Quiz \#2

Directions: Carefully read each question below and answer to the best of your ability in the space provided. Your answer to problem \# 2 should be written in a clear and concise manner.
You MUST show your work to receive full credit!

1. (5 points) Evaluate the following indefinite integral

$$
\int\left(x^{3}\left(x^{4}+1\right)^{\frac{3}{4}}\right) d x
$$

Solution: Let $u=x^{4}+1$, then $\frac{d u}{d x}=4 x^{3}$ or $\frac{1}{4} d u=x^{3} d x$, then

$$
\int\left(x^{3}\left(x^{4}+1\right)^{\frac{3}{4}}\right) d x=\int \frac{1}{4} u^{\frac{3}{4}} d x=\frac{1}{4} u^{\frac{7}{4}} \frac{7}{4}+C=\frac{1}{7} u^{\frac{7}{4}}+C=\frac{1}{7}\left(x^{4}+1\right)^{\frac{7}{4}}+C
$$

2. (5 points) Find $\int x^{5} \ln (x) d x$ using integration by parts.

Solution: Set

$$
\begin{array}{cc}
u=\ln (x) & d v=x^{5} d x \\
d u=\frac{1}{x} d x & v=\frac{x^{6}}{6}
\end{array}
$$

Then

$$
\begin{aligned}
\int x^{5} \ln (x) d x & =u v-\int v d u \\
& =\ln (x) \frac{x^{6}}{6}-\int \frac{x^{6}}{6} \cdot \frac{1}{x} \\
& =\ln (x) \frac{x^{6}}{6}-\frac{1}{6} \int x^{5} d x \\
& =\ln (x) \frac{x^{6}}{6}-\frac{1}{6} \cdot \frac{x^{6}}{6}+C \\
& =\ln (x) \frac{x^{6}}{6}-\frac{x^{6}}{36}+C
\end{aligned}
$$

Name:
Section (circle one): 001002

Question:	1	2	Total
Points:	5	5	10
Score:			

