Quiz \#9

Directions: Carefully read each question below and answer to the best of your ability in the space provided. Your answer to problems should be written in a clear and concise manner.
You MUST show your work to receive full credit!

1. (5 points) Find the eigenvalues of the following matrix:

$$
A=\left[\begin{array}{ll}
2 & \frac{3}{2} \\
2 & 0
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left(\left[\begin{array}{cc}
2 & \frac{3}{2} \\
2 & 0
\end{array}\right]-\lambda\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\right) & =\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & \frac{3}{2} \\
2 & -\lambda
\end{array}\right]\right) \\
& =(2-\lambda)(-\lambda)-2\left(\frac{3}{2}\right) \\
& =\lambda^{2}-2 \lambda-3 \\
& =(\lambda-3)(\lambda+1)
\end{aligned}
$$

Therefore, A has 2 eigenvalues $\lambda_{1}=3$ and $\lambda_{2}=-1$.
2. (5 points) Find the least squares solution to the following system:

$$
\left[\begin{array}{cc}
1 & -2 \\
1 & 0 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]
$$

Solution:

1. Find $A^{T} A x=A^{T} y$ that is

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 0 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
1 & 0 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]} \\
\text { or }\left[\begin{array}{ll}
3 & 0 \\
0 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
7 \\
6
\end{array}\right]
\end{gathered}
$$

Hence the least squares solution is

$$
\hat{x}_{1}=\frac{7}{3} \quad \text { and } \quad \hat{x}_{2}=\frac{3}{4} .
$$

Name:
Section (circle one): 001002

Question:	1	2	Total
Points:	5	5	10
Score:			

