MA123 Exam 2

March 5 2008

NAME ____________________________ Section __________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a b c d e</td>
</tr>
<tr>
<td>2</td>
<td>a b c d e</td>
</tr>
<tr>
<td>3</td>
<td>a b c d e</td>
</tr>
<tr>
<td>4</td>
<td>a b c d e</td>
</tr>
<tr>
<td>5</td>
<td>a b c d e</td>
</tr>
<tr>
<td>6</td>
<td>a b c d e</td>
</tr>
<tr>
<td>7</td>
<td>a b c d e</td>
</tr>
<tr>
<td>8</td>
<td>a b c d e</td>
</tr>
<tr>
<td>9</td>
<td>a b c d e</td>
</tr>
<tr>
<td>10</td>
<td>a b c d e</td>
</tr>
<tr>
<td>11</td>
<td>a b c d e</td>
</tr>
<tr>
<td>12</td>
<td>a b c d e</td>
</tr>
<tr>
<td>13</td>
<td>a b c d e</td>
</tr>
<tr>
<td>14</td>
<td>a b c d e</td>
</tr>
<tr>
<td>15</td>
<td>a b c d e</td>
</tr>
</tbody>
</table>

Instructions. Circle your answer in ink on the page containing the problem and on the cover sheet. After the exam begins, you may not ask a question about the exam. Be sure you have all pages (containing 15 problems) before you begin. For grading use:

Number of problems correct: ________/15

SCORE: ________/100
1. If \(f(x) = \frac{-x^2}{x^2 - 1} \) then \(f'(x) = \)

(a) \(\frac{-x^2 - 1}{(x^2 - 1)^2} \)

(b) \(\frac{1}{x^2} \)

(c) \(\frac{-x^2 - 1}{x^2} \)

(d) \(\frac{x^2 + 1}{x^2 - 1} \)

(e) \(\frac{x^2 + 1}{(x^2 - 1)^2} \)

2. If \(F(s) = \sqrt{2s + 2} \), find \(F'(1) \).

(a) \(\frac{1}{2} \)

(b) \(\frac{1}{2\sqrt{2}} \)

(c) \(\frac{1}{\sqrt{2}} \)

(d) \(\frac{3}{2\sqrt{2}} \)

(e) \(\frac{3}{2} \)

3. If \(g(t) = \frac{1}{t^2 + 1} \), then the slope of the tangent line to the graph of \(g(t) \) at \(t = 3 \) is

(a) \(-\frac{1}{25} \)

(b) \(-\frac{2}{25} \)

(c) \(-\frac{1}{50} \)

(d) \(-\frac{3}{50} \)

(e) \(-\frac{4}{25} \)
4. If \(R(x) = (x - 2)(x^2 - 2)(x^3 - 2) \), find \(R'(2) \).

 (a) 0
 (b) 12
 (c) 48
 (d) −8
 (e) −6

5. Suppose \(f(t) = H(G(t)) \) and \(H(3) = 5, H'(3) = 4, G(2) = 3, \) and \(G'(2) = 7 \). Find \(f'(2) \).

 (a) 12
 (b) 35
 (c) 28
 (d) 15
 (e) 43

6. If \(G(s) = u(s^2) \) and \(u(1) = 10, u'(1) = 4, u(-1) = 7, \) and \(u'(-1) = 2, \) then \(G'(-1) = \)

 (a) −20
 (b) 4
 (c) 10
 (d) 2
 (e) −8
7. Let \(f(x) = |x^2 - 1| + 2 \). Find the minimum of \(f(x) \) on the interval \([-3, 3]\).

 (a) 3
 (b) 0
 (c) 1
 (d) 2
 (e) −1

8. Let \(Q(t) = t^2 \). Find a value \(A \) such that the average rate of change of \(Q(t) \) from 1 to \(A \) equals the instantaneous rate of change of \(Q(t) \) at \(t = 2A \).

 (a) 1
 (b) \(\frac{1}{3} \)
 (c) \(\frac{1}{4} \)
 (d) \(\frac{1}{5} \)
 (e) Does not exist

9. Suppose the derivative of a function \(g(x) \) is given by \(g'(x) = x^2 - 1 \). Find all intervals on which \(g(x) \) is increasing.

 (a) \((−\infty, \infty)\)
 (b) \((-1, 1)\)
 (c) \((−\infty, −1) \text{ and } (1, \infty)\)
 (d) \((0, \infty)\)
 (e) \((−\infty, 0)\)
10. Suppose \(f(t) = 2t^3 - 9t^2 + 12t + 31 \). Find the value of \(t \) in the interval \([0, 3]\) where \(f(t) \) takes on its minimum.

(a) 0
(b) 1
(c) 2
(d) 3
(e) Neither the maximum nor the minimum exists on the given interval.

11. Suppose that \(f(x) = xg(x) \), and for all positive values of \(x \) the function \(g(x) \) is negative (i.e., \(g(x) < 0 \)) and decreasing. Which of the following is true for the function \(f(x) \)?

(a) \(f(x) \) is negative and decreasing for all positive values of \(x \).
(b) \(f(x) \) is positive and increasing for all positive values of \(x \).
(c) \(f(x) \) is negative and increasing for all positive values of \(x \).
(d) \(f(x) \) is positive and decreasing for all positive values of \(x \).
(e) None of the above

12. If \(Q(s) = s^7 + 1 \), find

\[
\lim_{h \to 0} \frac{Q(1 + h) - Q(1)}{h}
\]

(a) 2
(b) 5
(c) 6
(d) 7
(e) 8
13. Suppose \(f(t) = \frac{F(t)}{t} \) and \(F(1) = 2, \ F'(1) = 6 \). Find \(f'(1) \).

(a) 2
(b) 4
(c) 1
(d) −4
(e) −1

14. If the line \(y = 9 + 3(x − 4) \) is tangent to the graph of \(G(x) \) at \(x = 4 \) and \(G(x) \) is differentiable at \(x = 4 \), then \(G(4) − G'(4) \) equals

(a) 3
(b) 4
(c) 5
(d) 6
(e) 9

15. Suppose the derivative of \(H(s) \) is given by \(H'(s) = s^2(s + 1) \). Find the value of \(s \) in the interval \([-100, 100]\) where \(H(s) \) takes on its minimum.

(a) −100
(b) −1
(c) 0
(d) 1
(e) 100