STA 291
Lecture 3

• Data type:
 – Categorical/Qualitative and
 – Quantitative/Numerical
 within categorical (nominal and ordinal)
 within quantitative (discrete and continuous)

• How data are collected?
 experiments and surveys (polls)

Example of experiment: clinical trials testing
the effectiveness of a new drug.

Example of survey: opinion polls.

In both methods, a key ingredient is
randomness. “randomly select people to
interview” (in survey)
“randomly divide patients into two groups” (in
experiment)

Observational Study = Survey
Methods of Collecting Data I
Observational Study

- An observational study observes individuals and measures variables of interest but does not attempt to influence the responses.
- The purpose of an observational study is to describe/compare groups or situations.
- Example: Select a sample of men and women age 18 and over and ask whether he/she smoke cigarette.

Methods of Collecting Data II
Experiment

- An experiment deliberately imposes some treatment on individuals in order to observe their responses.
- The purpose of an experiment is to study whether the treatment causes a change in the response.
- Example: Volunteers, divided randomly into two groups. One group would take aspirin daily, the other would not. After 3 years, determine for each group the proportion of people who had suffered a heart attack. (This is an actual study)

Methods of Collecting Data
Observational Study/Experiment

- **Observational Studies** are passive data collection
- We observe, record, or measure, but don’t interfere
- **Experiments** are active data production
- Experiments actively intervene by imposing some treatment in order to see what happens
- **Experiments can tell what caused the change, if any.**
• Why random?
• To eliminate bias.

Collecting data for a poll

Simple Random Sampling

• Each possible sample has the same probability of being selected.
• The sample size is usually denoted by \(n \).

Example: Simple Random Sampling

• Population of 4 students: Adam, Bob, Christina, Dana
• Select a simple random sample (SRS) of size \(n=2 \) to ask them about their smoking habits
• 6 possible samples of size \(n=2 \):
 (1) A+B, (2) A+C, (3) A+D
 (4) B+C, (5) B+D, (6) C+D
Q: How to choose a SRS?
A: “Label and table”
- Give each unit in the population a unique label (usually a number, like SSN, SID, or phone number etc) (product serial #)
- Go to random number table to see which label (unit) should be selected as sample. [this step often done by computer now]

Q: How to choose a SRS?
A: “Label and table”
- Each of the six possible samples has to have the same probability of being selected
- For example, roll a die (or use a computer-generated random number) and choose the respective sample
- Online random number Applet acts like a table

How not to choose a SRS?
- Ask Adam and Dana because they are in your office anyway
 – “convenience sample”
- Ask who wants to take part in the survey and take the first two who volunteer
 – “volunteer sampling”
Problems with Volunteer Samples

- The sample will poorly represent the population
- Misleading conclusions
- BIAS – and no way to pin it down (how much is the bias?)
- Examples: Mall interview, Street corner interview, internet click survey, TV show audience phone-in the opinion.

Famous Example

- 1936 presidential election
- Alfred Landon vs. Franklin Roosevelt
- Literary Digest sent over 10 million questionnaires in the mail to predict the election outcome
- More than 2 million questionnaires returned
- Literary Digest predicted a landslide victory by Alfred Landon

• George Gallup used a much smaller random sample and predicted a clear victory by Franklin Roosevelt (modern technique were able to reduce the sample size n to 1500 or so)

• Roosevelt won with 62% of the vote

• Why was the Literary Digest prediction so far off?
Terminology

• Population
• Sample
• Parameter
• Estimator

Other Examples

• TV talk show, radio call-in polls
• “should the UN headquarters continue to be located in the US?”
• ABC poll with 186,000 callers: 67% no
• Scientific random sample with 500 respondents: 28% no
• The smaller random sample is much more trustworthy because it has less bias

• Cool inferential statistical methods can be applied to state that “the true percentage of all Americans who want the UN headquarters out of the US is between 24% and 32% etc.”
• These methods cannot be applied to a volunteer sample.
Collecting Data II --- Experiments

- Example: testing of new treatments or drugs via clinical trials.
- Testing a new product, etc.

• Clinical trial: Double blinded, placebo controlled, randomized.

• recruit volunteers that met specific requirements (have certain conditions). Statistician will decide how many subjects is enough. (usually from a few hundreds to a few thousands, depending on what you are looking for, what is the budget, how certain the result need be ….)
• Randomly decide if a volunteer is given the new drug or placebo (sugar pill). Usually 50%-50% chance.

• Neither the subject nor the attending doctor know which is given to the subject. (to minimize psychological effects, also called placebo effects)
• Only a high level committee know.

• The idea is to match as closely as possible the subjects of the two groups. The only difference is the drug.

• The phrase “if everything else remain the same, the use of the drug for XXX patients can reduce the 5 year mortality rate by X%”

• Resulting data are analyzed by statistical procedure. (will cover later)
• Conclusion might be “proven beyond reasonable doubt that the new drug is better”. Or …
• Inconclusive…either no effect or the results too noisy (effect too small) that you do not see it clearly, or
• Clearly No effect.
• More than 40% of clinical trials result in abandoning of the drug. (either because of no good effect, or bad side effects) Very costly. (Hundreds of millions $)
• Any drug company announcing the abandoning of a (phase III) clinical trial usually result in their stock price going down significantly.
• Vioxx, phen-fen,Purdue Pharma to Withdraw Palladone

• Success story:

• Martha Stewart went to jail because of selling a drug company stock with inside information and then lied about it.

• Info: ImClone’s new drug (for cancer) was not statistically proven to be effective, Food and Drug Administration determined. So the stock price fall.
Variations/refinements of SRS:

- Stratified sampling
- Cluster and multistage sampling
- Systematic sampling

Attendance Survey Question 2

- On a 4"x6" index card (or little piece of paper)
 - Name and section number
 - Today’s Question: The two ways of collecting data we covered today are
 (1) Surveys, and
 (2) ________ (one word, begin with E).