1. Conceptual Understanding:
 (a) What does it mean to say that a differential equation is first-order (or second-order or third-order...)
 (b) What does it mean to say that a differential equation is linear or nonlinear?

2. Use Separation of Variables to find the general solutions to the following differential equations.
 (a) \(y' + 4xy^2 = 0 \)
 (b) \(\sqrt{1-x^2}y' = xy \)
 (c) \((1+x^2)y' = x^3y \)
 (d) \(\sqrt{1+y^2}y' + \sec x = 0 \)

3. Solve \(y' = 4y + 24 \) subject to the condition that \(y(0) = 5 \).

4. Solve \(y' + 6y = 12 \) subject to the condition that \(y(2) = 10 \).

5. Recall that Newton’s law of Cooling stipulates that the temperature \(y(t) \) of a cooling object with respect to time satisfies the differential equation

\[
y' = -k(y - T_0),
\]

where \(k \) is a constant depending on the object and \(T_0 \) is the temperature of the ambient environment.

Frank’s car engine runs at 210°F. On a 70°F day, he turns off the ignition and notes that five minutes later, the engine has cooled to 160°F.

 (a) Find the cooling constant \(k \).
 (b) When will the engine cool to 100°F?

6. A cup of coffee with cooling constant \(k = 0.09 \text{min}^{-1} \) is placed in a room of temperature 20°C.

 (a) How quickly is the coffee cooling when the temperature is 80°C?
 (b) Use the linear approximation to estimate the change in temperature over the next 6 s when the temperature is 80°C.
 (c) If the coffee is initially served at 90°C, how long will it take to reach an optimal drinking temperature of 65°C?

7. (Extra) A tank has the shape of the parabola \(y = x^2 \) revolved about the \(y \)-axis. Water leaks from a hole of area \(B = 0.0005 \text{ m}^2 \) at the bottom of the tank. Let \(y(t) \) be the water level at time \(t \). How long does it take for the tank to empty if the initial water level is \(y(0) = 1 \text{ m} \)?