STA 291
Lecture 11

- **Describing Quantitative Data**
 - Measures of Central Location

Examples of mean and median

- Review of Chapter 5. using the probability rules
• You need a Calculator for the exam, but no laptop, no cellphone, no blackberry, no iphone, etc (anything that can transmitting wireless signal is not allowed)

• Location: Memorial Hall,
• Time: Tuesday 5-7pm.

• Talk to me if you have a conflict.
• A Formula sheet, with probability rules and sample mean etc will be available.

• Memorial Hall
• Feb. 23 5-7pm
• Covers up to mean and median of a sample (beginning of chapter 6). But not any measure of spread (i.e. standard deviation, inter-quartile range etc)

Chapter 1-5, 6(first 3 sections) + 23(first 5 sections)
Summarizing Data Numerically

- Center of the data
 - Mean (average)
 - Median
 - Mode (…will not cover)

- Spread of the data
 - Variance, Standard deviation
 - Inter-quartile range
 - Range
Mathematical Notation: Sample Mean

- Sample size \(n \)
- Observations \(x_1, x_2, \ldots, x_n \)
- Sample Mean “x-bar” --- a statistic

\[
\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}
\]

\[
= \frac{1}{n} \sum_{i=1}^{n} x_i
\]

\[\sum = \text{SUM}\]
Mathematical Notation: Population Mean for a finite population of size N

- Population size (finite) N
- Observations x_1, x_2, \ldots, x_N
- Population Mean “mu” --- a Parameter

\[
\mu = \frac{(x_1 + x_2 + \ldots + x_N)}{N} = \frac{1}{N} \sum_{i=1}^{N} x_i
\]
Infinite populations

• Imagine the population mean for an infinite population.
• Also denoted by \(\mu \) or \(\mu \)

• Cannot compute it (since infinite population size) but such a number exist in the limit.
• Carry the same information.
Infinite population

• When the population consists of values that can be ordered
• Median for a population also make sense: it is the number in the middle….half of the population values will be below, half will be above.
Mean

• If the distribution is highly skewed, then the mean is not representative of a typical observation

• Example:
 Monthly income for five persons
 1,000 2,000 3,000 4,000 100,000
 • Average monthly income: = 22,000
 • Not representative of a typical observation.
• Median = 3000
Median

- The median is the measurement that falls in the middle of the ordered sample.
- When the sample size n is odd, there is a middle value.
- It has the ordered index $(n+1)/2$.
- Example: 1.1, 2.3, 4.6, 7.9, 8.1

$n=5$, $(n+1)/2=6/2=3$, so index = 3,
Median = 3rd smallest observation = 4.6
Median

- When the sample size n is even, average the two middle values
- Example: 3, 7, 8, 9, $n=4,$
 \[(n+1)/2=5/2=2.5, \text{ index } = 2.5\]
 Median = midpoint between 2nd and 3rd smallest observation
 $= (7+8)/2 = 7.5$
Summary: Measures of Location

Mean - Arithmetic Average

\[
\begin{align*}
\text{Mean of a Sample} & : \bar{x} \\
\text{Mean of a Population} & : \mu
\end{align*}
\]

Median – Midpoint of the observations when they are arranged in increasing order

Notation: Subscripted variables
- \(n\) = # of units in the sample
- \(N\) = # of units in the population
- \(x\) = Variable to be measured
- \(x_i\) = Measurement of the \(ith\) unit

Mode
Mean vs. Median

<table>
<thead>
<tr>
<th>Observations</th>
<th>Median</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3, 4, 5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1, 2, 3, 4, 100</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>3, 3, 3, 3, 3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1, 2, 3, 100, 100</td>
<td>3</td>
<td>41.2</td>
</tr>
</tbody>
</table>
Mean vs. Median

- If the distribution is symmetric, then Mean=Median
- If the distribution is skewed, then the mean lies more toward the direction of skew
- Mean and Median Online Applet
Example

• the sample consist of 5 numbers, 3.6, 4.4, 5.9, 2.1, and the last number is over 10. (some time we write it as 10+)

• Median = 4.4

• Can we find the mean here? No
Example: Mean and Median

- Example: Weights of forty-year old men
 158, 154, 148, 160, 161, 182, 166, 170, 236, 195, 162
- Mean =
- Ordered weights: (order a large dataset can take a long time)
 148, 154, 158, 160, 161, 162, 166, 170, 182, 195, 236
- Median = 162
Eye ball the plot to find mean/median
• Extreme valued observations pulls mean, but not on median.

For data with a symmetric histogram, mean = median.
Using probability rule

• In a typical week day, a restaurant sells ? Gallons of house soup.

• Given that
 \[P(\text{ sell more than 5 gallon }) = 0.8 \]
 \[P(\text{ sell less than 10 gallon }) = 0.7 \]

• \[P(\text{ sell between 5 and 10 gallon}) = 0.5 \]
Why not always Median?

- Disadvantage: Insensitive to changes within the lower or upper half of the data.
- Example: 1, 2, 3, 4, 5, 6, 7 vs. 1, 2, 3, 4, 100,100,100
- For symmetric, bell shaped distributions, mean is more informative.
- Mean is easy to work with. Ordering can take a long time.
- Sometimes, the mean is more informative even when the distribution is slightly skewed.
<table>
<thead>
<tr>
<th>Census Data</th>
<th>Lexington</th>
<th>Fayette County</th>
<th>Kentucky</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>261,545</td>
<td>261,545</td>
<td>4,069,734</td>
<td>281,422,131</td>
</tr>
<tr>
<td>Area in square miles</td>
<td>306</td>
<td>306</td>
<td>40,131</td>
<td>3,554,141</td>
</tr>
<tr>
<td>People per sq. mi.</td>
<td>853</td>
<td>853</td>
<td>101</td>
<td>79</td>
</tr>
<tr>
<td>Median Age</td>
<td>35</td>
<td>34</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Median Family Income</td>
<td>$42,500</td>
<td>$39,500</td>
<td>$32,101</td>
<td>$40,591</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Real Estate Market Data</th>
<th>Lexington</th>
<th>Fayette County</th>
<th>Kentucky</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Housing Units</td>
<td>54,587</td>
<td>54,587</td>
<td>806,524</td>
<td>115,904,743</td>
</tr>
<tr>
<td>Average Home Price</td>
<td>$151,776</td>
<td>$151,776</td>
<td>$115,545</td>
<td>$173,585</td>
</tr>
<tr>
<td>Median Rental Price</td>
<td>$383</td>
<td>$383</td>
<td>$257</td>
<td>$471</td>
</tr>
<tr>
<td>Owner Occupied</td>
<td>52%</td>
<td>52%</td>
<td>64%</td>
<td>60%</td>
</tr>
</tbody>
</table>
Given a histogram, find approx mean and median
Five-Number Summary

• Maximum, Upper Quartile, Median, Lower Quartile, Minimum

• Statistical Software SAS output (Murder Rate Data)

<table>
<thead>
<tr>
<th>Quantile</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% Max</td>
<td>20.30</td>
</tr>
<tr>
<td>75% Q3</td>
<td>10.30</td>
</tr>
<tr>
<td>50% Median</td>
<td>6.70</td>
</tr>
<tr>
<td>25% Q1</td>
<td>3.90</td>
</tr>
<tr>
<td>0% Min</td>
<td>1.60</td>
</tr>
</tbody>
</table>
Five-Number Summary

- Maximum, Upper Quartile, Median, Lower Quartile, Minimum

- Example: The five-number summary for a data set is min=4, Q1=256, median=530, Q3=1105, max=320,000.

- What does this suggest about the shape of the distribution?
Box plot

- A box plot is a graphic representation of the five number summary --- provided the max is within 1.5 IQR of Q3 (min is within 1.5 IQR of Q1)
Attendance Survey Question

• On a 4”x6” index card
 – write down your name and section number
 – Question:

Pick one: Mean or Median

_______ is a measure more resistant to extreme valued observations in the sample.