1. Consider the following matrices.

\[A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}, \quad D = \begin{pmatrix} 4 & -2 \\ 2 & -1 \end{pmatrix}. \]

(a) Compute the matrices \(AB \) and \(BA \).
(b) Compute the matrices \(CD \) and \(DC \).

2. (Diagonal matrices) A square matrix is called a diagonal matrix if all entries off of the main diagonal are 0.

(a) Let \(A \) be any \(n \times 2 \) matrix and let \(B = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \). Describe the columns of the matrix \(AB \) in terms of the columns of \(A \).
(b) Generalize part (a) to describe the columns of \(AB \) if \(A \) is \(n \times k \) and \(B \) is the diagonal matrix

\[\begin{pmatrix} b_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & b_k \end{pmatrix}. \]
(c) Let \(A \) be any \(2 \times n \) matrix and let \(B = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \). Describe the rows of the matrix \(BA \) in terms of the rows of \(A \).
(d) Generalize part (c) to describe the rows of \(BA \) if \(A \) is \(n \times k \) and \(B \) is the diagonal matrix

\[\begin{pmatrix} b_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & b_n \end{pmatrix}. \]

3. (Scalar matrices) A diagonal matrix in which all of the diagonal entries are the same is called a scalar matrix. Use the previous problem to show that if \(A \) is any \(n \times n \) matrix and \(D \) is an \(n \times n \) scalar matrix, then \(AD = DA \). What is another description of the matrix \(AD \)?

4. One of the following three matrices has an inverse. Which one?

\[A = \begin{pmatrix} 1 & 3 & -2 \\ 1 & 1 & -2 \\ -2 & 7 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 3 & -2 \\ 0 & 1 & -1 \\ -4 & 0 & 6 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & 0 & -3 \\ 1 & 6 & -2 \\ -4 & 0 & 6 \end{pmatrix}. \]

Hint: You shouldn’t need to do any row reducing to eliminate two possibilities.