Problem 1. (The Cantor set) Let $C_0 = I$. For $k \geq 1$, define $C_k \subseteq I$ inductively by

$$C_k = C_{k-1} \cap \left(\left[0, \frac{1}{3^k} \right] \cup \left[\frac{2}{3^k}, \frac{3}{3^k} \right] \cup \left[\frac{4}{3^k}, \frac{5}{3^k} \right] \cup \cdots \cup \left[\frac{3^k-1}{3^k}, 1 \right] \right)$$

(so each C_k is a union of intervals, and each C_k is obtained from C_{k-1} by removing the “middle thirds” of the intervals). Define the cantor set by $C = \bigcap_k C_k$.

Show that C is totally disconnected. (Hint: what do the components of each C_k look like?)

Problem 2. Give an example of a locally connected X and a continuous $f : X \to Y$ such that $f(X)$ is not locally connected.

Problem 3. Let $X = \mathbb{N}$, equipped with the cofinite topology (see HW1, problem 7). Show that X is connected and locally connected, but not path connected or locally path connected.

Problem 4. Show that if X is Hausdorff, then limits of sequences in X are unique. That is, if $\{x_n\}$ converges to both x and y, then $x = y$.

Problem 5. (i) Show that a space X is Hausdorff if and only if the diagonal $\Delta(X) \subseteq X \times X$ is closed. By HW3, problem 1(iii), this shows that if Y is any space and f, g are continuous functions $Y \to X$ which agree on a dense subset of Y, then $f = g$.

(ii) Show that if Y is Hausdorff and $f : X \to Y$ is continuous, then the graph of f is closed in $X \times Y$.

Problem 6. A subset $A \subseteq X$ is said to be **locally closed** if it can be written as the intersection of an open set and a closed set.

(i) Show that for any space X, the diagonal $\Delta(X) \subseteq X \times X$ is always locally closed.
(Hint: Say a point \((x, y) \in X \times X\) is “bad” if \(x\) and \(y\) do not satisfy the Hausdorff property; that is, \((x, y)\) is bad if every pair of neighborhoods \(U_x\) and \(U_y\) intersect nontrivially. Show that if \(B\) denotes the set of bad points, then \(\Delta(X) = \Delta(X) \cup B\). Then show that \(B\) is closed by showing that it contains its accumulation points.)

(ii) Conclude that for a continuous map \(f : X \to Y\) between arbitrary spaces \(X\) and \(Y\), the graph of \(f\) is locally closed in \(X \times Y\).

Problem 7. (The line with doubled origin) Let \(Y\) be the quotient of \(\mathbb{R} \times \{-1, 1\}\) by the relation \((x, -1) \sim (x, 1)\) if \(x \neq 0\).

(i) Show that \(Y\) is not Hausdorff.

(ii) Define \(f, g : \mathbb{R} \to Y\) by \(f(x) = (x, 1)\) and \(g(x) = (x, -1)\). Show that \(f\) and \(g\) are both continuous. Note, however, that they agree on the dense subset \(\mathbb{R} \setminus \{0\}\) but are clearly not equal.