MA123 Exam 1

February 06 2008

NAME ____________________________ Section __________

Problem Answer
1 a b c d e
2 a b c d e
3 a b c d e
4 a b c d e
5 a b c d e
6 a b c d e
7 a b c d e
8 a b c d e
9 a b c d e
10 a b c d e
11 a b c d e
12 a b c d e
13 a b c d e
14 a b c d e
15 a b c d e

Instructions. Circle your answer in ink on the page containing the problem and on the cover sheet. After the exam begins, you may not ask a question about the exam. Be sure you have all pages (containing 15 problems) before you begin. A list of formulas that may be useful for this exam is on the last page (you may tear this page off if you wish).

For grading use:

Number of problems correct: ___________/15

SCORE: ___________/100
1. Find the domain of the function

\[F(s) = \frac{1}{\sqrt{s^2 - 1}} \]

(a) All \(s \) such that either \(-\infty < s < -1 \) or \(1 < s < \infty \)
(b) All \(s \) such that \(-1 < s < 1 \)
(c) All \(s \) such that \(-\infty < s < \infty \)
(d) All \(s \) such that either \(-\infty < s < 1 \) or \(1 < s < \infty \)
(e) All \(s \) such that \(0 < s < 1 \)

2. If the line given by \(s = A + B(t - 1) \) is perpendicular to the line \(s = t \) and contains the point \((1, 6)\) in the \((t, s)\)-plane, then

(a) \(A = 1, B = 4 \)
(b) \(A = 4, B = 1 \)
(c) \(A = 1, B = 6 \)
(d) \(A = 4, B = -1 \)
(e) \(A = 6, B = -1 \)

3. Find the average rate of change of the function

\[R(t) = \sqrt{2t + 7} \]

as \(t \) changes from 1 to 9.

(a) \(\frac{1}{3} \)
(b) \(\frac{1}{2} \)
(c) \(\frac{1}{4} \)
(d) 4
(e) 3
4. Which of the following is true for the function \(f(x) = |x - 1| \)?

(a) \(f \) is differentiable at \(x = 1 \) and \(x = 2 \).
(b) \(f \) is differentiable at \(x = 1 \), but not at \(x = 2 \).
(c) \(f \) is differentiable at \(x = 2 \), but not at \(x = 1 \).
(d) \(f \) is not differentiable at either \(x = 1 \) or \(x = 2 \).
(e) None of the above.

5. Suppose the height of an object above ground at time \(t \) (in seconds) is measured by \(h(t) \) (in feet). If
\[
h(t) = -16t^2 + 40t + 120,
\]
what is the speed of the object at time \(t = 0 \)?

(a) 16 feet per second
(b) 32 feet per second
(c) 120 feet per second
(d) 40 feet per second
(e) 56 feet per second

6. Find
\[
\lim_{r \to 1} \frac{r^2 - 3r + 2}{r - 1}
\]

(a) 1
(b) 0
(c) −1
(d) 2
(e) Does not exist
7. Consider a triangle with base \(x \) and height \(2x \). Find the instantaneous rate of change of the area of the triangle with respect to \(x \) when \(x = 5 \).

(a) 1
(b) 2
(c) 5
(d) 10
(e) 20

8. For the function
\[
f(x) = \begin{cases}
4x^2 - 1 & \text{if } x < 1 \\
3x + 2 & \text{if } x \geq 1
\end{cases}
\]
find
\[
\lim_{x \to 1^+} f(x)
\]

(a) 5
(b) 3
(c) 1
(d) 0
(e) Does not exist

9. Let \(g(s) = s^2 - 3s + 1 \). Find a value \(A \geq 0 \) such that the average rate of change of \(g(s) \) from 0 to \(A \) equals 8.

(a) 0
(b) 8
(c) 11
(d) 15
(e) 22
10. Find all values of a such that the function

$$f(x) = \begin{cases}
 x^2 + 2x & \text{if } x < a \\
 -1 & \text{if } x \geq a
\end{cases}$$

is continuous everywhere.

(a) $a = -1$ only
(b) $a = -2$ only
(c) $a = -1$ and $a = 1$
(d) $a = -2$ and $a = 2$
(e) all real numbers

11. Let $f(t) = 3t^2 + 6t + 1$. Find the value of t for which the tangent line to the graph of $f(t)$ has slope 1.

(a) -1
(b) $-\frac{5}{6}$
(c) 0
(d) $\frac{7}{6}$
(e) 6

12. A train travels from city A to city B to city C. The distance from A to B is 20 miles. The distance from B to C is 45 miles. The train took 1 hour for the trip from A to B, stopped at city B for 30 minutes, and then went from B to C at an average speed of 30 miles per hour. What was the average speed of the train for the entire trip (in miles per hour)?

(a) 65
(b) 25
(c) $\frac{65}{7}$
(d) 50
(e) $\frac{65}{3}$
13. Find the instantaneous rate of change of the function \(H(t) = t^3 \) at \(t = 2 \).

(a) 2
(b) 3
(c) 8
(d) 12
(e) 27

14. If \(R(t) = t + 2 \) and \(R(Q(t)) = t \) then

(a) \(Q(t) = 2t \)
(b) \(Q(t) = t \)
(c) \(Q(t) = t - 2 \)
(d) \(Q(t) = t + 2 \)
(e) \(Q(t) = 2 - t \)

15. Suppose the cost \(C(q) \) (in dollars) of producing a quantity \(q \) of a product equals

\[
C(q) = 500 + 2q + \frac{1}{5}q^2
\]

The marginal cost \(M(q) \) equals the instantaneous rate of change of the total cost. Find the marginal cost when a quantity of 10 items are being produced.

(a) 2
(b) 6
(c) 10
(d) 20
(e) 500
List of Formulas:

1. You may use the following formula for the derivative of a quadratic function. If
\[p(x) = Ax^2 + Bx + C \]
then
\[p'(x) = 2Ax + B \]

2. The area of a triangle with base \(b \) and height \(h \) is \(\frac{1}{2}bh \).

3. If you cover a distance of \(d \) miles in \(t \) hours at a rate of \(r \) miles per hour, then \(d = rt \).