1. **Theorem 2.32**
 For all natural numbers \(n \), \((n, n + 1) = 1\).

 Proof 1: Observe that \(n \cdot (-1) + (n+1) \cdot 1 = 1 \). Then by Theorem 1.39, \(\gcd(n, n+1) = 1 \).

 Proof 2: Assume \(d \) is a natural number such that \(d|n \) and \(d|(n + 1) \). Then \(d|((n + 1) - n) \), so \(d|1 \). Thus \(d = 1 \) or \(d = -1 \). Therefore, the largest common divisor of \(n \) and \(n + 1 \) is \(1 \).

2. **Theorem 2.33**
 Let \(k \) be a natural number. Then there exists a natural number \(n \) (which will be much larger than \(k \)) such that no natural number less than \(k \) and greater than \(1 \) divides \(n \).

 Proof: Consider \(n = k! + 1 \). We claim that no natural number \(m \) between \(2 \) and \(k \) divides \(m \). Otherwise, if such \(m \) divides \(n \) then \(m|(n - k!) \), as \(m|k! \). Thus \(m|1 \), which implies \(m = 1 \).

3. **Theorem 2.34**
 Let \(k \) be a natural number. Then there exists a prime larger than \(k \).

 Proof: If \(k \) is \(1 \) then a larger prime is \(2 \), and we are done. So assume \(k \geq 2 \). Consider the set of all primes \(p_1, p_2, \ldots, p_n \) that are less than or equal to \(k \). Let \(m = p_1p_2 \cdots p_n + 1 \). Then none of the \(p_1, p_2, \ldots, p_n \) divide \(m \); else such a \(p_i \) divides \(m - p_1p_2 \cdots p_n = 1 \), forcing \(p_i = 1 \). Therefore all primes in the prime factorization of \(m \) are greater than \(k \). We conclude that there must exist a prime greater than \(k \).

4. **Theorem 2.35 (Infinitude of Primes Theorem)**
 There are infinitely many prime numbers.

 Proof: Assume the number of primes is finite. Let \(S = \{p_1, p_2, \ldots, p_n\} \) be the set of all primes. Let \(m = p_1p_2 \cdots p_n + 1 \). By the argument in Theorem 2.34, \(m \) has a prime factor other than \(p_1, p_2, \ldots, p_n \). Thus we have found a prime not in the set \(S \), which is a contradiction. Therefore the number of primes is infinite.