find a rational number r such that the area of P is r.
5. Let n be a positive integer, let $0 \leq j<n$, and let $f_{n}(j)$ be the number of subsets S of the set $\{0,1, \ldots, n-1\}$ such that the sum of the elements
of S gives a remainder of j upon division by n. (By convention, the sum of the elements of the empty set is 0 .) Prove or disprove:

$$
f_{n}(j) \leq f_{n}(0)
$$

for all $n \geq 1$ and all $0 \leq j<n$.
6. Let P be the set of all real polynomials all of whose coefficients are either 0 or 1. Find

$$
\inf \{\alpha \in \mathbb{R}: \exists f \in P \text { such that } f(\alpha)=0\}
$$

and

$$
\sup \{\alpha \in \mathbb{R}: \exists f \in P \text { such that } f(0)=1 \text { and } f(\alpha)=0\} .
$$

Here inf denotes infinum (greatest lower bound) and sup denotes supremum (least upper bound).

Somewhat more difficult:

$$
\sup \{\alpha \in \mathbb{R}: \exists f \in P \text { such that } f(i \alpha)=0\}
$$

where $i^{2}=-1$.
7. Let n be a positive integer, and let X_{n} be the set of all $n \times n$ matrices whose entries are +1 or -1 . Call a nonempty subset S of X_{n} full if whenever $A \in S$, then any matrix obtained from A by multiplying a row or column by -1 also belongs to S. Let $w(A)$ denote the number of entries of A equal to 1 . Find, as a function of n,

$$
\max _{S} \frac{1}{|S|} \sum_{A \in S} w(A)^{3}
$$

where S ranges over all full subsets of X_{n}. (Express your answer as a polynomial in n.)

8* Let R be the region consisting of all triples (x, y, z) of nonnegative real numbers satisfying $x+y+z \leq 1$. Let $w=1-x-y-z$. Express the value of the triple integral

$$
\iiint_{R} x^{1} y^{9} z^{8} w^{4} d x d y d z
$$

in the form $a!b!c!d!/ n!$, where a, b, c, d, and n are positive integers.

9* Let n be a positive integer, and let $f(n)$ denote the last nonzero digit in the decimal expansion of n !. For instance, $f(5)=2$.
(a) Show that if $a_{1}, a_{2}, \ldots, a_{k}$ are distinct positive integers, then $f\left(5^{a_{1}}+\right.$ $5^{a_{2}}+\cdots+5^{a_{k}}$) depends only on the sum $a_{1}+a_{2}+\cdots+a_{k}$.
(b) Assuming (a), we can define $g(s)=f\left(5^{a_{1}}+5^{a_{2}}+\cdots+5^{a_{k}}\right)$, where $s=a_{1}+a_{2}+\cdots+a_{k}$. Find the least positive integer p for which

$$
g(s)=g(s+p), \text { for all } s \geq 1
$$

or else show that no such p exists.
10* A transversal of an $n \times n$ matrix is a set of n entries of A, no two in the same row or column. Let $f(n)$ be the number of $n \times n$ matrices A satisfying the following two conditions:
(a) Each entry of A is either $-1,1$, or 0 .
(b) All transversals of A have the same sum of their elements.

Find a formula for $f(n)$ of the form

$$
a_{1} \cdot b_{1}^{n}+a_{2} \cdot b_{2}^{n}+a_{3} \cdot b_{3}^{n}+a_{4},
$$

where a_{i}, b_{i} are rational numbers.
Easier version (not on Putnam Exam):
(a) Each entry of A is either 0 or 1 .
(b) All transversals of A have the same number of 1 's.

11* Let T be a triangle and R, S rectangles inscribed in T as shown:

Find the maximum value, or show that no maximum exists, of

$$
\frac{A(R)+A(S)}{A(T)}
$$

where T ranges over all triangles and R, S over all rectangles as above, and where A denotes area.
12. (A1 or B1 problem) Inscribe a rectangle of base b and height h and an isosceles triangle of base b in a circle of radius one as shown.

For what value of h do the rectangle and triangle have the same area? 13.* If $p(x)=\sum_{i=0}^{m} a_{i} x^{i}$ is a polynomial with real coefficients a_{i}, then set

$$
\Gamma(p(x))=\sum_{i=0}^{m} a_{i}^{2}
$$

Let $f(x)=3 x^{2}+7 x+2$. Find (with proof) a polynomial $g(x)$ satisfying

$$
\begin{gathered}
g(0)=1, \text { and } \\
\Gamma\left(f(x)^{n}\right)=\Gamma\left(g(x)^{n}\right) \text { for every integer } n \geq 1
\end{gathered}
$$

14* Define polynomials $f_{n}(x)$ for $n \geq 0$ by

$$
\begin{aligned}
f_{0}(x) & =1 \\
f_{n+1}^{\prime}(x) & =(n+1) f_{n}(x+1), n \geq 0 \\
f_{n}(0) & =0, n \geq 1
\end{aligned}
$$

Find (with proof) the explicit factorization of $f_{100}(1)$ into powers of distinct primes.
Variation (not on Putnam Exam): $f_{0}(x)=1, f_{n+1}(x)=x f_{n}(x)+f_{n}^{\prime}(x)$. Find $f_{2 n}(0)$.
15. Define

$$
c(k, n)=\cos \frac{\pi k}{n}+\sqrt{1+\cos ^{2} \frac{\pi k}{n}}
$$

Find (with proof) all positive integers n satisfying

$$
c(1, n)=c(2, n) c(3, n)
$$

16. Let R be a ring (not necessarily with identity). Suppose that there exists a nonzero element x of R satisfying

$$
x^{4}+x=2 x^{3} .
$$

Prove or disprove: There exists a nonzero element y of R satisfying $y^{2}=y$.
17. Find the largest real number λ for which there exists a 10×10 matrix $A=\left(a_{i j}\right)$, with each entry $a_{i j}$ equal to 0 or 1 , and with exactly 84 0 's, and there exists a nonzero column vector x of length 10 with real entries, such that $A x=\lambda x$.
18. Choose two points p and q independently and uniformly from the square $0 \leq x \leq 1,0 \leq y \leq 1$ in the (x, y)-plane. What is the probability that there exists a circle C contained entirely within the first quadrant $x \geq 0, y \geq 0$ such that C contains x and y in its interior? Express your answer in the form $1-(a+b \pi)(c+d \sqrt{e})$ for rational numbers a, b, c, d, e.
19.* (A1 or B1 problem) Let k be the smallest positive integer with the following property:

There are distinct integers $m_{1}, m_{2}, m_{3}, m_{4}, m_{5}$ such that the polynomial $p(x)=\left(x-m_{1}\right)\left(x-m_{2}\right)\left(x-m_{3}\right)\left(x-m_{4}\right)\left(x-m_{5}\right)$ has exactly k nonzero coefficients.

Find, with proof, a set of integers $m_{1}, m_{2}, m_{3}, m_{4}, m_{5}$ for which this minimum k is achieved.

Note. The original version of this problem was considerably more difficult (and was not intended for A1 or B1). It was as follows:
Let $P(x)=x^{11}+a_{10} x^{10}+\cdots+a_{0}$ be a monic polynomial of degree eleven with real coefficients a_{i}, with $a_{0} \neq 0$. Suppose that all the zeros of $P(x)$ are real, i.e., if α is a complex number such that $P(\alpha)=0$, then α is real. Find (with proof) the least possible number of nonzero coefficients of $P(x)$ (including the coefficient 1 of x^{11}).
20. Find (with proof) the largest integer k for which there exist three 9element subsets X_{1}, X_{2}, X_{3} of real numbers and k triples $\left(a_{1}, a_{2}, a_{3}\right)$ satisfying $a_{i} \in X_{i}$ and $a_{1}+a_{2}+a_{3}=0$.
21. Let

$$
S=\sum \frac{1}{m^{2} n^{2}}
$$

where the sum ranges over all pairs (m, n) of positive integers such that the largest power of 2 dividing m is different from the largest power of 2 dividing n. Express S in the form $\alpha \pi^{k}$, where k is an integer and α is rational. You may assume the formula

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

22. Let a and b be nonnegative integers with binary expansions $a=a_{0}+$ $2 a_{1}+\cdots$ and $b=b_{0}+2 b_{1}+\cdots$ (so $a_{i}, b_{i}=0$ or 1), and define

$$
a \wedge b=a_{0} b_{0}+2 a_{1} b_{1}+4 a_{2} b_{2}+\cdots=\sum 2^{i} a_{i} b_{i} .
$$

Given an integer $n \geq 0$, define $f(n)$ to be the number of pairs (a, b) of nonnegative integers satisfying $n=a+b+(a \wedge b)$. Find a polynomial $P(x)$ for which

$$
\sum_{n=0}^{\infty} f(n) x^{n}=\prod_{k=0}^{\infty} P\left(x^{2^{k}}\right), \quad|x|<1
$$

or show that no such $P(x)$ exists.
23. Given $v=\left(v_{1}, \ldots, v_{n}\right)$ where each $v_{i}=0$ or 1 , let $f(v)$ be the number of even numbers among the n numbers
$v_{1}+v_{2}+v_{3}, v_{2}+v_{3}+v_{4}, \ldots, v_{n-2}+v_{n-1}+v_{n}, v_{n-1}+v_{n}+v_{1}, v_{n}+v_{1}+v_{2}$.
For which positive integers n is the following true: for all $0 \leq k \leq n$, exactly $\binom{n}{k}$ vectors of the 2^{n} vectors $v \in\{0,1\}^{n}$ satisfy $f(v)=k$?
24. Let p be a prime number. Let c_{k} denote the coefficient of $x^{2 k}$ in the polynomial $\left(1+x+x^{3}+x^{4}\right)^{k}$. Find the remainder when the number $\sum_{k=0}^{p-1}(-1)^{k} c_{k}$ is divided by p. Your answer should depend only on the remainder obtained when p is divided by some fixed number n (independent of p).
25. Let $x(t)$ and $y(t)$ be real-valued functions of the real variable t satisfying the differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=-x t+3 y t-2 t^{2}+1 \\
& \frac{d y}{d t}=x t+y t+2 t^{2}-1
\end{aligned}
$$

with the initial conditions $x(0)=y(0)=1$. Find $x(1)+3 y(1)$. (This problem was later withdrawn for having an easier than intended solution.)
26.* Let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$ be real numbers with $1 \leq b_{1}<b_{2}<\cdots<b_{n}$. Suppose that there is a polynomial $f(x)$ satisfying

$$
(1-x)^{n} f(x)=1+\sum_{i=1}^{n} a_{i} x^{b_{i}}
$$

Express $f(1)$ in terms of b_{1}, \ldots, b_{n} and n (but independent from a_{1}, \ldots, a_{n}).
27. Given positive integers n and i, let x be the unique real number $\geq i$ satisfying $x^{x-i}=n$. Define $f(n, i)=(x+1)^{x-i}$, and set $f(0, i)=0$ for all i. Suppose that a_{1}, a_{2}, \ldots is a nonnegative integer sequence satisfying $a_{i+1} \leq f\left(a_{i}, i\right)$ for all $i \geq 1$. Prove or disprove: a_{i} is a polynomial function of i for i sufficiently large.
28. Let $0 \leq x \leq 1$. Let the binary expansion of x be

$$
x=a_{1} 2^{-1}+a_{2} 2^{-2}+\cdots
$$

(where, say, we never choose the expansion ending in infinitely many 1's). Define

$$
f(x)=a_{1} 3^{-1}+a_{2} 3^{-2}+\cdots .
$$

In other words, write x in binary and read x in ternary. Evaluate $\int_{0}^{1} f(x) d x$.

29* Let $f(x, y, z)=x^{2}+y^{2}+z^{2}+x y z$. Let $p(x, y, z), q(x, y, z)$, and $r(x, y, z)$ be polynomials satisfying

$$
f(p(x, y, z), q(x, y, z), r(x, y, z))=f(x, y, z)
$$

Prove or disprove: (p, q, r) consists of some permutation of $(\pm x, \pm y, \pm z)$, where the number of minus signs is even.
30. Let

$$
\frac{1}{1-x-y-z-6(x y+x z+y z)}=\sum_{r, s, t=0}^{\infty} f(r, s, t) x^{r} y^{s} z^{t}
$$

(convergent for $|x|,|y|,|z|$ sufficiently small). Find the largest real number R for which the power series

$$
F(u)=\sum_{n=0}^{\infty} f(n, n, n) u^{n}
$$

converges for all $|u|<R$.

