• Data type:
 – Categorical/Qualitative and
 – Quantitative/Numerical
 within categorical (nominal and ordinal)
 within quantitative (discrete and continuous)
• How data are collected?
 experiments and surveys (polls)

Example of experiment: clinical trials testing the effectiveness of a new drug.

Example of survey: opinion polls.
In both methods, a key ingredient is randomness. “randomly select people to interview” (in survey) “randomly divide patients into two groups” (in experiment)

Observational Study = Survey
Methods of Collecting Data I
Observational Study

• An observational study observes individuals and measures variables of interest but does not attempt to influence the responses.

• The purpose of an observational study is to describe/compare groups or situations.

• Example: Select a sample of men and women age 18 and over and ask whether he/she smoke cigarette.
Methods of Collecting Data II
Experiment

• An experiment deliberately imposes some treatment on individuals in order to observe their responses.

• The purpose of an experiment is to study whether the treatment causes a change in the response.

• Example: Volunteers, divided randomly into two groups. One group would take aspirin daily, the other would not. After 3 years, determine for each group the proportion of people who had suffered a heart attack. (This is an actual study)
Methods of Collecting Data

Observational Study/Experiment

- **Observational Studies** are passive data collection
- We observe, record, or measure, but don’t interfere
- **Experiments** are active data production
- Experiments actively intervene by imposing some treatment in order to see what happens
- *Experiments can tell what caused the change, if any.*
• Why random?

• To eliminate bias.
Collecting data for a poll

Simple Random Sampling

• Each possible sample has the same probability of being selected.
• The sample size is usually denoted by n.
Example: Simple Random Sampling

• Population of 4 students: Adam, Bob, Christina, Dana

• Select a simple random sample (SRS) of size $n=2$ to ask them about their smoking habits

• 6 possible samples of size $n=2$:

 (1) A+B, (2) A+C, (3) A+D
 (4) B+C, (5) B+D, (6) C+D
Q: How to choose a SRS?
A: “Label and table”

• Give each unit in the population a unique label (usually a number, like SSN, SID, or phone number etc) (product serial #)

• Go to random number table to see which label (unit) should be selected as sample. [this step often done by computer now]
Q: How to choose a SRS?
A: “Label and table”

• Each of the six possible samples has to have the same probability of being selected
• For example, roll a die (or use a computer-generated random number) and choose the respective sample
• [Online random number Applet](#) acts like a table
How **not** to choose a SRS?

- Ask Adam and Dana because they are in your office anyway
 - “convenience sample”
- Ask who wants to take part in the survey and take the first two who volunteer
 - “volunteer sampling”
Problems with Volunteer Samples

- The sample will poorly represent the population
- Misleading conclusions
- BIAS – and no way to pin it down (how much is the bias?)
- Examples: Mall interview, Street corner interview, internet click survey, TV show audience phone-in the opinion.
Famous Example

- 1936 presidential election
- Alfred Landon vs. Franklin Roosevelt
- Literary Digest sent over 10 million questionnaires in the mail to predict the election outcome
- More than 2 million questionnaires returned
- Literary Digest predicted a landslide victory by Alfred Landon
• George Gallup used a much smaller random sample and predicted a clear victory by Franklin Roosevelt (modern technique were able to reduce the sample size n to 1500 or so)

• Roosevelt won with 62% of the vote

• Why was the Literary Digest prediction so far off?
Terminology

- Population
- Sample

- Parameter
- Estimator
Other Examples

• TV talk show, radio call-in polls
• “should the UN headquarters continue to be located in the US?”
• ABC poll with 186,000 callers: 67% no
• Scientific random sample with 500 respondents: 28% no
• The smaller **random** sample is much more trustworthy because it has less bias
• Cool inferential statistical methods can be applied to state that “the true percentage of all Americans who want the UN headquarters out of the US is between 24% and 32% etc.”

• These methods **cannot** be applied to a volunteer sample.
• http://www.pollster.com/pollster-faq/

• http://abcnews.go.com/PollingUnit/

• http://en.wikipedia.org/wiki/Clinical_trial
Collecting Data II --- Experiments

• **Example:** testing of new treatments or **drugs** via clinical trials.

• Testing a new product, etc.
• Clinical trial: **Double blinded, placebo controlled, randomized.**

• recruit volunteers that met specific requirements (have certain conditions). Statistician will decide how many subjects is enough. (usually from a few hundreds to a few thousands, depending on what you are looking for, what is the budget, how certain the result need be)
• Randomly decide if a volunteer is given the new drug or \textit{placebo} (sugar pill). Usually 50\%-50\% chance.

• Neither the subject nor the attending doctor know which is given to the subject. (to minimize psychological effects, also called placebo effects)

• Only a high level committee know.
• The idea is to match as closely as possible the subjects of the two groups. The only difference is the drug.

• The phrase “if everything else remain the same, the use of the drug for XXX patients can reduce the 5 year mortality rate by X%”
• Resulting data are analyzed by statistical procedure. (will cover later)
• Conclusion might be “proven beyond reasonable doubt that the new drug is better”. Or …
• Inconclusive…either no effect or the results too noisy (effect too small) that you do not see it clearly, or
• Clearly No effect.
• More than 40% of clinical trials result in abandoning of the drug. (either because of no good effect, or bad side effects) Very costly. (Hundreds of millions $)

• Any drug company announcing the abandoning of a (phase III) clinical trial usually result in their stock price going down significantly.

• Vioxx, phen-fen, ……Purdue Pharma to Withdraw Palladone ….
• Success story:
• Martha Stewart went to jail because of selling a drug company stock with inside information and then lied about it.

• Info: ImClone’s new drug (for cancer) was not statistically proven to be effective, Food and Drug Administration determined. So the stock price fall.
• Variations/refinements of SRS:

• Stratified sampling
• Cluster and multistage sampling
• Systematic sampling
Attendance Survey Question 2

• On a 4”x6” index card (or little piece of paper)
 – Name and section number
 – Today’s Question: The two ways of collecting data we covered today are
 (1) Surveys, and
 (2) ____________ (one word, begin with E).