Newton's Approximation of Pi

By: Sarah Riffe
and Jen Watt
Outline

• Who was Isaac Newton? What was his life like?

• What is the history of Pi?

• What was Newton’s approximation of Pi?
History of Isaac Newton

- 17th Century

 - Shift of progress in math

 - “relative freedom” of thought in Northern Europe
The Life of Newton

- Born: Christmas day 1642
- Died: 1727
- Raised by grandmother
Newton’s Education

• 1661
• Began at Trinity College of Cambridge University

• 1660
• Charles II became King of England
• Suspicion and hostility towards Cambridge
Newton, the young man

• “single minded”
 - Would not eat or sleep over an intriguing problem

• Puritan
 - Book of sins
Newton's Studies

• 1664
 - Promoted to scholar at Trinity

• 1665-1666
 - Plague
 - Newton’s most productive years
Newton’s Discoveries

• 1665
 - Newton’s “generalized binomial theorem”
 - led to method of fluxions

• 1666
 - Inverse method of fluxions
 - Began observations of rotation of planets
Newton’s Accomplishments

• 1668
 - Finished master’s degree
 - Elected fellow of Trinity College

• 1669
 - Appointed Lucasian chair of mathematics
Newton's Accomplishments

• @ 1704
 - Elected President of the Royal Society

• 1705
 - Knighted by Queen Anne

• 1727
 - Buried in Westminster Abbey
The History of Pi

• Archimedes' classical method
 - Using Polygons with inscribed and circumscribed circles
- Found Pi between 223/71 and 22/7
 • ≈ 3.14
Important Dates of Pi

• 150 AD
 - First notable value for Pi by Caludius Ptolemy of Alexandria
 - \(\pi = 3 \ 8'30'' \)
 - \(= \frac{377}{120} \)
 - \(= 3.1416 \)
• 480 AD
 - TSU Ch’ung-chih from China gave rational approximation
 - $\pi = \frac{355}{113}$
 = 3.1415929

• 530 AD
 - Hindu mathematician Aryabhata
 - $\pi = \frac{62,832}{20,000}$
 = 3.1416
• 1150 AD
 - Bhaskara
 - $\pi = 3\frac{927}{1250}$
 - $\pi = \frac{22}{7}$
 - $\pi = \frac{754}{240}$
 - ≈ 3.1416
• 1429 AD
 - Al- Kashi
 - Astronomer approximated Pi to 16 decimal places

• 1579 AD
 - Francois Viete from France
 - Approximated Pi to 9 decimal places
• 1585 AD
 - Adriaen Anthoniszoon
 - Rediscovered Chinese ratio 355/113
 - $377/120 > \pi > 333/106$

• 1593 AD
 - Adriaen Von Roomen
 - Found π to the 15th decimal place by classical method using polygons with 2^{30}th sides
• 1610 AD
 - Ludolph Van Ceulen of the Netherlands
 - Pi ~ 30 decimal places
 - Used polygons with 2^{62} sides
• 1621 AD
 - Willebrord Snell (Dutch)
 - Able to get Ceulen’s 35th decimal place by only 2^{30} side polygon
• 1630 AD
 - Grienberger
 - Pi to 39 decimal places

• 1671
 - James Gregory from Scotland obtained infinite series

\[
\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \ldots (-1 \leq x \leq 1)
\]
• 1699 AD
 - Abraham Sharp
 - Pi ~ 71 decimal places
• 1706 AD
 - John Machin
 - Pi ~ 100^{th} decimal place
• 1719 AD
 - De Lagny of France
 - Pi ~ 112 decimal places

• 1737 AD
 - William Jones from England
 - First to use Pi symbol for ratio of the circumference to the diameter
• 1767 AD
 - Johan Heinrich Lambert
 - Showed Pi is irrational
• 1794 AD
 - Adrien-Marie Legendre
 - Showed Pi-squared is irrational
• 1841 AD
 - William Rutherford
 - Calculated Pi to 208 places

• 1844 AD
 - Zacharis Dase found Pi correct to 200 places using Gregory Series

\[
\frac{\pi}{2} = \arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{5}\right) + \arctan\left(\frac{1}{8}\right)
\]
• 1853 AD
 - Rutherford returns
 - Finds Pi to 400 decimal places

• 1873 AD
 - William Shanks from England
 - Pi to 707 decimal places

• 1882 AD
 - F. Lindeman
 - Shows Pi is transcendental
• 1948
 - D.F. Ferguson of England
 • Finds errors with Shanks value of Pi starting with the 528\(^{th}\) decimal place
 • Gives correct value to the 710\(^{th}\) place
 - J.W. Wrench Jr.
 • Works with Ferguson to find 808\(^{th}\) place for Pi

 Used Machin’s formula

 \[
 \frac{\pi}{4} = 3 \arctan\left(\frac{1}{4}\right) + \arctan\left(\frac{1}{20}\right) + \arctan\left(\frac{1}{1985}\right)
 \]
• 1949 AD
 - Electronic computer - The ENIAC
 - Compute Pi to the 2,037th decimal places

• 1959 AD
 - Fancois Genuys from Paris
 - Compute Pi to 16,167 decimal places with IBM 704
• 1961 AD
 - Wrench and Shanks of Washington D.C.
 - compute Pi to 100,265th
 using IBM 7090

• 1966 AD
 - M. Jean Guilloud and co-workers
 - attained approximation for Pi
 to 250,000 decimal places on a STRETCH computer
• 1967 AD
 - M. Jean Guilloud and coworkers
 - found Pi to the 500,000 places on a CDC 6600

• 1973
 - M. Jean Guilloud and coworkers found Pi to 1 millionth place on CDC 7600

• 1981 AD
 - Kazunori Miyoshi and Kazuhika Nakayma of the University of Tsukuba
 - Pi to 2 million and 38 decimal places in 137.30 hours on a FACOM M-200 computer
• 1986 AD
 - DH Bailey of NASA Ames Research Center ran a Cray-2 supercomputer for 28 hours
 • Got Pi to 29,360,000 decimal places
 - Yasamasa Kanada from University of Tokyo
 • Used NEC SX-2 super computer to compute Pi to 134,217,700 decimal places
Purpose to Continue to Compute Pi

- See if digits of Pi start to repeat
 - Possible normalcy of Pi
- Valuable in computer science for designing programs
Information Already known

\[
\left(x - \frac{1}{2}\right)^2 + (y - 0)^2 = \frac{1}{2}
\]

or

\[
x^2 - x + \frac{1}{4} + y^2 = \frac{1}{4}
\]
Solve for “y”

\[y = x^{1/2} (1 - x)^{1/2} \]

\[= x^{1/2} \left(1 - \frac{1}{2} x - \frac{1}{8} x^2 - \frac{1}{16} x^3 - \frac{5}{128} x^4 - \frac{7}{256} x^5 - \ldots \right) \]

\[= x^{1/2} - \frac{1}{2} x^{3/2} - \frac{1}{8} x^{5/2} - \frac{1}{16} x^{7/2} - \frac{5}{128} x^{9/2} - \frac{7}{256} x^{11/2} - \ldots \]
Area (ABD) by fluxion

\[
\frac{2}{3} x^{3/2} - \frac{1}{2} \left(\frac{2}{5} x^{5/2} \right) - \frac{1}{8} \left(\frac{2}{7} x^{7/2} \right) - \frac{1}{16} \left(\frac{2}{9} x^{9/2} \right) - \ldots
\]

\[
= \frac{2}{3} x^{3/2} - \frac{1}{5} x^{5/2} - \frac{1}{28} x^{7/2} - \frac{1}{72} x^{9/2} - \frac{5}{704} x^{11/2} - \ldots
\]
\[
\left(\frac{1}{4} \right)^{3/2} = \left(\sqrt[3]{\frac{1}{4}} \right)^3 = \frac{1}{8}, \quad \left(\frac{1}{4} \right)^{5/2} = \left(\sqrt[5]{\frac{1}{4}} \right)^5 = \frac{1}{32} \ldots
\]

\[
\frac{1}{12} - \frac{1}{160} - \frac{1}{3584} - \frac{5}{1441792} \ldots - \frac{429}{163208757248} = .07677310678
\]
Area (ABD) by geometry

\[BD = \sqrt{\left(\frac{1}{2}\right)^2 - \left(\frac{1}{4}\right)^2} = \sqrt{\frac{3}{16}} = \frac{\sqrt{3}}{4} \]

\[\text{Area}(\triangle DBC) = \frac{1}{2} (BC) \times (BD) = \frac{1}{2} \left(\frac{1}{4}\right) \left(\frac{\sqrt{3}}{4}\right) = \frac{\sqrt{3}}{32} \]
Area(sector) = \frac{1}{3} \text{Area(semicircle)}

= \frac{1}{3} \left(\frac{1}{2} \cdot \pi \cdot r^2 \right)

= \frac{1}{3} \left[\frac{1}{2} \pi \left(\frac{1}{2} \right)^2 \right]

= \frac{\pi}{24}
Area(ABD) = Area(sector) − Area(ΔDBC)

= \frac{\pi}{24} − \frac{\sqrt{3}}{32}

π ≈ 24 \left(0.07677310678 + \frac{\sqrt{3}}{32}\right) = 3.141592668...