Quiz \#8

Directions: Carefully read each question below and answer to the best of your ability in the space provided. Your answer to problems should be written in a clear and concise manner.
You MUST show your work to receive full credit!

1. (5 points) Find the images of $\vec{u}=\left[\begin{array}{c}5 \\ -2\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ under the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, defined by $T(\vec{x})=A \vec{x}$ with $A=\left[\begin{array}{cc}2 & 1 \\ 3 & -2\end{array}\right]$.

Solution:

$$
\begin{aligned}
& T(\vec{u})=\left[\begin{array}{cc}
2 & 1 \\
3 & -2
\end{array}\right]\left[\begin{array}{c}
5 \\
-2
\end{array}\right]=\left[\begin{array}{c}
8 \\
19
\end{array}\right] \\
& T(\vec{v})=\left[\begin{array}{cc}
2 & 1 \\
3 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
5 \\
-3
\end{array}\right]
\end{aligned}
$$

2. (5 points) For the following linear transformations find the corresponding 2×2 matrix.

Solution:

1. Dilation by a factor of 3

$$
\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]
$$

2. Rotation by 45 -degrees clockwise

$$
\begin{aligned}
R_{-45^{\circ}} & =\left[\begin{array}{cc}
\cos \left(-45^{\circ}\right) & -\sin \left(-45^{\circ}\right) \\
\sin \left(-45^{\circ}\right) & \cos \left(-45^{\circ}\right)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
-\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right]
\end{aligned}
$$

3. Identity matrix

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Hint: Recall that a general form of the rotation matrix R_{α} is

$$
R_{\alpha}=\left[\begin{array}{cc}
\cos (\alpha) & -\sin (\alpha) \\
\sin (\alpha) & \cos (\alpha)
\end{array}\right]
$$

where $\alpha>0$ would correspond to the rotation counterclockwise.

Name:
Section (circle one): 001002

Question:	1	2	Total
Points:	5	5	10
Score:			

