
PUTNAM TRAINING PROBLEMS, 2014

(Last updated: August 21, 2014)

Remark. This is a list of problems discussed during the training sessions of the NU Putnam
team and arranged by subjects. The document has three parts, the first one contains the
problems, the second one hints, and the solutions are in the third part. —Miguel A. Lerma

Exercises

1. Induction.

1.1. Prove that n! > 2n for all n ≥ 4.

1.2. Prove that for any integer n ≥ 1, 22n − 1 is divisible by 3.

1.3. Let a and b two distinct integers, and n any positive integer. Prove that an − bn is
divisible by a− b.

1.4. The Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, . . . is defined as a sequence whose two
first terms are F0 = 0, F1 = 1 and each subsequent term is the sum of the two
previous ones: Fn = Fn−1 + Fn−2 (for n ≥ 2). Prove that Fn < 2n for every n ≥ 0.

1.5. Let r be a number such that r + 1/r is an integer. Prove that for every positive
integer n, rn + 1/rn is an integer.

1.6. Find the maximum number R(n) of regions in which the plane can be divided by n
straight lines.

1.7. We divide the plane into regions using straight lines. Prove that those regions can
be colored with two colors so that no two regions that share a boundary have the
same color.

1.8. A great circle is a circle drawn on a sphere that is an “equator”, i.e., its center is
also the center of the sphere. There are n great circles on a sphere, no three of
which meet at any point. They divide the sphere into how many regions?

1.9. We need to put n cents of stamps on an envelop, but we have only (an unlimited
supply of) 5/c and 12/c stamps. Prove that we can perform the task if n ≥ 44.

1.10. A chessboard is a 8×8 grid (64 squares arranged in 8 rows and 8 columns), but here
we will call “chessboard” anym×m square grid. We call defective a chessboard if one
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of its squares is missing. Prove that any 2n×2n (n ≥ 1) defective chessboard can be
tiled (completely covered without overlapping) with L-shaped trominos occupying
exactly 3 squares, like this .

1.11. This is a modified version of the game of Nim (in the following we assume that there
is an unlimited supply of tokens.) Two players arrange several piles of tokens in a
row. By turns each of them takes one token from one of the piles and adds at will
as many tokens as he or she wishes to piles placed to the left of the pile from which
the token was taken. Assuming that the game ever finishes, the player that takes
the last token wins. Prove that, no matter how they play, the game will eventually
end after finitely many steps.

1.12. Call an integer square-full if each of its prime factors occurs to a second power (at
least). Prove that there are infinitely many pairs of consecutive square-fulls.

1.13. Prove that for every n ≥ 2, the expansion of (1+x+x2)n contains at least one even
coefficient.

1.14. We define recursively the Ulam numbers by setting u1 = 1, u2 = 2, and for each
subsequent integer n, we set n equal to the next Ulam number if it can be written
uniquely as the sum of two different Ulam numbers; e.g.: u3 = 3, u4 = 4, u5 = 6,
etc. Prove that there are infinitely many Ulam numbers.

1.15. Prove Bernoulli’s inequality, which states that if x > −1, x ̸= 0 and n is a positive
integer greater than 1, then (1 + x)n > 1 + nx.

2. Inequalities.

2.1. If a, b, c > 0, prove that (a2b+ b2c+ c2a)(ab2 + bc2 + ca2) ≥ 9a2b2c2.

2.2. Prove that n! <

(
n+ 1

2

)n

, for n = 2, 3, 4, . . . ,

2.3. If 0 < p, 0 < q, and p+ q < 1, prove that (px+ qy)2 ≤ px2 + qy2.

2.4. If a, b, c ≥ 0, prove that
√

3(a+ b+ c) ≥
√
a+

√
b+

√
c.

2.5. Let x, y, z > 0 with xyz = 1. Prove that x+ y + z ≤ x2 + y2 + z2.

2.6. Show that√
a21 + b21 +

√
a22 + b22 + · · ·+

√
a2n + b2n ≥√

(a1 + a2 + · · ·+ an)2 + (b1 + b2 + · · ·+ bn)2

2.7. Find the minimum value of the function f(x1, x2, . . . , xn) = x1+x2+ · · ·+xn, where
x1, x2, . . . , xn are positive real numbers such that x1x2 · · · xn = 1.
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2.8. Let x, y, z ≥ 0 with xyz = 1. Find the minimum of

S =
x2

y + z
+

y2

z + x
+

z2

x+ y
.

2.9. If x, y, z > 0, and x+ y + z = 1, find the minimum value of

1

x
+

1

y
+

1

z
.

2.10. Prove that in a triangle with sides a, b, c and opposite angles A, B, C (in radians)
the following relation holds:

aA+ bB + cC

a+ b+ c
≥ π

3
.

2.11. (Putnam, 2003) Let a1, a2, . . . , an and b1, b2, . . . , bn nonnegative real numbers. Show
that

(a1a2 · · · an)1/n + (b1b2 · · · bn)1/n ≤ ((a1 + b1)(a2 + b2) · · · (an + bn))
1/n

2.12. The notation n!(k) means take factorial of n k times. For example, n!(3) means
((n!)!)! What is bigger, 1999!(2000) or 2000!(1999)?

2.13. Which is larger, 19991999 or 20001998?

2.14. Which is larger, log2 3 or log3 5?

2.15. Prove that there are no positive integers a, b such that b2 + b+ 1 = a2.

2.16. (Inspired in Putnam 1968, B6) Prove that a polynomial with only real roots and all
coefficients equal to ±1 has degree at most 3.

2.17. (Putnam 1984) Find the minimum value of

(u− v)2 +

(√
2− u2 − 9

v

)2

for 0 < u <
√
2 and v > 0.

2.18. Show that
1√
4n

≤
(
1

2

)(
3

4

)
· · ·
(
2n− 1

2n

)
<

1√
2n

.

2.19. (Putnam, 2004) Let m and n be positive integers. Show that

(m+ n)!

(m+ n)m+n
<

m!

mm

n!

nn
.

2.20. Let a1, a2, . . . , an be a sequence of positive numbers, and let b1, b2, . . . , bn be any
permutation of the first sequence. Show that

a1
b1

+
a2
b2

+ · · ·+ an
bn

≥ n .
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2.21. (Rearrangement Inequality.) Let a1, a2, . . . , an and b1, b2, . . . , bn increasing sequences
of real numbers, and let x1, x2, . . . , xn be any permutation of b1, b2, . . . , bn. Show
that

n∑
i=1

aibi ≥
n∑

i=1

aixi .

2.22. Prove that the p-mean tends to the geometric mean as p approaches zero. In other
other words, if a1, . . . , an are positive real numbers, then

lim
p→0

(
1

n

n∑
k=1

apk

)1/p

=

(
n∏

k=1

ak

)1/n

2.23. If a, b, and c are the sides of a triangle, prove that

a

b+ c− a
+

b

c+ a− b
+

c

a+ b− c
≥ 3 .

2.24. Here we use Knuth’s up-arrow notation: a ↑ b = ab, a ↑↑ b = a ↑ (a ↑ (. . . ↑ a))︸ ︷︷ ︸
b copies of a

, so

e.g. 2 ↑↑ 3 = 2 ↑ (2 ↑ 2)) = 22
2
. What is larger, 2 ↑↑ 2011 or 3 ↑↑ 2010?

2.25. Prove that e1/e + e1/π ≥ 2e1/3.

2.26. Prove that the function f(x) =
n∑

i=1

(x− ai)
2 attains its minimum value at x = a =

a1 + · · ·+ an
n

.

2.27. Find the positive solutions of the system of equations

x1 +
1

x2

= 4 , x2 +
1

x3

= 1 , . . . , x99 +
1

x100

= 4 , x100 +
1

x1

= 1 .

2.28. Prove that if the numbers a, b, and c satisfy the inequalities |a−b| ≥ |c|, |b−c| ≥ |a|,
|c− a| ≥ |b|, then one of those numbers is the sum of the other two.

2.29. Find the minimum of sin3 x/ cos x+ cos3 x/ sin x, 0 < x < π/2.

2.30. Let ai > 0, i = 1, . . . , n, and s = a1 + · · ·+ an. Prove

a1
s− a1

+
a2

s− a2
+ · · ·+ an

s− an
≥ n

n− 1
.

2.31. Find the maximum value of f(x) = sin4(x) + cos4 x for x ∈ R

2.32. Let a, b, c be positive real numbers. Prove that 2
(

a+b
2

−
√
ab
)
≤ 3

(
a+b+c

3
− 3

√
abc
)
.

When is equality attained?
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2.33. (Generalization of previous problem.) Let an, n = 1, 2, 3, . . . be a sequence of
positive real numbers. Prove that bn = a1 + · · ·+ an − n n

√
a1 · · · an is an increasing

sequence of non-negative real numbers.

3. Number Theory.

3.1. Show that the sum of two consecutive primes is never twice a prime.

3.2. Can the sum of the digits of a square be (a) 3, (b) 1977?

3.3. Prove that there are infinitely many prime numbers of the form 4n+ 3.

3.4. Prove that the fraction (n3+2n)/(n4+3n2+1) is in lowest terms for every possible
integer n.

3.5. Let p(x) be a non-constant polynomial such that p(n) is an integer for every positive
integer n. Prove that p(n) is composite for infinitely many positive integers n. (This
proves that there is no polynomial yielding only prime numbers.)

3.6. Prove that two consecutive Fibonacci numbers are always relatively prime.

3.7. Show that if a2 + b2 = c2, then 3|ab.

3.8. Show that 1 +
1

2
+

1

3
+ · · ·+ 1

n
can never be an integer for n ≥ 2.

3.9. Let f(n) denote the sum of the digits of n. Let N = 44444444. Find f(f(f(N))).

3.10. Show that there exist 1999 consecutive numbers, each of which is divisible by the
cube of some integer greater than 1.

3.11. Find all triples of positive integers (a, b, c) such that(
1 +

1

a

)(
1 +

1

b

)(
1 +

1

c

)
= 2 .

3.12. Find all positive integer solutions to abc− 2 = a+ b+ c.

3.13. (USAMO, 1979) Find all non-negative integral solutions (n1, n2, . . . , n14) to

n4
1 + n4

2 + · · ·+ n4
14 = 1599 .

3.14. The Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, . . . is defined by F0 = 0, F1 = 1, Fn =

Fn−1 + Fn−2 for n ≥ 2. Prove that for some k > 0, Fk is a multiple of 1010
1010

.

3.15. Do there exist 2 irrational numbers a and b greater than 1 such that ⌊am⌋ ̸= ⌊bn⌋
for every positive integers m, n?
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3.16. The numbers 22005 and 52005 are written one after the other (in decimal notation).
How many digits are written altogether?

3.17. If p and p2 + 2, are primes show that p3 + 2 is prime.

3.18. Suppose n > 1 is an integer. Show that n4 + 4n is not prime.

3.19. Let m and n be positive integers such that m < ⌊
√
n+ 1

2
⌋. Prove that m+ 1

2
<

√
n.

3.20. Prove that the function f(n) = ⌊n+
√
n+ 1/2⌋ (n = 1, 2, 3, . . . ) misses exactly the

squares.

3.21. Prove that there are no primes in the following infinite sequence of numbers:

1001, 1001001, 1001001001, 1001001001001, . . .

3.22. (Putnam 1975, A1.) For positive integers n define d(n) = n −m2, where m is the
greatest integer with m2 ≤ n. Given a positive integer b0, define a sequence bi by
taking bk+1 = bk + d(bk). For what b0 do we have bi constant for sufficiently large i?

3.23. Let an = 10 + n2 for n ≥ 1. For each n, let dn denote the gcd of an and an+1. Find
the maximum value of dn as n ranges through the positive integers.

3.24. Suppose that the positive integers x, y satisfy 2x2 + x = 3y2 + y. Show that x− y,
2x+ 2y + 1, 3x+ 3y + 1 are all perfect squares.

3.25. If 2n+ 1 and 3n+ 1 are both perfect squares, prove that n is divisible by 40.

3.26. How many zeros does 1000! ends with?

3.27. For how many k is the binomial coefficient
(
100
k

)
odd?

3.28. Let n be a positive integer. Suppose that 2n and 5n begin with the same digit. What
is the digit?

3.29. Prove that there are no four consecutive non-zero binomial coefficients
(
n
r

)
,
(

n
r+1

)
,(

n
r+2

)
,
(

n
r+3

)
in arithmetic progression.

3.30. (Putnam 1995, A1) Show that every positive integer is a sum of one or more numbers
of the form 2r3s, where r and s are nonnegative integers and no summand divides
another.

3.31. (Putnam 2003, A1) Let n be a fixed positive integer. How many ways are there to
write n as a sum of positive integers, n = a1 + a2 + · · · + ak, with k an arbitrary
positive integer and a1 ≤ a2 ≤ · · · ≤ ak ≤ a1 + 1? For example, with n = 4 there
are four ways: 4, 2+2, 1+1+2, 1+1+1+1.
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3.32. (Putnam 2001, B-1) Let n be an even positive integer. Write the numbers 1, 2, . . . , n2

in the squares of an n× n grid so that the kth row, from right to left is

(k − 1)n+ 1, (k − 1)n+ 2, . . . , (k − 1)n+ n .

Color the squares of the grid so that half the squares in each row and in each column
are read and the other half are black (a chalkboard coloring is one possibility). Prove
that for each such coloring, the sum of the numbers on the red squares is equal to
the sum of the numbers in the black squares.

3.33. How many primes among the positive integers, written as usual in base 10, are such
that their digits are alternating 1s and 0s, beginning and ending with 1?

3.34. Prove that if n is an integer greater than 1, then n does not divide 2n − 1.

3.35. The digital root of a number is the (single digit) value obtained by repeatedly
adding the (base 10) digits of the number, then the digits of the sum, and so on until
obtaining a single digit—e.g. the digital root of 65,536 is 7, because 6+5+5+3+6 =
25 and 2 + 5 = 7. Consider the sequence an = integer part of 10nπ, i.e.,

a1 = 31 , a2 = 314 , a3 = 3141 , a4 = 31415 , a5 = 314159 , . . .

and let bn be the sequence

b1 = a1 , b2 = aa21 , b3 = a
a
a3
2

1 , b4 = a
a
a
a4
3

2
1 , . . .

Find the digital root of b106 .

4. Polynomials.

4.1. Find a polynomial with integral coefficients whose zeros include
√
2 +

√
5.

4.2. Let p(x) be a polynomial with integer coefficients. Assume that p(a) = p(b) =
p(c) = −1, where a, b, c are three different integers. Prove that p(x) has no integral
zeros.

4.3. Prove that the sum
√
10012 + 1 +

√
10022 + 1 + · · ·+

√
20002 + 1

is irrational.

4.4. (USAMO 1975) If P (x) denotes a polynomial of degree n such that P (k) = k/(k+1)
for k = 0, 1, 2, . . . , n, determine P (n+ 1).

4.5. (USAMO 1984) The product of two of the four zeros of the quartic equation

x4 − 18x3 + kx2 + 200x− 1984 = 0

is −32. Find k.
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4.6. Let n be an even positive integer, and let p(x) be an n-degree polynomial such that
p(−k) = p(k) for k = 1, 2, . . . , n. Prove that there is a polynomial q(x) such that
p(x) = q(x2).

4.7. Let p(x) be a polynomial with integer coefficients satisfying that p(0) and p(1) are
odd. Show that p has no integer zeros.

4.8. (USAMO 1976) If P (x), Q(x), R(x), S(x) are polynomials such that

P (x5) + xQ(x5) + x2R(x5) = (x4 + x3 + x2 + x+ 1)S(x)

prove that x− 1 is a factor of P (x).

4.9. Let a, b, c distinct integers. Can the polynomial (x−a)(x− b)(x− c)−1 be factored
into the product of two polynomials with integer coefficients?

4.10. Let p1, p2, . . . , pn distinct integers and let f(x) be the polynomial of degree n given
by

f(x) = (x− p1)(x− p2) · · · (x− pn) .

Prove that the polynomial

g(x) = (f(x))2 + 1

cannot be expressed as the product of two non-constant polynomials with integral
coefficients.

4.11. Find the remainder when you divide x81 + x49 + x25 + x9 + x by x3 − x.

4.12. Does there exist a polynomial f(x) for which xf(x− 1) = (x+ 1)f(x)?.

4.13. Is it possible to write the polynomial f(x) = x105 − 9 as the product of two polyno-
mials of degree less than 105 with integer coefficients?

4.14. Find all prime numbers p that can be written p = x4 + 4y4, where x, y are positive
integers.

4.15. (Canada, 1970) Let P (x) = xn + an−1x
n−1 + · · · + a1x + a0 be a polynomial with

integral coefficients. Suppose that there exist four distinct integers a, b, c, d with
P (a) = P (b) = P (c) = P (d) = 5. Prove that there is no integer k with P (k) = 8.

4.16. Show that (1 + x+ · · ·+ xn)2 − xn is the product of two polynomials.

4.17. Let f(x) be a polynomial with real coefficients, and suppose that f(x) + f ′(x) > 0
for all x. Prove that f(x) > 0 for all x.

4.18. Evaluate the following determinant:

∣∣∣∣∣∣∣∣
1 1 1 1
w x y z
w2 x2 y2 z2

w3 x3 y3 z3

∣∣∣∣∣∣∣∣
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4.19. Evaluate the following determinant:

∣∣∣∣∣∣∣∣
1 1 1 1
w x y z
w2 x2 y2 z2

w4 x4 y4 z4

∣∣∣∣∣∣∣∣
4.20. Do there exist polynomials a, b, c, d such that 1+ xy+x2y2 = a(x)b(y)+ c(x)d(y)?

4.21. Determine all polynomials such that P (0) = 0 and P (x2 + 1) = P (x)2 + 1.

4.22. Consider the lines that meet the graph

y = 2x4 + 7x3 + 3x− 5

in four distinct points Pi = [xi, yi], i = 1, 2, 3, 4. Prove that

x1 + x2 + x3 + x4

4

is independent of the line, and compute its value.

4.23. Let k be the smallest positive integer for which there exist distinct integers a, b, c,
d, e such that

(x− a)(x− b)(x− c)(x− d)(x− e)

has exactly k nonzero coefficients. Find, with proof, a set of integers for which this
minimum k is achieved.

4.24. Find the maximum value of f(x) = x3−3x on the set of all real numbers x satisfying
x4 + 36 ≤ 13x2.

4.25. (Putnam 1999, A1) Find polynomials f(x), g(x), and h(x) such that

|f(x)| − |g(x)|+ h(x) =


−1 , if x < −1 ,

3x+ 2 , if −1 ≤ x ≤ 0 ,

−2x+ 2 , if x > 0 .

4.26. Suppose that α, β, and γ are real numbers such that

α + β + γ = 2 ,

α2 + β2 + γ2 = 14 ,

α3 + β3 + γ3 = 17 .

Find αβγ.

4.27. Prove that (2 +
√
5)1/3 − (−2 +

√
5)1/3 is rational.

4.28. Two players A and B play the following game. A thinks of a polynomial with non-
negative integer coefficients. B must guess the polynomial. B has two shots: she
can pick a number and ask A to return the polynomial value there, and then she
has another such try. Can B win the game?
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4.29. Let f(x) a polynomial with real coefficients, and suppose that f(x) + f ′(x) > 0 for
all x. Prove that f(x) > 0 for all x.

4.30. If a, b, c > 0, is it possible that each of the polynomials P (x) = ax2 + bx + c,
Q(x) = cx2 + ax+ b, R(x) = bx2 + cx+ a has two real roots?

4.31. Let f(x) and g(x) be nonzero polynomials with real coefficients such that
f(x2 + x+ 1) = f(x)g(x). Show that f(x) has even degree.

4.32. Prove that there is no polynomial P (x) = anx
n + an−1x

n−1 + · · · + a0 with integer
coefficients and of degree at least 1 with the property that P (0), P (1), P (2),. . . ,
are all prime numbers.

5. Complex Numbers.

5.1. Let m and n two integers such that each can be expressed as the sum of two perfect
squares. Prove that mn has this property as well. For instance 17 = 42 + 12,
13 = 22 + 32, and 17 · 13 = 221 = 142 + 52.

5.2. Prove that
n∑

k=0

sin k =
sin n

2
sin n+1

2

sin 1
2

.

5.3. Show that if z is a complex number such that z+1/z = 2 cos a, then for any integer
n, zn + 1/zn = 2 cosna.

5.4. Factor p(z) = z5 + z + 1.

5.5. Find a close-form expression for
n−1∏
k=1

sin
kπ

n
.

5.6. Consider a regular n-gon which is inscribed in a circle with radius 1. What is the
product of the lengths of all n(n− 1)/2 diagonals of the polygon (this includes the
sides of the n-gon).

5.7. (Putnam 1991, B2) Suppose f and g are non-constant, differentiable, real-valued
functions on R. Furthermore, suppose that for each pair of real numbers x and y

f(x+ y) = f(x) f(y)− g(x) g(y)

g(x+ y) = f(x) g(y) + g(x) f(y)

If f ′(0) = 0 prove that f(x)2 + g(x)2 = 1 for all x.

5.8. Given a circle of n lights, exactly one of which is initially on, it is permitted to
change the state of a bulb provided that one also changes the state of every dth
bulb after it (where d is a divisor of n strictly less than n), provided that all n/d
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bulbs were originally in the same state as one another. For what values of n is it
possible to turn all the bulbs on by making a sequence of moves of this kind?

5.9. Suppose that a, b, u, v are real numbers for which av − bu = 1. Prove that
a2 + b2 + u2 + v2 + au+ bv ≥

√
3.

6. Generating Functions.

6.1. Prove that for any positive integer n(
n

1

)
+ 2

(
n

2

)
+ 3

(
n

3

)
+ · · ·+ n

(
n

n

)
= n2n−1 ,

where
(
a
b

)
= a!

b!(a−b)!
(binomial coefficient).

6.2. Prove that for any positive integer n(
n

0

)2

+

(
n

1

)2

+

(
n

2

)2

+ · · ·+
(
n

n

)2

=

(
2n

n

)
.

6.3. Prove that for any positive integers k ≤ m,n,

k∑
j=0

(
n

j

)(
m

k − j

)
=

(
m+ n

k

)
.

6.4. Let Fn be the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, . . . , defined recursively F0 = 0,
F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2. Prove that

∞∑
n=1

Fn

2n
= 2 .

6.5. Find a recurrence for the sequence un = number of nonnegative solutions of

2a+ 5b = n .

6.6. How many different sequences are there that satisfy all the following conditions:
(a) The items of the sequences are the digits 0–9.
(b) The length of the sequences is 6 (e.g. 061030)
(c) Repetitions are allowed.
(d) The sum of the items is exactly 10 (e.g. 111322).

6.7. (Leningrad Mathematical Olympiad 1991) A finite sequence a1, a2, . . . , an is called
p-balanced if any sum of the form ak + ak+p + ak+2p + · · · is the same for any
k = 1, 2, 3, . . . , p. For instance the sequence a1 = 1, a2 = 2, a3 = 3, a4 = 4,
a5 = 3, a6 = 2 is 3-balanced because a1 + a4 = 1 + 4 = 5, a2 + a5 = 2 + 3 = 5,
a3 + a6 = 3 + 2 = 5. Prove that if a sequence with 50 members is p-balanced for
p = 3, 5, 7, 11, 13, 17, then all its members are equal zero.
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7. Recurrences.

7.1. Find the number of subsets of {1, 2, . . . , n} that contain no two consecutive elements
of {1, 2, . . . , n}.

7.2. Determine the maximum number of regions in the plane that are determined by n
“vee”s. A “vee” is two rays which meet at a point. The angle between them is any
positive number.

7.3. Define a domino to be a 1× 2 rectangle. In how many ways can an n× 2 rectangle
be tiled by dominoes?

7.4. (Putnam 1996) Define a selfish set to be a set which has its own cardinality (number
of elements) as an element. Find, with proof, the number of subsets of {1, 2, . . . , n}
which are minimal selfish sets, that is, selfish sets none of whose proper subsets are
selfish.

7.5. Let a1, a2, . . . , an be an ordered sequence of n distinct objects. A derangement
of this sequence is a permutation that leaves no object in its original place. For
example, if the original sequence is 1, 2, 3, 4, then 2, 4, 3, 1 is not a derangement, but
2, 1, 4, 3 is. Let Dn denote the number of derangements of an n-element sequence.
Show that

Dn = (n− 1)(Dn−1 +Dn−2) .

7.6. Let α, β be two (real or complex) numbers, and define the sequence an = αn + βn

(n = 1, 2, 3, . . . ). Assume that a1 and a2 are integers. Prove that 2⌊
n−1
2

⌋an is an
integer for every n ≥ 1.

7.7. Suppose that x0 = 18, xn+1 =
10xn

3
− xn−1, and that the sequence {xn} converges

to some real number. Find x1.

8. Calculus.

8.1. Believe it or not the following function is constant in an interval [a, b]. Find that
interval and the constant value of the function.

f(x) =

√
x+ 2

√
x− 1 +

√
x− 2

√
x− 1 .

8.2. Find the value of the following infinitely nested radical√
2 +

√
2 +

√
2 +

√
2 + · · · .
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8.3. (Putnam 1995) Evaluate

8

√√√√2207− 1

2207− 1

2207− · · ·

Express your answer in the form (a+ b
√
c)/d, where a, b, c, d, are integers.

8.4. (Putnam 1992) Let f be an infinitely differentiable real-valued function defined on
the real numbers. If

f( 1
n
) =

n2

n2 + 1
, n = 1, 2, 3, . . .

compute the values of the derivatives f (k)(0), k = 1, 2, 3, . . . .

8.5. Compute lim
n→∞

{
1

n
+

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n− 1

}
.

8.6. Compute lim
n→∞

{
n∏

k=1

(
1 +

k

n

)}1/n

.

8.7. (Putnam 1997) Evaluate∫ ∞

0

(
x− x3

2
+

x5

2 · 4
− x7

2 · 4 · 6

)(
1 +

x2

22
+

x4

22 · 42
+

x6

22 · 42 · 62

)
dx .

8.8. (Putnam 1990) Is
√
2 the limit of a sequence of numbers of the form 3

√
n − 3

√
m

(n,m = 0, 1, 2, . . . )? (In other words, is it possible to find integers n and m such
that 3

√
n− 3

√
m is as close as we wish to

√
2?)

8.9. (Leningrad Mathematical Olympiad, 1988) Let f : R → R be continuous, with
f(x) · f(f(x)) = 1 for all x ∈ R. If f(1000) = 999, find f(500).

8.10. Let f : [0, 1] → R continuous, and suppose that f(0) = f(1). Show that there is a
value x ∈ [0, 1998/1999] satisfying f(x) = f(x+ 1/1999).

8.11. For which real numbers c is (ex + e−x)/2 ≤ ecx
2
for all real x?

8.12. Does there exist a positive sequence an such that
∑∞

n=1 an and
∑∞

n=1 1/(n
2an) are

convergent?

9. Pigeonhole Principle.

9.1. Prove that any (n + 1)-element subset of {1, 2, . . . , 2n} contains two integers that
are relatively prime.
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9.2. Prove that if we select n+ 1 numbers from the set S = {1, 2, 3, . . . , 2n}, among the
numbers selected there are two such that one is a multiple of the other one.

9.3. (Putnam 1978) Let A be any set of 20 distinct integers chosen from the arithmetic
progression {1, 4, 7, . . . , 100}. Prove that there must be two distinct integers in A
whose sum if 104.

9.4. Let A be the set of all 8-digit numbers in base 3 (so they are written with the digits
0,1,2 only), including those with leading zeroes such as 00120010. Prove that given
4 elements from A, two of them must coincide in at least 2 places.

9.5. During a month with 30 days a baseball team plays at least a game a day, but
no more than 45 games. Show that there must be a period of some number of
consecutive days during which the team must play exactly 14 games.

9.6. (Putnam, 2006-B2.) Prove that, for every set X = {x1, x2, . . . , xn} of n real num-
bers, there exists a non-empty subset S of X and an integer m such that∣∣∣∣∣m+

∑
s∈S

s

∣∣∣∣∣ ≤ 1

n+ 1
.

9.7. (IMO 1972.) Prove that from ten distinct two-digit numbers, one can always choose
two disjoint nonempty subsets, so that their elements have the same sum.

9.8. Prove that among any seven real numbers y1, . . . , y7, there are two such that

0 ≤ yi − yj
1 + yiyj

≤ 1√
3
.

9.9. Prove that among five different integers there are always three with sum divisible
by 3.

9.10. Prove that there exist an integer n such that the first four digits of 2n are 2, 0, 0, 9.

9.11. Prove that every convex polyhedron has at least two faces with the same number
of edges.

10. Telescoping.

10.1. Prove that
1

1 +
√
2
+

1√
2 +

√
3
+ · · ·+ 1√

99 +
√
100

= 9 .

10.2. Find a closed form for
N∑

n=1

n · n!
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10.3. (Putnam 1984) Express

∞∑
k=1

6k

(3k+1 − 2k+1)(3k − 2k)

as a rational number.

10.4. (Putnam 1977) Evaluate the infinite product

∞∏
n=2

n3 − 1

n3 + 1
.

10.5. Evaluate the infinite series:
∞∑
n=0

n

n4 + n2 + 1
.

11. Symmetries.

11.1. A spherical, 3-dimensional planet has center at (0, 0, 0) and radius 20. At any point
of the surface of this planet, the temperature is T (x, y, z) = (x + y)2 + (y − z)2

degrees. What is the average temperature of the surface of this planet?

11.2. (Putnam 1980) Evaluate

∫ π/2

0

dx

1 + (tan x)
√
2
.

11.3. Consider the following two-player game. Each player takes turns placing a penny
on the surface of a rectangular table. No penny can touch a penny which is already
on the table. The table starts out with no pennies. The last player who makes a
legal move wins. Does the first player have a winning strategy?

12. Inclusion-Exclusion.

12.1. How many positive integers not exceeding 1000 are divisible by 7 or 11?

12.2. Imagine that you are going to give n kids ice-cream cones, one cone per kid, and
there are k different flavors available. Assuming that no flavor gets mixed, find the
number of ways we can give out the cones using all k flavors.

12.3. Let a1, a2, . . . , an an ordered sequence of n distinct objects. A derangement of this
sequence is a permutation that leaves no object in its original place. For example,
if the original sequence is {1, 2, 3, 4}, then {2, 4, 3, 1} is not a derangement, but
{2, 1, 4, 3} is. Let Dn denote the number of derangements of an n-element sequence.
Show that

Dn = n!

(
1− 1

1!
+

1

2!
− · · ·+ (−1)n

1

n!

)
.
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13. Combinatorics and Probability.

13.1. Prove that the number of subsets of {1, 2, . . . , n} with odd cardinality is equal to
the number of subsets of even cardinality.

13.2. Find the number of subsets of {1, 2, . . . , n} that contain no two consecutive elements
of {1, 2, . . . , n}.

13.3. Peter tosses 25 fair coins and John tosses 20 fair coins. What is the probability that
they get the same number of heads?

13.4. From where he stands, one step toward the cliff would send a drunken man over
the edge. He takes random steps, either toward or away from the cliff. At any step
his probability of taking a step away is p, of a step toward the cliff 1− p. Find his
chance of escaping the cliff as a function of p.

13.5. Two real numbers X and Y are chosen at random in the interval (0, 1). Compute
the probability that the closest integer to X/Y is odd. Express the answer in the
form r + sπ, where r and s are rational numbers.

13.6. On the unit circle centered at the origin (x2 + y2 = 1) we pick three points at
random. We cut the circle into three arcs at those points. What is the expected
length of the arc containing the point (1, 0)?

13.7. In a laboratory a handful of thin 9-inch glass rods had one tip marked with a blue
dot and the other with a red. When the laboratory assistant tripped and dropped
them onto the concrete floor, many broke into three pieces. For these, what was
the average length of the fragment with the blue dot?

13.8. We pick n points at random on a circle. What is the probability that the center of
the circle will be in the convex polygon with vertices at those points?

14. Miscellany.

14.1. (Putnam 1986) What is the units (i.e., rightmost) digit of

⌊
1020000

10100 + 3

⌋
?

14.2. (IMO 1975) Prove that there are infinitely many points on the unit circle x2+y2 = 1
such that the distance between any two of them is a rational number.

14.3. (Putnam 1988) Prove that if we paint every point of the plane in one of three colors,
there will be two points one inch apart with the same color. Is this result necessarily
true if we replace ”three” by ”nine”?
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14.4. Imagine an infinite chessboard that contains a positive integer in each square. If
the value of each square is equal to the average of its four neighbors to the north,
south, west and east, prove that the values in all the squares are equal.

14.5. (Putnam 1990) Consider a paper punch that can be centered at any point of the
plane and that, when operated, removes precisely those points whose distance from
the center is irrational. How many punches are needed to remove every point?

14.6. (Putnam 1984) Let n be a positive integer, and define

f(n) = 1! + 2! + · · ·+ n! .

Find polynomials P (x) and Q(x) such that

f(n+ 2) = P (n)f(n+ 1) +Q(n)f(n)

for all n ≥ 1.

14.7. (Putnam 1974) Call a set of positive integers “conspiratorial” if no three of them
are pairwise relatively prime. What is the largest number of elements in any con-
spiratorial subset of integers 1 through 16?

14.8. (Putnam 1984) Prove or disprove the following statement: If F is a finite set with
two or more elements, then there exists a binary operation ∗ on F such that for all
x, y, z in F ,
(i) x ∗ z = y ∗ z implies x = y (right cancellation holds), and
(ii) x ∗ (y ∗ z) ̸= (x ∗ y) ∗ z (no case of associativity holds).

14.9. (Putnam 1995) For a partition π of {1, 2, 3, 4, 5, 6, 7, 8, 9}, let π(x) be the number of
elements in the part containing x. Prove that for any two partitions π and π′, there
are two distinct numbers x and y in {1, 2, 3, 4, 5, 6, 7, 8, 9} such that π(x) = π(y)
and π′(x) = π′(y). [A partition of a set S is a collection of disjoint subsets (parts)
whose union is S.]

14.10. Let S be a set of n distinct real numbers. Let AS be the set of numbers that occur
as average of two distinct elements of S. For a given n ≥ 2, what is the smallest
possible number of distinct elements in AS?

14.11. Suppose that a sequence a1, a2, a3, . . . satisfies 0 < an ≤ a2n + a2n+1 for all n ≥ 1.
Prove that the series

∑∞
n=1 an diverges.

14.12. On a table there is a row of fifty coins, of various denominations (the denominations
could be of any values). Alice picks a coin from one of the ends and puts it in her
pocket, then Bob chooses a coin from one of the ends and puts it in his pocket, and
the alternation continues until Bob pockets the last coin. Prove that Alice can play
so that she guarantees at least as much money as Bob.

14.13. Let f : R → R be a continuous function such that f◦f has a fixed point, i.e., there is
some real number x0 such that f(f(x0)) = x0. Prove that f also has a fixed point.
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14.14. Prove that tan 1◦ is irrational.

14.15. Prove that the integer part of (5
√
5 + 11)2n+1, n = 0, 1, 2, . . . , is even.
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Hints

1.1. —

1.2. For the induction step, rewrite 22(n+1) − 1 as a sum of two terms that are divisible
by 3.

1.3. For the inductive step assume that step an − bn is divisible by a − b and rewrite
an+1 − bn+1 as a sum of two terms, one of them involving an − bn and the other one
being a multiple of a− b.

1.4. Strong induction.

1.5. Rewrite rn+1 + 1/rn+1 in terms of rk + 1/rk with k ≤ n.

1.6. How many regions can be intersected by the (n+ 1)th line?

1.7. Color a plane divided with n of lines in the desired way, and think how to recolor
it after introducing the (n+ 1)th line.

1.8. How many regions can be intersected the by (n+ 1)th circle?

1.9. We have 1 = 5 ·(−7)+12 ·6 = 5 ·5+12 ·(−2). Also, prove that if n = 5x+12y ≥ 44,
then either x ≥ 7 or y ≥ 2.

1.10. For the inductive step, consider a 2n+1 × 2n+1 defective chessboard and divide it
into four 2n × 2n chessboards. One of them is defective. Can the other three be
made defective by placing strategically an L?

1.11. Use induction on the number of piles.

1.12. The numbers 8 and 9 form one such pair. Given a pair (n, n + 1) of consecutive
square-fulls, find some way to build another pair of consecutive square-fulls.

1.13. Look at oddness/evenness of the four lowest degree terms of the expansion.

1.14. Assume that the first m Ulam numbers have already been found, and determine
how the next Ulam number (if it exists) can be determined.

1.15. We have (1 + x)n+1 = (1 + x)n(1 + x).

2.1. One way to solve this problem is by using the Arithmetic Mean-Geometric Mean
inequality on each factor of the left hand side.

2.2. Apply the Arithmetic Mean-Geometric Mean inequality to the set of numbers
1, 2, . . . , n.

2.3. Power means inequality with weights p
p+q

and q
p+q

.
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2.4. Power means inequality.

2.5. —

2.6. This problem can be solved by using Minkowski’s inequality, but another way to
look at it is by an appropriate geometrical interpretation of the terms (as distances
between points of the plane.)

2.7. Many minimization or maximization problems are inequalities in disguise. The
solution usually consists of “guessing” the maximum or minimum value of the func-
tion, and then proving that it is in fact maximum or minimum. In this case, given
the symmetry of the function a good guess is f(1, 1, . . . , 1) = n, so try to prove
f(x1, x2, . . . , xn) ≥ n. Use the Arithmetic Mean-Geometric Mean inequality on
x1, . . . , xn.

2.8. Apply the Cauchy-Schwarz inequality to the vectors ( x√
y+z

, y√
z+x

, z√
x+y

) and (u, v, w),

and choose appropriate values for u, v, w.

2.9. Arithmetic-Harmonic Mean inequality.

2.10. Assume a ≤ b ≤ c, A ≤ B ≤ C, and use Chebyshev’s Inequality.

2.11. Divide by the right hand side and use the Arithmetic Mean-Geometric Mean in-
equality on both terms of the left.

2.12. Note that n! is increasing (n < m =⇒ n! < m!)

2.13. Look at the function f(x) = (1999− x) ln (1999 + x).

2.14. Use the definition of logarithm.

2.15. The numbers b2 and (b+ 1)2 are consecutive squares.

2.16. Use the Arithmetic Mean-Geometric Mean inequality on the squares of the roots of
the polynomial.

2.17. Think geometrically. Interpret the given expression as the square of the distance
between two points in the plane. The problem becomes that of finding the minimum
distance between two curves.

2.18. Consider the expressions P =
(
1
2

) (
3
4

)
· · ·
(
2n−1
2n

)
and Q =

(
2
3

) (
4
5

)
· · ·
(
2n−2
2n−1

)
. Note

that k−1
k

< k
k+1

, for k = 1, 2, . . . .

2.19. Look at the binomial expansion of (m+ n)m+n.

2.20. Arithmetic Mean-Geometric Mean inequality.

2.21. Try first the cases n = 1 and n = 2. Then use induction.
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2.22. Take logarithms and use L’Hôpital.

2.23. Set x = b+ c− a, y = c+ a− b, z = a+ b− c.

2.24. We have 22
2
= 16 < 27 = 33.

2.25. Show that f(x) = e1/x for x > 0 is decreasing and convex.

2.26. Prove that f(x)− f(a) ≥ 0.

2.27. By the AM-GM inequality we have x1 +
1
x2

≥ 2
√

x1

x2
, . . . Try to prove that those

inequalities are actually equalities.

2.28. Square both sides of those inequalities.

2.29. Rearrangement inequality.

2.30. Rearrangement inequality.

2.31. Note that | sin x| ≤ 1, so what which is smaller, sin2 x or sin4 x? (Same with cos x.)

2.32. Arithmetic Mean-Geometric Mean inequality.

2.33. Arithmetic Mean-Geometric Mean inequality.

3.1. Contradiction.

3.2. If s is the sum of the digits of a number n, then n− s is divisible by 9.

3.3. Assume that there are finitely many primes of the form 4n+3, call P their product,
and try to obtain a contradiction similar to the one in Euclid’s proof of the infinitude
of primes.

3.4. Prove that n3 + 2n and n4 + 3n2 + 1 are relatively prime.

3.5. Prove that p(k) divides p(p(k) + k).

3.6. Induction.

3.7. Study the equation modulo 3.

3.8. Call the sum S and find the maximum power of 2 dividing each side of the equality

n!S =
n∑

k=1

n!

k
.

3.9. f(n) ≡ n (mod 9).

3.10. Chinese Remainder Theorem.
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3.11. The minimum of a, b, c cannot be very large.

3.12. Try changing variables x = a+ 1, y = b+ 1, z = c+ 1.

3.13. Study the equation modulo 16.

3.14. Use the Pigeonhole Principle to prove that the sequence of pairs (Fn, Fn+1) is even-

tually periodic modulo N = 1010
1010

.

3.15. Try a =
√
6, b =

√
3.

3.16. —

3.17. If p is an odd number not divisible by 3, then p2 ≡ ±1 (mod 6).

3.18. Sophie Germain’s identity: a4 + 4b4 = (a2 + 2b2 + 2ab)(a2 + 2b2 − 2ab).

3.19. The number
√
n is irrational or an integer.

3.20. If m ̸= ⌊n+
√
n+ 1/2⌋, what can we say about m?

3.21. Each of the given numbers can be written pn(10
3), where pn(x) = 1+x+x2+· · ·+xn,

n = 1, 2, 3, . . . .

3.22. Study the cases bk = perfect square, and bk = not a perfect square. What can we
deduce about bk+1 being or not being a perfect square in each case?

3.23. gcd(a, b) = gcd(a, b− a).

3.24. What is (x− y)(2x+ 2y + 1) and (x− y)(3x+ 3y + 1)?

3.25. Think modulo 5 and modulo 8.

3.26. Think of 1000! as a product of prime factors and count the number of 2’s and the
number of 5’s in it.

3.27. Find the exponent of 2 in the prime factorization of
(
n
k

)
.

3.28. If N begins with digit a then a · 10k ≤ N < (a+ 1) · 10k.

3.29. The desired sequence of binomial numbers must have a constant difference.

3.30. Induction. The base case is 1 = 2030. The induction step depends on the parity of
n. If n is even, divide by 2. If it is odd, subtract a suitable power of 3.

3.31. If 0 < k ≤ n, is there any such sum with exactly k terms? How many?

3.32. Interpret the grid as a ’sum’ of two grids, one with the terms of the form (k − 1)n,
and the other one with the terms of the form 1, . . . , n.
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3.33. Each of the given numbers can be written pn(10
2), where pn(x) = 1+x+x2+· · ·+xn,

n = 1, 2, 3, . . . .

3.34. If n is prime Fermat’s Little Theorem yields the result. Otherwise let p be the
smallest prime divisor of n. . .

3.35. The digital root of a number is its reminder modulo 9. Then show that an1 (n =
1, 2, 3, · · · ) modulo 9 is periodic.

4.1. Call x =
√
2 +

√
5 and eliminate the radicals.

4.2. Factor p(x) + 1.

4.3. Prove that the sum is the root of a monic polynomial but not an integer.

4.4. Look at the polynomial Q(x) = (x+ 1)P (x)− x.

4.5. Use the relationship between zeros and coefficients of a polynomial.

4.6. The (n− 1)-degree polynomial p(x)− p(−x) vanishes at n different points.

4.7. For each integer k study the parity of p(k) depending on the parity of k.

4.8. We must prove that P (1) = 0. See what happens by replacing x with fifth roots of
unity.

4.9. Assume (x−a)(x− b)(x− c)− 1 = p(x)q(x), and look at the possible values of p(x)
and q(x) for x = a, b, c.

4.10. Assume g(x) = h(x)k(x), where h(x) and k(x) are non-constant polynomials with
integral coefficients. Prove that the can be assumed to be positive for every x and
h(pi) = k(pi) = 1, i = 1, . . . , n. Deduce that both are of degree n and determine
their form. Get a contradiction by equating coefficients in g(x) and h(x)k(x).

4.11. The remainder will be a second degree polynomial. Plug the roots of x3 − x.

4.12. Find the value of f(n) for n integer.

4.13. Assume f(x) = g(x)h(x), where g(x) and h(x) have integral coefficients and degree
less than 105. Look at the product of the roots of g(x)

4.14. Sophie Germain’s Identity.

4.15. We have that a, b, c, d are distinct roots of P (x)− 5.

4.16. One way to solve this problem is by letting An−1 = 1 + x + · · · + xn−1 and doing
some algebra.
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4.17. Study the behavior of f(x) as x → ±∞. Also determine the number of roots of
f(x).

4.18. Expand the determinant along the last column and find its zeros as a polynomial
in z.

4.19. Expand the determinant along the last column and find its zeros as a polynomial
in z.

4.20. Write the given condition in matrix form and give each of x and y three different
values.

4.21. Find some polynomial that coincides with P (x) for infinitely many values of x.

4.22. Find intersection points solving a system of equations.

4.23. The numbers a, b, c, d, e are the roots of the given polynomial. How are the roots of
a fifth-degree polynomial with exactly 1,2,. . . non-zero coefficients?

4.24. Find first the set of x verifying the constrain.

4.25. Try with first degree polynomials. Some of those polynomials must change sign
precisely at x = −1 and x = 0. Recall that |u| = ±u depending on whether u ≥ 0
or u < 0.

4.26. Write the given sums of powers as functions of the elementary symmetric polyno-
mials of α, β, γ.

4.27. Find a polynomial with integer coefficients with that number as one of its roots.

4.28. What happens if B has an upper bound for the coefficients of the polynomials?

4.29. How could f(x) become zero, and how many times? From the behavior of f(x) +
f ′(x), what can we conclude about the leading coefficient and degree of f(x)?

4.30. What conditions must the coefficients satisfy for a second degree polynomial to have
two real roots?

4.31. Prove that f(x) cannot have real roots.

4.32. We have that a0 = P (0) must be a prime number.

5.1. If m = a2 + b2 and n = c2 + d2, then consider the product z = (a + bi)(c + di) =
(ac− bd) + (ad+ bc)i.

5.2. The left hand side of the equality is the imaginary part of
n∑

k=0

eik.
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5.3. What are the possible values of z?

5.4. If ω = e2πi/3 then ω and ω2 are two roots of p(z).

5.5. Write sin t = (eti − e−ti)/2i.

5.6. Assume the vertices of the n-gon placed on the complex plane at the nth roots of
unity.

5.7. Look at the function h(x) = f(x) + ig(x).

5.8. Assume the lights placed on the complex plane at the nth roots of unity 1, ζ, ζ2, . . . , ζn−1,
where ζ = e2πi/n.

5.9. Hint Let z1 = a − bi, z2 = u + vi. We have |z1|2 = a2 + b2, |z2| = u2 + v2,
ℜ(z1z2) = au+ bv, ℑ(z1z2) = 1, and must prove |z1|2 + |z2|2 + ℜ(z1z2) ≥

√
3.

6.1. Expand and differentiate (1 + x)n.

6.2. Expand both sides of (1 + x)n(1 + x)n = (1+ x)2n and look at the coefficient of xn.

6.3. Expand both sides of (1 + x)m(1 + x)n = (1 + x)m+n and look at the coefficient of
xj.

6.4. Look at the generating function of the Fibonacci sequence.

6.5. Find the generating function of the sequence un = number of nonnegative solutions
of 2a+ 5b = n.

6.6. The answer equals the coefficient of x10 in the expansion of (1+ x+ x2 + · · ·+ x9)6,
but that coefficient is very hard to find directly. Try some simplification.

6.7. Look at the polynomial P (x) = a1 + a2x+ a3x
2 + · · ·+ a50x

49, and at its values at
3rd, 5th,. . . roots of unity.

7.1. The subsets of {1, 2, . . . , n} that contain no two consecutive elements can be divided
into two classes, the ones not containing n, and the ones containing n.

7.2. The (n+ 1)th “vee” divides the existing regions into how many further regions?

7.3. The tilings of a n×2 rectangle by dominoes can be divided into two classes depending
on whether we place the rightmost domino vertically or horizontally.

7.4. The minimal selfish subsets of {1, 2, . . . , n} can be divided into two classes depending
on whether they contain n or not.
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7.5. Assume that b1, b2, . . . , bn is a derangement of the sequence a1, a2, . . . , an. How many
possible values can bn have? Once we have fixed the value of bn, divide the possible
derangements into two appropriate classes.

7.6. Find a recurrence for an.

7.7. Find a general solution to the recurrence and determine for which value(s) of x1 the
sequence converges.

8.1.
√
u2 = |u|.

8.2. Find the limit of the sequence a1 =
√
2, an+1 =

√
2 + an (n ≥ 1).

8.3. Call the limit L. Find some equation verified by L.

8.4. Justify that the desired derivatives must coincide with those of the function g(x) =
1/(1 + x2).

8.5. Compare the sum to some integral of the form
∫ b

a
1
x
dx.

8.6. Take logarithms. Interpret the resulting expression as a Riemann sum.

8.7. Interpret the first series is as a Maclaurin series. Interchange integration and sum-
mation with the second series (don’t forget to justify why the interchange is “legit-
imate”.)

8.8. In fact any real number r is the limit of a sequence of numbers of the form 3
√
n− 3

√
m.

We want r ≈ 3
√
n− 3

√
m, i.e., r+ 3

√
m ≈ 3

√
n. Note that 3

√
n+ 1− 3

√
n → 0 as n → ∞.

8.9. If y ∈ f(R) what is f(y)?

8.10. Consider the function g(x) = f(x) − f(x + 1/999). Use the intermediate value
theorem.

8.11. Compare Taylor expansions.

8.12. If they were convergent their sum would be convergent too.

9.1. Divide the set into n subsets each of which has only pairwise relatively prime num-
bers.

9.2. Divide the set into n subsets each of which contains only numbers which are multiple
or divisor of the other ones.

9.3. Look at pairs of numbers in that sequence whose sum is precisely 104. Those pairs
may not cover the whole progression, but that can be fixed. . .
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9.4. Prove that for each k = 1, 2, . . . , 8, at least 2 of the elements given coincide at place
k. Consider a pair of elements which coincide at place 1, another pair of elements
which coincide at place 2, and so on. How many pairs of elements do we have?

9.5. Consider the sequences ai = number of games played from the 1st through the jth
day of the month, and bj = aj + 14. Put them together and use the pigeonhole
principle to prove that two elements must be the equal.

9.6. Consider the fractional part of sums of the form si = x1 + · · ·+ xi.

9.7. Consider the number of different subsets of a ten-element set, and the possible
number of sums of at most ten two-digit numbers.

9.8. Write yi = tan xi, with −π
2
≤ xi ≤ π

2
(i = 1, . . . , 7). Find appropriate “boxes” for

the xis in the interval (−π
2
, π
2
)

9.9. Classify the numbers by their reminder when divided by 3.

9.10. We must prove that there are positive integers n, k such that

2009 · 10k ≤ 2n < 2010 · 10k .

9.11. Look at the face with the maximum number of edges and its neighbors.

10.1. Rationalize and telescope.

10.2. Write n = (n+ 1)− 1.

10.3. Try to re-write the nth term of the sum as Ak

3k−2k
− Bk

3k+1−2k+1 .

10.4. If you write a few terms of the product you will notice a lot of cancellations. Factor
the numerator and denominator of the nth term of the product and cancel all
possible factors from k = 2 to k = N . You get an expression in N . Find its limit
as N → ∞.

10.5. Write the nth term as a sum of two partial fractions.

11.1. Start by symmetrizing the given function:

f(x, y, z) = T (x, y, z) + T (y, z, x) + T (z, x, y) .

11.2. Look at the expression f(x) + f(π
2
− x).

11.3. What kind of symmetry can the first player take advantage of?

12.1. —
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12.2. Find the number of distributions of ice-cream cones without the restriction ”using
all k flavors”. Then remove the distributions in which at least one of the flavors is
unused.

12.3. If Pi is the set of permutations fixing element ai, then the set of non-derangements
are the elements of the P1 ∪ P2 ∪ · · · ∪ Pn.

13.1. Find the numbers and subtract. Or find a bijection between the subsets with odd
cardinality and those with even cardinality.

13.2. Find a bijection between the k-element subsets of {1, 2, . . . , n} with no consecutive
elements and all k-element subsets of {1, 2, . . . , n− k + 1}.

13.3. The probability of John getting n heads is the same as that of he getting n tails.

13.4. Consider what happens after the first step, and in which ways the man can reach
the edge from there.

13.5. Look at the area of the set of points verifying the condition.

13.6. The lengths of the three arcs have identical distributions.

13.7. The lengths of the three pieces have identical distributions.

13.8. Find the probability of the polygon not containing the center of the circle.

14.1. Compare to
1020000 − 3200

10100 + 3
.

14.2. If cos u, sinu, cos v, and sin v are rational, so are cos (u+ v) and sin (u+ v).

14.3. Contradiction.

14.4. Since the values are positive integers, one of them must be the smallest one. What
are the values of the neighbors of a square with minimum value?

14.5. Try punches at (0, 0), (±α, 0), . . . for some appropriate α.

14.6. Note that f(n+2)−f(n+1)
f(n+1)−f(n)

is a very simple polynomial in n.

14.7. Start by finding some subset T of S as large as possible and such that any three
elements of it are pairwise relatively prime.

14.8. Try a binary operation that depends only on the first element: x ∗ y = ϕ(x).

14.9. How many different values of π(x) are possible?

14.10. Find a set S attaining the minimum cardinality for AS.
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14.11. Group the terms of the sequence appropriately.

14.12. Is it possible for Alice to force Bob into taking coins only from odd-numbered or
even-numbered positions?

14.13. If f has not fixed point then f(x)−x is never zero, and f being continous, f(x)−x
will have the same sign for every x.

14.14. Angle addition formulas and tan 30◦ = 1√
3
.

14.15. Look at (5
√
5 + 11)2n+1 − (5

√
5− 11)2n+1.
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Solutions

1.1. We prove it by induction. The basis step corresponds to n = 4, and in this case
certainly we have 4! > 24 (24 > 16). Next, for the induction step, assume the
inequality holds for some value of n ≥ 4, i.e., we assume n! > 2n, and look at what
happens for n+ 1:

(n+ 1)! = n! (n+ 1) > 2n(n+ 1) > 2n · 2 = 2n+1 .

6
by induction hypothesis

Hence the inequality also holds for n+ 1. Consequently it holds for every n ≥ 4.

1.2. For the basis step, we have that for n = 1 indeed 22·1 − 1 = 4 − 1 = 3 is divisible
by 3. Next, for the inductive step, assume that n ≥ 1 and 22n − 1 is divisible by 3.
We must prove that 22(n+1) − 1 is also divisible by 3. We have

22(n+1) − 1 = 22n+2 − 1 = 4 · 22n − 1 = 3 · 22n + (22n − 1) .

In the last expression the last term is divisible by 3 by induction hypothesis, and
the first term is also a multiple of 3, so the whole expression is divisible by 3 and
we are done.

1.3. By induction. For n = 1 we have that a1 − b1 = a − b is indeed divisible by a− b.
Next, for the inductive step, assume that an − bn is divisible by a − b. We must
prove that an+1 − bn+1 is also divisible by a− b. In fact:

an+1 − bn+1 = (a− b) an + b (an − bn) .

On the right hand side the first term is a multiple of a− b, and the second term is
divisible by a − b by induction hypothesis, so the whole expression is divisible by
a− b.

1.4. We prove it by strong induction. First we notice that the result is true for n = 0
(F0 = 0 < 1 = 20), and n = 1 (F1 = 1 < 2 = 21). Next, for the inductive step,
assume that n ≥ 1 and assume that the claim is true, i.e. Fk < 2k, for every k such
that 0 ≤ k ≤ n. Then we must prove that the result is also true for n+ 1. In fact:

Fn+1 = Fn + Fn−1 < 2n + 2n−1 < 2n + 2n = 2n+1 ,

6
by induction hypothesis

and we are done.

1.5. We prove it by induction. For n = 1 the expression is indeed an integer. For n = 2
we have that r2 + 1/r2 = (r + 1/r)2 − 2 is also an integer. Next assume that n > 2
and that the expression is an integer for n− 1 and n. Then we have(

rn+1 +
1

rn+1

)
=

(
rn +

1

rn

)(
r +

1

r

)
−
(
rn−1 +

1

rn−1

)
,

hence the expression is also an integer for n+ 1.



PUTNAM TRAINING PROBLEMS, 2014 - SOLUTIONS 31

1.6. By experimentation we easily find:

1
2

1

2

3

4

1

2

3

4
5

6 7

1

2

3

4

5
67 8

9 10 11

Figure 1. Plane regions.

n 1 2 3 4 . . .
R(n) 2 4 7 11 . . .

A formula that fits the first few cases is R(n) = (n2 + n + 2)/2. We will prove by
induction that it works for all n ≥ 1. For n = 1 we have R(1) = 2 = (12 +1+ 2)/2,
which is correct. Next assume that the property is true for some positive integer n,
i.e.:

R(n) =
n2 + n+ 2

2
.

We must prove that it is also true for n+ 1, i.e.,

R(n+ 1) =
(n+ 1)2 + (n+ 1) + 2

2
=

n2 + 3n+ 4

2
.

So lets look at what happens when we introduce the (n + 1)th straight line. In
general this line will intersect the other n lines in n different intersection points,
and it will be divided into n + 1 segments by those intersection points. Each of
those n + 1 segments divides a previous region into two regions, so the number of
regions increases by n+ 1. Hence:

R(n+ 1) = S(n) + n+ 1 .

But by induction hypothesis, R(n) = (n2 + n+ 2)/2, hence:

R(n+ 1) =
n2 + n+ 2

2
+ n+ 1 =

n2 + 3n+ 4

2
.

QED.

1.7. We prove it by induction in the number n of lines. For n = 1 we will have two
regions, and we can color them with just two colors, say one in red and the other
one in blue. Next assume that the regions obtained after dividing the plane with
n lines can always be colored with two colors, red and blue, so that no two regions
that share a boundary have the same color. We need to prove that such kind of
coloring is also possible after dividing the plane with n+1 lines. So assume that the
plane divided by n lines has been colored in the desired way. After we introduce the
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(n+ 1)th line we need to recolor the plane to make sure that the new coloring still
verifies that no two regions that share a boundary have the same color. We do it
in the following way. The (n+ 1)th line divides the plane into two half-planes. We
keep intact the colors in all the regions that lie in one half-plane, and reverse the
colors (change red to blue and blue to red) in all the regions of the other half-plane.
So if two regions share a boundary and both lie in the same half-plane, they will
still have different colors. Otherwise, if they share a boundary but are in opposite
half-planes, then they are separated by the (n + 1)th line; which means they were
part of the same region, so had the same color, and must have acquired different
colors after recoloring.

1.8. The answer is f(n) = n2 − n + 2. The proof is by induction. For n = 1 we get
f(1) = 2, which is indeed correct. Then we must prove that if f(n) = n2 − n + 2
then f(n + 1) = (n + 1)2 − (n + 1) + 2. In fact, the (n + 1)th great circle meets
each of the other great circles in two points each, so 2n points in total, which
divide the circle into 2n arcs. Each of these arcs divides a region into two, so the
number of regions grow by 2n after introducing the (n+ 1)th circle. Consequently
f(n+ 1) = n2 − n+ 2 + 2n = n2 + n+ 2 = (n+ 1)2 − (n+ 1) + 2, QED.

1.9. We proceed by induction. For the basis step, i.e. n = 44, we can use four 5/c stamps
and two 12/c stamps, so that 5 · 4+12 · 2 = 44. Next, for the induction step, assume
that for a given n ≥ 44 the task is possible by using x 5/c stamps and y 12/c stamps,
i.e, n = 5x + 12y. We must now prove that we can find some combination of x′ 5/c
stamps and y′ 12/c stamps so that n+1 = 5x′+12y′. First note that either x ≥ 7 or
y ≥ 2 — otherwise we would have x ≤ 6 and y ≤ 1, hence n ≤ 5·6+12·1 = 42 < 44,
contradicting the hypothesis that n ≥ 44. So we consider the two cases:
1. If x ≥ 7, then we can accomplish the goal by setting x′ = x− 7 and y′ = y+6:

5x′ + 12y′ = 5(x− 7) + 12(y + 6) = 5x+ 12y + 1 = n+ 1 .

2. On the other hand, if y ≥ 2 then, we can do it by setting x′ = x + 5 and
y′ = y − 2:

5x′ + 12y′ = 5(x+ 5) + 12(y − 2) = 5x+ 12y + 1 = n+ 1 .

1.10. We prove it by induction on n. For n = 1 the defective chessboard consists of
just a single L and the tiling is trivial. Next, for the inductive step, assume that
a 2n × 2n defective chessboard can be tiled with L’s. Now, given a 2n+1 × 2n+1

defective chessboard, we can divide it into four 2n× 2n chessboards as shown in the
figure. One of them will have a square missing and will be defective, so it can be
tiled with L’s. Then we place an L covering exactly one corner of each of the other
2n × 2n chessboards (see figure). The remaining part of each of those chessboards
is like a defective chessboard and can be tiled in the desired way too. So the whole
2n+1 × 2n+1 defective chessboard can be tiled with L’s.

1.11. We use induction on the number n of piles. For n = 1 we have only one pile, and
since each player must take at least one token from that pile, the number of tokes in
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Figure 2. A 2n+1 × 2n+1 defective chessboard.

it will decrease at each move until it is empty. Next, for the induction step, assume
that the game with n piles must end eventually. We will prove that the same is true
for n+1 piles. First note that the players cannot keep taking tokens only from the
first n piles, since by induction hypothesis the game with n piles eventually ends.
So sooner or later one player must take a token from the (n+1)th pile. It does not
matter how many tokes he or she adds to the other n piles after that, it is still true
that the players cannot keep taking tokens only from the first n piles forever, so
eventually someone will take another token from the (n + 1)th pile. Consequently,
the number of tokens in that pile will continue decreasing until it is empty. After
that we will have only n piles left, and by induction hypothesis the game will end
in finitely many steps after that.1

1.12. The numbers 8 and 9 are a pair of consecutive square-fulls. Next, if n and n+1 are
square-full, so are 4n(n+ 1) and 4n(n+ 1) + 1 = (2n+ 1)2.

1.13. For n = 2, 3, 4, 5, 6 we have:

(1 + x+ x2)2 = 1 + 2x+ 3x2 + 2x3 + x4

(1 + x+ x2)3 = 1 + 3x+ 6x2 + 7x3 + · · ·
(1 + x+ x2)4 = 1 + 4x+ 10x2 + 16x3 + · · ·
(1 + x+ x2)5 = 1 + 5x+ 15x2 + 30x3 + · · ·
(1 + x+ x2)6 = 1 + 6x+ 21x2 + 50x3 + · · ·

1An alternate proof based on properties of ordinal numbers is as follows (requires some advanced set-
theoretical knowledge.) Here ω = first infinite ordinal number, i.e., the first ordinal after the sequence of
natural numbers 0, 1, 2, 3, . . . . Let the ordinal number α = a0 + a1ω + a2ω

2 + · · · + an−1ω
n−1 represent

a configuration of n piles with a0, a1, . . . , an−1 tokens respectively (read from left to right.) After a move
the ordinal number representing the configuration of tokens always decreases. Every decreasing sequence of
ordinals numbers is finite. Hence the result.
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In general, if (1 + x+ x2)n = a+ bx+ cx2 + dx3 + · · · , then

(1 + x+ x2)n+1 = a+ (a+ b)x+ (a+ b+ c)x2 + (b+ c+ d)x3 + · · · ,

hence the first four coefficients of (1 + x + x2)n+1 depend only on the first four
coefficients of (1 + x+ x2)n. The same is true is we write the coefficients modulo 2,
i.e., as “0” if they are even, or “1” if they are odd. So, if we call qn(x) = (1+x+x2)n

with the coefficients written modulo 2, we have

q1(x) = 1 + 1x+ 1x2

q2(x) = 1 + 0x+ 1x2 + 0x3 + 1x4

q3(x) = 1 + 1x+ 0x2 + 1x3 + · · ·
q4(x) = 1 + 0x+ 0x2 + 0x3 + · · ·
q5(x) = 1 + 1x+ 1x2 + 0x3 + · · ·
q6(x) = 1 + 0x+ 1x2 + 0x3 + · · ·

We notice that the first four coefficients of q6(x) coincide with those of q2(x), and
since these first four coefficients determine the first four coefficients of each sub-
sequent polynomial of the sequence, they will repeat periodically so that those of
qn(x) will always coincide with those of qn+4. Since for n = 2, 3, 4, 5 at least one
of the first four coefficients of qn(x) is 0 (equivalently, at least one of the first four
coefficients of (1 + x+ x2)n is even), the same will hold for all subsequent values of
n.

1.14. Let Um = {u1, u2, . . . , um} (m ≥ 2) be the first m Ulam numbers (written in
increasing order). Let Sm be the set of integers greater than um that can be written
uniquely as the sum of two different Ulam numbers from Um. The next Ulam
number um+1 is precisely the minimum element of Sm, unless Sm is empty, but it is
not because um−1 + um ∈ Sm.

1.15. By induction. For the base case n = 2 the inequality is (1+x)2 > 1+2x, obviously
true because (1 + x)2 − (1 + 2x) = x2 > 0. For the induction step, assume that the
inequality is true for n, i.e., (1 + x)n > 1 + nx. Then, for n+ 1 we have

(1 + x)n+1 = (1 + x)n(1 + x) > (1 + nx)(1 + x) =

1 + (n+ 1)x+ x2 > 1 + (n+ 1)x ,

and the inequality is also true for n+ 1.

2.1. Using the Arithmetic Mean-Geometric Mean Inequality on each factor of the LHS
we get(

a2b+ b2c+ c2a

3

)(
ab2 + bc2 + ca2

3

)
≥
(

3
√
a3b3c3

)(
3
√
a3b3c3

)
= a2b2c2 .

Multiplying by 9 we get the desired inequality.
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Another solution consists of using the Cauchy-Schwarz inequality:

(a2b+ b2c+ c2a)(ab2 + bc2 + ca2) =(
(a
√
b)2 + (b

√
c)2+ (c

√
a)2
)(

(
√
b c)2 + (

√
c a)2 + (

√
a b)2

)
≥ (abc+ abc+ abc)2

= 9a2b2c2 .

2.2. This result is the Arithmetic Mean-Geometric Mean applied to the set of numbers
1, 2, . . . , n:

n
√
1 · 2 · · · · · n <

1 + 2 + · · ·+ n

n
=

n(n+1)
2

n
=

n+ 1

2
.

Raising both sides to the nth power we get the desired result.

2.3. The simplest solution consists of using the weighted power means inequality to the
(weighted) arithmetic and quadratic means of x and y with weights p

p+q
and q

p+q
:

p

p+ q
x+

q

p+ q
y ≤

√
p

p+ q
x2 +

q

p+ q
y2 ,

hence

(px+ qy)2 ≤ (p+ q)(px2 + qy2) .

Or we can use the Cauchy-Schwarz inequality as follows:

(px+ qy)2 = (
√
p
√
p x+

√
q
√
q y)2

≤
(
{√p}2 + {√q}2

) (
{√p x}2 + {√q y}2

)
(Cauchy-Schwarz)

= (p+ q)(px2 + qy2) .

Finally we use p+ q ≤ 1 to obtain the desired result.

2.4. By the power means inequality:

a+ b+ c

3
≥

(√
a+

√
b+

√
c

3

)2

︸ ︷︷ ︸
M1(a,b,c)

︸ ︷︷ ︸
M1/2(a,b,c)

From here the desired result follows.

2.5. We have:

x+ y + z = (x+ y + z) 3
√
xyz (xyz = 1)

≤ (x+ y + z)2

3
(AM-GM inequality)

≤ x2 + y2 + z2 . (power means inequality)
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2.6. The result can be obtained by using Minkowski’s inequality repeatedly:√
a21 + b21 +

√
a22 + b22 + · · ·+

√
a2n + b2n ≥

√
(a1 + a2)2 + (b1 + b2)2 + · · ·+

√
a2n + b2n

≥
√
(a1 + a2 + a3)2 + (b1 + b2 + b3)2 + · · ·

+
√

a2n + b2n
. . .

≥
√
(a1 + a2 + · · ·+ an)2 + (b1 + b2 + · · ·+ bn)2

Another way to think about it is geometrically. Consider a sequence of points in
the plane Pk = (xk, yk), k = 0, . . . , n, such that

(xk, yk) = (xk−1 + ak, yk−1 + bk) for k = 1, . . . , n .

Then the left hand side of the inequality is the sum of the distances between two
consecutive points, while the right hand side is the distance between the first one
and the last one:

d(P0, P1) + d(P1, P2) + · · ·+ d(Pn−1, Pn) ≤ d(P0, Pn) .

2.7. By the Arithmetic Mean-Geometric Mean Inequality

1 = n
√
x1x2 . . . xn ≤ x1 + x2 + · · ·+ xn

n
,

Hence f(x1, x2, . . . , xn) ≥ n. On the other hand f(1, 1, . . . , 1) = n, so the minimum
value is n.

2.8. For x = y = z = 1 we see that S = 3/2. We will prove that in fact 3/2 is the
minimum value of S by showing that S ≥ 3/2.
Note that

S =

(
x√
y + z

)2

+

(
y√
z + x

)2

+

(
z√
x+ y

)2

.

Hence by the Cauchy-Schwarz inequality:

S · (u2 + v2 + w2) ≥
(

xu√
y + z

+
yv√
z + x

+
zw√
x+ y

)2

.

Writing u =
√
y + z, v =

√
z + x, w =

√
x+ y we get

S · 2(x+ y + z) ≥ (x+ y + z)2 ,

hence, dividing by 2(x + y + z) and using the Arithmetic Mean-Geometric Mean
inequality:

S ≥ 1

2
(x+ y + z) ≥ 1

2
· 3 3

√
xyz =

3

2
.

2.9. By the Arithmetic Mean-Harmonic Mean inequality:

3
1
x
+ 1

y
+ 1

z

≤ x+ y + z

3
=

1

3
,
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hence

9 ≤ 1

x
+

1

y
+

1

z
.

On the other hand for x = y = z = 1/3 the sum is 9, so the minimum value is 9.

2.10. Assume a ≤ b ≤ c, A ≤ B ≤ C. Then

0 ≤ (a− b)(A−B) + (a− c)(A− C) + (b− c)(B − C)

= 3(aA+ bB + cC)− (a+ b+ c)(A+B + C) .

Using A+B + C = π and dividing by 3(a+ b+ c) we get the desired result.
- Remark: We could have used also Chebyshev’s Inequality:

aA+ bB + cC

3
≥
(
a+ b+ c

3

)(
A+B + C

3

)
.

2.11. Assume ai+bi > 0 for each i (otherwise both sides are zero). Then by the Arithmetic
Mean-Geometric Mean inequality(

a1 · · · an
(a1 + b1) · · · (an + bn)

)1/n

≤ 1

n

(
a1

a1 + b1
+ · · ·+ an

an + bn
,

)
and similarly with the roles of a and b reversed. Adding both inequalities and
clearing denominators we get the desired result.
(Remark: The result is known as superadditivity of the geometric mean.)

2.12. We have that n! is increasing for n ≥ 1, i.e., 1 ≤ n < m =⇒ n! < m! So
1999! > 2000 =⇒ (1999!)! > 2000! =⇒ ((1999!)!)! > (2000!)! =⇒ . . . =⇒
1999!(2000) > 2000!(1999).

2.13. Consider the function f(x) = (1999 − x) ln (1999 + x). Its derivative is f ′(x) =

− ln (1999 + x)+
1999− x

1999 + x
, which is negative for 0 ≤ x ≤ 1, because in that interval

1999− x

1999 + x
≤ 1 = ln e < ln (1999 + x) .

Hence f is decreasing in [0, 1] and f(0) > f(1), i.e., 1999 ln 1999 > 1998 ln 2000.
Consequently 19991999 > 20001998.

2.14. Let x = log2 3 and y = log3 5, so 2x = 3, 3y = 5. Then, 27 = 33 = (2x)3 = 8x, and
25 = 52 = (3y)2 = 9y, hence 8x > 9y, but 8 < 9, hence x > y, i.e., log2 3 > log3 5.

2.15. We have b2 < b2 + b+ 1︸ ︷︷ ︸
a2

< b2+2b+1 = (b+1)2. But b2 and (b+1)2 are consecutive

squares, so there cannot be a square strictly between them.

2.16. We may assume that the leading coefficient is +1. The sum of the squares of the
roots of xn + a1x

n−1 + · · ·+ an is a21 − 2a2. The product of the squares of the roots
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is a2n. Using the Arithmetic Mean-Geometric Mean inequality we have

a21 − 2a2
n

≥ n
√

a2n .

Since the coefficients are ±1 that inequality is (1± 2)/n ≥ 1, hence n ≤ 3.
Remark: x3 − x2 − x+ 1 = (x+ 1)(x− 1)2 is an example of 3th degree polynomial
with all coefficients equal to ±1 and only real roots.

2.17. The given function is the square of the distance between a point of the quarter of
circle x2+y2 = 2 in the open first quadrant and a point of the half hyperbola xy = 9
in that quadrant. The tangents to the curves at (1, 1) and (3, 3) separate the curves,
and both are perpendicular to x = y, so those points are at the minimum distance,
and the answer is (3− 1)2 + (3− 1)2 = 8.

2.18. Let

P =

(
1

2

)(
3

4

)
· · ·
(
2n− 1

2n

)
, Q =

(
2

3

)(
4

5

)
· · ·
(
2n− 2

2n− 1

)
.

We have PQ =
1

2n
. Also 1

2
< 2

3
< 3

4
< 4

5
< · · · < 2n−1

2n
, hence 2P ≥ Q, so

2P 2 ≥ PQ =
1

2n
, and from here we get P ≥ 1√

4n
.

On the other hand we have P < Q
2n

2n+ 1
< Q, hence P 2 < PQ =

1

2n
, and from

here P <
1√
2n

.

2.19. The given inequality is equivalent to

(m+ n)!

m!n!
mmnn =

(
m+ n

n

)
mmnn < (m+ n)m+n ,

which is obviously true because the binomial expansion of (m+ n)m+n includes the
term on the left plus other terms.

2.20. Using the Arithmetic Mean-Geometric Mean inequality we get:

1

n

{
a1
b1

+
a2
b2

+ · · ·+ an
bn

}
≥ n

√
a1
b1

· a2
b2

· · · an
bn

= 1 .

From here the desired result follows.

2.21. We prove it by induction. For n = 1 the result is trivial, and for n = 2 it is a simple
consequence of the following:

0 ≤ (a2 − a1)(b2 − b1) = (a1b1 + a2b2)− (a1b2 + a2b1) .

Next assume that the result is true for some n ≥ 2. We will prove that is is true for
n+ 1. There are two possibilities:
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1. If xn+1 = bn+1, then we can apply the induction hypothesis to the n first terms
of the sum and we are done.

2. If xn+1 ̸= bn+1, then xj = bn+1 for some j ̸= n + 1, and xn+1 = bk for some
k ̸= n+ 1. Hence:

n+1∑
i=1

aixi =
n∑

i=1
i̸=j

aixi + ajxj + an+1xn+1

=
n∑

i=1
i̸=j

aixi + ajbn+1 + an+1bk

(using the inequality for the two-term increasing sequences aj, an+1 and bk, bn+1)

≤
n∑

i=1
i ̸=j

aixi + ajbk + an+1bn+1 .

This reduces the problem to case 1.

2.22. We have

ln

(
1

n

n∑
k=1

apk

)1/p

=
ln
(
1
n

∑n
k=1 a

p
k

)
p

.

Also, ak → 1 as p → 0, hence numerator and denominator tend to zero as p
approaches zero. Using L’Hôpital we get

lim
p→0

ln
(
1
n

∑n
k=1 a

p
k

)
p

= lim
p→0

∑n
k=1 a

p
k ln ak∑n

k=1 a
p
k

=

∑n
k=1 ln ak
n

= ln

(
n∏

k=1

ak

)1/n

.

From here the desired result follows.

2.23. Set x = b+ c−a, y = c+a− b, z = a+ b− c. The triangle inequality implies that x,
y, and z are positive. Furthermore, a = (y+ z)/2, b = (z+x)/2, and c = (x+ y)/2.
The LHS of the inequality becomes:

y + z

2x
+

z + x

2y
+

x+ y

2z
=

1

2

(
x

y
+

y

x
+

y

z
+

z

y
+

x

z
+

z

x

)
≥ 3 .

2.24. We have that 2 ↑↑ 3 = 22
2
= 16 < 27 = 33 = 3 ↑↑ 2. Then using a ↑↑ (n+1) = aa↑↑n

we get 2 ↑↑ (n + 1) < 3 ↑↑ n for n ≥ 2, and from here it follows that 2 ↑↑ 2011 <
3 ↑↑ 2010.

2.25. Consider the function f(x) = e1/x for x > 0. We have f ′(x) = − 1/x

e1/x
< 0, f ′′(x) =

e1/x( 2
x3 +

1
x4 ) > 0, hence f is decreasing and convex.
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By convexity, we have

1

2
(f(e) + f(π)) ≥ f

(
e+π
2

)
.

On the other hand we have (e+π)/2 < 3, and since f is decreasing, f( e+π
2
) > f(3),

and from here the result follows.

2.26. We have:

f(x)− f(a) =
n∑

i=1

(x− ai)
2 −

n∑
i=1

(a− ai)
2

=
n∑

i=1

{
(x− ai)

2 − (a− ai)
2
}

=
n∑

i=1

(x2 − 2aix− a2 + 2aia)

= nx2 − 2nax+ na2

= n(x− a)2 ≥ 0 ,

hence f(x) ≥ f(a) for every x.

2.27. By the Geometric Mean-Arithmetic Mean inequality

x1 +
1

x2

≥ 2

√
x1

x2

, . . . , x100 +
1

x1

≥ 2

√
x100

x1

.

Multiplying we get(
x1 +

1

x2

)(
x2 +

1

x3

)
· · ·
(
x100 +

1

x1

)
≥ 2100 .

From the system of equations we get(
x1 +

1

x2

)(
x2 +

1

x3

)
· · ·
(
x100 +

1

x1

)
= 2100 ,

so all those inequalities are equalities, i.e.,

x1 +
1

x2

= 2

√
x1

x2

=⇒
(
√
x1 −

1
√
x2

)2

= 0 =⇒ x1 =
1

x2

,

and analogously: x2 = 1/x3, . . . , x100 = 1/x1. Hence x1 = 1/x2, x2 = 1/x3, . . . ,
x100 = 1/x1, and from here we get x1 = 2, x2 = 1/2,. . . , x99 = 2, x100 = 1/2.

2.28. Squaring the inequalities and moving their left hand sides to the right we get

0 ≥ c2 − (a− b)2 = (c+ a− b)(c− a+ b)

0 ≥ a2 − (b− c)2 = (a+ b− c)(a− b+ c)

0 ≥ b2 − (c− a)2 = (b+ c− a)(b− c+ a) .
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Multiplying them together we get:

0 ≥ (a+ b− c)2(a− b+ c)2(−a+ b+ c)2 ,

hence, one of the factors must be zero.

2.29. The answer is 1. In fact, the sequences (sin3 x, cos3 x) and (1/ sin x, 1/ cos x) are
oppositely sorted, hence by the rearrangement inequality:

sin3 x/ cosx+ cos3 x/ sinx ≥ sin3 x/ sin x+ cos3 x/ cos x

= sin2 x+ cos2 x = 1 .

Equality is attained at x = π/4.

2.30. By the rearrangement inequality we have for k = 2, 3, · · · , n:
a1

s− a1
+

a2
s− a2

+ · · ·+ an
s− an

≥ a1
s− ak

+
a2

s− ak+1

+ · · ·+ an
s− ak−1

,

were the numerators on the right hand side are a cyclic permutation of a1, · · · , an
(assume an+i = ai). Adding those n− 1 inequalities we get

(n− 1)

(
a1

s− a1
+

a2
s− a2

+ · · ·+ an
s− an

)
≥ s− a1

s− a1
+

s− a2
s− a2

+ · · ·+ s− an
s− an

= n ,

and the result follows.

2.31. The answer is 1. Since | sin x| ≤ 1 we have sin4(x) ≤ sin2(x), and analogously
cos4(x) ≤ cos2(x). Hence f(x) = sin4(x) + cos4 x ≤ sin2(x) + cos2 x = 1. On the
other hand the value 1 s attained e.g. at x = 0.

2.32. Let u = v =
√
ab, w = c. By the AGM inequality we have

3
√
uvw ≤ u+ v + w

3
⇒ 3

√
abc ≤ 2

√
ab+ c

3
⇒ 3

3
√
abc− (a+ b+ c) ≤ 2

√
ab− (a+ b) .

The last inequality is equivalent to the desired result.
Equality happens precisely for u = v = w, i.e., c =

√
ab.

2.33. The AGM inequality applied to a1, . . . , an shows that bn ≥ 0. Also, letting uk =
n
√
a1 · · · an, k = 1, . . . , n, un+1 = an+1 and using again the AGM inequality we get

n+1
√
u1 · · ·unun+1 ≤

u1 + · · ·+ un + un+1

n+ 1

n+1
√
a1 · · · anan+1 ≤

n n
√
a1 · · · an + an+1

n+ 1
.

Multiplying both sides by n+1 and subtracting a1+ · · ·+an+an+1 we get −bn+1 ≤
−bn, which is equivalent to the desired result.

3.1. If p and q are consecutive primes and p+ q = 2r, then r = (p+ q)/2 and p < r < q,
but there are no primes between p and q.
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3.2. (a) No, a square divisible by 3 is also divisible by 9.
(b) Same argument.

3.3. Assume that the set of primes of the form 4n+ 3 is finite. Let P be their product.
Consider the number N = P 2 − 2. Note that the square of an odd number is of the
form 4n+1, hence P 2 is of the form 4n+1 and N will be of the form 4n+3. Now,
if all prime factors of N where of the form 4n+ 1, N would be of the form 4n+ 1,
so N must have some prime factor p of the form 4n + 3. So it must be one of the
primes in the product P , hence p divides N − P 2 = 2, which is impossible.

3.4. That is equivalent to proving that n3 +2n and n4 +3n2 +1 are relatively prime for
every n. These are two possible ways to show it:
- Assume a prime p divides n3 + 2n = n(n2 + 2). Then it must divide n or n2 + 2.
Writing n4 + 3n2 + 1 = n2(n2 + 3) + 1 = (n2 + 1)(n2 + 2)− 1 we see that p cannot
divide n4 + 3n2 + 1 in either case.
- The following identity

(n2 + 1)(n4 + 3n2 + 1)− (n3 + 2n)2 = 1

(which can be checked algebraically) shows that any common factor of n4 +3n2 +1
and n3 + 2n should divide 1, so their gcd is always 1. (Note: if you are wondering
how I arrived to that identity, I just used the Euclidean algorithm on the two given
polynomials.)

3.5. Assume p(x) = a0 + a1x + · · · + anx
n, with an ̸= 0. We will assume WLOG that

an > 0, so that p(k) > 0 for every k large enough—otherwise we can use the
argument below with −p(x) instead of p(x).
We have

p(p(k) + k) =
n∑

i=0

ai [p(k) + k]i .

For each term of that sum we have that

ai [p(k) + k]i = [multiple of p(k)] + aik
i ,

and the sum of the aik
i is precisely p(k), so p(p(k) + k) is a multiple of p(k). It

remains only to note that p(p(k)+ k) ̸= p(k) for infinitely many positive integers k,
otherwise p(p(x)+x) and p(x) would be the same polynomial, which is easily ruled
out for non constant p(x).

3.6. This can be proved easily by induction. Base case: F1 = 1 and F2 = 1 are in fact
relatively prime. Induction Step: we must prove that if Fn and Fn+1 are relatively
prime then so are Fn+1 and Fn+2. But this follows from the recursive definition of
the Fibonacci sequence: Fn + Fn+1 = Fn+2; any common factor of Fn+1 and Fn+2

would be also a factor of Fn, and consequently it would be a common factor of Fn

and Fn+1 (which by induction hypothesis are relatively prime.)
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3.7. For any integer n we have that n2 only can be 0 or 1 mod 3. So if 3 does not divide
a or b they must be 1 mod 3, and their sum will be 2 modulo 3, which cannot be a
square.

3.8. Assume the sum S is an integer. Let 2i be the maximum power of 2 dividing n, and
let 2j be the maximum power of 2 dividing n! Then

n!

2j
2iS =

n∑
k=1

n!

k2j−i
.

For n ≥ 2 the left hand side is an even number. In the right hand side all the terms
of the sum are even integers except the one for k = 2i which is an odd integer, so
the sum must be odd. Hence we have an even number equal to an odd number,
which is impossible.

3.9. Since each digit cannot be greater than 9, we have that f(n) ≤ 9 · (1 + log10 n), so
in particular f(N) ≤ 9 · (1 + 4444 · log10 4444) < 9 · (1 + 4444 · 4) = 159993. Next
we have f(f(N)) ≤ 9 · 6 = 54. Finally among numbers not greater than 54, the one
with the greatest sum of the digits is 49, hence f(f(f(N))) ≤ 4 + 9 = 13.
Next we use that n ≡ f(n) (mod 9). Since 4444 ≡ 7 (mod 9), then

44444444 ≡ 74444 (mod 9) .

We notice that the sequence 7n mod 9 for n = 0, 1, 2, . . . is 1, 7, 4, 1, 7, 4, . . . , with pe-
riod 3. Since 4444 ≡ 1 (mod 3), we have 74444 ≡ 71 (mod 9), hence f(f(f(N))) ≡ 7
(mod 9). The only positive integer not greater than 13 that is congruent with 7
modulo 9 is 7, hence f(f(f(N))) = 7.

3.10. Pick 1999 different prime numbers p1, p2, . . . , p1999 (we can do that because the set
of prime numbers is infinite) and solve the following system of 1999 congruences:

x ≡ 0 (mod p31)
x ≡ −1 (mod p32)
x ≡ −2 (mod p33)

. . .
x ≡ −1998 (mod p31999)

According to the Chinese Remainder Theorem, that system of congruences has a
solution x (modulo M = p31 . . . p

3
1999). For k = 1, . . . , 1999 we have that x + k ≡ 0

(mod p3k), hence x+ k is in fact a multiple of p3k.

3.11. Assume a ≥ b ≥ c. Then

2 =

(
1 +

1

a

)(
1 +

1

b

)(
1 +

1

c

)
≤
(
1 +

1

c

)3

.

From here we get that c < 4, so its only possible values are c = 1, 2, 3.
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For c = 1 we get (1 + 1/c) = 2, hence(
1 +

1

a

)(
1 +

1

b

)
= 1 ,

which is impossible.
For c = 2 we have (1 + 1/c) = 3/2, hence(

1 +
1

a

)(
1 +

1

b

)
=

4

3
,

and from here we get

a =
3(b+ 1)

b− 3
,

with solutions (a, b) = (15, 4), (9, 5) and (7, 6).
Finally for c = 3 we have 1 + 1/c = 1 + 1/3 = 4/3, hence(

1 +
1

a

)(
1 +

1

b

)
=

3

2
.

So

a =
2(b+ 1)

b− 2
.

The solutions are (a, b) = (8, 3) and (5, 4).
So the complete set of solutions verifying a ≥ b ≥ c are

(a, b, c) = (15, 4, 2), (9, 5, 2), (7, 6, 2), (8, 3, 3), (5, 4, 3) .

The rest of the triples verifying the given equation can be obtained by permutations
of a, b, c.

3.12. The change of variables x = a + 1, y = b + 1, z = c + 1, transforms the equation
into the following one:

1

x
+

1

y
+

1

z
= 1 .

Assuming x ≤ y ≤ z we have that x ≤ 3 ≤ z.
For x = 1 the equation becomes

1

y
+

1

z
= 0 .

which is impossible.
For x = 2 we have

1

y
+

1

z
=

1

2
,

or

z =
2y

y − 2
,

with solutions (y, z) = (3, 6) and (4, 4).
For x = 3 the only possibility is (y, z) = (3, 3).
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So the list of solutions is

(x, y, z) = (2, 3, 6), (2, 4, 4), (3, 3, 3) ,

and the ones obtained by permuting x, y, z.
With the original variables the solutions are (except for permutations of variables);

(a, b, c) = (1, 2, 5), (1, 3, 3), (2, 2, 2) .

3.13. We look at the equation modulo 16. First we notice that n4 ≡ 0 or 1 (mod 16)
depending on whether n is even or odd. On the other hand 1599 ≡ 15 (mod 16).
So the equation can be satisfied only if the number of odd terms in the LHS is
15 modulo 16, but that is impossible because there are only 14 terms in the LHS.
Hence the equation has no solution.

3.14. Call N = 1010
1010

, and consider the sequence an = remainder of dividing Fn by N .
Since there are only N2 pairs of non-negative integers less than N , there must be
two identical pairs (ai, ai+1) = (aj, aj+1) for some 0 ≤ i < j. Let k = j − i. Since
an+2 = an+1 + an and an−1 = an+1 − an, by induction we get that an = an+k for
every n ≥ 0, so in particular ak = a0 = 0, and this implies that Fk is a multiple of
N . (In fact since there are N2 + 1 pairs (ai, ai+1), for i = 0, 1, . . . , N2, we can add
the restriction 0 ≤ i < j ≤ N above and get that the result is true for some k such
that 0 < k ≤ N2.)

3.15. The answer is affirmative. Let a =
√
6 and b =

√
3. Assume ⌊am⌋ = ⌊bn⌋ = k

for some positive integers m, n. Then, k2 ≤ 6m < (k + 1)2 = k2 + 2k + 1, and
k2 ≤ 3n < (k + 1)2 = k2 + 2k + 1. Hence, subtracting the inequalities and taking
into account that n > m:

2k ≥ |6m − 3n| = 3m|2m − 3n−m| ≥ 3m .

Hence
9m

4
≤ k2 ≤ 6m, which implies 1

4
≤
(
2
3

)m
. This holds only for m = 1, 2, 3.

This values of m can be ruled out by checking the values of

⌊a⌋ = 2, ⌊a2⌋ = 6, ⌊a3⌋ = 14,

⌊b⌋ = 1, ⌊b2⌋ = 3, ⌊b3⌋ = 5, ⌊b4⌋ = 9, ⌊b5⌋ = 15 .

Hence, ⌊am⌋ ̸= ⌊bn⌋ for every positive integers m, n.

3.16. There are integers k, r such that 10k < 22005 < 10k+1 and 10r < 52005 < 10r+1.
Hence 10k+r < 102005 < 10k+r+2, k + r + 1 = 2005. Now the number of digits in
22005 is k + 1, and the number of digits in 52005 is r + 1. Hence the total number of
digits is 22005 and 52005 is k + r + 2 = 2006.

3.17. For p = 2, p2 + 2 = 6 is not prime.
For p = 3, p2 + 2 = 11, and p3 + 2 = 29 are all prime and the statement is true.
For prime p > 3 we have that p is an odd number not divisible by 3, so it is congruent
to ±1 modulo 6. Hence p2 + 2 ≡ 3 (mod 6) is multiple of 3 and cannot be prime.
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3.18. If n is even then n4 + 4n is even and greater than 2, so it cannot be prime.
If n is odd, then n = 2k+1 for some integer k, hence n4+4n = n4+4 · (2k)4. Next,
use Sophie Germain’s identity: a4 + 4b4 = (a2 + 2b2 + 2ab)(a2 + 2b2 − 2ab).

3.19. From the hypothesis we have that m + 1 ≤ ⌊
√
n + 1

2
⌋ ≤

√
n + 1

2
. But the second

inequality must be strict because
√
n is irrational or an integer, and consequently√

n+ 1
2
cannot be an integer. From here the desired result follows.

3.20. Assume m ̸= ⌊n+
√
n+1/2⌋ for every n = 1, 2, 3, . . . Then for some n, f(n) < m <

f(n+ 1). The first inequality implies

n+
√
n+

1

2
< m .

The second inequality implies m+ 1 ≤ f(n+ 1), and

m+ 1 < n+ 1 +
√
n+ 1 +

1

2

(Note that equality is impossible because the right hand side cannot be an integer.)
Hence

√
n < m− n− 1

2
<

√
n+ 1 ,

n < (m− n)2 − (m− n) +
1

4
< n+ 1

n− 1

4
< (m− n)2 − (m− n) < n+

3

4

(m− n)2 − (m− n) = n .

m = (m− n)2 .

So, m is a square.
We are not done yet, since we still must prove that f(n) misses all the squares.
To do so we use a counting argument. Among all positive integers ≤ k2 + k there
are exactly k squares, and exactly k2 integers of the form f(n) = ⌊n +

√
n + 1/2⌋.

Hence f(n) is the nth non square.
Another way to express it: in the set A(k) = {1, 2, 3, . . . , k2 + k} consider the
two subsets S(k) = squares in A(k), and N(k) = integers of the form f(n) =
⌊n +

√
n + 1/2⌋ in A(k). The set S(k) has k elements, N(k) has k2 elements, and

A(k) = S(k) ∪N(k). Since

|S(k) ∪N(k)|︸ ︷︷ ︸
k2+k

= |S(k)|︸ ︷︷ ︸
k

+ |N(k)|︸ ︷︷ ︸
k2

−|S(k) ∩N(k)|

we get that |S(k) ∩N(k)| = 0, i.e, S(k) ∩N(k) must be empty.

3.21. Each of the given numbers can be written

1 + 1000 + 10002 + · · ·+ 1000n = pn(10
3)



PUTNAM TRAINING PROBLEMS, 2014 - SOLUTIONS 47

where pn(x) = 1+x+x2+ · · ·+xn, n = 1, 2, 3, . . . . We have (x−1)pn(x) = xn+1−1.
If we set x = 103, we get:

999 · pn(103) = 103(n+1) − 1 = (10n+1 − 1)(102(n+1) + 10n+1 + 1) .

If pn(10
3) were prime it should divide one of the factors on the RHS. It cannot

divide 10n+1− 1, because this factor is less than pn(10
3), so pn(10

3) must divide the
other factor. Hence 10n+1 − 1 must divide 999, but this is impossible for n > 2.
In only remains to check the cases n = 1 and n = 2. But 1001 = 7 · 11 · 13, and
1001001 = 3 · 333667, so they are not prime either.

3.22. We will prove that the sequence is eventually constant if and only if b0 is a perfect
square.
The “if” part is trivial, because if bk is a perfect square then d(bk) = 0, and bk+1 = bk.
For the “only if” part assume that bk is not a perfect square. Then, suppose that
r2 < bk < (r+1)2. Then, d(bk) = bk−r2 is in the interval [1, 2r], so bk+1 = r2+2d(bk)
is greater than r2 but less than (r + 2)2, and not equal to (r + 1)2 by parity. Thus
bk+1 is also not a perfect square, and is greater than bk. So, if b0 is not a perfect
square, no bk is a perfect square and the sequence diverges to infinity.

3.23. The answer is 41. In fact, we have:

gcd(an, an+1) = gcd(an, an+1 − an) = gcd(n2 + 10, 2n+ 1) = · · ·

(since 2n+ 1 is odd we can multiply the other argument by 4 without altering the
gcd)

· · · = gcd(4n2 + 40, 2n+ 1) = gcd((2n+ 1)(2n− 1) + 41, 2n+ 1)

= gcd(41, 2n+ 1) ≤ 41 .

The maximum value is attained e.g. at n = 20.

3.24. The given condition implies:

(x− y)(2x+ 2y + 1) = y2 .

Since the right hand side is a square, to prove that the two factors on the left hand
side are also squares it suffices to prove that they are relatively prime. In fact, if p
if a prime number dividing x − y then it divides y2 and consequently it divides y.
So p also divides x, and x+ y. But then it cannot divide 2x+ 2y + 1.
An analogous reasoning works using the following relation, also implied the given
condition:

(x− y)(3x+ 3y + 1) = x2 .

3.25. It suffices to prove that n is a multiple of 5 and 8, in other words, that n ≡ 0
(mod 5), and n ≡ 0 (mod 8).
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We first think modulo 5. Perfect squares can be congruent to 0, 1, or 4 modulo 5
only. We have:

2n+ 1 ≡ 0 (mod 5) =⇒ n ≡ 2 (mod 5)

2n+ 1 ≡ 1 (mod 5) =⇒ n ≡ 0 (mod 5)

2n+ 1 ≡ 4 (mod 5) =⇒ n ≡ 4 (mod 5)

3n+ 1 ≡ 0 (mod 5) =⇒ n ≡ 3 (mod 5)

3n+ 1 ≡ 1 (mod 5) =⇒ n ≡ 0 (mod 5)

3n+ 1 ≡ 4 (mod 5) =⇒ n ≡ 1 (mod 5) .

So the only possibility that can make both 2n + 1 and 3n + 1 perfect squares is
n ≡ 0 (mod 5), i.e., n is a multiple of 5.
Next, we think modulo 8. Perfect squares can only be congruent to 0, 1, or 4 modulo
8, and we have:

3n+ 1 ≡ 0 (mod 8) =⇒ n ≡ 5 (mod 8)

3n+ 1 ≡ 1 (mod 8) =⇒ n ≡ 0 (mod 8)

3n+ 1 ≡ 4 (mod 8) =⇒ n ≡ 1 (mod 8) .

The possibilities n ≡ 5 (mod 8) and n ≡ 1 (mod 8) can be ruled out because nmust
be even. In fact, if 2n + 1 = a2, then a is odd, and 2n = a2 − 1 = (a + 1)(a − 1).
Since a is odd we have that a − 1 and a + 1 are even, so 2n must be a multiple of
4, consequently n is even. So, we have that the only possibility is n ≡ 0 (mod 8),
i.e., n is a multiple of 8.
Since n is a multiple of 5 and 8, it must be indeed a multiple of 40, QED.

3.26. The prime factorization of 1000! contains more 2’s than 5’s, so the number of zeros
at the end of 1000! will equal the exponent of 5. That will be equal to the number
of multiples of 5 in the sequence 1, 2, 3, . . . , 1000, plus the number of multiples of
52 = 25, plus the number of multiples of 53 = 125, and the multiples of 54 = 625,
in total:⌊

1000

5

⌋
+

⌊
1000

25

⌋
+

⌊
1000

125

⌋
+

⌊
1000

625

⌋
= 200 + 40 + 8 + 1 = 249 .

So 1000! ends with 249 zeros.

3.27. The answer is 8.
More generally, for any given positive integer n, the number of binomial coefficients(
n
k

)
that are odd equals 2 raised to the number of 1’s in the binary representation

of n—so, for n = 100, with binary representation 1100100 (three 1’s), the answer is
23 = 8. We prove it by induction in the number s of 1’s in the binary representation
of n.
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- Basis step: If s = 1, then n is a power of 2, say n = 2r. Next, we use that the
exponent of a prime number p in the prime factorization of m! is∑

i≥1

⌊
m

pi

⌋
,

where ⌊x⌋ = greatest integer ≤ x. Since
(
n
k

)
= n!

k!(n−k)!
, the exponent of 2 in the

prime factorization of
(
2r

k

)
is∑

i≥1

⌊
2r

2i

⌋
−
∑
i≥1

⌊
k

2i

⌋
−
∑
i≥1

⌊
2r − k

2i

⌋
=

r∑
i=1

⌈
k

2i

⌉
−

r∑
i=1

⌊
k

2i

⌋
,

where ⌈x⌉ = least integer ≥ x. The right hand side is the number of values of i in
the interval from 1 to r for which k

2i
is not an integer. If k = 0 or k = 2r then the

expression is 0, i.e.,
(
2r

k

)
is odd. Otherwise, for 0 < k < 2r, the right hand side is

strictly positive (at least k/2r is not an integer), and in that case
(
2r

k

)
is even. So

the number of values of k for which
(
2r

k

)
is odd is 2 = 21. This sets the basis step

of the induction process.
- Induction step: Assume the statement is true for a given s ≥ 1, and assume that
the number of 1’s in the binary representation of n is s + 1, so n can be written
n = 2r + n′, where 0 < n′ < 2r and n′ has s 1’s in its binary representation. By
induction hypothesis the number of values of k for which

(
n′

k

)
is odd is 2s. We must

prove that the number of values of k for which
(
n
k

)
=
(
2r+n′

k

)
is odd is 2s+1. To do so

we will study the parity of
(
n
k

)
in three intervals, namely 0 ≤ k ≤ n′, n′ < k < 2r,

and 2r ≤ k ≤ n.
(1) For every k such that 0 ≤ k ≤ n′,

(
n′

k

)
and

(
n
k

)
have the same parity. In

fact, using again the above formula to determine the exponent of 2 in the prime
factorization of binomial coefficients, we get∑
i≥1

⌊ n
2i

⌋
−
∑
i≥1

⌊
k

2i

⌋
−
∑
i≥1

⌊
n− k

2i

⌋
=
∑
i≥1

⌊
2r + n′

2i

⌋
−
∑
i≥1

⌊
k

2i

⌋
−
∑
i≥1

⌊
2r + n′ − k

2i

⌋

=
r∑

i=1

(
2r−i +

⌊
n′

2i

⌋)
−

r∑
i=1

⌊
k

2i

⌋

−
r∑

i=1

(
2r−i +

⌊
n′ − k

2i

⌋)
=
∑
i≥1

⌊
n′

2i

⌋
−
∑
i≥1

⌊
k

2i

⌋
−
∑
i≥1

⌊
n′ − k

2i

⌋
.

Hence, the number of values of k in the interval from 0 to n′ for which
(
n
k

)
is odd

is 2s.
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(2) If n′ < k < 2r, then
(
n
k

)
is even. In fact, we have that the power of 2 in the

prime factorization of
(
n
k

)
is:∑

i≥1

⌊ n
2i

⌋
−
∑
i≥1

⌊
k

2i

⌋
−
∑
i≥1

⌊
n− k

2i

⌋
=

r∑
i=1

(⌊ n
2i

⌋
−
⌊
k

2i

⌋
−
⌊
n− k

2i

⌋)
.

using ⌊x⌋+ ⌊y⌋ ≤ ⌊x+ y⌋, and given that n/2i = k/2i + (n− k)/2i, we see that all
terms of the sum on the right hand side are nonnegative, and all we have to show is
that at least one of them is strictly positive. That can be accomplished by taking
i = r. In fact, we have 2r < n < 2r+1, hence 1 < n/2r < 2, ⌊n/2r⌋ = 1. Also,
0 < k < 2r, hence 0 < k/2r < 1, ⌊k/2r⌋ = 0. And 2r = n − n′ > n − k > 0, so
0 < (n− k)/2r < 1, ⌊(n− k)/2r⌋ = 0. Hence,⌊ n

2r

⌋
−
⌊
k

2r

⌋
−
⌊
n− k

2r

⌋
= 1− 0− 0 = 1 > 0 .

(3) If 2r ≤ k ≤ n, then letting k′ = n− k we have that 0 ≤ k′ ≤ n′, and
(
n
k

)
=
(
n
k′

)
,

and by (1), the number of values of k in the interval from 2r to n for which
(
n
k

)
is

odd is 2s.
The three results (1), (2) and (3) combined show that the number of values of k for
which

(
n
k

)
is odd is 2 · 2s = 2s+1. This completes the induction step, and the result

is proved.

3.28. The answer is 3.
Note that 25 = 32, 55 = 3125, so 3 is in fact a solution. We will prove that it is the
only solution.
Let d be the common digit at the beginning of 2n and 5n. Then

d · 10r ≤ 2n < (d+ 1) · 10r ,
d · 10s ≤ 5n < (d+ 1) · 10s

for some integers r, s. Multiplying the inequalities we get

d210r+s ≤ 10n < (d+ 1)210r+s ,

d2 ≤ 10n−r−s < (d+ 1)2 ,

so d is such that between d2 and (d + 1)2 there must be a power of 10. The only
possible solutions are d = 1 and d = 3. The case d = 1 can be ruled out because
that would imply n = r + s, and from the inequalities above would get

5r ≤ 2s < 2 · 5r ,
2s ≤ 5r < 2 · 2s ,

hence 2s = 5r, which is impossible unless r = s = 0 (implying n = 0).
Hence, the only possibility is d = 3.

3.29. Assume that the given binomial coefficients are in arithmetic progression. Multi-
plying each binomial number by (k + 3)!(n − k)! and simplifying we get that the
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following numbers are also in arithmetic progression:

(k + 1)(k + 2)(k + 3),

(n− k)(k + 2)(k + 3),

(n− k)(n− k − 1)(k + 3),

(n− k)(n− k − 1)(n− k − 2) .

Their differences are

(n− 2k − 1)(k + 2)(k + 3),

(n− k)(n− 2k − 3)(k + 3),

(n− k)(n− k − 1)(n− 2k − 5) .

Writing that they must be equal we get a system of two equations:{
n2 − 4kn− 5n+ 4k2 + 8k + 2 = 0

n2 − 4kn− 9n+ 4k2 + 16k + 14 = 0

Subtracting both equations we get

4n− 8k − 12 = 0 ,

i.e., n = 2k + 3, so the four binomial numbers should be of the form(
2k + 3

k

)
,

(
2k + 3

k + 1

)
,

(
2k + 3

k + 2

)
,

(
2k + 3

k + 3

)
.

However (
2k + 3

k

)
<

(
2k + 3

k + 1

)
=

(
2k + 3

k + 2

)
>

(
2k + 3

k + 3

)
,

so they cannot be in arithmetic progression.
- Remark: There are sets of three consecutive binomial numbers in arithmetic pro-
gression, e.g.:

(
7
1

)
= 7,

(
7
2

)
= 21,

(
7
3

)
= 35.

3.30. We proceed by induction, with base case 1 = 2030. Suppose all integers less than
n − 1 can be represented. If n is even, then we can take a representation of n/2
and multiply each term by 2 to obtain a representation of n. If n is odd, put
m = ⌊log3 n⌋, so that 3m ≤ n < 3m+1. If 3m = n, we are done. Otherwise, choose a
representation (n− 3m)/2 = s1 + · · ·+ sk in the desired form. Then

n = 3m + 2s1 + · · ·+ 2sk,

and clearly none of the 2si divide each other or 3m. Moreover, since 2si ≤ n −
3m < 3m+1 − 3m, we have si < 3m, so 3m cannot divide 2si either. Thus n has a
representation of the desired form in all cases, completing the induction.

3.31. There are n such sums. More precisely, there is exactly one such sum with k
terms for each of k = 1, . . . , n (and clearly no others). To see this, note that if
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n = a1 + a2 + · · ·+ ak with a1 ≤ a2 ≤ · · · ≤ ak ≤ a1 + 1, then

ka1 = a1 + a1 + · · ·+ a1

≤ n ≤ a1 + (a1 + 1) + · · ·+ (a1 + 1)

= ka1 + k − 1.

However, there is a unique integer a1 satisfying these inequalities, namely a1 =
⌊n/k⌋. Moreover, once a1 is fixed, there are k different possibilities for the sum
a1 + a2 + · · · + ak: if i is the last integer such that ai = a1, then the sum equals
ka1 + (i − 1). The possible values of i are 1, . . . , k, and exactly one of these sums
comes out equal to n, proving our claim.

3.32. Let R (resp. B) denote the set of red (resp. black) squares in such a coloring, and
for s ∈ R ∪ B, let f(s)n + g(s) + 1 denote the number written in square s, where
0 ≤ f(s), g(s) ≤ n− 1. Then it is clear that the value of f(s) depends only on the
row of s, while the value of g(s) depends only on the column of s. Since every row
contains exactly n/2 elements of R and n/2 elements of B,∑

s∈R

f(s) =
∑
s∈B

f(s).

Similarly, because every column contains exactly n/2 elements of R and n/2 ele-
ments of B, ∑

s∈R

g(s) =
∑
s∈B

g(s).

It follows that ∑
s∈R

f(s)n+ g(s) + 1 =
∑
s∈B

f(s)n+ g(s) + 1,

as desired.

3.33. The answer is only 101.
Each of the given numbers can be written

1 + 100 + 1002 + · · ·+ 100n = pn(10
2) ,

where pn(x) = 1+x+x2+· · ·+xn, n = 1, 2, 3, . . . . We have (x−1)Pn(x) = xn+1−1.
If we set x = 102, we get

99 · pn(102) = 102(n+1) − 1 = (10n+1 − 1)(10n+1 + 1) .

If pn(10
2) is prime it must divide one of the factors of the RHS. It cannot divide

10n+1 − 1 because this factor is less than pn(10
2), so pn(10

2) must divide the other
factor. Hence 10n+1 − 1 must divide 99. This is impossible for n ≥ 2. In only
remains to check the case n = 1. In this case we have p1(10

2) = 101, which is
prime.

3.34. By contradiction. Assume n divides 2n − 1 (note that this implies that n is odd).
Let p be the smallest prime divisor of n, and let n = pkm, where p does not divide
m. Since n is odd we have that p ̸= 2. By Fermat’s Little Theorem we have
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2p−1 ≡ 1 (mod p). Also by Fermat’s Little Theorem, (2mpk−1
)p−1 ≡ 1 (mod p),

hence 2n = 2p
km = (2p

k−1m)p−1 · 2pk−1m ≡ 2p
k−1m (mod p). Repeating the argument

we get 2n = 2p
km ≡ 2p

k−1m ≡ 2p
k−2m ≡ · · · ≡ 2m (mod p). Since by hypothesis

2n ≡ 1 (mod p), we have that 2m ≡ 1 (mod p).
Next we use that if 2a ≡ 1 (mod p), and 2b ≡ 1 (mod p), then 2gcd(a,b) ≡ 1 (mod p).
If g = gcd(n, p− 1), then we must have 2g ≡ 1 (mod p). But since p is the smallest
prime divisor of n, and all prime divisors of p − 1 are less than p, we have that
n and p do not have common prime divisors, so g = 1, and consequently 2g = 2,
contradicting 2g ≡ 1 (mod p).

3.35. In spite of its apparent complexity this problem is very easy, because the digital
root of bn becomes a constant very quickly. First note that the digital root of a
number a is just the reminder r of a modulo 9, and the digital root of an will be
the remainder of rn modulo 9.
For a1 = 31 we have
digital root of a1 = digital root of 31 = 4 ;
digital root of a21 = digital root of 42 = 7;
digital root of a31 = digital root of 43 = 1;
digital root of a41 = digital root of 44 = 4;
and from here on it repeats with period 3, so the digital root of an1 is 1, 4, and 7 for
remainder modulo 3 of n equal to 0, 1, and 2 respectively.
Next, we have a2 = 314 ≡ 2 (mod 3), a22 ≡ 22 ≡ 1 (mod 3), a32 ≡ 23 ≡ 2 (mod 3),
and repeating with period 2, so the reminder of an2 depends only on the parity of n,
with an2 ≡ 1 (mod 3) if n is even, and an2 ≡ 2 (mod 3) if n is odd.
And we are done because a3 is odd, and the exponent of a2 in the power tower
defining bn for every n ≥ 3 is odd, so the reminder modulo 3 of the exponent of a1
will be 2, and the reminder modulo 9 of bn will be 7 for every n ≥ 3.
Hence, the answer is 7.

4.1. If x =
√
2 +

√
5 then

x2 = 7 + 2
√
10 ,

x2 − 7 = 2
√
10 ,

(x2 − 7)2 = 40 ,

x4 − 14x2 + 9 = 0 .

Hence the desired polynomial is x4 − 14x2 + 9.

4.2. We have that p(x) + 1 has zeros at a, b, and c, hence p(x) + 1 = (x− a)(x− b)(x−
c)q(x). If p had an integral zero d we would have

(d− a)(d− b)(d− c)q(d) = 1 ,

where d− a, d− b, and d− c are distinct integers. But that is impossible, because
1 has only two possible factors, 1 and −1.
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4.3. We prove it by showing that the sum is the root of a monic polynomial but not an
integer—so by the rational roots theorem it must be irrational.
First we notice that n <

√
n2 + 1 < n+ 1/n, hence the given sum is of the form

S = 1001 + θ1 + 1002 + θ2 + · · ·+ 2000 + θ1000

were 0 < θi < 1/1001, consequently

0 < θ1 + θ2 + · · ·+ θ1000 < 1 ,

so S is not an integer.
Now we must prove that S is the root of a monic polynomial. More generally we
will prove that a sum of the form

√
a1 +

√
a2 + · · ·+

√
an

where the ai’s are positive integers, is the root of a monic polynomial.2 This can
be proved by induction on n. For n = 1,

√
a1 is the root of the monic polynomial

x2−a1. Next assume that y =
√
a1+

√
a2+· · ·+√

an is a zero of a monic polynomial
P (x) = xr + cr−1x

r−1 + · · ·+ c0. We will find a polynomial that has z = y +
√
an+1

as a zero. We have

0 = P (y) = P (z −√
an+1) = (z −√

an+1)
r + cr−1(z −

√
an+1)

r−1 + · · ·+ c0 .

Expanding the parentheses and grouping the terms that contain
√
an+1:

0 = P (z −√
an+1) = zr +Q(z) +

√
an+1R(z) .

Putting radicals on one side and squaring

(zr +Q(z))2 = an+1 (R(z))2 ,

so
T (x) = (xr +Q(x))2 − an+1 (R(x))2

is a monic polynomial with z as a root.

4.4. Consider the following polynomial:

Q(x) = (x+ 1)P (x)− x .

We have that Q(k) = 0 for k = 0, 1, 2, . . . , n, hence, by the Factor theorem,

Q(x) = Cx(x− 1)(x− 2) . . . (x− n) ,

where C is a constant to be determined. Plugging x = −1 we get

Q(−1) = C(−1)(−2) · · · (−(n+ 1)) .

2The result can be obtained also by resorting to a known theorem on algebraic integers (“algebraic integer”
is the mathematical term used to designate a root of a monic polynomial.) It is known that algebraic integers
form a mathematical structure called ring, basically meaning that the sum, difference and product of two
algebraic integers is an algebraic integer. Now, if ai and ki are positive integers, then ki

√
ai is an algebraic

integer, because it is a root of the monic polynomial xki − ai. Next, since the sum or difference of algebraic
integers is an algebraic integer then ± k1

√
a1 ± k2

√
a2 ± · · · ± kn

√
an is in fact an algebraic integer (note that

the roots do not need to be square roots, and the signs can be combined in any way.)
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On the other hand Q(−1) = 0 · P (−1)− (−1) = 1, hence C =
(−1)n+1

(n+ 1)!
.

Next, plugging in x = n+ 1 we get

(n+ 2)P (n+ 1)− (n+ 1) = C(n+ 1)! =
(−1)n+1

(n+ 1)!
(n+ 1)! = (−1)n+1 ,

hence

P (n+ 1) =
n+ 1 + (−1)n+1

n+ 2
.

4.5. Let the zeros be a, b, c, d. The relationship between zeros and coefficients yields

a+ b+ c+ d = 18

ab+ ac+ ad+ bc+ bd+ cd = k

abc+ abd+ acd+ bcd = −200

abcd = −1984 .

Assume ab = −32 and let u = a+ b, v = c+ d, w = cd. Then

u+ v = 18

−32 + uv + w = k

−32v + uw = −200

−32w = −1984 .

From the last equation we get w = 62, and replacing in the other equations we
easily get u = 4, v = 14. Hence

k = −32 + 4 · 14 + 62 = 86 .

4.6. Let p(x) = a0+a1x+a2x
2+· · ·+anx

n. The (n−1)-degree polynomial p(x)−p(−x) =
2(a1x + a3x

3 + · · · + an−1x
n−1) vanishes at n different points, hence, it must be

identically null, i.e., a1 = a3 = · · · = an−1 = 0. Hence p(x) = a0 + a2x
2 + a4x

4 · · ·+
anx

n, and q(x) = a0 + a2x+ a4x
2 · · ·+ anx

n/2.

4.7. If k is an even integer we have p(k) ≡ p(0) (mod 2), and if it is odd then p(k) ≡ p(1)
(mod 2). Since p(0) and p(1) are odd we have p(k) ≡ 1 (mod 2) for every integer
k, so p(k) cannot be zero.

4.8. We must prove that P (1) = 0. Consider the four complex numbers ρk = e2πik/5,
k = 1, 2, 3, 4. All of them verify ρ5k = 1, so together with 1 they are the roots of
x5 − 1. Since x5 − 1 = (x− 1)(x4 + x3 + x2 + x + 1) then the ρk’s are the roots of
x4 + x3 + x2 + x+ 1. So

P (1) + ρkQ(1) + ρ2kR(1) = 0 .

Adding for k = 1, 2, 3, 4 and taking into account that the numbers ρ2k are the ρk’s
in a different order we get

P (1) = 0 .
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4.9. The answer is no. We prove it by contradiction. Assume (x−a)(x− b)(x− c)− 1 =
p(x)q(x), where p is linear and q is quadratic. Then p(a)q(a) = p(b)q(b) = p(c)q(c) =
−1. If the coefficients of p and q must integers they can take only integer values,
so in each product one of the factor must be 1 and the other one is −1. Hence
either p(x) takes the value 1 twice or it takes the value −1 twice. But a 1st degree
polynomial cannot take the same value twice.

4.10. We prove it by contradiction. Suppose g(x) = h(x)k(x), where h(x) and k(x) are
non-constant polynomials with integral coefficients. Since g(x) > 0 for every x,
h(x) and k(x) cannot have real roots, so they cannot change signs and we may
suppose h(x) > 0 and k(x) > 0 for every x. Since g(pi) = 1 for i = 1, . . . , n, we
have h(pi) = k(pi) = 1, i = 1, . . . , n. If either h(x) or k(x) had degree less than
n, it would constant, against the hypothesis, so they must be of degree n. Also we
know that h(x)− 1 and k(x)− 1 are zero for x = pi, i = 1, . . . , n, so their roots are
precisely p1, . . . , pn, and we can write

h(x) = 1 + a(x− p1) · · · (x− pn)

k(x) = 1 + b(x− p1) · · · (x− pn) ,

where a and b are integers. So we have

(x− p1)
2 · · · (x− pn)

2 + 1 =

1 + (a+ b)(x− p1) · · · (x− pn) + ab(x− p1)
2 · · · (x− pn)

2 .

Hence {
a+ b = 0
ab = 1 ,

which is impossible, because there are no integers a, b verifying those equations.

4.11. Assume the quotient is q(x) and the remainder is r(x) = ax2 + bx+ c. Then

x81 + x49 + x25 + x9 + x = q(x)(x3 − x) + r(x) ,

Plugging in the values x = −1, 0, 1 we get r(−1) = −5, r(0) = 0, r(1) = 5. From
here we get a = c = 0, b = 5, hence the remainder is r(x) = 5x.

4.12. For positive integer n we have f(n) = n
n+1

f(n−1) = n−1
n+1

f(n−2) = · · · = 0·f(−1) =
0. Hence f(x) has infinitely many zeros, and must be identically zero f(x) ≡ 0.

4.13. By contradiction. Assume f(x) = g(x)h(x), where g(x) and h(x) have integral
coefficients and degree less than 105. Let α1, . . . , αk the (complex) roots of g(x). For
each j = 1, . . . , k we have α105

j = 9, hence |αj| = 105
√
9, and |α1α2 · · ·αk| = ( 105

√
9)k =

the absolute value of the constant term of g(x) (an integer.) But ( 105
√
9)k =

105
√
32k

cannot be an integer.

4.14. The answer is p = 5. By Sophie Germain’s Identity we have

x4 + 4y4 = (x2 + 2y2 + 2xy)(x2 + 2y2 − 2xy) = [(x+ y)2 + y2][(x− y)2 + y2] ,
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which can be prime only if x = y = 1.

4.15. We have that a, b, c, d are distinct roots of P (x)− 5, hence

P (x)− 5 = g(x)(x− a)(x− b)(x− c)(x− d) ,

where g(x) is a polynomial with integral coefficients. If P (k) = 8 then

g(x)(x− a)(x− b)(x− c)(x− d) = 3 ,

but 3 is a prime number, so all the factors on the left but one must be ±1. So
among the numbers (x− a), (x− b), (x− c), (x− b), there are either two 1’s or two
−1’s, which implies that a, b, c, d cannot be all distinct, a contradiction.

4.16. Calling An−1 = 1 + x+ · · ·+ xn−1, we have

(1 + x+ · · ·+ xn)2 − xn = (An−1 + xn)2 − xn

= A2
n−1 + 2An−1x

n + x2n − xn

= A2
n−1 + 2An−1x

n + (xn − 1)xn

= A2
n−1 + 2An−1x

n + An−1(x− 1)xn

= An−1(An−1 + 2xn + (x− 1)xn)

= An−1(An−1 + xn + xn+1)

= (1 + x+ · · ·+ xn−1)(1 + x+ · · ·+ xn+1) .

4.17. Since f(x) and f(x) + f ′(x) have the same leading coefficient, the limit of f(x) as
x → ±∞ must be equal to that of f(x) + f ′(x), i.e., +∞.
Note that f cannot have multiple real roots, because at any of those roots both f
and f ′ would vanish, contradicting the hypothesis. So all real roots of f , if any,
must be simple roots.
Since f(x) → +∞ for both x → ∞ and x → −∞, it must have an even number of
real roots (if any): x1 < x2 < · · · < x2n. Note that between x1 and x2, f(x) must be
negative, and by Rolle’s theorem its derivative must be zero at some intermediate
point a ∈ (x1, x2), hence f(a)+f ′(a) = f(a) < 0, again contradicting the hypothesis.
Consequently, f(x) has no real roots, and does not change sign at any point, which
implies f(x) > 0 for all x.

4.18. This is a particular case of the well known Vandermonde determinant, but here
we will find its value using arguments from polynomial theory. Expanding the
determinant along the last column using Laplace formula we get

a0(w, x, y) + a1(w, x, y)z + a2(w, x, y)z
2 + a3(w, x, y)z

3 ,

where ai(w, x, y) is the cofactor of zi.
Since the determinant vanishes when two columns are equal, that polynomial in z
has zeros at z = w, z = x, z = y, hence it must be of the form

a3(w, x, y, z)(z − y)(z − x)(z − w) .
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Note that a3(w, x, y) =

∣∣∣∣∣∣
1 1 1
w x y
w2 x2 y2

∣∣∣∣∣∣ , which can be computed in an analogous

way:

a3(w, x, y) = b2(w, x)(y − x)(y − w) ,

b2(w, x) = c1(w)(x− w) ,

c1(w) = 1 .

Hence the value of the given determinant is

(z − y)(z − x)(z − w)(y − x)(y − w)(x− w) .

4.19. Expanding the determinant along the last column using Laplace formula we get

a0(w, x, y) + a1(w, x, y)z + a2(w, x, y)z
2 + a4(w, x, y)z

4 ,

where ai(w, x, y) is the cofactor of z
i. In particular a4(w, x, y) = (y−x)(y−w)(x−w)

by Vandermonde formula.
Since the determinant vanishes when two columns are equal, that polynomial in z
has zeros at z = w, z = x, z = y, hence it must be of the form

a4(w, x, y, z)(z − y)(z − x)(z − w) b(w, x, y, z) =

(z − y)(z − x)(z − w)(y − x)(y − w)(x− w) b(w, x, y, z) ,

where b(w, x, y, z) is some first degree homogeneous polynomial in w, x, y, z. Note
that the value of b(w, x, y, z) won’t change by permutations of its arguments, so
b(w, x, y, z) is symmetric, and all its coefficients must be equal, hence b(w, x, y, z) =
k · (w + x+ y + z) for some constant k. The value of k can be found by computing
the determinant for particular values of w, x, y, z, say w = 0, x = 1, y = 2, z = 3,
and we obtain k = 1. Hence the value of the determinant is

(z − y)(z − x)(z − w)(y − x)(y − w)(x− w)(w + x+ y + z) .

4.20. The answer is no.
We can write the condition in matrix form in the following way:

(
1 x x2

) 1
y
y2

 =
(
a(x) c(x)

)(b(y)
d(y)

)
.

By assigning values x = 0, 1, 2, y = 0, 1, 2, we obtain the following identity:1 0 0
1 1 1
1 2 4

1 1 1
0 1 2
0 1 4

 =

a(0) c(0)
a(1) c(1)
a(2) c(2)

(b(0) b(1) b(2)
d(0) d(1) d(2)

)
.

The product on the left hand side yields a matrix of rank 3, while the right hand
side has rank at most 2, contradiction.
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4.21. The answer is P (x) = x.
In order to prove this we show that P (x) equals x for infinitely many values of
x. In fact, let an the sequence 0, 1, 2, 5, 26, 677, . . . , defined recursively a0 = 0,
and an+1 = a2n + 1 for n ≥ 0. We prove by induction that P (an) = an for every
n = 0, 1, 2, . . . . In the basis case, n = 0, we have P (0) = 0. For the induction step
assume n ≥ 1, P (an) = an. Then P (an+1) = P (a2n+1) = P (an)

2+1 = a2n+1 = an+1.
Since in fact P (x) coincides with x for infinitely many values of x, we must have
P (x) = x identically.

4.22. Given a line y = mx + b, the intersection points with the given curve can be
computed by solving the following system of equations{

y = 2x4 + 7x3 + 3x− 5

y = mx+ b .

Subtracting we get 2x4+7x3+3(x−m)− 5− b = 0. If the line intersects the curve
in four different points, that polynomial will have four distinct roots x1, x2, x3, x4,
and their sum will be minus the coefficient of x3 divided by the coefficient of x4,
i.e., −7/2, hence

x1 + x2 + x3 + x4

4
= −7

8
.

4.23. The answer is k = 3, and an example is

(x+ 2)(x+ 1)x(x− 1)(x− 2) = x5 − 5x3 + 4x ,

where {−2,−1, 0, 1, 2} is the desired set of integers.
To complete the argument we must prove that k cannot be less than 3. It cannot
be 1 because in that case the polynomial would be x5, with all its five roots equal
zero (note that a, b, c, d, e are the roots of the polynomial, and by hypothesis they
must be distinct integers). Assume now that k = 2. Then the polynomial would be
of the form x5+nxi = xi(x5−i+n), n a nonzero integer, 0 ≤ i ≤ 4. If i ≥ 2 then the
polynomial would have two or more roots equal zero, contradicting the hypothesis.
If i = 1 then the roots of the polynomial would be 0, and the roots of x4+n, at least
two of which are non-real complex roots. If i = 0 then the polynomial is x5 + n,
which has four non-real complex roots.

4.24. The zeros of x4 − 13x2 + 36 are x = ±2 and ±3, hence the condition is equivalent
to x ∈ [−3,−2] ∪ [2, 3]. On the other hand f ′(x) = 3x2 − 3, with zeros at x =
±1. This implies that f(x) is monotonic on [−3,−2] and [2, 3], hence (with the
given constrain) its maximum value can be attained only at the boundaries of those
intervals. Computing f(−3) = −18, f(−2) = −2, f(2) = 2, f(3) = 18, we get that
the desired maximum is 18.

4.25. Note that if r(x) and s(x) are any two functions, then

max(r, s) = (r + s+ |r − s|)/2.
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Therefore, if F (x) is the given function, we have

F (x) = max{−3x− 3, 0} −max{5x, 0}+ 3x+ 2

= (−3x− 3 + |3x− 3|)/2
− (5x+ |5x|)/2 + 3x+ 2

= |(3x− 3)/2| − |5x/2| − x+
1

2
,

so we may set f(x) = (3x− 3)/2, g(x) = 5x/2, and h(x) = −x+ 1
2
.

4.26. Writing the given sums of powers as functions of the elementary symmetric poly-
nomials of α, β, γ, we have

α + β + γ = s ,
α2 + β2 + γ2 = s2 − 2q ,
α3 + β3 + γ3 = s3 − 3qs+ 3p ,

where s = α + β + γ, q = αβ + βγ + αγ, p = αβγ.
So we have s = 2, and from the second given equation get q = −5. Finally from
the third equation we get p = −7. So, this is the answer, αβγ = −7.
(Note: this is not needed to solve the problem, but by solving the equation x3 −
sx2 + qs − p = x3 − 2x2 + 5x + 7 = 0 we find that the three numbers α, β, and γ
are approx. 2.891954442, −2.064434534, and 1.172480094.)

4.27. Let α = (2 +
√
5)1/3 − (−2 +

√
5)1/3. By raising to the third power, expanding and

simplifying we get that α verifies the following polynomial equation:

α3 + 3α− 4 = 0 .

We have x3 + 3x − 4 = (x − 1)(x2 + x + 4). The second factor has no real roots,
hence x3 + 3x− 4 has only one real root equal to 1, i.e., α = 1.

4.28. The answer is affirmative, B can in fact guess the polynomial—call it f(x) = a0 +
a1x

2 + a2x
2 + · · · anxn. By asking A to evaluate it at 1, B gets an upper bound

f(1) = a0 + a1 + a2 + · · · an = M for the coefficients of the polynomial. Then,
for any integer N > M , the coefficients of the polynomial are just the digits of
f(N) = a0 + a1N

2 + a2N
2 + · · · anNn in base N .

4.29. If f(x0) = 0 at some point x0, then by hypothesis we would have f ′(x0) > 0, and f
would be (strictly) increasing at x0. This implies:
(1) If the polynomial f becomes zero at some point x0, then f(x) > 0 for every
x > x0, and f(x) < 0 for every x < x0.
Writing f(x) = anx

n + an−1x
n−1 + · · ·+ a0, we have f(x) + f ′(x) = anx

n + (an−1 +
nan)x

n−1 + · · · + (a0 + a1). Given that that f(x) + f ′(x) > 0 for all x, we deduce

that an = limn→∞
f(x)+f ′(x)

xn > 0. On the other hand n must be even, otherwise
f(x) + f ′(x) would become negative as x → −∞. Hence f(x) > 0 for |x| large
enough. By (1) this rules out the possibility of f(x) becoming zero at some point
x0, and so it must be always positive.
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Remark: The statement is not true for functions in general, e.g., f(x) = −e−2x

verifies f(x) + f ′(x) = e−2x > 0, but f(x) < 0 for every x.

4.30. The answer is No. If P (x) has two real roots we would have b2 > 4ac. Analogously
for R(x) and Q(x) we should have a2 > 4cb, and c2 > 4ab respectively. Multiplying
the inequalities we get a2b2c2 > 64a2b2c2, which is impossible.

4.31. First we prove (by contradiction) that f(x) has no real roots. In fact, if x1 is a real
root of f(x), then we have that x2 = x2

1 + x1 +1 is also a real root of f(x), because
f(x2

1 + x1 + 1) = f(x1)g(x1) = 0. But x2
1 + 1 > 0, hence x2 = x2

1 + x1 + 1 > x1.
Repeating the reasoning we get that x3 = x2

2+x2+1 is another root of f(x) greater
than x2, and so on, so we get an infinite increasing sequence of roots of f(x), which
is impossible. Consequently f(x) must have even degree, because all odd degree
polynomials with real coefficients have at least one real root. Q.E.D.
Note: An example of a polynomial with the desired property is: f(x) = x2 + 1,
f(x2 + x+ 1) = (x2 + 1)(x2 + 2x+ 2).
Remark: The result is not generally true for polynomials with complex coefficients—
counterexample: f(x) = x+ i, f(x2 + x+ 1) = x2 + x+ 1 + i = (x+ i)(x+ 1− i).

4.32. By contradiction. We have that a0 = P (0) must be a prime number. Also, P (ka0)
is a multiple of a0 for every k = 0, 1, 2, . . . , but if P (ka0) is prime then P (ka0) = a0
for every k ≥ 0. This implies that the polynomial Q(x) = P (a0x)−a0 has infinitely
many roots, so it is identically zero, and P (a0x) = a0, contradicting the hypothesis
that P is of degree at least 1.

5.1. If m = a2 + b2 and n = c2 + d2, then consider the product z = (a + bi)(c + di) =
(ac− bd) + (ad+ bc)i. We have

|z|2 = |a+ bi|2|c+ di|2 = (a2 + b2)(c2 + d2) = mn ,

and

|z|2 = (ac− bd)2 + (ad+ bc)2 ,

so mn is also in fact a sum of two perfect squares.

5.2. The left hand side of the equality is the imaginary part of

n∑
k=0

eik =
ei(n+1) − 1

ei − 1
=

ei(n+1/2) − e−i/2

ei/2 − e−i/2
=

cos (n+ 1
2
)− cos 1

2
+ i{sin (n+ 1

2
) + sin 1

2
}

2i sin 1
2

.

The imaginary part of that expression is

cos 1
2
− cos (n+ 1

2
)

2 sin 1
2

=
sin n

2
sin n+1

2

sin 1
2

5.3. We have that z = e±ia, so z + 1/z = eia + e−ia = 2 cos a, hence:

zn + 1/zn = eina + e−ina = 2 cosna .
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5.4. Factoring a polynomial is easier to accomplish if we can find its roots. In this case
we will look for roots that are roots of unity e2kπi/n:

p(e2kπi/n) = e10kπi/n + e2kπi/n + 1 .

The three terms of that expression are complex numbers placed on the unit circle at
the vertices of an equilateral triangle for n = 3 and k = 1, 2, so if ω = e2kπi/3, then
ω and ω2 are roots of p(z), hence p(z) is divisible by (z − ω)(z − ω2) = z2 + z + 1.
By long division we find that the other factor is z3 − z2 + 1, hence:

p(z) = (z2 + z + 1)(z3 − z2 + 1) .

5.5. Write sin t = (eti − e−ti)/2i and consider the polynomial

p(x) =
n−1∏
k=1

(x− e2πik/n) .

We have:

P =
n−1∏
k=1

sin
kπ

n
=

n−1∏
k=1

eπik/n − e−πik/n

2i
=

e−πi(n−1)/2

(2i)n−1

n−1∏
k=1

(e2πik/n − 1) =
p(1)

2n−1
.

On the other hand the roots of p(x) are all nth roots of 1 except 1, so (x−1)p(x) =
xn − 1, and

p(x) =
xn − 1

x− 1
= 1 + x+ x2 + · · ·+ xn−1 .

Consequently p(1) = n, and P =
n

2n−1
.

5.6. Assume the vertices of the n-gon placed on the complex plane at the nth roots of
unity 1, ζ, ζ2, . . . , ζn−1, where ζ = e2πi/n. Then the length of the diagonal connecting
vertices j and k is |ζ i − ζk|, and the desired product can be written

P =
∏

0≤j<k<n

|ζj − ζk| .

By symmetry we obtain the same product if we replace the condition j < k with
k < j, and multiplying both expressions together we get:

P 2 =
∏

0≤j,k<n

j ̸=k

|ζj − ζk| = |ζj|
∏

0≤j,k<n

j ̸=k

|1− ζk−j| .

Note that |ζj| = 1, and for each k, r = k− j takes all non-zero values from k−n+1
to k. Since ζr = ζr+n we may assume that r ranges from 1 to n − 1, so we can
rewrite the product like this:

P 2 =

(
n−1∏
r=1

|1− ζr|

)n

.
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Next consider the polynomial

p(x) =
n−1∏
r=1

(x− ζr) .

Its roots are the same roots of xn − 1 except 1, hence xn − 1 = (x− 1)p(x) and

p(x) =
xn − 1

x− 1
= 1 + x+ x2 + · · ·+ xn−1 ,

hence
n−1∏
r=1

(1− ζr) = p(1) = n .

consequently P 2 = nn, and P = nn/2.

5.7. Define h(x) = f(x) + ig(x). Then h is differentiable and h′(0) = bi for some b ∈ R.
The given equations can be reinterpret as h(x + y) = h(x)h(y). Differentiating
respect to y and substituting y = 0 we get h′(x) = h(x)h′(0) = bi · h(x), so h(x) =
Cebix for some C ∈ C. From h(0 + 0) = h(0)h(0) we get C = C2. If C = 0 then
h = 0 and f and g would be constant, contradicting the hypothesis. Thus C = 1.
Finally, for any x ∈ R,

f(x)2 + g(x)2 = |h(x)|2 = |ebix|2 = 1 .

5.8. Assume the lights placed on the complex plane at the nth roots of unity 1, ζ, ζ2, . . . , ζn−1,
where ζ = e2πi/n. Without loss of generality we may assume that the light at 1 is ini-
tially on. Now, if d < n is a divisor of n and the lights ζa, ζa+d, ζa+2d, . . . , ζa+(n

n
−1)d

have the same state, then we can change the state of this n/d lights. The sum of
these is

ζa + ζa+d + ζa+2d + · · ·+ ζa+(n
n
−1)d = ζa

(
1− ζn

1− ζd

)
= ζa

(
1− 1

1− ζd

)
= 0 .

So if we add up all the roots that are “on”, the sum will never change. The original
sum was 1, and the goal is to get all the lights turned on. That sum will be

1 + ζ + ζ2 + · · ·+ ζn−1 =
1− ζn

1− ζ
= 0 ̸= 1 .

Hence we can never turn on all the lights.

5.9. Let z1 = a− bi, z2 = u+ vi. Then |z1|2 = a2 + b2, |z2| = u2 + v2, ℜ(z1z2) = au+ bv,
ℑ(z1z2) = 1. On the other hand:

|z1z2|2 = ℜ(z1z2)2 + ℑ(z1z2)2 = ℜ(z1z2)2 + 1 .

Now for any real t,

(t
√
3 + 1)2 ≥ 0 =⇒ 3t2 + 1 ≥ −2t

√
3 =⇒ 4t2 + 4 ≥ (

√
3− t)2 .

Hence

(|z1|2 + |z2|2)2 ≥ 4|z1z2|2 = 4
(
ℜ(z1z2)2 + 1

)
≥
(√

3−ℜ(z1z2)
)2

.



PUTNAM TRAINING PROBLEMS, 2014 - SOLUTIONS 64

So, |z1|2 + |z2|2 ≥
√
3−ℜ(z1z2). Or |z1|2 + |z2|2 + ℜ(z1z2) ≥

√
3, as required.

6.1. We have (
n

0

)
+

(
n

1

)
x+

(
n

2

)
x2 + · · ·+

(
n

n

)
xn = (1 + x)n .

Differentiating respect to x:(
n

1

)
+ 2

(
n

2

)
x+ 3

(
n

3

)
x2 + · · ·+ n

(
n

n

)
= n(1 + x)n−1 .

Plugging in x = 1 we get the desired identity

6.2. The desired expression states the equality between the coefficient of xn in each of
the following expansions:

(1 + x)2n =
2n∑
k=0

(
2n

k

)
xk ,

and

{(1 + x)n}2 =

{
n∑

k=0

(
n

k

)
xk

}2

=
n∑

k=0

∑
i+j=k

(
n

i

)(
n

j

)
xk .

Taking into account that
(
n
j

)
=
(

n
n−j

)
, for k = n we get∑

i+j=n

(
n

i

)(
n

j

)
=
∑
i+j=n

(
n

i

)(
n

n− j

)
=

n∑
i=1

(
n

i

)2

,

and that must be equal to the coefficient of xn in (1 + x)2n, which is
(
2n
n

)
.

6.3. This is just a generalization of the previous problem. We have

(1 + x)m+n =
m+n∑
k=0

(
m+ n

k

)
xk ,

and

(1 + x)m(1 + x)n =

{
m∑
i=0

(
m

i

)
xi

}{
n∑

j=0

(
n

j

)
xj

}

=
m+n∑
k=0

∑
i+j=k

0≤i,j≤k

(
n

j

)(
m

i

)
xk .

The coefficient of xk must be the same on both sides, so:(
m+ n

k

)
=

∑
i+j=k

0≤i,j≤k

(
n

j

)(
m

i

)
=

k∑
j=0

(
n

j

)(
m

k − j

)
,

where we replace i = k − j in the last step.
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6.4. The generating function for the Fibonacci sequence is

0 + x+ x2 + 2x3 + 3x4 + 5x5 + · · · = x

1− x− x2
.

The desired sum is the left hand side with x = 1/2, hence its value is

0 +
1

2
+

1

22
+

2

23
+

3

24
+

5

25
+ · · · =

1
2

1− 1
2
− 1

22

= 2 .

6.5. The generating function of un is the following:

f(x) = u0 + u1x+ u2x
2 + · · ·

= (1 + x2 + x4 + x6 + · · · )(1 + x5 + x10 + x15 + · · · )

=
1

1− x2

1

1− x5

=
1

1− x2 − x5 + x7
.

Hence
1 = (1− x2 − x5 + x7)(u0 + u1x+ u2x

2 + · · · ) .
From here we get that 1 · u0 = 1, hence u0 = 1. Similarly 1 · u1 = 0, hence u1 = 0,
etc., so we get u0 = u2 = u4 = u5 = u7 = 1, and u1 = u3 = 0. Then for k > 7 the
coefficient of xk of the product must be

uk − uk−2 − uk−5 + uk−7 = 0 .

So we get the following recursive relation for the terms of the sequence:

uk = uk−2 + uk−5 − uk−7 ,

together with the initial conditions u0 = u2 = u4 = u5 = u7 = 1, and u1 = u3 = 0.

6.6. The answer equals the coefficient of x10 in the expansion of

(1 + x+ x2 + · · ·+ x9)6 .

Since 1+x+x2+· · · = 1/(1−x) the answer can be obtained also from the coefficient
of x10 in the Maclaurin series of 1/(1 − x)6 = (1 − x)−6. Since that includes six
sequences of the form 0, 0, · · · , 10, · · · , 0 we need to subtract 6, so the final answer
is(

−6

10

)
− 6 =

(−6)(−7)(−8)(−9)(−10)(−11)(−12)(−13)(−14)(−15)

10!
− 6

= 3003− 6 = 2997 .

6.7. Consider the polynomial P (x) = a1 + a2x+ a3x
2 + · · ·+ a50x

49. If r is a 3rd root of
unity different from 1 then P (r) = c(1 + r + r2), where c = ak + ak+3 + ak+6 + · · ·
But 1+ r+ r2 = (r3− 1)/(r− 1) = 0, so P (r) = 0. Analogous reasoning shows that
P (r) = 0 for each 5th, 7th, 11th, 13th, 17th root of unity r different from 1. Since
there are respectively 2 + 4 + 6 + 10 + 12 + 16 = 50 such roots of unity we have
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that P (r) is zero for 50 different values of r. But a 49-degree polynomial has only
49 roots, so P (x) must be identically zero.

7.1. Let f(n) be that number. Then we easily find f(0) = 1, f(1) = 2, f(2) = 3,
f(3) = 5, . . . suggesting that f(n) = Fn+2 (shifted Fibonacci sequence). We prove
this by showing that f(n) verifies the same recurrence as the Fibonacci sequence.
The subsets of {1, 2, . . . , n} that contain no two consecutive elements can be divided
into two classes, the ones not containing n, and the ones containing n. The number
of the ones not containing n is just f(n−1). On the other hand the ones containing
n cannot contain n− 1, so their number equals f(n− 2). Hence f(n) = f(n− 1) +
f(n− 2), QED.

7.2. Let xn be the number of regions in the plane determined by n “vee”s. Then x1 = 2,
and xn+1 = xn+4n+1. We justify the recursion by noticing that the (n+1)th “vee”
intersects each of the other “vee”s at 4 points, so it is divided into 4n + 1 pieces,
and each piece divides one of the existing regions of the plane into two, increasing
the total number of regions by 4n+ 1. So the answer is

xn = 2 + (4 + 1) + (4 · 2 + 1) + · · ·+ (4 · (n− 1) + 1) = 2n2 − n+ 1 .

7.3. Let xn be the number of tilings of an n × 2 rectangle by dominoes. We easily find
x1 = 1, x2 = 2. For n ≥ 3 we can place the rightmost domino vertically and tile
the rest of the rectangle in xn−1 ways, or we can place two horizontal dominoes to
the right and tile the rest in xn−2 ways, so xn = xn−1 + xn−2. So the answer is the
shifted Fibonacci sequence, xn = Fn+1.

7.4. Let fn denote the number of minimal selfish subsets of {1, 2, . . . , n}. For n = 1 we
have that the only selfish set of {1} is {1}, and it is minimal. For n = 2 we have two
selfish sets, namely {1} and {1, 2}, but only {1} is minimal. So f1 = 1 and f2 = 1.
For n > 2 the number of minimal selfish subsets of {1, 2, . . . , n} not containing n
is equal to fn−1. On the other hand, for any minimal selfish set containing n, by
removing n from the set and subtracting 1 from each remaining element we obtain
a minimal selfish subset of {1, 2, . . . , n}. Conversely, any minimal selfish subset of
{1, 2, . . . , n−2} gives raise to a minimal selfish subset of {1, 2, . . . , n} containing n by
the inverse procedure. Hence the number of minimal selfish subsets of {1, 2, . . . , n}
containing n is fn−2. Thus fn = fn−1 + fn−2, which together with f1 = f2 = 1
implies that fn = Fn (nth Fibonacci number.)

7.5. Assume that b1, b2, . . . , bn is a derangement of the sequence a1, a2, . . . , an. The
element bn can be any of a1, . . . , an−1, so there are n − 1 possibilities for its value.
Once we have fixed the value of bn = ak for some k = 1, . . . , n− 1, the derangement
can be of one of two classes: either bk = an, or bk ̸= an. The first class coincides
with the derangements of a1, . . . , ak−1, ak+1, . . . , an−1, and there are Dn−2 of them.
The second class coincides with the derangements of a1, . . . , an−1 with ak replaced
with an, and there are Dn−1 of them.
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7.6. We have that α and β are the roots of the polynomial

(x− α)(x− β) = x2 − sx+ p ,

where s = α + β, p = αβ.
We have that s = a1 is an integer. Also, 2p = a21 − a2 is an integer. The given
sequence verifies the recurrence

an+2 = s an+1 − p an ,

hence
2⌊

n+1
2

⌋an+2 = s 2⌊
n+1
2

⌋an+1 − 2p 2⌊
n−1
2

⌋an .

From here we get the desired result by induction.

7.7. The general solution for the recurrence can be expressed using the roots of its
characteristic polynomial

x2 − 10x

3
+ 1 = 0 .

The roots are 3 and 1/3, hence a general solution is xn = A · 3n + B · 3−n. If the
sequence converges then A = 0, and the condition x0 = 18 yields B = 18, hence the
sequence is xn = 18 · 3−n, the limit is 0, and x1 = 18/3 = 6.

8.1. The solution is based on the fact that
√
u2 = |u|. Letting u = 1±

√
x− 1 we have

that u2 = x± 2
√
x− 1, hence the given function turns out to be:

f(x) = |1 +
√
x− 1|+ |1−

√
x− 1| ,

Defined for x ≥ 1.
The expression 1+

√
x− 1 is always positive, hence |1+

√
x− 1| = 1+

√
x− 1. On

the other hand |1 −
√
x− 1| = 1 −

√
x− 1 if 1 −

√
x− 1 ≥ 0 and |1 −

√
x− 1| =

−1 +
√
x− 1 if 1−

√
(x− 1) ≤ 0, hence

f(x) =

{
1 +

√
x− 1 + 1−

√
x− 1 = 2 if 1−

√
x− 1 ≥ 0

1 +
√
x− 1− 1 +

√
x− 1 = 2

√
x− 1 if 1−

√
x− 1 < 0

So the function is equal to 2 if 1 −
√
x− 1 ≥ 0, which happens for 1 ≤ x ≤ 2. So

f(x) = 2 (constant) in [1, 2].

8.2. The desired value is the limit of the following sequence:

a1 =
√
2

a2 =

√
2 +

√
2

a3 =

√
2 +

√
2 +

√
2

. . .

defined by the recursion a1 =
√
2, an+1 =

√
2 + an (n ≥ 1).
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First we must prove that the given sequence has a limit. To that end we prove
1. The sequence is bounded. More specifically, 0 < an < 2 for every n = 1, 2, . . . .

This can be proved by induction. It is indeed true for a1 =
√
2. Next, if we

assume that 0 < an < 2, then 0 < an+1 =
√
2 + an <

√
2 + 2 =

√
4 = 2.

2. The sequence is increasing. In fact: a2n+1 = 2+an > an+an = 2an > a2n, hence
an+1 > an.

According to the Monotonic Sequence Theorem, every bounded monotonic (in-
creasing or decreasing) sequence has a limit, hence an must have in fact a limit
L = limn→∞ an.
Now that we know that the sequence has a limit L, by taking limits in the recursive
relation an+1 =

√
2 + an, we get L =

√
2 + L, hence L2 − L − 2 = 0, so L = 2 or

−1. Since an > 0 then L ≥ 0, hence L = 2. Consequently:

√
2 +

√
2 +

√
2 +

√
2 + · · · = 2 .

8.3. We will prove that the answer is (3 +
√
5)/2.

The value of the infinite continued fraction is the limit L of the sequence defined
recursively x0 = 2207, xn+1 = 2207 − 1/xn, which exists because the sequence is
decreasing (induction). Taking limits in both sides we get that L = 2007 − 1/L.
Since xn > 1 for all n (also proved by induction), we have that L ≥ 1. If we
call the answer r we have r8 = L, so r8 + 1/r8 = 2207. Then (r4 + 1/r4)2 =
r8 + 2 + 1/r8 = 2 + 2207 = 2209, hence r4 + 1/r4 =

√
2209 = 47. Analogously,

(r2 + 1/r2)2 = r4 + 2 + 1/r4 = 2 + 47 = 49, so r2 + 1/r2 =
√
49 = 7. And

(r + 1/r)2 = r2 + 2 + 1/r2 = 2 + 7 = 9, so r + 1/r =
√
9 = 3. From here we get

r2 − 3r + 1 = 0, hence r = (3±
√
5)/2, but r = L1/8 ≥ 1, so r = (3 +

√
5)/2.

8.4. That function coincides with g(x) = 1/(1 + x2) at the points x = 1/n, and the
derivatives of g at zero can be obtained from its Maclaurin series g(x) = 1 − x2 +
x4 − x6 + · · · , namely g(2k)(0) = (−1)kk! and g(2k+1)(0) = 0. In order to prove that
the result applies to f too we have to study their difference h(x) = f(x)− g(x).
We have that h(x) is infinitely differentiable. Also h(1/n) = 0 for n = 1, 2, 3, . . . ,
hence h(0) = limn→∞ h(1/n) = 0. By Rolle’s theorem, h′(x) has zeros between the
zeros of h(x), hence h′(0) is the limit of a sequence of zeros, so h′(0) = 0. The same
is true about all derivatives of h at zero. This implies that f (k)(0) = g(k)(0) for
every k = 1, 2, 3, . . . , hence f (2k)(0) = (−1)kk! and f (2k+1)(0) = 0.

8.5. By looking at the graph of the function y = 1/x we can see that

∫ 2n

n

1

x
dx <

1

n
+

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n− 1
<

∫ 2n−1

n−1

1

x
dx .
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We have∫ 2n

n

1

x
dx = ln (2n)− lnn = ln 2 ,∫ 2n−1

n−1

1

x
dx = ln (2n− 1)− ln (n− 1) = ln

{
2n− 1

n− 1

}
−→
n→∞

ln 2 .

Hence by the Squeeze Theorem, the desired limit is ln 2.

8.6. Let P be the limit. Then

ln(P ) = lim
n→∞

n∑
k=1

1

n
ln

(
1 +

k

n

)
That sum is a Riemann sum for the following integral:∫ 1

0

ln (1 + x) dx = [(1 + x)(ln (1 + x)− 1)]10 = 2 ln 2− 1 .

Hence P = e2 ln 2−1 = 4/e.

8.7. The series on the left is xe−x2/2. Since the terms of the second sum are non-negative,
we can interchange the sum and integral:∫ ∞

0

xe−x2/2

∞∑
n=0

x2n

22n(n!)2
dx =

∞∑
n=0

∫ ∞

0

xe−x2/2 x2n

22n(n!)2
dx

The term for n = 0 is∫ ∞

0

xe−x2/2 dx =
[
−e−x2/2

]∞
0

= 0− (−1) = 1 .

Next, for n ≥ 1, integrating by parts:∫ ∞

0

x2n
(
xe−x2/2

)
dx =

[
−x2ne−x2/2

]∞
0︸ ︷︷ ︸

0

+2n

∫ ∞

0

x2(n−1)
(
xe−x2/2

)
dx .

Thus, by induction∫ ∞

0

x2n
(
xe−x2/2

)
dx = 2 · 4 · 6 · · · 2n .

Hence the integral is
∞∑
n=0

1

2nn!
= e1/2 =

√
e .

8.8. The answer is affirmative, in fact any real number r is the limit of a sequence of
numbers of the form 3

√
n− 3

√
m. First assume

3
√
n ≤ r + 3

√
m < 3

√
n+ 1 ,
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which can be accomplished by taking n = ⌊(r + 3
√
m)3⌋. We have

0 ≤ r − ( 3
√
n− 3

√
m) < 3

√
n+ 1− 3

√
n

=
1

3
√

(n+ 1)2 + 3
√

(n+ 1)n+
3
√
n2

.

Since the last expression tends to 0 as n → ∞, we have that

r = lim
m→∞

{
3

√
⌊(r + 3

√
m)3⌋ − 3

√
m

}
.

8.9. From f(f(x)) = 1/f(x) we get that f(y) = 1/y for all y ∈ f(R). Hence f(999) =
1/999. Since f is continuous it takes all possible values between 1/999 and 999, in
particular 500 ∈ f(R). Hence f(500) = 1/500.

8.10. Consider the function g : [0, 1998/1999] → R, g(x) = f(x)− f(x+ 1/999). Then g
is continuous on [0, 1998/1999], and verifies

1998∑
k=0

g(k/1999) = f(1)− f(0) = 0 .

Since the sum is zero it is impossible that all its terms are positive or all are negative,
so either one is zero, or there are two consecutive terms with opposite signs. In the
former case, g(k/1999) = 0 for some k, so f(k/1999) = f((k + 1)/1999) and we are
done. Otherwise, if there are two consecutive terms g(k/1999) and g((k+ 1)/1999)
with different signs, then for some x ∈ [k/1999, (k + 1)/1999] we have g(x) = 0,
hence f(x) = f(x+ 1/1999), and we are also done.

8.11. The answer is c ≥ 1/2.
In fact, the given inequality can be written like this:

ecx
2 − ex + e−x

2
≥ 0 .

The Taylor expansion of the left hand side is

ecx
2 − ex + e−x

2
=

(
c− 1

2

)
x2 +

(
c2

2!
− 1

4!

)
x4 +

(
c3

3!
− 1

6!

)
x6 + · · ·

We see that for c ≥ 1/2 all the coefficients are non-negative, and the inequality
holds.
On the other hand, if c < 1/2 we have

lim
x→0

ecx
2 − ex+e−x

2

x2
= c− 1

2
< 0 ,

so in a neighborhood of 0 the numerator must become negative, and the inequality
does not hold.
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8.12. There is no such sequence. If they were convergent their sum would be convergent
too, but by the AM-GM inequality we have:

∞∑
n=1

(
an +

1

n2an

)
≥

∞∑
n=1

2

n
= ∞ .

9.1. We divide the set into n-classes {1, 2}, {3, 4}, . . . , {2n − 1, 2n}. By the pigeonhole
principle, given n + 1 elements, at least two of them will be in the same class,
{2k − 1, 2k} (1 ≤ k ≤ n). But 2k − 1 and 2k are relatively prime because their
difference is 1.

9.2. For each odd number α = 2k − 1, k = 1, . . . , n, let Cα be the set of elements x in
S such that x = 2iα for some i. The sets C1, C3, . . . , C2n−1 are a classification of S
into n classes. By the pigeonhole principle, given n+ 1 elements of S, at least two
of them will be in the same class. But any two elements of the same class Cα verify
that one is a multiple of the other one.

9.3. The given set can be divided into 18 subsets {1}, {4, 100}, {7, 97}, {10, 94},. . . ,
{49, 55}, {52}. By the pigeonhole principle two of the numbers will be in the same
set, and all 2-element subsets shown verify that the sum of their elements is 104.

9.4. For k = 1, 2, . . . , 8, look at the digit used in place k for each of the 4 given elements.
Since there are only 3 available digits, two of the elements will use the same digit
in place k, so they coincide at that place. Hence at each place, there are at least
two elements that coincide at that place. Pick any pair of such elements for each
of the 8 places. Since there are 8 places we will have 8 pairs of elements, but there
are only

(
4
2

)
= 6 two-element subsets in a 4-element set, so two of the pairs will be

the same pair, and the elements of that pair will coincide in two different places.

9.5. Let aj the number of games played from the 1st through the jth day of the month.
Then a1, a2, . . . , a30 is an increasing sequence of distinct positive integers, with
1 ≤ aj ≤ 45. Likewise, bj = aj + 14, j = 1, . . . , 30 is also an increasing se-
quence of distinct positive integers with 15 ≤ bj ≤ 59. The 60 positive integers
a1, . . . , a30, b1, . . . , b30 are all less than or equal to 59, so by the pigeonhole principle
two of them must be equal. Since the aj’s are all distinct integers, and so are the
bj’s, there must be indices i and j such that ai = bj = aj + 14. Hence ai − aj = 14,
i.e., exactly 14 games were played from day j + 1 through day i.

9.6. Let {x} = x − ⌊x⌋ denote the fractional part of x. For i = 0, . . . , n, put si =
x1+ · · ·+xi (so that s0 = 0). Sort the numbers {s0}, . . . , {sn} into ascending order,
and call the result t0, . . . , tn. Since 0 = t0 ≤ · · · ≤ tn < 1, the differences

t1 − t0, . . . , tn − tn−1, 1− tn

are nonnegative and add up to 1. Hence (as in the pigeonhole principle) one of these
differences is no more than 1/(n + 1); if it is anything other than 1 − tn, it equals
±({si}−{sj}) for some 0 ≤ i < j ≤ n. Put S = {xi+1, . . . , xj} and m = ⌊si⌋−⌊sj⌋;
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then ∣∣∣∣∣m+
∑
s∈S

s

∣∣∣∣∣ = |m+ sj − si|

= |{sj} − {si}|

≤ 1

n+ 1
,

as desired. In case 1 − tn ≤ 1/(n + 1), we take S = {x1, . . . , xn} and m = −⌈sn⌉,
and again obtain the desired conclusion.

9.7. A set of 10 elements has 210 − 1 = 1023 non-empty subsets. The possible sums of
at most ten two-digit numbers cannot be larger than 10 · 99 = 990. There are more
subsets than possible sums, so two different subsets S1 and S2 must have the same
sum. If S1 ∩S2 = ∅ then we are done. Otherwise remove the common elements and
we get two non-intersecting subsets with the same sum.

9.8. Writing yi = tan xi, with −π
2
≤ xi ≤ π

2
(i = 1, . . . , 7), we have that

yi − yj
1 + yiyj

= tan (xi − xj) ,

so all we need is to do is prove that there are xi, xj such that 0 ≤ xi − xj ≤ π
6
. To

do so we divide the interval (−π
2
, π
2
) into 6 subintervals each of length π

6
. By the

box principle, two of the xis will be in the same subinterval, and their difference
will be not larger than π

6
, as required.

9.9. Classify the numbers by their reminder when divided by 3. Either three of them will
yield the same reminder, and their sum will be a multiple of 3, or there will be at
least a number xr for each possible reminder r = 0, 1, 2, and their sum x0 + x1 + x2

will be a multiple of 3 too.

9.10. We must prove that there are positive integers n, k such that

2009 · 10k ≤ 2n < 2010 · 10k .
That double inequality is equivalent to

log10(2009) + k ≤ n log10(2) < log10(2010) + k .

where log10 represents the decimal logarithm. Writing α = log10(2009) − 3, β =
log10(2010)− 3, we have 0 < α < β < 1, and the problem amounts to showing that
for some integer n, the fractional part of n log10(2) is in the interval [α, β). This is
true because log10(2) is irrational, and the integer multiples of an irrational number
are dense modulo 1 (their fractional parts are dense in the interval [0, 1)).

9.11. Let F be the face with the largest number m of edges. Then for the m + 1 faces
consisting of F and its m neighbors the possible number of edges are 3, 4, . . . ,m.
These are only m−2 possibilities, hence the number of edges must occur more than
once.
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10.1. After rationalizing we get a telescopic sum:

1

1 +
√
2
+

1√
2 +

√
3
+ · · ·+ 1√

99 +
√
100

= (
√
2− 1) + (

√
3−

√
2) + · · ·+ (

√
100−

√
99)

= 10− 1 = 9 .

10.2. We have

N∑
n=1

n · n! =
N∑

n=1

{(n+ 1)− 1} · n! =
N∑

n=1

{(n+ 1)!− n!} =

(2!− 1!) + (3!− 2!) + · · ·+ ((N + 1)!−N !) = (N + 1)!− 1 .

10.3. We have

6k

(3k+1 − 2k+1)(3k − 2k)
=

3k

3k − 2k
− 3k+1

3k+1 − 2k+1
.

So this is a telescopic sum:

∞∑
k=1

6k

(3k+1 − 2k+1)(3k − 2k)
= lim

n→∞

n∑
k=1

{
3k

3k − 2k
− 3k+1

3k+1 − 2k+1

}

= lim
n→∞

{
3− 3n+1

3n+1 − 2n+1

}
= 3− 1 = 2 .

10.4. This is a telescopic product:

n3 − 1

n3 + 1
=

(n− 1)(n2 + n+ 1)

(n+ 1)(n2 − n+ 1)
=

(n− 1){n (n+ 1) + 1}
(n+ 1){(n− 1)n+ 1}

,

hence
∞∏
n=2

n3 − 1

n3 + 1
= lim

N→∞

N∏
n=2

(n− 1){n (n+ 1) + 1}
(n+ 1){(n− 1)n+ 1}

= lim
N→∞

2{N(N + 1) + 1}
3N(N + 1)

=
2

3
.

10.5. We have
n

n4 + n2 + 1
=

n

(n2 + 1)2 − n2

=
1/2

n2 − n+ 1
− 1/2

n2 + n+ 1

=
1/2

(n− 1)n+ 1
− 1/2

n (n+ 1) + 1
.
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So
N∑

n=0

n

n4 + n2 + 1
=

1/2

(−1) · 0 + 1
− 1/2

0 · 1 + 1
+

1/2

0 · 1 + 1
− 1/2

1 · 2 + 1
+ · · ·

· · ·+ 1/2

(N − 1)N + 1
− 1/2

N (N + 1) + 1

=
1

2
− 1/2

N (N + 1) + 1
−→
N→∞

1

2
.

Hence, the sum is 1/2.

11.1. Consider the function

f(x, y, z) = T (x, y, z) + T (y, z, x) + T (z, x, y) = 4x2 + 4y2 + 4z2 .

On the surface of the planet that function is constant and equal to 4·202 = 1600, and
its average on the surface of the planet is 1600. Since the equation of a sphere with
center in (0, 0, 0) is invariant by rotation of coordinates, the three terms T (x, y, z),
T (y, z, x), T (z, x, y) have the same average value T on the surface of the planet,
hence 1600 = 3T , and T = 1600/3.

11.2. Writing α =
√
2, the integrand f(x) = 1/(1 + tanα x) verifies the following symme-

try:

f(x) + f(π
2
− x) =

1

1 + tanα x
+

1

1 + cotα x

=
1

1 + tanα x
+

tanα x

1 + tanα x

= 1 .

On the other hand, making the substitution u = π
2
− x:∫ π

2

0

f(π
2
− x) dx = −

∫ 0

π
2

f(u) du =

∫ π
2

0

f(x) dx = I ,

where I is the desired integral. So:

2I =

∫ π
2

0

{
f(x) + f(π

2
− x)

}
dx =

∫ π
2

0

1 dx =
π

2
.

Hence I =
π

4
.

11.3. The first player does have a winning strategy: place the first penny exactly on the
center of the table, and then after the second player places a penny, place the next
penny in a symmetric position respect to the center of the table. After each of
the first player’s move the configuration of pennies on the table will have radial
symmetry, so if the second player can still place a penny somewhere on the table,
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the radially symmetric position respect to the center of the table will still not be
occupied and the first player will also be able to place a penny there.

12.1. Let A be the set of positive integers no exceeding 1000 that are divisible by 7,
and let B the set of positive integers not exceeding 1000 that are divisible by 11.
Then A ∪ B is the set of positive integers not exceeding 1000 that are divisible by

7 or 11. The number of elements in A is |A| =
⌊
1000

7

⌋
= 142. The number of

elements in B is |B| =
⌊
1000

11

⌋
= 90. The set of positive integers not exceeding

1000 that are divisible by 7 and 11 is A ∩ B, and the number of elements in there

is |A ∩B| =
⌊
1000

7 · 11

⌋
= 12. Finally, by the inclusion-exclusion principle:

|A ∪B| = |A|+ |B| − |A ∩B| = 142 + 90− 12 = 220 .

12.2. (This is equivalent to finding the number of onto functions from a n-element set to
an k-element set.) If we remove the restriction ”using all k flavors” then the first
child can receive an ice-cream of any of the k available flavors, the same is true for
the second child, and the third, etc. Hence the number of ways will be the product
k · k · · · k = kn.
Now we need to eliminate the distributions of ice-cream cones in which at least one
of the flavors is unused. So let’s call Ai = set of distributions of ice-creams in which
at least the ith flavor is never used. We want to find the number of elements in
the union of the Ai’s (and later subtract it from kn). According to the Principle
of Inclusion-Exclusion that number is the sum of the elements in each of the Ai’s,
minus the sum of the elements of all possible intersections of two of the Ai’s, plus
the sum of the elements in all possible intersections of three of those sets, and so
on. We have:

|Ai| = (k − 1)n (k − 1 flavors distributed among n children)

|Ai ∩ Aj| = (k − 2)n (k − 2 flavors among n children)

|any triple intersection| = (k − 3)n (k − 3 flavors among n children)

and so on. On the other hand there are k sets Ai,
(
k
2

)
intersections of two sets,

(
k
3

)
intersections of three sets, etc. Hence the number of distributions of flavors that
miss some flavor is

(
k

1

)
(k − 1)n −

(
k

2

)
(k − 2)n +

(
k

3

)
(k − 3)n − · · · ±

(
k

k

)
0n ,
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and the number of distributions of flavors that do not miss any flavor is kn minus
the above sum, i.e.:

kn −
(
k

1

)
(k − 1)n +

(
k

2

)
(k − 2)n −

(
k

3

)
(k − 3)n + · · · ∓

(
k

k

)
0n =

k∑
i=0

(−1)i
(
k

i

)
(k − i)n .

12.3. Let’s denote Pi the set of permutations fixing element ai. The set of non-derangements
are the elements of the union P1 ∪P2 ∪ · · · ∪Pn, and its number can be found using
the inclusion-exclusion principle:

|P1 ∪ P2 ∪ · · · ∪ Pn| =
∑
i

|Pi| −
∑
i̸=j

|Pi ∩ Pj|+
∑

i̸=j ̸=k ̸=i

|Pi ∩ Pj ∩ Pk| − · · ·

Each term of that expression is the number of permutations fixing a certain number
of elements. The number of permutations that fix m given elements is (n − m)!,
and since there are

(
n
m

)
ways of picking those m elements, the corresponding sum is(

n
m

)
(n−m)! = n!

m!
. Adding and subtracting from the total number of permutations

n!, we get

Dn = n!− n!

1!
+

n!

2!
− · · ·+ (−1)n

n!

n!
= n!

(
1− 1

1!
+

1

2!
− · · ·+ (−1)n

1

n!

)
.

13.1. - First Solution: The number of subsets of {1, 2, . . . , n} with odd cardinality is(
n

1

)
+

(
n

3

)
+

(
n

5

)
+ · · ·

The number of subsets of even cardinality is cardinality is(
n

0

)
+

(
n

2

)
+

(
n

4

)
+ · · ·

The difference is(
n

0

)
−
(
n

1

)
+

(
n

2

)
−
(
n

3

)
+ · · · ±

(
n

n

)
= (1− 1)n = 0 .

- Second Solution: We define a bijection between the subsets with odd cardinality
and those with even cardinality in the following way: if S is a subset with an odd
number of elements we map it to S ′ = S ∪ {1} if 1 ̸∈ S, or S ′ = S \ {1} if 1 ∈ S.

13.2. (Note: see the section about recurrences for an alternate solution—here we use a
combinatorial argument.)
We will prove that the number of k-element subsets of {1, 2, . . . , n} with no consec-
utive elements equals the number of all k-element subsets of {1, 2, . . . , n−k+1}. To
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do so we define a 1-to-1 correspondence between both kinds of subsets in the follow-
ing way: to each subset {a1, a2, . . . , ak} (a1 < a2 < · · · < ak) of {1, 2, . . . , n} without
consecutive elements we assign the subset {a1, a2−1, . . . , ai−i+1, . . . , ak−k+1} of
{1, 2, . . . , n−k+1}. We see that the mapping is in fact a bijection, with the inverse
defined {b1, b2, . . . , bi, . . . , bk} 7→ {b1, b2 + 1, . . . , bi + i − 1, . . . , bk + k − 1}. Hence,
the number of k-element subsets of {1, 2, . . . , n} with no consecutive elements is(
n−k+1

k

)
. Note that the formula is valid also for k = 0 and k = 1.

Hence, the total number of subsets of {1, 2, . . . , n} with no consecutive elements is
the sum

⌈n/2⌉∑
k=0

(
n− k + 1

k

)
.

This sum is known to be equal to the shifted Fibonacci number Fn+1.

13.3. The probability of John getting n heads is the same as getting n tails. So the
problem is equivalent to asking the probability of John getting as many tails as the
number of heads gotten by Peter, and that is the same as both getting jointly a
total of 20 heads. So the probability asked is the same as that of getting 20 heads
after tossing 25 + 20 = 45 coins, i.e.:(

45

20

)
2−45 .

(That is 0.09009314767 . . . )

13.4. Let x be the distance from the man to the edge measured in steps. For n > 0, let
Pn the probability that the drunken man ends up over the edge when he starts at
x = n steps from the cliff. Then P1 = (1 − p) + pP2. We now rewrite P2 in the
following way. Paths from x = 2 to x = 0 can be broken into two parts: a path
that goes from x = 2 to x = 1 for the first time, and a path that goes from x = 1
to x = 0. The probability of the latter is P1, because the situation is exactly the
same as at the beginning. The probability of the former is also P1, because the
structure of problem is identical to the original one with x increased by 1. Since
both probabilities are independent, we have P2 = P 2

1 . Hence

P1 = (1− p) + pP 2
1 .

Solving this equation we get two solutions, namely P1 = 1 and P1 =
1− p

p
.

We now need to determine which solution goes with each value of p. For p = 1/2
both solutions agree, and then P1 = 1. For p = 0 we have P1 = 1, and when p = 1,
P1 = 0, because the man always walks away from the cliff. For 0 < p < 1/2 the
second solution is impossible, so we must have P1 = 1. For 1/2 < p ≤ 1 we have
that the second solution is strictly less than 1. By continuity P1 cannot take both

values 1 and
1− p

p
on the interval (1/2, 1], so since P1 = 0 for p = 1, we must have
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P1 =
1− p

p
on that interval. Hence, the probability of escaping the cliff is

1− P1 =

0 if 0 ≤ p ≤ 1
2
,

2− 1

p
if 1

2
< p ≤ 1 .

13.5. The set {(X,Y ) | X,Y ∈ (0, 1)} is the unit square square with corners in (0, 0),
(1, 0), (0, 1), (1, 1), whose area is 1. The desired probability will be the area of the
subset of points (X,Y ) in that square such that the closest integer to X/Y is odd.
The condition “the closest integer to X/Y is odd” is equivalent to |X/Y − (2n +
1)| < 1/2 for some non-negative integer n, or equivalently, 2n + 1/2 < X/Y <
2n + 3/2. That set of points is the space in the unit square between the lines
Y = 2

4n+1
X and Y = 2

4n+3
X. That area can be decomposed into triangles and

computed geometrically (see figure.)

(0,0) (1,0)

(0,1) (1,1)(1/2,1)

(1,2/3)

(1,2/5)

(1,2/11)
(1,2/9)
(1,2/7)

For n = 0 the area is 1/4+ 1/3. For n ≥ 1 it is 1
4n+1

− 1
4n+3

. Hence the total area is

P =
1

4
+

1

6
+

1

5
− 1

7
+

1

9
− 1

11
+ · · ·

We can find the sum of that series using the Gregory-Leibniz series:

1

1
− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · · = π

4
,

and we get

P = −1

4
+

π

4
= 0.5353981635 . . . .

13.6. Let L1, L2, and L3 the lengths of those three arcs. We have L1 +L2 +L3 = 2π. On
the other hand the expected value of several random variables is additive:

E[L1 + L2 + L3] = E[L1] + E[L2] + E[L3] .

By symmetry E[L1] = E[L2] = E[L3], and the sum must be 2π, hence each expected
value is 2π

3
. So, this is the answer, the expected value of the arc containing the point

(1, 0) is 2π
3
.

13.7. The problem is equivalent to dropping two random points on an interval of length
9 inches. By identifying the two endpoints of the interval the problem becomes
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identical to dividing a circle of length 9 at three points chosen at random. The
expected values of their lengths must add to 9 inches, and by symmetry they should
be the same, so each expected value must be 3 inches. Hence, this is the answer,
the average length of the fragment with the blue dot will be 3 inches.

13.8. Label the points x0, x1, x2, . . . , xn (xn ≡ x0.) Then the center of the circle will not
be in the polygon if and only if one of the arcs defined by two consecutive points
(measured counterclockwise) is greater than π. Let Ek (k = 0, . . . , n − 1) be the
event “the arc from xk to the point next to xk (counterclockwise) is larger than π.”
The probability of each Ek is obviously 1

2n−1 , because for it to happen all points
other than xk must lie in the same half-circle ending at xk. On the other hand,
the events E0, E1, . . . , En−1 are incompatible, i.e., no two of them can happen at
the same time. Then, the probability of one of them happening is the sum of the
probabilities:

P (E0 or E1 or · · · or En−1) = P (E0) + P (E1) + · · ·+ P (En−1) =
n

2n−1
.

Hence, the desired probability is 1− n

2n−1
.

14.1. Let I =
1020000 − 3200

10100 + 3
=

(10100)200 − 3200

10100 + 3
= (10100)199 − (10100)198 · 3 + · · ·+ 10100 · 3198 − 3199

so I is an integer. On the other hand since 3200

10100+3
< 1 we have that

⌊
1020000

10100+3

⌋
= I.

Finally the rightmost digit of I can be found as the 1-digit number congruent to
−3199 (mod 10). The sequence 3n mod 10 has period 4 and 199 = 3 + 4 · 49, hence
−3199 mod 10 = −33 mod 10 = −27mod 10 = 3. Hence the units digit of I is 3.

14.2. Let α be any (say the smallest) acute angle of a right triangle with sides 3, 4 and
5 (or any other Pythagorean triple). Next, place an infinite sequence of points
on the unit circle at coordinates (cos(2nα), sin(2nα)), n = 0, 1, 2, . . . (The sequence
contains in fact infinitely many points because α cannot be a rational multiple of π.)
The distance from (cos(2nα), sin(2nα)) to (cos(2mα), sin(2mα)) is 2 sin(|n−m|α),
so all we need to prove is that sin(kα) is rational for any k. This can be done
by induction using that sinα and cosα are rational, and if sinu, cos u, sin v and
cos(v) are all rational so are sin(u + v) = sin u cos v + cos u sin v and cos(u + v) =
cosu cos v − sinu sin v.

14.3. We can prove the first part by way of contradiction. Assume that we have colored
the points of the plane with three colors such that any two points at distance 1
have different colors. Consider any two points A and B at distance

√
3 (see figure

3). The circles of radius 1 and center A and B meet at two points P and Q,
forming equilateral triangles APQ and BPQ. Since the vertices of each triangle
must have different colors that forces A and B to have the same color. So any two
points at distance

√
3 have the same color. Next consider a triangle DCE with
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CD = CE =
√
3 and DE = 1. The points D and E must have the same color as

C, but since they are at distance 1 they should have different colors, so we get a
contradiction.

PA BQ
11 1 11

C D1E
p3p3

Figure 3

For the second part, if we replace “three” by “nine” then we can color the plane
with nine different colors so that any two points at distance 1 have different colors:
we can arrange them periodically in a grid of squares of size 2/3 × 2/3 as shown
in figure 4. If two points P and Q have the same color then either they belong to
the same square and PQ < (2/3)

√
2 < 1, or they belong to different squares and

PQ ≥ 4/3 > 1.

14.4. Since the values are positive integers, one of them, say n, will be the smallest one.
Look at any square with that value n. Since the values of its four neighbors must be
at least n and their average is n, all four will have value n. By the same reasoning
the neighbors of these must be n too, and so on, so all the squares must have the
same value n.

14.5. One or two points are obviously insufficient, but three can do it. Choose α ∈ R so
that α2 is irrational, for example α = 3

√
2. Use punches at A = (−α, 0), B = (0, 0),

and C = (α, 0). If P = (x, y) then

AP 2 − 2BP 2 + CP 2 = (x+ α)2 + y2 − 2(x2 + y2) + (x− α)2 + y2 = 2α2

is irrational, so AP , BP , CP cannot all be rational.

14.6. We have

f(n+ 2)− f(n+ 1) = (n+ 2)! = (n+ 2)(n+ 1)! = (n+ 2)(f(n+ 1)− f(n)) ,
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A

E

G H

A B

D E

D

I

E

B C A B C

D F E F

HGI

C A B C

F D F

Figure 4

hence
f(n+ 2) = (n+ 2)(f(n+ 1)− f(n)) + f(n+ 1)

= (n+ 3)f(n+ 1)− (n+ 2)f(n) ,

and we can take P (x) = x+ 3, Q(x) = −x− 2.

14.7. A conspiratorial subset of S = {1, 2, . . . , 16} has at most two elements from T =
{1, 2, 3, 5, 7, 11, 13}, so it has at most 2 + 16− 7 = 11 numbers. On the other hand
all elements of S \ T = {4, 6, 8, 9, 10, 12, 14, 15, 16} are multiple of either 2 or 3, so
adding 2 and 3 we obtain the following 11-element conspiratorial subset:

{2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16} .

Hence the answer is 11.

14.8. The statement is true. Let ϕ any bijection on F with no fixed points (ϕ(x) ̸= x for
every x), and set x ∗ y = ϕ(x). Then
(i) x∗z = y ∗z means ϕ(x) = ϕ(y), and this implies x = y because ϕ is a bijection.
(ii) We have x ∗ (y ∗ z) = ϕ(x) and (x ∗ y) ∗ z = ϕ(ϕ(x)), which cannot be equal

because that would imply than ϕ(x) is a fixed point of ϕ.

14.9. For a given partition π of {1, 2, 3, 4, 5, 6, 7, 8, 9}, no more than three different values
of π(x) are possible (four would require one part each of size at least 1,2,3,4, and
that’s already more than 9 elements). If no such x, y exist, each pair (π(x), π′(x))
occurs for at most 1 element of x, and since there are only 3 × 3 possible pairs,
each must occur exactly once. In particular, each value of π(x) must occur 3 times.
However, clearly any given value of π(x) occurs kπ(x) times, where k is the number
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of distinct parts of that size. Thus π(x) can occur 3 times only if it equals 1 or 3,
but we have three distinct values for which it occurs, contradiction.

14.10. The answer is 2n− 3.
Note that this number is attained with S = {1, 2, 3, . . . , n} because

2AS = {3, 4, . . . , n, n+ 1, n+ 2, . . . , 2n− 1}

has cardinality 2n− 3. It remains to prove that 2n− 3 is in fact minimum. That is
so because for any A = {a1, a2, . . . , an} with a1 < a2 < · · · < an we have that

a1 + a2 < a1 + a3 < a1 + a4 < · · · < a1 + an︸ ︷︷ ︸
n−1

< a2 + an < · · · < an−1 + an︸ ︷︷ ︸
n−2

are 2n− 3 distinct numbers.

14.11. We can group the terms of the sequence in the following way:

∞∑
n=1

an = a1︸︷︷︸
b0

+(a2 + a3)︸ ︷︷ ︸
b1

+(a4 + a5 + a6 + a7)︸ ︷︷ ︸
b2

+ · · ·+ (a2k + a2k+1 + · · ·+ a2k+1−1)︸ ︷︷ ︸
bk

+ · · ·

The condition implies that bk ≤ bk+1 for every k ≥ 0, hence the sequence diverges.

14.12. Alice adds the values of the coins in odd positions 1st, 3rd, 5th, etc., getting a sum
Sodd. Then she does the same with the coins placed in even positions 2nd, 4th, 6th,
etc., and gets a sum Seven. Assume that Sodd ≥ Seven. Then she will pick all the
coins in odd positions, forcing Bob to pick only coins in the even positions. To do so
she stars by picking the coin in position 1, so Bob can pick only the coins in position
2 or 50. If he picks the coin in position 2, Alice will the pick coin in position 3, if
he picks the coin in position 50 she picks the coin in position 49, and so on, with
Alice always picking the coin at the same side as the coin picked by Bob.
If Sodd ≤ Seven, then Alice will use a similar strategy ensuring that she will end up
picking all the coins in the even positions, and forcing Bob to pick the coins in the
odd positions—this time she will pick first the 50th coin, and then at each step she
will pick a coin at the same side as the coin picked by Bob.

14.13. By contradiction. If the equality f(x) = x never holds then f(x) > x for every x, or
f(x) < x for every x. Then f(f(x)) > f(x) > x for every x, or f(f(x)) < f(x) < x
for every x, contradicting the hypothesis that f ◦f has a fixed point.

14.14. By contradiction. Assume tan 1◦ is rational. Then tan 2◦ = tan (1◦ + 1◦) = tan 1◦+tan 1◦

1−tan 1◦ tan 1◦

would be rational too. Same for tan 3◦ = tan (2◦ + 1◦) = tan 2◦+tan 1◦

1−tan 2◦ tan 1◦
, . . . , tan (n+ 1)◦ =

tan (n◦ + 1◦) = tann◦+tan 1◦

1−tann◦ tan 1◦
, . . . , tan 30◦ = tan (29◦ + 1◦) = tan 29◦+tan 1◦

1−tan 29◦ tan 1◦
. But

tan 30◦ = 1√
3
is irrational.

14.15. Let x1 = 5
√
5 + 11, x2 = −5

√
5 + 11. These numbers are roots of the polynomial

(x−x1)(x−x2) = x2−22x−4, and consequently the sequence an = xn
1 +xn

2 verifies
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the recurrence:
an+2 = 22an+1 + 4an .

We also have a0 = 2, a1 = x1 + x2 = 22, hence by induction we get that an is even
for every n ≥ 0. On the other hand |x2| = 5

√
5 − 11 = 4

5
√
5+11

< 2
11

< 1, hence

0 < |x2|n < 1. Since x2 < 0 we have that x2n+1
1 = a2n+1 − x2n+1

2 = a2n+1 + |x2|2n+1,
where a2n+1 is even, and 0 < |x2|2n+1 < 1. So the integer part of x2n+1

1 equals a2n+1,
which is even, Q.E.D.


