Quiz \#1

Directions: Carefully read each question below and answer to the best of your ability in the space provided. Your answer to problem \# 2 should be written in a clear and concise manner.
You MUST show your work to receive full credit!

1. (5 points) Which of the following formulas correspond to the average value of the function $f(x)=e^{x}\left(x^{2}-x+1\right)$ on the interval $[-2,1]$?
A. $\int_{-2}^{1} e^{x}\left(x^{2}-x+1\right) d x$
B. $\frac{1}{3} \int_{-2}^{1} e^{x}(2 x-1) d x$
C. $\int_{1}^{-2} e^{x}\left(x^{2}-x+1\right) d x$
D. $\frac{1}{3} \int_{-2}^{1} e^{x}\left(x^{2}-x+1\right) d x$
E. None of the above
2. (5 points) Find the area of the region enclosed by two functions: $y=\sqrt{x}$ and $y=\frac{x}{2}$.

Solution: First, let's find where $y=\sqrt{x}$ and $y=\frac{x}{2}$ intersect. That is

$$
\sqrt{x}=\frac{x}{2} \quad \longrightarrow \quad x=\frac{x^{2}}{4} \quad \longrightarrow \quad x^{2}-4 x=0 \quad \longrightarrow \quad x(x-4)=0 \quad \longrightarrow \quad x=0 \text { or } x=4 .
$$

Thus, the area can be computed as following:

$$
\begin{aligned}
\text { Area } & =\int_{0}^{4}\left(\sqrt{x}-\frac{x}{2}\right) d x \\
& =\left.\left(\frac{2}{3} x^{\frac{3}{2}}-\frac{1}{4} x^{2}\right)\right|_{x=0} ^{x=4} \\
& =\left(\frac{2}{3} \cdot 8-\frac{1}{4} \cdot 16\right)-(0-0) \\
& =\frac{16}{3}-4 \\
& =\frac{4}{3}
\end{aligned}
$$

Name:
Section (circle one): 001002

Question:	1	2	Total
Points:	5	5	10
Score:			

