1. Power, Maclaurin, and Taylor Series
 (a) Find the Maclaurin series for \(\frac{x^2}{1+x} \).
 (b) Find the Taylor series for \(\cos x \) about \(a = \pi/2 \).
 (c) Find the Taylor series centered at \(c = 0 \) of \(\frac{2}{4-3x} \) and determine its radius of convergence.
 (d) Find the Taylor series centered at zero of the function \(f(x) = \ln(x+5) \).
 (e) Find the Taylor series centered at zero of the function \(g(x) = x^3 \ln(x^2 + 5) \).

2. Compute \(T_3(x) \), the Taylor polynomial of the third order centered at \(x = 0 \), for \(f(x) = \cos(x/\pi) \).

3. Compute \(T_n(x) \), the Taylor polynomial of the \(n \)th order centered at \(x = 0 \), for \(f(x) = e^{3x} \).

4. Let \(f(x) = e^{-x} \). First compute \(T_3(x) \) and then use the error bound to show that \(|f(x) - T_3(x)| \leq x^4/24 \) for all \(x \geq 0 \).

5. Density and average value:
 (a) Find the total mass of a circular plate of radius 20 cm whose mass density is the radial function \(\rho(r) = 0.03 + 0.01 \cos(\pi r^2) \) g/cm\(^2\).
 (b) Find the average value of \(f(x) = \sin(x) \cos(x) \) over \([0, \pi]\).

6. Volume of solid with known cross section:
 Calculate the volume of the following solid. The base is the region enclosed by \(y = 2 - x^2 \) and the \(x \)-axis. The cross sections perpendicular to the \(y \)-axis are squares.

7. Volumes:
 (a) (Disks) Let \(V \) be the volume of a right circular cone of height 10 whose base is a circle of radius 4. Use similar triangles to find the area of a horizontal cross section at a height \(y \). Using this area, calculate the volume \(V \) by integrating the cross-sectional area.
 (b) (Washers) Let \(R \) be a region bounded by \(y = x^2 \) and \(y = 1 \), if \(R \) is rotated about \(x \)-axis, what is the volume of the resulting solid?
 (c) (Cylindrical Shells) \(V \) is obtained by rotating the region under the graph \(y = 3x^2 \) for \(0 \leq x \leq 2 \) about the \(y \)-axis. Calculate the volume of \(V \).

8. Work:
 Calculate the work against gravity required to build a right circular cone of height 4 m and radius 2 m out of a lightweight material of density 600 kg/m\(^3\). (See also question 7(a).)

9. Trigonometric Integrals:
 (a) \(\int \sin^2(x) \cos^3(x) \, dx \)
 (b) \(\int \tan^3(x) \sec^3(x) \, dx \)