Testing the hypothesis about Population Mean

- *Inference about a Population Mean, or compare two population means*
Which test?

- Tests about a population proportion (or 2 proportions) for population(s) with YES/NO type outcome.
- Tests about a population mean (or 2 means) for population(s) with continuous outcome. (normal or otherwise).
- If non-normal, we need large sample size
Different tests

• mean or proportion?

• 1 or 2 samples?

• Type of Ha?
One or two samples

Compare the (equality of)
 two proportions/two means ?

Or compare one proportion against a fixed
number? (one mean against a fixed
number?)
One-Sided Versus Two-Sided alternative hypothesis

• Two-sided hypothesis are more common
• Look for formulations like
 – “test whether the mean has changed”
 – “test whether the mean has increased”
 – “test whether the 2 means are the same”
 – “test whether the mean has decreased”
• Recall: Alternative hypothesis = research hypothesis
3 Alternatives about one population mean

\[H_0 : \mu = \mu_0 \]

<table>
<thead>
<tr>
<th>Research Hypothesis</th>
<th>One-Sided Tests</th>
<th>Two-Sided Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_A : \mu < \mu_0)</td>
<td>(H_A : \mu > \mu_0)</td>
<td>(H_A : \mu \neq \mu_0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>(z_{obs} = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)-value</td>
<td>(P(Z < z_{obs}))</td>
</tr>
<tr>
<td></td>
<td>(P(Z > z_{obs}))</td>
</tr>
<tr>
<td></td>
<td>(2 \cdot P(Z ></td>
</tr>
</tbody>
</table>
Example

• The mean age at first marriage for married men in a New England community was 28 years in 1790.
• For a random sample of 406 married men in that community in 1990, the sample mean and standard deviation of age at first marriage were 26 and 9, respectively.
• Q: Has the mean changed significantly?
Example – cont.

Hypotheses

- The null hypothesis

 \[H_0 : \mu = 28 \]

 i.e. here \(\mu_0 = 28 \)

- The alternative hypothesis is (recall the word changed?)

 \[H_1 : \mu \neq 28 \]
Example – cont.

Test Statistic

\[
z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}
\]

- But this uses population SD, we do not have that and only have sample SD, \(s=9\).
- When you use sample SD, you need to do student t-adjustment.
Example – cont.

• The test statistic should be

\[t = \frac{\bar{X} - \mu_0}{s / \sqrt{n}} \]
\[
\frac{26 - 28}{\sqrt{\frac{9}{406}}} = -4.4776
\]

\[
2P(t > | -4.4776 |) = 0.00000982
\]

- This is by using software……
- (2-sided) P-value
- Without a t-table software, we may use Z table as the df here is 405 (pretty big), the two tables are almost the same.
If I were using the Z table, then
\[2P(Z > 4.4776) = 2 \times (1 - 1.0000) = 0.0000? \]
(at least to 4 digits correct)

A p-value of 0.0000? Or p-value of 0.00000982 will lead to the same conclusion:

since it is way smaller than \(\alpha = 0.01 \), we reject the null hypothesis of “mean age = 28”
Example – cont.

In the exam we will say: use a significant level of 5% to make a decision. Etc

That is alpha
Example – cont.

• If t-table is not available (like in an exam), and sample size/df is over 100, use normal table (Z-table) to improvise. (with some small error)

• The p-value obtained is slightly smaller.
• Test the swimming/skiing/running etc timing after some equipment improvement.

• Usually the athlete is asked to try the new and old gears both and we shall record the differences. 0.5, 1.2, -0.06, ……0.66.

• Not a YES/NO outcome but a continuous one
• Seems to be a two sample? But if we look at the differences, there is only one difference
• Test about mean, one sample, two sided alternative hypothesis (population SD known)

\[H_0 : \mu = 0 \quad \text{vs.} \quad H_A : \mu \neq 0 \]

a) Suppose \(z = -2.6 \). Find the \(p \)-value. Does this provide strong, or weak, evidence against the null hypothesis?

Use table or applet to find \(p \)-value.

If sample SD were used we shall denote \(t = -2.7 \) etc.
p-Value

• The **p-value** is the probability, assuming that \(H_0 \) is true, that the test statistic, \(z \), takes values **at least as contradictory to** \(H_0 \) **as the value actually observed**

• **The p-value is not** the probability that the hypothesis is true
Small Sample Hypothesis Test for a Mean

• Assumptions
 – Quantitative variable, random sampling, population distribution is normal, any sample size

• Hypotheses
 – Same as in the large sample test for the mean
 \[H_0 : \mu = \mu_0 \text{ vs. } H_1 : \mu \neq \mu_0 \]
 or \[H_0 : \mu = \mu_0 \text{ vs. } H_1 : \mu > \mu_0 \]
 or \[H_0 : \mu = \mu_0 \text{ vs. } H_1 : \mu < \mu_0 \]
Hypothesis Test for a Mean

• Test statistic
 – Exactly the same as for the large sample test
 \[t_{\text{obs}} = \frac{\bar{X} - \mu_0}{s / \sqrt{n}} \]

• \(p \)-Value
 – Same as for the large sample test (one-or two-sided), but using the web/applet for the \(t \) distribution
 – Table only provides very few values, almost un-useable.

• Conclusion
 – Report \(p \)-value and make formal decision
• Not going to exam on “computing p-value by using t-table when sample size/df is small.

• Either df > 100 so use the Z table instead.
• Or sigma is known so still use Z-table.
• Or the p-value will be given.
• So, the computation of p-value for usis always from Z table. (in reality could from t-table or other)
Hypothesis Test for a Mean: Example

- A study was conducted of the effects of a special class designed to improve children’s verbal skills.
- Each child took a verbal skills test twice, before and after a three-week period in the class.
- \(X = 2^{\text{nd}} \text{ exam score} - 1^{\text{st}} \text{ exam score} \)
- If the population mean for \(X \), \(E(X) = \mu \) equals 0, then the class has no effect.
- Test the null hypothesis of no effect against the alternative hypothesis that the effect is positive.
- Sample \((n=8)\): 3, 7, 3, 3.5, 0, -1, 2, 1
Normality Assumption

• An assumption for the t-test is that the population distribution is normal
• In practice, it is impossible to be 100% sure if the population distribution is normal
• It is useful to look at histogram or stem-and-leaf plot (or normal probability plot) to check whether the normality assumption is reasonable
Normality Assumption

- Good news: The t-test is relatively robust against violations of the assumption that the population distribution is normal.
- Unless the population distribution is highly skewed, the p-values and confidence intervals are fairly accurate.
- However: The random sampling assumption must never be violated, otherwise the test results are completely invalid.
Decisions and Types of Errors in Tests of Hypotheses

• Terminology:
 – The alpha-level (significance level) is a number such that one rejects the null hypothesis if the p-value is less than or equal to it. The most common alpha-levels are .05 and .01
 – The choice of the alpha-level reflects how cautious the researcher wants to be
Type I and Type II Errors

• Type I Error: The null hypothesis is rejected, even though it is true.
• Type II Error: The null hypothesis is not rejected, even though it is false.
Type I and Type II Errors

<table>
<thead>
<tr>
<th>Condition of the null hypothesis</th>
<th>Reject null</th>
<th>Do not reject null</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>Type I error</td>
<td>Correct</td>
</tr>
<tr>
<td>False</td>
<td>Correct</td>
<td>Type II error</td>
</tr>
</tbody>
</table>
Type I and Type II Errors

• Terminology:
 – Alpha = Probability of a Type I error
 – Beta = Probability of a Type II error
 – Power = 1 – Probability of a Type II error

• For a given data, the smaller the probability of Type I error, the larger the probability of Type II error and the smaller the power

• If you need a very strong evidence to reject the null hypothesis (set alpha small), it is more likely that you fail to detect a real difference (larger Beta).
Type I and Type II Errors

• In practice, alpha is specified, and the probability of Type II error could be calculated, but the calculations are usually difficult (sample size calculation)

• How to choose alpha?
 • If the consequences of a Type I error are very serious, then chose a smaller alpha, like 0.01.
 • For example, you want to find evidence that someone is guilty of a crime.
 • In exploratory research, often a larger probability of Type I error is acceptable (like 0.05 or even 0.1)
Multiple Choice Question II

The P-value for testing the null hypothesis $\mu=100$ (two-sided) is $P-value=.001$. This indicates

a) There is strong evidence that $\mu = 100$

b) There is strong evidence that μ does not equal 100

c) There is strong evidence that $\mu > 100$

d) There is strong evidence that $\mu < 100$

e) If μ were equal to 100, it would be unusual to obtain data such as those observed
Multiple Choice Question example

- The P-value for testing the null hypothesis $\mu = 100$ (two-sided) is P-value = .001. Suppose that in addition you know that the z score of the test statistic was $z = 3.29$. Then

 a) There is strong evidence that $\mu = 100$
 b) There is strong evidence that $\mu > 100$
 c) There is strong evidence that $\mu < 100$
• If the conclusion of a testing hypothesis result in “reject the null hypothesis”. Suppose the alpha level used is 0.01.

• What would be the conclusion if we set the alpha = 0.05 instead? (everything else remain the same)
Attendance Survey Question 25

• On a 4”x6” index card
 – Please write down your name and section number
 – Today’s Question:

 – If we change the alpha level from 0.05 to 0.01, then the previous conclusion of “reject the null hypothesis”
 a. may change b. Remains un-changed
Multiple Choice Question example

A 95% confidence interval for \(\mu \) is (96,110). Which of the following statements about significance tests for the same data are correct?

a) In testing the null hypothesis \(\mu = 100 \) (two-sided), \(P > 0.05 \)

b) In testing the null hypothesis \(\mu = 100 \) (two-sided), \(P < 0.05 \)

c) In testing the null hypothesis \(\mu = x \) (two-sided), \(P > 0.05 \) if \(x \) is any of the numbers inside the confidence interval

d) In testing the null hypothesis \(\mu = x \) (two-sided), \(P < 0.05 \) if \(x \) is any of the numbers outside the confidence interval