Quiz #2

Directions: Carefully read each question below and answer to the best of your ability in the space provided. Your answer to problem # 2 should be written in a clear and concise manner. You **MUST** show your work to receive full credit!

1. (5 points) Evaluate the following indefinite integral

$$\int \left(x^3(x^4+1)^{\frac{3}{4}}\right)dx$$

Solution: Let
$$u = x^4 + 1$$
, then $\frac{du}{dx} = 4x^3$ or $\frac{1}{4}du = x^3dx$, then

$$\int \left(x^3(x^4 + 1)^{\frac{3}{4}}\right)dx = \int \frac{1}{4}u^{\frac{3}{4}}dx = \frac{1}{4}\frac{u^{\frac{7}{4}}}{\frac{7}{4}} + C = \frac{1}{7}u^{\frac{7}{4}} + C = \frac{1}{7}(x^4 + 1)^{\frac{7}{4}} + C$$

2. (5 points) Find $\int x^5 \ln(x) dx$ using integration by parts.

Solution: Set	$u = \ln(x)$ $dv = x^5 dx$
	$du = \frac{1}{x} dx$ $v = \frac{x^6}{6}$.
Then	
	$\int x^5 \ln(x) dx = uv - \int v du$
	$=\ln(x)\frac{x^6}{6}-\int \frac{x^6}{6}\cdot \frac{1}{x}$
	$= \ln(x)rac{x^6}{6} - rac{1}{6}\int x^5 \; dx$
	$= \ln(x)\frac{x^6}{6} - \frac{1}{6} \cdot \frac{x^6}{6} + C$
	$= \boxed{\ln(x)\frac{x^6}{6} - \frac{x^6}{36} + C}$

Name: _____

Section (circle one): 001 002

Question:	1	2	Total
Points:	5	5	10
Score:			