MA162: Finite mathematics

Jack Schmidt

University of Kentucky

April 18, 2012

Schedule:
- HW 7A, 7B due Fri, April 20, 2012
- HW 7C due Fri, April 27, 2012
- Final exam, Wed May 2, 2012 from 8:30pm to 10:30pm

Today we will cover 7.3: Rules of probability
Final Exam Breakdown

- Chapter 7: Probability
 - Counting based probability
 - Counting based probability
 - Empirical probability
 - Conditional probability

- Cumulative
 - Ch 2: Setting up and reading the answer from a linear system
 - Ch 3: Graphically solving a 2 variable LPP
 - Ch 4: Setting up a multi-var LPP
 - Ch 4: Reading and interpreting answer form a multi-var LPP
7.2: Just count for probability

- If everything in the sample space is equally likely, then:

\[P = \frac{\# \text{ good}}{\text{Total } \#} \]

- Probability of \(\begin{array}{c} \text{.} \\ \text{.} \end{array} \) or \(\begin{array}{c} \text{.} \\ \text{.} \end{array} \) when you roll a white and a blue die?
7.2: Just count for probability

- If everything in the sample space is equally likely, then:

\[P = \frac{\# \text{ good}}{\text{Total } \#} \]

- Probability of 🟢 or 🟣 when you roll a white and a blue die?

- Just count!
7.2: Just count for probability

- If everything in the sample space is equally likely, then:

\[P = \frac{\# \text{ good}}{\text{Total } \#} \]

- Probability of \(\heartsuit \) or \(\spadesuit \) when you roll a white and a blue die?

- Just count!

- The second row and the fifth column work: \(P = \frac{6+6-1}{(6)(6)} = \frac{11}{36} \)
7.2: Crazy counting

- Suppose a deck of cards has four suits (♡, ♦, ♣, ♠) and 6 numbers (A,2,3,4,5,6)
- What is the probability of getting at least 2 aces out of 3 cards?
- Two ways to get at least 2 aces: exactly 2 or exactly 3.
Suppose a deck of cards has four suits (♥, ♦, ♣,♠) and 6 numbers (A,2,3,4,5,6).

What is the probability of getting at least 2 aces out of 3 cards?

Two ways to get at least 2 aces: exactly 2 or exactly 3.

\[
P(\text{exactly 2}) = \frac{C(4, 2)C(20, 1)}{C(24, 3)} = \frac{(4)(3)(20)}{(2)(1)(1)} = \frac{30}{506}
\]

\[
P(\text{exactly 3}) = \frac{C(4, 3)C(24, 3)}{C(24, 3)} = \frac{(4)(3)(2)}{(3)(2)(1)} = \frac{1}{506}
\]

\[
P(\text{at least 2}) = P(\text{exactly 2}) + P(\text{exactly 3}) = \frac{30}{506} + \frac{1}{506} = \frac{31}{506}
\]
7.2: Crazy counting

- Suppose a deck of cards has four suits (♡, ♢, ♣, ♠) and 6 numbers (A,2,3,4,5,6)

- What is the probability of getting at least 2 aces out of 3 cards?

- Two ways to get at least 2 aces: exactly 2 or exactly 3.

\[
P(\text{exactly 2}) = \frac{C(4, 2)C(20, 1)}{C(24, 3)} = \frac{(4)(3)(20)}{(2)(1)(1)} \cdot \frac{(24)(23)(22)}{(3)(2)(1)} = \frac{30}{506}
\]

\[
P(\text{exactly 3}) = \frac{C(4, 3)}{C(24, 3)} = \frac{(4)(3)(2)}{(3)(2)(1)} \cdot \frac{(24)(23)(22)}{(3)(2)(1)} = \frac{1}{506}
\]
Suppose a deck of cards has four suits (♥, ♦, ♣, ♠) and 6 numbers (A,2,3,4,5,6)

What is the probability of getting at least 2 aces out of 3 cards?

Two ways to get at least 2 aces: exactly 2 or exactly 3.

\[
P(\text{exactly 2}) = \frac{C(4, 2)C(20, 1)}{C(24, 3)} = \frac{(4)(3)(20)}{(2)(1)(1)(24)(23)(22)\cdot(3)(2)(1)} = \frac{30}{506}
\]

\[
P(\text{exactly 3}) = \frac{C(4, 3)}{C(24, 3)} = \frac{(4)(3)(2)(1)}{(24)(23)(22)\cdot(3)(2)(1)} = \frac{1}{506}
\]

\[
P(\text{at least 2}) = \frac{C(4, 2)C(20, 1) + C(4, 3)}{C(24, 3)} = \frac{30}{506} + \frac{1}{506} = \frac{31}{506}
\]
If $P(E) = 40\%$, $P(F) = 55\%$, and $P(E \cup F) = 85\%$, then what is $P(E \cap F)$?
7.3: What if things are not equally likely?

- If \(P(E) = 40\% \), \(P(F) = 55\% \), and \(P(E \cup F) = 85\% \), then what is \(P(E \cap F) \)?

- Pretend there are 100 things total. 40 in \(E \), 55 in \(F \), 85 in \(E \cup F \).
7.3: What if things are not equally likely?

- If $P(E) = 40\%$, $P(F) = 55\%$, and $P(E \cup F) = 85\%$, then what is $P(E \cap F)$?

- Pretend there are 100 things total. 40 in E, 55 in F, 85 in $E \cup F$.

- So $P(E \cap F) = 10\%$, since $40\% + 55\%$ is 10\% too big.
7.3: What if things are not equally likely?

- If $P(E) = 40\%$, $P(F) = 55\%$, and $P(E \cup F) = 85\%$, then what is $P(E \cap F)$?

- Pretend there are 100 things total. 40 in E, 55 in F, 85 in $E \cup F$.

- So $P(E \cap F) = 10\%$, since $40\% + 55\%$ is 10% too big.

- What is $P(E - F)$? We definitely don’t subtract 55% from 40%.

If \(P(E) = 40\% \), \(P(F) = 55\% \), and \(P(E \cup F) = 85\% \), then what is \(P(E \cap F) \)?

Pretend there are 100 things total. 40 in E, 55 in F, 85 in \(E \cup F \).

So \(P(E \cap F) = 10\% \), since \(40\% + 55\% \) is 10\% too big.

What is \(P(E - F) \)? We definitely don’t subtract 55\% from 40\%.

\[
P(E - F) = P(E) - P(E \cap F) = 40\% - 10\% = 30\%
\]
If \(Pr(E) \) is the probability that \(E \) happens, then \(1 - Pr(E) \) is the probability that it does not
7.3: The shortcuts

- If \(\Pr(E) \) is the probability that \(E \) happens, then \(1 - \Pr(E) \) is the probability that it does not happen.

- \(\Pr(E \cup F) = \Pr(E) + \Pr(F) - \Pr(E \cap F) \)
7.3: The shortcuts

- If $\Pr(E)$ is the probability that E happens, then $1 - \Pr(E)$ is the probability that it does not happen.

- $\Pr(E \cup F) = \Pr(E) + \Pr(F) - \Pr(E \cap F)$

- $\Pr(E) = \Pr(E \cap F) + \Pr(E - F)$
7.3: The shortcuts

- If $Pr(E)$ is the probability that E happens, then $1 - Pr(E)$ is the probability that it does not.

- $Pr(E \cup F) = Pr(E) + Pr(F) - Pr(E \cap F)$

- $Pr(E) = Pr(E \cap F) + Pr(E - F)$

- Every counting problem formula you can imagine has a probability counterpart.
What is the probability of rolling at least one six if you try 3 times?
7.3: Not not, who’s there?

- What is the probability of rolling at least one six if you try 3 times?
- You could count the number of ways, I got 91 out of 216 ways.
What is the probability of rolling at least one six if you try 3 times?

You could count the number of ways, I got 91 out of 216 ways.

You can use the first shortcut: \textbf{At least once} = \textbf{Not never}
What is the probability of rolling at least one six if you try 3 times?

You could count the number of ways, I got 91 out of 216 ways.

You can use the first shortcut: **At least once = Not never**

Never means every time it did NOT happen
What is the probability of rolling at least one six if you try 3 times?

You could count the number of ways, I got 91 out of 216 ways.

You can use the first shortcut: \textbf{At least once} = \textbf{Not never}

Never means every time it did NOT happen

$1 - \frac{1}{6}$ chance of not happening once
7.3: Not not, who’s there?

- What is the probability of rolling at least one six if you try 3 times?
- You could count the number of ways, I got 91 out of 216 ways.
- You can use the first shortcut: \textbf{At least once} = \textbf{Not never}
- Never means every time it did NOT happen
- \(1 - \frac{1}{6}\) chance of not happening once
- \((1 - \frac{1}{6})^3\) chance of it not-happening three times in a row
What is the probability of rolling at least one six if you try 3 times?

You could count the number of ways, I got 91 out of 216 ways.

You can use the first shortcut: **At least once = Not never**

Never means every time it did NOT happen

1 – \(\frac{1}{6} \) chance of not happening once

\((1 – \frac{1}{6})^3 \) chance of it not-happening three times in a row

1 – \((1 – \frac{1}{6})^3 \) chance of THAT not happening

\[
\frac{91}{216} = 1 – \left(1 – \frac{1}{6}\right)^3
\]
Suppose 40% of people like the letter E, 55% of people like the letter F, but 15% of people don’t like either letter.
Suppose 40% of people like the letter E, 55% of people like the letter F, but 15% of people don’t like either letter.

What is the probability a random citizen likes at least one of the letters?
Suppose 40% of people like the letter E, 55% of people like the letter F, but 15% of people don’t like either letter.

What is the probability a random citizen likes at least one of the letters?

100% − 15% = 85% don’t like none (so like one)
7.3: Old exam examples

- Suppose 40% of people like the letter E, 55% of people like the letter F, but 15% of people don’t like either letter.

- What is the probability a random citizen likes at least one of the letters?

 $100\% - 15\% = 85\%$ don’t like none (so like one)

- What is the probability a random citizen likes both of the letters?
7.3: Old exam examples

- Suppose 40% of people like the letter E, 55% of people like the letter F, but 15% of people don’t like either letter.

- What is the probability a random citizen likes at least one of the letters?

 \[100\% - 15\% = 85\% \text{ don’t like none (so like one)}\]

- What is the probability a random citizen likes both of the letters?

 \[40\% + 55\% - 85\% = 10\% \text{ like both (so were counted twice)}\]
Suppose 40% of people like the letter E, 55% of people like the letter F, but 15% of people don’t like either letter.

What is the probability a random citizen likes at least one of the letters?

$$100\% - 15\% = 85\%$$ don’t like none (so like one)

What is the probability a random citizen likes both of the letters?

$$40\% + 55\% - 85\% = 10\%$$ like both (so were counted twice)

What is the probability a random citizen likes E but not F?
7.3: Old exam examples

- Suppose 40% of people like the letter E, 55% of people like the letter F, but 15% of people don’t like either letter.

- What is the probability a random citizen likes at least one of the letters?

 \[100\% - 15\% = 85\% \text{ don’t like none (so like one) } \]

- What is the probability a random citizen likes both of the letters?

 \[40\% + 55\% - 85\% = 10\% \text{ like both (so were counted twice) } \]

- What is the probability a random citizen likes E but not F?

 \[40\% - 10\% = 30\% \]
The noble knight, Vey, asked his knightly buddies how many horses they had.
7.3: Sir Vey and his noble steed

- The noble knight, Vey, asked his knightly buddies how many horses they had.

- 30% had 1 or fewer steeds, 40% has 2 or fewer steeds, 10% had 4 or more steeds.
7.3: Sir Vey and his noble steed

- The noble knight, Vey, asked his knightly buddies how many horses they had.
- 30% had 1 or fewer steeds, 40% has 2 or fewer steeds, 10% had 4 or more steeds
- What is the probability a random knight had 3 or fewer steeds?

90% = 10% had 4 or more
7.3: Sir Vey and his noble steed

- The noble knight, Vey, asked his knightly buddies how many horses they had.

- 30% had 1 or fewer steeds, 40% has 2 or fewer steeds, 10% had 4 or more steeds

- What is the probability a random knight had 3 or fewer steeds?

 100% – 10% = 90% didn’t have 4 or more
7.3: Sir Vey and his noble steed

- The noble knight, Vey, asked his knightly buddies how many horses they had.

- 30% had 1 or fewer steeds, 40% has 2 or fewer steeds, 10% had 4 or more steeds

- What is the probability a random knight had 3 or fewer steeds?

 \[100\% - 10\% = 90\%\] didn’t have 4 or more

- What is the probability a random knight had exactly 3 steeds?

7.3: Sir Vey and his noble steed

- The noble knight, Vey, asked his knightly buddies how many horses they had.

- 30% had 1 or fewer steeds, 40% has 2 or fewer steeds, 10% had 4 or more steeds

- What is the probability a random knight had 3 or fewer steeds?

 100% – 10% = 90% didn’t have 4 or more

- What is the probability a random knight had exactly 3 steeds?

 90% – 40% = 50% had 3 or fewer, but not fewer.
The noble knight, Vey, asked his knightly buddies how many horses they had.

30% had 1 or fewer steeds, 40% has 2 or fewer steeds, 10% had 4 or more steeds.

What is the probability a random knight had 3 or fewer steeds?

100% – 10% = 90% didn’t have 4 or more

What is the probability a random knight had exactly 3 steeds?

90% – 40% = 50% had 3 or fewer, but not fewer.

What is the probability a random knight had exactly 2 steeds?
7.3: Sir Vey and his noble steed

- The noble knight, Vey, asked his knightly buddies how many horses they had.

- 30% had 1 or fewer steeds, 40% had 2 or fewer steeds, 10% had 4 or more steeds

- What is the probability a random knight had 3 or fewer steeds?

 $100\% - 10\% = 90\%$ didn’t have 4 or more

- What is the probability a random knight had exactly 3 steeds?

 $90\% - 40\% = 50\%$ had 3 or fewer, but not fewer.

- What is the probabilty a random knight had exactly 2 steeds?

 $40\% - 30\% = 10\%$ had 2 or fewer, but not fewer.